Loading...
Thumbnail Image
Publication

Impact of Photogenerated Charge Carriers on the Stability of 2D/3D Perovskite Interface

Citations
Altmetric:
Abstract
An effective strategy to improve the performance and stability of perovskite solar cells is to deposit a 2D perovskite capping layer on the 3D perovskite. However, when exposed to light, small A-site cations in 3D perovskite exchange with the bulky cations in the 2D layer and degrades the 2D/3D interface. Therefore, to achieve long-term stability in perovskite solar cells, it is important to understand the nature of photogenerated charge carriers that cause cation migrations at the 2D/3D interface. In this work, we fabricated 2D/3D perovskite stacks on glass, ITO, ITO/PTAA, ITO/PTAA/CuI and ITO/SnO2. A combination of grazing incidence X-ray diffraction, steady-state and time-resolved photoluminescence studies reveals the link between the light-induced degradation and the photogenerated charge carrier dynamics. Upon illumination, the stability of the 2D layers follows this trend: ITO/PTAA/CuI≈ITO>ITO/PTAA>glass>ITO/SnO2 (from stable to unstable). This trend suggests that extracting holes efficiently from the 3D layer can improve the stability of the 2D layer. We also found that 2D/3D stacks degrade faster when illuminated from the 2D side instead of the 3D side. Our studies suggest that to achieve a stable 2D/3D interface, hole accumulation in the 3D layer should be avoided and the exciton density in the 2D layer should be reduced.
Type
Dataset
Date
2025
Publisher
American Chemical Society
Degree
Advisors
License
Attribution-NonCommercial-NoDerivatives 4.0 International
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Research Projects
Organizational Units
Journal Issue
Embargo Lift Date
Publisher Version
Embedded videos
Related Item(s)