Loading...
Thumbnail Image
Publication

A note on a symplectic structure on the space of G-monopoles

Citations
Altmetric:
Abstract
Let G be a semisimple complex Lie group with a Borel subgroup B. Let X=G/B be the flag manifold of G. Let C=\PP1 ' ¥Unknown control sequence '\PP' be the projective line. Let a Î H2(\bX,\Bbb Z)Unknown control sequence '\bX'. The moduli space of G-monopoles of topological charge f is naturally identified with the space \CMb(\bX,a)Unknown control sequence '\CM' of based maps from (C,X) to (X,B) of degree f. The moduli space of G-monopoles carries a natural hyperkähler structure, and hence a holomorphic symplectic structure. It was explicitly computed by R. Bielawski in case G=SLn. We propose a simple explicit formula for another natural symplectic structure on \CMb(\bX,a)Unknown control sequence '\CM' . It is tantalizingly similar to R. Bielawski's formula, but in general (rank >1) the two structures do not coincide. Let P´G be a parabolic subgroup. The construction of the Poisson structure on \CMb(\bX,a)Unknown control sequence '\CM' generalizes verbatim to the space of based maps \CM = \CMb(\bG/\bP,b)Unknown control sequence '\CM'. In most cases the corresponding map T*\CM® T\CMUnknown control sequence '\CM' is not an isomorphism, i.e. \CMUnknown control sequence '\CM' splits into nontrivial symplectic leaves. These leaves are explicilty described.
Type
article
article
Date
1999
Publisher
Degree
Advisors
License
License