Loading...
Citations
Abstract
Let be a simple algebraic group over the complex numbers containing a Borel subgroup . Given a -stable ideal in the nilradical of the Lie algebra of , we define natural numbers which we call ideal exponents. We then propose two conjectures where these exponents arise, proving these conjectures in types and some other types. When , we recover the usual exponents of by Kostant (1959), and one of our conjectures reduces to a well-known factorization of the Poincaré polynomial of the Weyl group. The other conjecture reduces to a well-known result of Arnold-Brieskorn on the factorization of the characteristic polynomial of the corresponding Coxeter hyperplane arrangement.
Type
article
Date
2006-01