Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.



Access Type

Open Access Thesis

Document Type


Degree Program


Degree Type

Master of Science (M.S.)

Year Degree Awarded


Month Degree Awarded



Here we examine seasonal grain-size trends on 18 beaches in the Northeastern US and dispersed along the post-glacial coast of Massachusetts (USA) in order to explore the mechanisms influencing median grain size and slope. Over 800 grain size samples were collected along 200 summer and winter cross-shore beach elevation surveys. Obtained grain size and beach slope data are compared to coastal morphology, sediment source, wave height, and tidal magnitude in order to ascertain controls on beach characteristics. In general, median grain size increases with intertidal beach slope in the study region. However, grain sizes along post-glaciated beaches in the study are as much as an order of magnitude coarser for the same beach slopes when compared to beaches for other regions of the US. Grain size and slope for beaches in the northeastern US also exhibit less correlation with oceanographic processes (i.e. wave climate and tidal magnitude). Instead, grain size trends are primarily driven by the composition of nearby glacial deposits that serve as the primary source of sediment to beaches in the study region. Results provide quantitative support for the distribution and composition of legacy glacial deposits rather than oceanographic conditions serving as the predominant governor of beach grain size along post-glaciated coastlines of the Atlantic continental margin.


First Advisor

Jonathan Woouff

Second Advisor

Stephen Mabee

Third Advisor

William Clement