Loading...
Thumbnail Image
Publication

Crustal Evolution of the New England Appalachians: The Rise and Fall of a Long-Lived Orogenic Plateau

Abstract
The rise and demise of mountain belts, caused by growth, modification, or removal of the continental lithosphere are fundamental processes that influence almost all Earth systems. Understanding the nature, timing, and significance of active processes in the creation and evolution of modern mountain belts is challenged by a lack of middle crustal and lower crustal exposures. Analogues can be found in ancient orogens, whose deeply eroded roots offer a window into deeper processes, yet this record is complicated by overprinting events and complex deformational histories. Research presented herein constrains the tectonic history of multistage Appalachian Orogen, type locality of the Wilson cycle. Data-driven analysis of newly assembled geochronologic, geochemical, and geothermobarometric databases are synthesized with structural fabrics and geophysical imaging to constrain the timing and nature of crustal thickening and thinning events. Results identify a two-stage crustal thickening history in the dominant Acadian Orogeny and suggest the existence of a high elevation, low relief orogenic plateau. This plateau, the Acadian altiplano, formed in central and southern New England by ca. 380 Ma and exited for at least 50 m.y. until underwent orogen parallel collapse ca. 330-310 Ma. Collapse of the plateau likely formed the geophysically observed 12-15 km offset in Moho depth in western New England, and implies that the step has existed for ca. 300 m.y. These data constrain a four-dimensional record of crustal evolution over a period exceeding 100 m.y. Recognition of the Acadian altiplano may have important implications for the genesis of critical Li deposits, paleoclimate, and evolution of the Appalachian basin. Further, present a region that may provide an analogue for studying mid-crustal processes such as partial melting, ductile flow, and plutonism underneath modern plateaus.
Type
openaccess
article
thesis
Date
Publisher
Rights
License
http://creativecommons.org/licenses/by/4.0/
Research Projects
Organizational Units
Journal Issue
Embargo
Publisher Version
Embedded videos
Collections