Loading...
Thumbnail Image
Publication

The Spinor Representation of Minimal Surfaces

Abstract
The spinor representation is developed and used to investigate minimal surfaces in R^3 with embedded planar ends. The moduli spaces of planar-ended minimal spheres and real projective planes are determined, and new families of minimal tori and Klein bottles are given. These surfaces compactify in S^3 to yield surfaces critical for the M¨obius invariant squared mean curvature functional W. On the other hand, all Wcritical spheres and real projective planes arise this way. Thus we determine at the same time the moduli spaces of W-critical spheres and real projective planes via the spinor representation.
Type
article
article
Date
1995-12-04
Publisher
Degree
Advisors
Rights
License
Research Projects
Organizational Units
Journal Issue
Embargo
DOI
Publisher Version
Embedded videos