Publication Date



We investigated the relationship between distributions of GDGTs, GDGT-based proxies and environmental factors in a stratified lake in northwestern Norway. More than 90% of isoGDGTs were produced at the bottom of the oxycline, indicating a predominance of ammonia-oxidizing Group I.1a of Thaumarchaeota, supported by high crenarchaeol/caldarchaeol ratios. Dissolved oxygen content, rather than temperature, exercised a primary control on TEX86 values. In spite of low BIT value in surface sediment, the reconstructed lake surface temperature was “cold” biased. MBT values in streams and lake surface water were significantly smaller than those in the catchment soil, suggesting in situ production of brGDGTs in streams. A rapid transition of MBT vs. temperature/pH relationships occurring at the bottom of oxycline indicated the differential production of various brGDGTs with D.O. and depths. Only within the oxycline were CBT-based pH values close to in situ pH. Our results confirm earlier studies calling for caution in applying TEX86 as a surface temperature proxy, or MBT and/or CBT for reconstructing pH, in anoxic or euxinic lakes, estuaries and ocean basins. We propose that caldarchaeol/crenarchaeol ratio, an indicator of contributions from methanogenic archaea, together with the BIT and TEX86 proxies, can help reconstruct past levels of stratification.





Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.


This research was supported by the Chinese National Science Foundation under Grants 41473069 and 41173080 (Z.Z.), and U.S. NOAA Grant NA050AR4311106 (R.S.B).