Date of Award

2-2013

Document Type

Open Access Dissertation

Degree Name

Doctor of Philosophy (PhD)

Degree Program

Plant Biology

First Advisor

Lynn S. Adler

Second Advisor

Martha Hoopes

Third Advisor

Peter Alpert

Subject Categories

Plant Biology | Plant Sciences

Abstract

While pollinators and leaf herbivores have been a focus of research for decades, floral antagonists have been studied significantly less. Since floral antagonists can be as common as leaf herbivores and have strong impacts on plant reproduction, it is important to understand the role of floral antagonists in the ecology and evolution of flowers. I conducted four experiments to better understand the relationship between plants, floral traits, floral antagonists, and other plant-insect interactions. First, I manipulated resources (light and soil nutrients) that are known to have impacts on plants and floral traits to test how they affect floral antagonists and other plant-insect interactions. Plentiful resources increased the proportion of floral antagonists to visit flowers, but also increase tolerance of floral antagonists. Second, I manipulated flower bud gallers, a species-specific floral herbivore that destroys flowers, to test how it affected other plant-insect interactions, floral traits, and plant reproduction. Plants with flower bud gallers tended to have more pollinator visits, but this effect is due to a shared preference by gallers and pollinators for similar plants. Third, I manipulated florivory to examine how it affects subsequent plant-arthropod interactions, floral traits, and plant reproduction. Florivory had systemic effects on other plant-insect interactions, including leaf herbivores, and shifted the plant mating system towards more selfing. Additionally, I tested how several floral antagonists respond to floral attractive and defense traits to understand which floral traits are important in mediating antagonisms. Finally, I manipulated florivory, pollination, and nectar robbing to test for effects of multiple floral interactions on subsequent plant-insect interactions, floral traits, and plant reproduction. There were significant many-way interactions between the three treatments on subsequent plant-insect interactions and reproduction, indicating that the effect of one interaction depends on what other interactions are present. Understanding the role that floral antagonists play in plant ecology can help scientists determine which interactions are most important, and may help determine why some floral traits exist in their current state. Together, this work represents some of the most comprehensive research on the community consequences of floral antagonists, as well as the interplay between floral traits and floral interactions.

Included in

Plant Biology Commons

Share

COinS