Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.


Access Type

Open Access Thesis

Document Type


Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded


Month Degree Awarded



To impede the progress of climate change, many policy makers are considering avenues to decarbonize electricity production. In addition to decarbonization, policy makers must consider how the cost of electricity will impact various stakeholders, balancing cost and social benefits. Offshore wind farms have the potential to produce affordable, carbon-free electricity, but they are a relatively new technology. The relative juvenescence of offshore wind lends itself to an uncertain future, regarding production costs. In this thesis, we seek to understand cost drivers behind offshore wind electricity by analyzing historic trends in offshore wind levelized cost of electricity (LCOE) through learning curves, characterizing how learning from producing a technology can lead to decreases in production costs. Additionally, we explore how the maturity of component technologies can affect the learning rate, and consequently the benefits of learning, of offshore wind. Finally, we create a robust data set to inform decision makers and researchers by marrying historic data to forward-looking expert elicitations.


First Advisor

Erin Baker

Second Advisor

Matthew Lackner

Third Advisor

James Manwell