Loading...
Thumbnail Image
Publication

DEVELOPMENT OF IN VITRO BONE ORGANOID MODELS FOR THE RECAPITULATION OF BONE COMPLEXITY

Citations
Altmetric:
Abstract
Osteoporosis is the most common skeletal disorder that thins and weakens the bones, yet the detailed mechanisms remain poorly understood and limited therapeutic options are available. This can be attributed to the lack of relevant experimental models that can recapitulate the bone complexity and bone remodeling. Mouse models have identified many critical genes and molecules regulating bone metabolism but are limited to studying detailed cellular and molecular processes due to anatomical inaccessibility and restricted ability to manipulate bone structure. Considerable efforts have been made to generate physiologically relevant models by using synthetic and biomaterial-based 3D scaffolds. However, there are no widely accepted models since it is difficult to standardize or manipulate the model systems for mechanistic study with high fidelity and analytical power. My dissertation research focuses on developing a new 3D bone tissue model to manipulate bone matrix and devise mechanoculture platforms to recapitulate essential 3D bone tissue complexity and processes. Here, we introduce an osteoid-inspired biomaterial that is developed in a controlled and accessible manner. Demineralized bone paper (DBP) was engineered to generate the in vitro niche retaining the extracellular complexity of bone tissue. First, we explored the DBP-guided mineralization of osteoblasts and their phenotype. Physiologically relevant OPG/RANKL secretion of osteoblasts on DBP faithfully simulates osteoblast-osteoclast interactions in the bone remodeling process. The optical transparency of DBP was leveraged to investigate spatial bone remodeling activities via various imaging techniques in a quantitative manner. Next, we have established two distinct biomimetic strategies to build 3D bone tissue models via stacking and rolling osteoblast-seeded DBPs. Osteoblasts in between multi-layered DBPs progressed from mineralizing cells to mature osteocytes with dendritic cell morphology and upregulated Sost gene expression. We have also prepared two distinct mechanoculture devices, compression and vibration, and demonstrated the biological significance of mechanotransduction in promoting bone tissue formation and osteocytogenesis. Laboratory-grown bone organoid models represent a great opportunity to better understand the complex and dynamic regulation of bone remodeling. The presented models and techniques may suggest a new gold standard for in vitro bone cell assay that aids in the development of bone disease therapies in medical research.
Type
dissertation
Date
2022-05
Publisher
Advisors
License
License
Research Projects
Organizational Units
Journal Issue
Embargo Lift Date
Publisher Version
Embedded videos
Related Item(s)