Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Nutrition

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2017

Month Degree Awarded

May

Abstract

T2DM is a chronic disease characterized by postprandial hyperglycemia. One of the therapeutic approaches to attenuate hyperglycemia is to inhibit intestinal ɑ-glucosidase enzyme and/or suppress glucose transporters that regulate intestinal glucose transporters such as SGLT1 & GLUT2. Berries rich in polyphenol antioxidants have various health benefits. Although the antidiabetic effects of various berry extracts or berry mixture in pre-clinical and clinical studies, the underlying pathways at the molecular level is still unclear. In this study, we investigated antioxidant and antidiabetic effects of selected berry extracts by determining free radical scavenging activates, Caco-2 intestinal ɑ-glucosidase activity, glucose uptake and the gene expression of ɑ-glucosidase and glucose transporters in Caco-2 cells. Total phenolic contents of berry extracts varied from 28.55 ± 0.06 to 56.15 ± 1.08 gallic acid equivalent (GAE μg/mL) and correlated with antioxidant capacities. Both cranberry extract (CBE) and blackberry extract (BBE) at 200 μg/mL concentration significantly decreased glucose uptake in Caco-2 cells. While mRNA expression and activity of ɑ-glucosidase were inhibited by CBE and BBE, mRNA expression of SGLT1 and GLUT2 was only inhibited by CBE. Moreover, CBE and BBE significantly decreased glucose uptake in the presence of sucrose and AS. Our data suggest that CBE and BBE have different molecular mechanisms in suppressing hyperglycemia and their effects are mediated by inhibiting carbohydrate digestion and absorption.

DOI

https://doi.org/10.7275/10011051

First Advisor

Young-Cheul Kim

Included in

Nutrition Commons

Share

COinS