Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access Thesis

Embargo Period

4-2-2018

Degree Program

Nutrition

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2018

Month Degree Awarded

May

Abstract

Obesity has reached an epidemic level in the United States. A number of epidemiological studies have established obesity as a critical risk factor for postmenopausal breast cancer (post-BC), whereas a reverse association holds prior to menopause. A significant scientific gap exists in understanding the mechanism(s) underpinning this epidemiological phenomenon, particularly the reverse association between obesity and premenopausal breast cancer (pre-BC). This study aimed to understand how folate metabolism and DNA methylation informs the association between obesity and pre-BC. Fifty normal breast tissue samples were collected from premenopausal women who underwent reduction mammoplasty. We developed and measured the breast tissue folate by a Lactobacillus Casei microbiological assay, and the DNA methylation of LINE-1, a biomarker of genome-wide methylation, and the promoter methylation and gene expression of SFRP1, a tumor suppressor, were measured by pyrosequencing and real-time PCR. We found a high BMI is associated with increased folate level in the mammary tissue, with an increase of 2.65 ng/g of folate per every 5-unit increase of BMI (p < 0.05). The LINE-1 DNA methylation was significantly associated with BMI (p < 0.05), and marginally associated with folate concentration (p = 0.087). For the 8 CpG sites analyzed in the promoter region of the SFRP1 gene, no associations were observed for either BMI or tissue folate (p > 0.05), although a high expression of SFRP1 was observed in subjects with high BMI or high folate (p < 0.05). This study demonstrated that, in premenopausal women, obesity is associated with an increased mammary folate status, genome-wide DNA methylation and SFRP1 gene expression, indicating that the improved folate and epigenetic status is potentially responsible for the reverse association between obesity and pre-BC. More studies are warranted to further understand how obesity mediates pre-BC via altering folate metabolism and DNA methylation.

First Advisor

Zhenhua Liu

Second Advisor

Richard Wood

Share

COinS