Publication Date

2020

Journal or Book Title

Physical Review Research

Abstract

Coherent perfect absorption (CPA), also known as time-reversed laser, is a wave phenomenon resulting from the reciprocity of destructive interference of transmitted and reflected waves. In this work we consider quasi-one-dimensional lattice networks which posses at least one flat band and show that CPA and lasing can be induced in both linear and nonlinear regimes of this lattice by fine-tuning non-Hermitian defects (dissipative terms localized within one unit-cell). We show that local dissipations that yield CPA simultaneously yield novel dissipative compact solutions of the lattice, whose growth or decay in time can be fine-tuned via the dissipation parameter. The scheme used to numerically visualize the theoretical findings offers a novel platform for the experimental implementation of these phenomena in optical devices.

DOI

https://doi.org/10.1103/PhysRevResearch.2.013054

Volume

2

Issue

1

License

UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS