Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Geosciences

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2014

Month Degree Awarded

September

Abstract

The Mazatzal orogeny (1.66-1.60 Ga) is a key element of the tectonic evolution of the North American continent during the Proterozoic (Whitmeyer and Karlstrom, 2007). Recently, Mesoproterozoic detrital zircon grains (1.55-1.45 Ga) have been found in metasedimentary rocks that were thought to have been deformed during the Paleoproterozoic Mazatzal orogeny (Jones et al. 2011; Doe et al. 2012, 2013; Daniel et al. 2013). Some type examples Mazatzal deformation now seem to be too young to have been deformed in the accepted time of that orogeny (1.66-1.60 Ga) and may have been deformed in the younger, newly defined, Picuris orogeny. This leads to questions regarding the timing and nature of the Mazatzal orogeny and its importance in the evolution of the North American continent. The object of this research is to constrain the timing of deformation related to the Mazatzal and Picuris orogenies and clarify the Proterozoic history of the North American continent. The Four Peaks area in central Arizona has been selected as an ideal location to tightly constrain the timing of deformation. The area hosts a package of Proterozoic metasedimentary rocks that are folded into a kilometer-scale syncline, surrounded by vi Mesoproterozoic to Paleoproterozoic granitoids.

The Four Peaks syncline has been considered a type example of Mazatzal-age deformation (Karlstrom and Bowring, 1988). Zircon and monazite geochronology are presented along with structural and petrologic data in order to understand the geologic history of the Four Peaks area. The evidence suggests that three deformation events occurred at ~1675 Ma, 1665-1655 Ma and 1490-1450 Ma. Sedimentary deposition occurred 1665-1655 Ma and 1520-1490 Ma with a significant disconformity in between these episodes. Both the Mazatzal and Picuris orogenies can be associated with periods of deformation, sedimentary deposition and pluton emplacement. The most significant shortening event, which formed the Four Peaks syncline, occurred during Mesoproterozoic time and was related to the Picuris orogeny.

DOI

https://doi.org/10.7275/5724635

First Advisor

Michael L Williams

Share

COinS