Loading...
Thumbnail Image
Publication

Streamwise Flow-Induced Oscillations of Bluff Bodies - The Influence of Symmetry Breaking

Citations
Altmetric:
Abstract
The influence of symmetry breaking on the flow induced oscillations of bluff bodies in the steamwise direction is studied. First, a series of experiments is conducted on a one-degree-of-freedom circular cylinder allowed to exhibit pure translational motion in the streamwise direction over a range of reduced velocities, 1.4 < U* < 4.4, corresponding to a Reynolds number range of 970 < Re < 3370. Two distinct regions of displacements were observed in reduced velocity ranges of 1.6 < U* < 2.5 and 2.75 < U* < 3.85. Measured force coefficients in the drag and lift direction were examined, along with the wake visualization, through the range of reduced velocities, to infer the resulting wake modes. A new Alternating Symmetric (AS) mode was found. This transition from symmetric to AS shedding occurred near the end of the first region of response. Similar tests were run with a square prism in the parameter space of 2.4 < U* < 5.8 and 757 < Re < 1900 over angles of incidence of 0° ≤ α ≤ 45°. A distinct region of lock-in is observed for α = 0°, 2.5°, 5°, 7.5° over 3.2 < U* < 5.4 for α = 0°, and decreasing with increasing α. The wake structures were found to be roughly symmetric for α = 0°, but transitioned towards asymmetry with increasing α. For α = 0° and 2.5° a gradual increase in the asymmetry of the fluid forcing was observed with increasing U*, similar to the circular cylinder.
Type
Thesis (Open Access)
Date
2018-05
Publisher
License
License