Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded

2014

Month Degree Awarded

September

Abstract

In this thesis, a passive exoskeleton spine was designed and evaluated by a series of biomechanics simulations. The design objectives were to reduce the human operator’s back muscle efforts and the intervertebral reaction torques during a full range sagittal plane spine flexion/extension. The biomechanics simulations were performed using the OpenSim modeling environment. To manipulate the simulations, a full body musculoskeletal model was created based on the OpenSim gait2354 and “lumbar spine” models. To support flexion and extension of the torso a “push-pull” strategy was proposed by applying external pushing and pulling forces on different locations on the torso. The external forces were optimized via simulations and then a physical exoskeleton prototype was built to evaluate the “push-pull” strategy in vivo. The prototype was tested on three different subjects where the sEMG and inertial data were collected to estimate the muscle force reduction and intervertebral torque reduction. The prototype assisted the users in sagittal plane flexion/extension and reduced the average muscle force and intervertebral reaction torque by an average of 371 N and 29 Nm, respectively.

DOI

https://doi.org/10.7275/6062911

First Advisor

Frank C Sup

Share

COinS