Publication:
Degenerations Of Godeaux Surfaces And Exceptional Vector Bundles

dc.contributor.advisorPaul A. Hacking
dc.contributor.advisorEyal Markman
dc.contributor.advisorEvgueni Tevelev
dc.contributor.authorKazanova, Anna
dc.contributor.departmentUniversity of Massachusetts - Amherst
dc.date2023-09-23 9:33:42
dc.date.accessioned2024-04-26T14:45:37Z
dc.date.available2014-06-25T00:00:00Z
dc.date.issued9/1/13
dc.description.abstractA recent construction of Hacking relates the classification of stable vector bundles on a surface of general type with geometric genus 0 and the boundary of the moduli space of deformations of the surface. The goal of this thesis is to analyze this relation for Godeaux surfaces. To do this, first, we give a description of some boundary components of the moduli space of Godeaux surfaces. Second, we explicitly construct certain exceptional vector bundles of rank 2 on Godeaux surfaces, stable with respect to the canonical class. Finally, we examine the relation between such boundary components and exceptional vector bundles of rank two on Godeaux surfaces.
dc.description.degreeDoctor of Philosophy (PhD)
dc.description.departmentMathematics and Statistics
dc.identifier.doihttps://doi.org/10.7275/br8c-n763
dc.identifier.urihttps://hdl.handle.net/20.500.14394/15596
dc.relation.urlhttps://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1517&context=dissertations_1&unstamped=1
dc.source.statuspublished
dc.subjectPure sciences
dc.subjectApplied sciences
dc.subjectExceptional vector bundles
dc.subjectGodeaux surfaces
dc.subjectModuli of surfaces
dc.subjectDegenerations
dc.subjectBoundary components
dc.subjectRank 2
dc.subjectApplied Mathematics
dc.subjectMathematics
dc.titleDegenerations Of Godeaux Surfaces And Exceptional Vector Bundles
dc.typecampus
dc.typedissertation
digcom.contributor.authorKazanova, Anna
digcom.date.embargo2014-06-25T00:00:00-07:00
digcom.identifierdissertations_1/518
digcom.identifier.contextkey5723756
digcom.identifier.submissionpathdissertations_1/518
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Kazanova_umass_0118D_11494.pdf
Size:
843.34 KB
Format:
Adobe Portable Document Format
Collections