Document Type

Campus-Only Access for One (1) Year

Embargo Period


Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded


Month Degree Awarded



This study comprises two tasks. The first is to implement gate-level circuit camouflage techniques. The second is to implement the Oracle-guided incremental de-camouflage algorithm and apply it to the camouflaged designs.

The circuit camouflage algorithms are implemented in Python, and the Oracle- guided incremental de-camouflage algorithm is implemented in C++. During this study, I evaluate the Oracle-guided de-camouflage tool (Solver, in short) performance by de-obfuscating the ISCAS-85 combinational benchmarks, which are camouflaged by the camouflage algorithms. The results show that Solver is able to efficiently de-obfuscate the ISCAS-85 benchmarks regardless of camouflaging style, and is able to do so 10.5x faster than the best existing approaches. And, based on Solver, this study also measures the de-obfuscation runtime for each camouflage style.

First Advisor

Daniel Holcomb

Available for download on Saturday, September 01, 2018