Publication Date

2006

Journal or Book Title

Physics Review E

Abstract

A detailed description is provided of a new worm algorithm, enabling the accurate computation of thermodynamic properties of quantum many-body systems in continuous space, at finite temperature. The algorithm is formulated within the general path integral Monte Carlo (PIMC) scheme, but also allows one to perform quantum simulations in the grand canonical ensemble, as well as to compute off-diagonal imaginary-time correlation functions, such as the Matsubara Green function, simultaneously with diagonal observables. Another important innovation consists of the expansion of the attractive part of the pairwise potential energy into elementary (diagrammatic) contributions, which are then statistically sampled. This affords a complete microscopic account of the long-range part of the potential energy, while keeping the computational complexity of all updates independent of the size of the simulated system. The computational scheme allows for efficient calculations of the superfluid fraction and off-diagonal correlations in space-time, for system sizes which are orders of magnitude larger than those accessible to conventional PIMC. We present illustrative results for the superfluid transition in bulk liquid 4He in two and three dimensions, as well as the calculation of the chemical potential of hcp 4He.

Comments

This is the pre-published version harvested from ArXiv. The published version is located at http://pre.aps.org/abstract/PRE/v74/i3/e036701

Volume

76

Issue

3

Included in

Physics Commons

Share

COinS