Mechanistic principles of nanoparticle evolution to zeolite crystals

Publication Date

2006

Journal or Book Title

NATURE MATERIALS

Abstract

Precursor nanoparticles that form spontaneously on hydrolysis of tetraethylorthosilicate in aqueous solutions of tetrapropylammonium (TPA) hydroxide evolve to TPA-silicalite-1, a molecular-sieve crystal that serves as a model for the self-assembly of porous inorganic materials in the presence of organic structure-directing agents. The structure and role of these nanoparticles are of practical significance for the fabrication of hierarchically ordered porous materials and molecular-sieve films, but still remain elusive. Here we show experimental findings of nanoparticle and crystal evolution during room-temperature ageing of the aqueous suspensions that suggest growth by aggregation of nanoparticles. A kinetic mechanism suggests that the precursor nanoparticle population is distributed, and that the 5-nm building units contributing most to aggregation only exist as an intermediate small fraction. The proposed oriented-aggregation mechanism should lead to strategies for isolating or enhancing the concentration of crystal-like nanoparticles.

Comments

The published version is located at http://www.nature.com/nmat/journal/v5/n5/abs/nmat1636.html

Pages

400-408

Volume

5

Issue

5

This document is currently not available here.

Share

COinS