Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Molecular & Cellular Biology

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2015

Month Degree Awarded

September

Abstract

The anteroventral periventricular (AVPV) nucleus of the hypothalamus integrates estradiol (E2) and progesterone (P4) feedback signals from the ovaries to stimulate gonadotropin releasing hormone (GnRH) neurons and trigger an ovulatory surge in luteinizing hormone (LH). E2 maintains the daily cyclic LH surge and P4 quickly amplifies the surge and limits it to one day. P4 amplification of the surge and rapid signaling in the AVPV may occur through its non-classical progestin receptors. Previous in vitro studies using a microarray analysis with N42 mouse embryonic hypothalamic neurons suggest that progesterone membrane component 1 (Pgrmc1) regulates genes linked to the janus kinase (Jak)/signal transducer and activator of transcription (Stat) signaling pathway. I hypothesized that P4 alters Jak/Stats through Pgrmc1 regulation of one or more Jak or Stat molecules and then performed a set of in vitro and in vivo studies to test this. I transfected N42 cells with either scramble or Pgrmc1 siRNA followed by treatment with either ethanol vehicle control or 10 nM P4 and measured Jak1, Jak2, Stat3, Stat5a, Stat5b, and Stat6 mRNA levels via quantitative polymerase chain reaction (QPCR). Jak1 and Jak2 mRNAs increased with P4 treatments, and this upregulation required Pgrmc1. Silencing Pgrmc1 in the cells also produced an increase in Jak1 and Jak2 mRNA, suggesting that Pgrmc1 constitutively suppressed jak1 and jak2 in the absence of P4. None of the Stats were significantly regulated by P4 or Pgrmc1 silencing. To determine how Pgrmc1 regulates Jak/Stat in vivo, I took AVPV microdissections from Pgrmc1 and Pgrmc2 double conditional knockout (DCKO) mice and looked at gene expression of jak/stat. Transcript levels of Jak2, but not Jak1, were severely downregulated in the DCKO animals and Stat mRNAs were not significantly changed. Discrepancies from in vitro and in vivo data prompted me to analyze the role of the class II progestin and adipoQ (Paqr) receptors in Jak/Stat signaling. P4 treatments and siRNA experiments in N42 cells showed that Paqr8, but not Paqr7, was required for P4 upregulation of Jak1 and Jak2 mRNAs. Overall, these findings show that Pgrmc1 regulates Jak1 and Jak2 synthesis in a P4-dependent and -independent manner that requires interaction with Paqr8.

DOI

https://doi.org/10.7275/7530282

First Advisor

Sana L Petersen

Second Advisor

Kathleen F Arcaro

Third Advisor

D. Joseph Jerry

Share

COinS