Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents

Publication Date


Journal or Book Title

Earth's Future


Bytrapping sediment in reservoirs, dams interrupt the continuity of sediment transport through rivers, resulting in loss of reservoir storage and reduced usable life, and depriving downstream reaches of sediments essential for channel form and aquatic habitats. With the acceleration of new dam construction globally, these impacts are increasingly widespread. There are proven techniques to pass sediment through or around reservoirs, to preserve reservoir capacity and to minimize downstream impacts, but they are not applied in many situations where they would be effective. This paper summarizes collective experience from five continents in managing reservoir sediments and mitigating downstream sediment starvation. Where geometry is favorable it is often possible to bypass sediment around the reservoir, which avoids reservoir sedimentation and supplies sediment to downstream reaches with rates and timing similar to pre-dam conditions. Sluicing (or drawdown routing) permits sediment to be transported through the reservoir rapidly to avoid sedimentation during high flows; it requires relatively large capacity outlets. Drawdown flushing involves scouring and re-suspending sediment deposited in the reservoir and transporting it downstream through low-level gates in the dam; it works best in narrow reservoirs with steep longitudinal gradients and with flow velocities maintained above the threshold to transport sediment. Turbidity currents can often be vented through the dam, with the advantage that the reservoir need not be drawn down to pass sediment. In planning dams, we recommend that these sediment management approaches be utilized where possible to sustain reservoir capacity and minimize environmental impacts of dams.









Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This document is currently not available here.