Loading...
Thumbnail Image
Publication

Residues in toric varieties

Abstract
We study residues on a complete toric variety X, which are defined in terms of the homogeneous coordinate ring of X.We first prove a global transformation law for toric residues. When the fan of the toric variety has a simplicial cone of maximal dimension, we can produce an element with toric residue equal to 1. We also show that in certain situations, the toric residue is an isomorphism on an appropriate graded piece of the quotient ring. When X is simplicial, we prove that the toric residue is a sum of local residues. In the case of equal degrees, we also show how to represent X as a quotient (Y\{0})/C* such that the toric residue becomes the local residue at 0 in Y.
Type
article
article
Date
1997
Publisher
Degree
Advisors
Rights
License
Research Projects
Organizational Units
Journal Issue
Embargo
DOI
Publisher Version
Embedded videos