Publication Date

2020

Journal or Book Title

Communications in Mathematical Physics

Abstract

In this paper we relate two mathematical frameworks that make perturbative quantum field theory rigorous: perturbative algebraic quantum field theory (pAQFT) and the factorization algebras framework developed by Costello and Gwilliam. To make the comparison as explicit as possible, we use the free scalar field as our running example, while giving proofs that apply to any field theory whose equations of motion are Greenhyperbolic (which includes, for instance, free fermions). The main claim is that for such free theories, there is a natural transformation intertwining the two constructions. In fact, both approaches encode equivalent information if one assumes the time-slice axiom. The key technical ingredient is to use time-ordered products as an intermediate step between a net of associative algebras and a factorization algebra.

DOI

https://doi.org/10.1007/s00220-019-03652-9

Pages

107-174

Volume

373

License

UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS