Thumbnail Image

Non-Euclidean Shells: A Study of Growth-Induced Fabrication and Mechanical Multi-Stability

Non-Euclidean shells are ubiquitous in both natural and man-made systems, yet fabrication at smaller length-scales (nanometer to micrometer) and the underlying mechanical behavior of these geometries is not well understood. In this dissertation, we develop a framework for improvements in fabrication and control over deformation pathways of non-Euclidean elastic shells. For programming a target non-Euclidean geometry, we study the non-uniform growth induced buckling in flat sheets. To deepen our understanding of this powerful mechanism, we present an experimental verification of its mathematical equivalence with a mechanism involving topological defects. We establish a framework for correlating topological defect-induced buckling, realized through a simple cut-and-glue construction, with growth induced buckling realized through non-uniform growth of patterned 2D hydrogel sheets. Validating the obtained mathematical results, we demonstrate fabrication of a cylindrical and conical dipole geometry through both mechanisms under consideration. In addition, upon applying a similar treatment on tetrahedron geometry we realize the limitations of growth-induced buckling mechanism for programming 3D geometry, and find that optimizing for pattern resolution and swelling range can lead to a higher fidelity in target geometries. Next, we turn towards the interplay between geometry and mechanics in non-Euclidean shells, to harness multi-stability between different geometric configurations. Under this theme, we study deformation of arbitrarily curved surfaces along pre-defined creases (curves with local weakening) finding that the continuity of this deformation can be predicted through a simple consideration of the curvature of the crease. We establish that simple geometric control over the crease curvature can be used to program on-demand snap-through instabilities between bi-stable states of developable, elliptic and hyperbolic surfaces. Using experiments, FEA and theoretical analysis of bending and stretching energies involved while indenting a hemispherical shell, we establish the geometric phase space in which the isometric state of a creased sphere is stable. Finally, we extend this notion by considering the ability to program multiple stable states in a tiled conical geometry, commonly found in bendable drinking straws (bendy straws) and other similar structures. These corrugated structures exhibit stability in axial (resulting in change in length), non-axial (change in ‘bent’ angle) and azimuthal direction (change in azimuthal angle) imparting a desirable high-degree of freedom in possible configurations. By analyzing the stability behavior of elastic double conical frusta shells, we study the necessary conditions for programming multi-stability, and find that axial stability depends on geometrical parameters. Interestingly, we conclude that a stable non-axial state requires a combination of appropriate geometry and presence of a pre-stress in azimuthal direction. The controlled multi-stability opens pathways toward a truly re-configurable shape programmable system, useful for manipulators and actuators in soft-robotics
Research Projects
Organizational Units
Journal Issue
Publisher Version
Embedded videos