Off-campus UMass Amherst users: To download campus access dissertations, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Dissertations that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access Thesis

Degree Program

Electrical & Computer Engineering

Degree Type

Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)

Year Degree Awarded

2020

Month Degree Awarded

February

Abstract

The literature on compressive parameter estimation has been mostly focused on the use of sparsity dictionaries that encode a discretized sampling of the parameter space; these dictionaries, however, suffer from coherence issues that must be controlled for successful estimation. To bypass such issues with discretization, we propose the use of statistical parameter estimation methods within the Approximate Message Passing (AMP) algorithm for signal recovery. Our method leverages the recently proposed use of custom denoisers in place of the usual thresholding steps (which act as denoisers for sparse signals) in AMP. We introduce the design of analog denoisers that are based on statistical parameter estimation algorithms, and we focus on two commonly used examples: frequency estimation and bearing estimation, coupled with the Root MUSIC estimation algorithm. We first analyze the performance of the proposed analog denoiser for signal recovery, and then link the performance in signal estimation to that of parameter estimation. Numerical experiments show significant improvements in estimation performance versus previously proposed approaches for compressive parameter estimation.

First Advisor

Marco F. Duarte

Share

COinS