Date of Award

2-2011

Document type

dissertation

Access Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Molecular and Cellular Biology

First Advisor

Dominique Alfandari

Second Advisor

Rafael Fissore

Third Advisor

Rolf Karlstrom

Subject Categories

Cell Biology | Molecular Biology

Abstract

Gastrulation is a fundamental process that reorganizes the primary germ layers to shape the internal and external features of an early embryo. Morphogenetic movements underlying this process can be classified into a variety of different types of cellular movements. I will focus on investigating in this thesis two types of cell movements in the dorsal mesoderm; mediolateral cell intercalation and convergence and extension. During gastrulation, mesoderm cells send protrusions to gain traction on neighboring cells and the surrounding extracellular matrix; a process called mediolateral cell intercalation. Mesoderm cells use this type of cell movement to converge and extend the dorsal mesoderm tissue during gastrulation; a process called convergence and extension. These morphogenetic movements are essential to form the early embryo and are important for later development. There are a number of different proteins involved in regulating the morphogenetic movements during gastrulation. The Planar Cell Polarity Signaling Pathway helps establish individual cell polarity and is activated in dorsal mesoderm cells undergoing convergence and extension. In addition, dorsal mesoderm cells migrate by using integrin receptors and the surrounding extracellular matrix to correctly position the mesoderm in the embryo. I will focus my efforts on analyzing the function of ADAM proteins during Xenopus laevis gastrulation. The ADAM family of metalloproteases is important for a variety of biological processes. ADAM proteins function as ectodomain sheddases by cleaving membrane bound proteins involved in signal transduction, cell-cell adhesion, and cell-extracellular matrix adhesion. I will focus on investigating the roles of two ADAM family members; ADAM13 and ADAM19 during gastrulation. Both ADAM13 and ADAM19 are expressed in the dorsal mesoderm during gastrulation. Throughout early embryonic development, ADAM13 is expressed in the somitic mesoderm and cranial neural crest cells. ADAM19 is expressed in dorsal, neural and mesodermal derived structures such as the neural tube, notochord, the somitic mesoderm, and cranial neural crest cells. Since ADAM13 and ADAM19 are expressed in similar tissues, I investigated if both proteins functionally interacted. I show that a loss of ADAM13 protein in the embryo reduces the level of ADAM19 protein by 50%. In the opposite experiment, a loss of ADAM19 protein in the embryo reduces the level of ADAM13 protein by 50%. This suggests that both ADAM13 and ADAM19 are required to maintain proper protein levels in the embryo. This might be explained through their physical interaction in a cell. The ADAM19 Proform binds to the ADAM13 Proform in cultured cells. Through domain analysis, I show that ADAM19 binds specifically to the cysteine-rich domain of ADAM13. When co-overexpressed in a cell, the level of Mature ADAM13 (compared to the Proform) is reduced suggesting a complex form of regulation. I propose a few hypothetical models that discuss how ADAM19 may function as a chaperone to stabilize and regulate the further processing of ADAM13 protein. Some of the unpublished work discussed in this thesis focuses on the roles of ADAM13 and ADAM19 in the dorsal mesoderm during gastrulation. Specific emphasis is made on investigating the axial mesoderm during notochord formation. I show that ADAM19 affects gene expression important for the A-P polarity of the notochord while ADAM13 does not. The changes in gene expression can be partially rescued by the EGF ligand Neuregulin1β, a known substrate for ADAM19 in the mouse. ADAM13 and ADAM19 are important for convergence and extension movements of the axial mesoderm during gastrulation. Specifically, a loss of ADAM13 or ADAM19 causes a delay in mediolateral cell intercalation resulting in a significantly wider notochord compared to control embryos. These defects occur without affecting dishevelled intracellular localization or the activation of the PCP signaling pathway. However, a loss of ADAM13 or ADAM19 reduces dorsal mesoderm cell spreading on a fibronectin substrate through α5β1 integrin. To conclude, the work presented in this thesis focuses on the similarities and differences of ADAM13 and ADAM19 in the early embryo. Although ADAM13 and ADAM19 are required for normal morphogenetic movements during gastrulation, my data suggests they have different functions. ADAM13 appears to function in regulating cell movements while ADAM19 appears to function in regulating cell signaling. I propose a few hypothetical models that discuss how each ADAM metalloprotease may function in the dorsal mesoderm and contribute to convergence and extension movements during gastrulation.>

DOI

https://doi.org/10.7275/1924925

COinS