Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

ORCID

N/A

Access Type

Open Access Thesis

Document Type

thesis

Degree Program

Food Science

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2014

Month Degree Awarded

May

Abstract

Three systems were compared in the first case study: (1). pre-dissolved β-carotene nanoemulsion (d< 200nm); (2). corn oil emulsion (d< 200nm) with β-carotene crystals being added before digestion; (3). phosphate buffer saline with β-carotene being added before digestion. Oil-in-water nanoemulsions were formed by high-pressure homogenization using Tween 20 as emulsifier and corn oil as carrier oil and then they were subjected to a simulated mouth, stomach and small intestine digestion. The rate and extent of free fatty acid production in small intestine decreased in the order (2)>(1)>(3); whereas the β-carotene bioaccessibility decreased in the order (1)>>(2)>(3). In system (3), even without any fat content, there is still noticeable consumption of NaOH, which is due to the ester bonds existing in the non-ionic surfactant (Tween 20). In the second case study, we developed two comparing groups by differentiating their oil concentration (20%, 4% respectively). The bioaccessibility of the high fat group is only half of the low fat group due to the insufficient digestion of fat in the former group. In the third case study, the bioaccessibility of nobiletin with different physical states (crystalized vs solubilized) and in different delivery system (conventional emulsion vs nanoemulsion) was compared. Not like β-carotene, the bioaccessibility of nobiletin as crystals in slightly lower than it is as solubilized state. Meanwhile, in conventional emulsion, the bioaccessibility is slightly lower than in nanoemulsion. This study provides important information for developing effective delivery systems for lipophilic bioactive components in food and beverage applications.

DOI

https://doi.org/10.7275/5572680

First Advisor

Hang Xiao

Second Advisor

David Julian McClements

Share

COinS