Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Civil Engineering

Degree Type

Master of Science in Civil Engineering (M.S.C.E.)

Year Degree Awarded

2015

Month Degree Awarded

September

Abstract

Continuous transportation demand growth in recent years has led to many traffic issues in urban areas. Among the most challenging ones are traffic congestion and the associated vehicular emissions. Efficient design of traffic signal control systems can be a promising approach to address these problems. This research develops a real-time signal control system, which optimizes signal timings at an under-saturated isolated intersection by minimizing total vehicular emissions. A combination of previously introduced analytical models based on traffic flow theory has been used. These models are able to estimate time spent per driving mode (i.e., time spent accelerating, decelerating, cruising, and idling) as a function of demand, vehicle arrival times, saturation flow, and signal control parameters. Information on vehicle activity is used along with the Vehicle Specific Power (VSP) model, which estimates emission rates per time spent in each operating mode to obtain total emissions per cycle. For the evaluation of the proposed method, data from two real-world intersections of Mesogion and Katechaki Avenues located in Athens, Greece and University and San Pablo Avenues, in Berkeley, CA has been used. The evaluation has been performed through both deterministic (i.e. under the assumption of perfect information for all inputs) and stochastic (i.e. without having perfect information for some inputs) arrival tests. The results of evaluation tests have shown that the proposed emission-based signal control system reduces emissions compared to traditional vehicle-based signal control system in most cases.

DOI

https://doi.org/10.7275/7200415

First Advisor

Eleni Christofa

Share

COinS