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ABSTRACT

MODELING AND MODIFYING DAY-TO-DAY TRAVEL
BEHAVIORS: EMPIRICAL RESULTS AND

METHODOLOGICAL ADVANCES

MAY 2017

YUE TANG

B.S., CAPITAL NORMAL UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS LOWELL

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Song Gao

The increasing availability of individual-level longitudinal data provides the op-

portunity to better understand travelers’ day-to-day learning process of their choice

alternatives, which enables potentially more accurate predictions of choice patterns

in a network with uncertainties. In this thesis, an instance-based learning (IBL)

model for travel choice is developed within route-choice context, where on each day

a traveler’s decision depends on her entire choice history in the past. Learning in

this model is based on the power law of forgetting and practice, which is shown to be

capable of capturing various psychological e↵ects embedded in travelers’ day-to-day

learning process, including the recency e↵ect, hot stove e↵ect and payo↵ variability

e↵ect. Estimation results based on empirical data show that the IBL model reveals
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higher sensitivity to perceived travel time and achieves better model fit compared to

a baseline learning model. Cross-validation experiments suggest that the forecasting

ability of the IBL model is consistently better than the baseline learning model.

Despite the above-mentioned advantages of the IBL model, the common problem

of missing initial observations in longitudinal data collection can lead to inconsistent

estimates of perceived value of attributes in question, and thus inconsistent parameter

estimates. In this thesis, the stated problem is addressed by treating the missing

observations as latent variables. The proposed method is implemented in practice

as maximum simulated likelihood (MSL) correction with two sampling methods in

an instance-based learning model for travel choice, and the finite sample bias and

e�ciency of the estimators are investigated. Monte Carlo experimentation based on

synthetic data shows that both the MSL with random sampling (MSLrs) and MSL

with importance sampling (MSLis) are e↵ective in correcting for the endogeneity

problem in that the percent error and empirical coverage of the estimators are greatly

improved after correction. The methods are applied to an experimental route-choice

dataset to demonstrate their empirical application. Hausman-McFadden tests show

that the estimators after correction are statistically equal to the estimators of the

full dataset without missing observations, confirming that the proposed methods are

practical and e↵ective for addressing the stated problem.

Apart from modeling travelers’ day-to-day learning process for travel choice, day-

to-day driving behavior intervention is also studied in this thesis. A study of Miti-

gation Techniques to Modify Driver Performance to Improve Fuel Economy, Reduce

Emissions and Improve Safety was undertaken as part of the Massachusetts Depart-

ment of Transportation (MassDOT) Research Program. Major conclusions include:

1) Real-time feedback has a significant e↵ect in reducing speeding and aggressive

acceleration. 2) Training has a significant e↵ect in reducing idling rate in the first
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month after training. 3) Combining training and feedback is expected to significantly

improve fuel economy, reduce emissions and improve safety.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Travelers make choice decisions based on their knowledge about the environment

that is mainly learned through experience and constrained by their cognitive capa-

bility. The decision-making process is believed to be dynamic and involves consistent

information acquisition and learning. For example, a newcomer to a city makes route-

choice following the GPS device’s recommendation, while after becoming a seasoned

resident, she can recall past experience when making repeated choice and connect

existing route segments to form a new route even if the destination is new. Thus, the

formation of the decision-making process is indispensable in understanding travelers’

choice behavior and predicting the overall choice patterns. In the meantime, the ever-

increasing availability of smartphones and other wearable sensors provides abundant

individual-level longitudinal data to help improve and validate travel choice models.

The mainstream travel choice models mainly focus on cross-sectional analysis of

choice behaviors, where the impact of random attribute variability (e.g., travel time)

on repeated choice is either completely ignored or inadequately captured. A number of

studies have been conducted since the route-choice learning model was first introduced

to the transportation community. Such studies either focus on the theoretical analysis

of the convergence properties of the models or are inconsistent with the psychological

findings on human memory decay. Thus, learning models that are able to su�ciently

utilize the individual-level longitudinal data to precisely capture travelers’ day-to-day
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learning process following mainstream psychological findings are in great demand for

more accurate choice pattern predictions.

In such learning models, a traveler’s perception of an alternative’s attribute (e.g.,

travel time) evolves over time based on all her past experience with the alterna-

tive. As such, estimation of such a model requires data of travelers’ complete choice

histories. Longitudinal data collection in real life, however, inevitably starts mid-

stream. Specialized data collection targeted at newcomers (e.g., new employees or

students) to a region might provide the needed data, but such e↵orts are di�cult to

implement. The missing initial observations can cause endogeneity problem, which

leads to inconsistent estimate of the perceived value of the attribute in question,

and thus inconsistent parameter estimates. The serial correlation of error terms over

time further complicates the problem. Therefore, correction methods that address

the methodological challenge imposed by the complete history dependency of choices

need to be developed for consistent estimation of learning model parameters with

missing initial observations.

At a higher level, transportation has a major impact on our society and environ-

ment, contributing 70% of U.S. petroleum use, 28% of U.S. greenhouse gas (GHG)

emissions of Transportation Statistics. (2013), and over 34,000 fatalities and 2.2 mil-

lion injuries in 2011 (n.d.). In addition to the use of more fuel-e�cient vehicles and

alternative fuels, fuel consumption and CO2 emissions can be lowered through pro-

moting eco-driving, which typically involves of operating a vehicle in a more e�cient,

safe and environmentally friendly manner. Therefore, aside from modeling travelers’

day-to-day route-choice behavior, this thesis also aims to gain insights on driving be-

havior intervention to promote eco-driving. Specifically, A project undertaken as part

of the Massachusetts Department of Transportation Research Program is complete.

The objective of the project is to adopt static and dynamic mitigation techniques to

modify driver performance to improve fuel economy, reduce emissions and improve
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safety. The e↵ectiveness of the two general types of techniques is evaluated based on

their performance cross test and control groups. Recommendations are made on the

widespread deployment of real-time feedback devices and eco-driving training pro-

grams. Furthermore, the individual-level longitudinal GPS data obtained from this

project can be utilized to validate learning models in future studies.

1.2 Thesis Contributions

The contributions of the thesis to the knowledge base of learning-based models

for travel choice are summarized as follows:

1. The original IBL model for simplified binary lottery choices is extended to an

econometric model for travel choice in a general route-choice network, where spatial

learning is explicitly considered and rigorous statistical tests can be performed.

2. The proposed IBL model is able to capture the learning attributes residing

in travelers’ choice behaviors that are either overlooked or misinterpreted in exist-

ing route-choice models. The adaptation of a psychologically sound learning theory

enables a better understanding of the impact of travel time variability on repeated

route-choice.

3. Empirical data is used to compare the proposed model to an existing learning

model and demonstrate the model’s applicability.

The contributions of this thesis to the knowledge base of the intial condition

problem in learning models with complete history dependency are summarized as

follows:

1. A practical and theoretically sound correction method is developed and assessed

using the proposed IBL model. To the best of our knowledge, the stated problem is

tackled for the first time.
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2. Two sampling methods are proposed for the correction method, with the aim

of avoiding the problem of the curse of dimensionality that arises as the number of

missing days grows.

3. The suitability of the proposed method is confirmed using Monte Carlo experi-

mentation on synthetic data, and its applicability is demonstrated using a laboratory

experimental dataset.

Besides the modeling aspect of travelers’ choice behaviors, this thesis also gains

insights on intervening day-to-day driving behavior to promote safe and eco-driving.

A large scale field project with a three-phase experiment was conducted. Both static

and dynamic mitigation techniques were adopted and evaluated across test and con-

trol groups. Insightful recommendations are made for driver intervention to promote

safe and eco-driving.

1.3 Thesis Structure

This thesis is structured as follows. The IBL model is proposed first, followed

by the correction method for the initial condition problem in learning models with

complete history dependency. Then, the MassDOT project that aims to intervene

day-to-day driving behavior to promote safe and eco-driving is introduced. The thesis

is closed with conclusions and future research directions.

Chapter 2 develops an IBL model for day-to-day travel choice. A literature review

on travel time variability and route-choice models and the instance-based learning the-

ory (IBLT) is provided first to show the gap between existing travel choice models

and mainstream psychological findings. The model is then specified within a binary

route-choice context with perceived travel time being the only attribute that evolves

over time and other attributes assumed fixed from day to day. The model features,

including its capability of capturing recency e↵ect, hot stove e↵ect, and payo↵ vari-

ability e↵ect are illustrated. Then, computational experiments based on synthetic

4



data are conducted to show that the model parameters can be consistently retrieved

and ignoring learning can result in di↵erent predictions of overall tra�c patterns. The

IBL model is then compared with a baseline learning model using an experimental

dataset of repeated route-choice to show that the IBL model achieves better model

fit and has better forecasting ability.

Chapter 3 develops and assesses a correction method for the initial condition

problem in learning models with complete history dependency. A literature review

on endogeneity and importance sampling is provided first. The cause of the intial

condition problem is then illustrated using the IBL model developed in Chapter 2.

The estimation biases of the parameters are demonstrated using synthetic data. The

correction method with two sampling approaches, i.e., the MSLrs and MSLis, are pro-

posed within the IBL framework and their e↵ectiveness and computational e�ciency

are assessed using Monte Carlo experimentation. Sensitivity analysis are conducted

to investigate the impact of sampling size in random sampling and number of high

probability choice sequences in importance sampling. In the end of this chapter, the

proposed correction methods are applied to empirical data to prove their applicability

and e↵ectiveness.
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CHAPTER 2

AN INSTANCE-BASED LEARNING (IBL) MODEL FOR
TRAVEL CHOICE

Availability of individual-level longitudinal data provides the opportunity to better

understand travelers’ day-to-day learning behavior, enabling more accurate predic-

tions of tra�c patterns in a network with random travel times. Most econometric

route-choice models focus on cross-sectional analysis of route-choice behaviors, where

travel time variability is either ignored or assumed static over time. A number of stud-

ies have been conducted on learning models for route-choice in recent years. However,

the weighting scheme of past experience is often inconsistent with the mainstream psy-

chological theory. Therefore, learning models that are able to su�ciently utilize the

individual-level longitudinal data to precisely capture travelers’ day-to-day learning

process following psychological findings are in great demand for more accurate tra�c

pattern predictions.

In this chapter, an IBL model for day-to-day travel choice is developed. A litera-

ture review on travel time variability and route-choice models and the instance-based

learning theory (IBLT) is provided first to show the gap between existing route-choice

models and mainstream psychological findings. The model is then specified within

a binary route-choice context with perceived travel time as the only attribute that

evolves over time and other attributes assumed fixed from day to day. The model fea-

tures, including its capability of capturing recency e↵ect, hot stove e↵ect, and payo↵

variability e↵ect are illustrated. Then, computational experiments based on synthetic

data are conducted to show that the model parameters can be consistently retrieved

and ignoring learning can result in di↵erent predictions of overall tra�c patterns. The
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IBL model is then compared with a baseline learning model using an experimental

dataset of repeated route-choice to show that the IBL model achieves better model

fit and has better forecasting ability.

2.1 Literature Review

2.1.1 Travel time variability and route-choice models

Travel times are inherently uncertain, due to random disruptions such as incidents

and bad weather, and random behavior of travelers. The psychological literature has

distinguished two types of decision under uncertainty/risk. The first is decision from

description, where the probabilistic distribution of the payo↵ for each option is ex-

plicitly described to the decision maker, e.g., a 50% chance of winning $100 and a

50% chance of losing $20. Bounded-Rational theories, such as Prospect Theory (Kah-

neman & Tversky, 1979; Tversky & Kahneman, 1992), have been applied to study

decision under description and travel choice modeling, e.g., Ben-Elia & Shiftan (2010)

and Gao et al. (2010). The second type is decision from experience, where the uncer-

tain outcomes of chosen actions are experienced by instead of described to decision

makers. Past studies have shown that decision from experience and decision from de-

scription can result in very di↵erent, sometimes even opposite risk attitudes (Barron

& Erev, 2003; Erev & Barron, 2005; Rakow & Newell, 2010).

Route-choice decision making is a typical example of decision from experience.

Travelers make route-choice decisions based on their knowledge about the environ-

ment that is mainly learned through experience and constrained by their cognitive

capabilities. The decision-making process is dynamic and involves information acqui-

sition and assimilation. For example, a newcomer to a city follows a GPS device’s

recommendation. However, once becoming a seasoned resident, she can recall past

experience and connect existing route segments to form a new route even if the

destination is new. The process of learning about the decision environment is indis-
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pensable in understanding travelers’ route-choice behavior and predicting the overall

resulting tra�c patterns. Meanwhile, the ever-increasing availability of smartphones

and other portable sensors provides individual-level longitudinal data to help improve

and validate route learning and choice models.

Most econometric route-choice models focus on cross-sectional analysis of route-

choice behaviors, e.g., Path-Size Logit (Ben-Akiva & Ramming, 1998; Ben-Akiva

& Bierlaire, 1999), C-Logit (Cascetta et al., 1996), Cross-Nested Logit (Vovsha &

Bekhor, 1998), and Logit Mixture Ramming (2001); Bekhor et al. (2002); Frejinger &

Bierlaire (2007). Travel time variability, if considered, is usually static and travelers

are assumed to have the same knowledge of travel time distribution, such that the

temporal relation between the current choice and past experience are ignored (Abdel-

Aty et al., 1995; Bates et al., 2001; Lam & Small, 2001; Liu et al., 2004; Gan & Bai,

2014; Tilahun & Levinson, 2001; Carrion & Levinson, 2012; Fosgerau, 2015).

A number of studies have been conducted since the route-choice learning model

was first introduced to the transportation research community. Some studies focus on

theoretical analysis of the convergence properties of the models and thus impose rel-

atively strong assumptions on learning and choice behavior without considering trav-

elers’ actual cognitive capacity (Horowitz, 1984; Cascetta & Cantarella, 1991; Yang

& Zhang, 2009). Most empirical studies are conducted using experimental data on

single-origin-destination (OD) networks with two or three routes and minimum over-

lapping (Avineri & Prashker, 2005; Bogers & van Zuylen, 2005; Ben-Elia & Shiftan,

2010; Lu et al., 2011, 2014), with the exception of a series of studies by Mahmassani

and collaborators where there are successive switching options between three parallel

routes (Mahmassani & Liu, 1999). Some simulation studies deal with more general

networks, but the critical problem of spatial knowledge acquisition and its impact on

route-choice in a realistic network setting is not properly addressed (Ben-Akiva et al.,

1991; Emmerink et al., 1995; Jha et al., 1998; Ben-Elia & Avineri, 2015).
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The weighting scheme of past experience has evolved along with learning mod-

els over time. Horowitz (1984) proposed using a weighting scheme to quantify the

relative importance of the recent and distant travel experience, yet no specific psy-

chological theories was referred to validate the weighting scheme. Later on, both

Chang & Mahmassani (1988) and Iida et al. (1992) found that the more recent travel

experience is more important than distant travel experience. However, they did not

explicitly analyze how travelers develop perceptions of travel time variability. More

recent learning models often embed perception updating mechanisms to quantify the

weighting scheme of past experience. The dominant descriptive models in the litera-

ture (in contrast to a normative model such as Bayesian updating) speculate that the

perceived travel time at time t is a convex combination of the perceived travel time

and experienced travel time at time t � 1 (Ben-Akiva et al., 1991; Emmerink et al.,

1995; Nakayama et al., 2001; Avineri & Prashker, 2005; Bogers & van Zuylen, 2005;

Lu et al., 2014). The convex combination updating is equivalent to an assumption of

exponential decay of memory, which is inconsistent with the psychological theory that

human memory decay follows a power function rather than an exponential function

(Wickelgren, 1976; Newell & Rosenbloom, 1981; Anderson & Schooler, 1991; Rubin

& Wenzel, 1996).

2.1.2 Background of instance-based learning theory (IBLT)

The instance-based learning theory (IBLT) was developed to explain decision mak-

ing in complex and dynamic situations, where individuals make repeated choices at-

tempting to maximize gains over the long run (Gonzales & Lebiere, 2005; Gonzalez

et al., 2003). An instance is broadly defined by the context, decision, and outcome

of a previous choice that is encoded in the declarative memory (i.e., memories that

can be consciously recalled such as facts and verbal knowledge). Learning resides in

the activation mechanism that relies on the frequency and recency of past choices,
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i.e., more recent and frequent instances are more active in memory. According to the

IBLT, a decision-making process contains the stages of matching, evaluation, selection

and execution. In the matching stage, based on their levels of activation, instances

that are relevant to the current decision context are retrieved and blended to produce

perceptions of options. Memory decay is captured by the power law of forgetting.

IBLT is often implemented within the Adaptive Control of Thought-Rational

(ACT-R) cognitive architecture (Anderson & Lebiere, 1998), which incorporates a

set of mechanisms that can be used to develop models of learning and performance.

The di↵erent mechanisms used to retrieve instances, evaluate alternatives, and apply

feedback are central to IBLT. A number of models have been implemented within

the ACT-R architecture and demonstrated close approximations to human decision

making in multiple tasks (Gonzales & Lebiere, 2005; Lebiere et al., 2007; Martin

et al., 2004). More recent models have been implemented to account for repeated

choices (Lebiere et al., 2007; Stewart et al., 2009). An IBL model implemented in the

ACT-R architecture was the winner of a competition of predicting repeated binary

lottery choice decisions (Erev et al., 2010). Since the aforementioned models are lim-

ited by the complexity of the ACT-R architecture, later on, Lejarraga et al. (2012)

proposed a simplified version of the winning IBL model, where the decision context

is not utilized in instance retrieval.

As preferable as the aforementioned IBL models are in accounting for decision

making in dynamic environments, they are all developed for experimental psychology

and tailored for binary lottery choices. Route-choice in a network context is much

more complex. First, multiple factors (e.g., travel cost and ease of driving) besides

travel time can a↵ect travelers’ decisions and need to be accounted for. Secondly, spa-

tial knowledge is learned over time and can be carried over from one origin-destination

(OD) pair to another. Thirdly, model parameter estimation for the existing IBL
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models is usually conducted by fitting data at an aggregate level and thus rigorous

statistical tests can not be performed.

2.2 Model Specification and Features

2.2.1 Model specification

An econometric IBL model is developed for route-choice in a general network

based on the simplified version of the IBL model proposed by Lejarraga et al. (2012).

For illustrative purpose, the perceived travel time is the only attribute that evolves

over time and other attributes are assumed fixed from day to day. Other attributes

that vary over days can be incorporated easily.

A path is composed of multiple segments and psychological studies show that

people can integrate segment knowledge to obtain path knowledge (Golledge, 1999).

Due to the idiosyncrasy nature of learning, system-wide tra�c prediction based on

learning models requires storage of a copy of network attributes for each simulated

traveler. On one extreme, if experience is coded at the link level for each traveler, the

model will become intractable fairly quickly. On the other extreme, if experience from

all travelers is blended in a single collective memory, the important issue of spatial

knowledge heterogeneity is ignored which potentially lead to misunderstanding of

route-choice behaviors.

A model that trades o↵ model realism with tractability is proposed. In a general

road network, a particular day’s experience is the vehicle trajectory. A major road

segment generally contains a number of links (e.g., a stretch of highway between two

major interchanges, an arterial road between two neighborhood centers). Experience

on a major road segment is stored in a traveler’s memory and is individual-specific.

Experience on minor road links from all travelers is stored in a collective memory and

is not individual-specific. The trajectory does not need to cover the complete major

road segment that defines the instance, and prorated travel time will be used if only
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part of the segment is traversed. The underlying assumption is that human beings

tend to use categorization to simplify knowledge representation. Spatial knowledge

from one OD is naturally carried over to another OD through experience on common

major road segments.

A traveler n is faced with the problem of choosing one path from a choice set

D for a given OD on each day t starting from day 1. Each road segment has an

underlying random travel time whose realizations are independent from day to day,

and independent across segments. The traveler experiences the realized travel times

on the segments of the chosen path on a given day, and has no knowledge of the

realized travel time on non-chosen paths.

An instance is defined as a past experience of segment s on a chosen path on day

t0 and its associated outcome (realized segment travel time), xs(t0). The experience

is scaled up for the whole segment if only part of the segment is experienced. An

instance is stored in the declarative memory of the traveler, and its activation decays

over time following a power law. Specifically, on day t, its activation is (t � t0)�d,

where the decay parameter d captures the rate of forgetting in that a smaller d value

translates into higher activation in memory and t � t0 measures the recency of the

experienced travel times (smaller t� t0 values represent higher recency)1.

Eq. (2.1) shows the weight function of an experienced travel time from a past

day t0 for traveler n, where the denominator is a summation of activations over all

past experiences on segment s. It shows that recency and frequency jointly define the

weight of a specific travel time value, i.e. more recent and frequent experienced travel

times are more active in memory. On day t, the perceived travel time of segment

s is the weighted average of realized travel times of all past days when segment s

1The definition of activation is slightly di↵erent from its original version in Anderson et al.
(2004), due to an adaption of the theory to a presentation format that the transportation research
community is more familiar with. However, the final equation that determines the perceived travel
time is the same as using the original definition of activation.
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is experienced as shown in Eq. (2.2). For implementation simplicity, the perceived

travel time of path i for traveler n on day t is assumed as the sum of the prorated

perceived travel times on all segments of the path as shown in Eq (2.3). For notation

simplicity, perceived travel times on all segments are indexed by individual n, however

it should be noted that only major road segment perceptions are individual-specific.

wns(t, t
0) =

ans(t0)(t� t0)�dn

Pt�1
⌧=0 ans(⌧)(t� ⌧)�d

(2.1)

where:

t: index of the current day, t = 1, ..., K

t0: index of a previous day, t0 = 0, ..., t� 1

wns(t0, t): weight of the experienced travel time on day t0 for the perceived travel time

on day t for traveler n and segment s

dn: decay parameter for traveler n that captures the rate of forgetting, dn > 0

ans(t0): a binary indicator. It is 1 if traveler n chose segment s on day t0 and 0

otherwise

bns(t) =
t�1X

t0=0

wns(t
0, t)xs(t

0) (2.2)

bni(t) =
X

s

bns(t)�si (2.3)

where:

bns(t): perceived travel time of segment s on day t for traveler n

xs(t0): experienced travel time of segment s on day t

bni(t): perceived travel time of path i on day t for traveler n
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�si: the fraction of segment s on path i. It is equal to zero if segment s does not

overlap with path i

In the IBL model proposed in Lejarraga et al. (2012), the activation is calculated

for each outcome of an alternative and perturbed by a noise term (see Appendix A).

The utility of the alternative is the sum of all the observed outcomes weighted by

their probability of retrieval. Although the perturbed activation makes the choice

probabilistic, no closed form expression exists for the choice probability. Parame-

ter estimation is based on fitting aggregate choice shares, and thus the properties

(consistency and e�ciency) of the estimator cannot be established, and no rigorous

statistical tests can be carried out. A mixed Logit model of IBL for route-choice

is developed, where the noise is an additive term to the systematic utility instead

of a multiplicative term to the activation of the perceived travel time. Maximum

likelihood estimation can be then performed based on disaggregate choice data.

Eq. (2.4) shows the utility function with the parameter vector � = {d, �,↵0},

where the noise term ✏ is i.i.d. extreme over time, individual and alternatives. The

systematic utility is linear in the perceived travel time b that varies from day to day

and other attributes z that are constant over time (e.g., toll price and number of

tra�c lights). Panel e↵ect is accounted for by the random parameters that vary over

travelers but are fixed across the observations from the same traveler. Path overlap is

taken care of by path size Si. Eq. (2.5) shows the probability of individual n choosing

the sequence of alternatives I = {i1, i2, . . . }. The coe�cients vary over travelers

with density function f(�) and the unconditional choice probability is the integral of

the product of conditional probabilities over all possible values of �. The di↵erence

between the IBL model and a learning-free model is that the IBL model treats the

perceived travel time as a variable that varies from day to day, while in a learning-

free model perceived travel time is assumed fixed over time. It is straightforward to
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extend the utility function to include other attributes that vary from day to day, such

as perceived fuel consumption.

Uni(t) = Vni(t) + lnSi + ✏ni(t) = �nbni(t) +↵0
nzni + lnSi + ✏ni(t) (2.4)

where:

Uni(t): random utility of path i for traveler n on day t

Vni(t): systematic utility function of path i for traveler n on day t

�n: coe�cient of travel time for traveler n, a random coe�cient over travelers and

fixed over time for a given individual

zni: observed variables relating to path i and traveler n that do not vary from day

to day

↵n: a vector of coe�cients for variables zni for individual n, random coe�cients over

travelers

Si: path size for path i

✏ni(t): noise terms being i.i.d. extreme over time, individuals and alternatives

PnI =

Z

�

✓Y

t

eVni(t)+lnSi

P
j e

Vnj(t)+lnSj

◆
f(�)d� (2.5)

2.2.2 Model features

In this section the model features are demonstrated in a binary route-choice situ-

ation. To focus on illustrating the learning mechanism of the model, several assump-

tions are made: 1) the perceived travel time is the only variable in the systematic

utility, 2) each path has only one segment, 3) parameters are fixed over travelers,

and 4) there is no overlap between paths. The travel time of Path 2 is assumed
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deterministic to represent a highly reliable path, while Path 1 is risky with random

travel time. The decay parameter d is set to 0.5, which is the conventional value used

in most ACT-R models (Gonzalez & Dutt, 2011; Lejarraga et al., 2012; Erev et al.,

2010). The choices on the first two days are set to Path 1 and 2 respectively so that

initial perceptions of the path travel times are obtained and the learning process is

triggered.

An Iillustrative example

Table 2.1 illustrates an application of the model over 5 days. The objective travel

time of Path 1 is normally distributed with a mean of 20 and standard deviation of 3,

and that of Path 2 is fixed at 22. The coe�cient of travel time � is set to -0.4, which

is in the same magnitude as empirical values in the literature Frejinger & Bierlaire

(2007); Ben-Akiva et al. (2015). The initial perceptions of the two paths are gained by

enforcing the selection of them on the first two days, i.e., 20.7 and 22.0 respectively.

On day 3, either path has one past instance experienced, and its weight is simply

1.00. The perceived travel time of either path is therefore the realized travel time,

20.7 and 22.0 respectively. The choice probabilities of the two paths are calculated

following Eq. (2.5) and through random sampling Path 2 is chosen with a realized

travel time of 22.0 (Path 2 has deterministic travel time). On day 4, there is still

only one instance for Path 1 from day 1 and thus the perceived travel time remains

at 20.7. There are indeed two instances for Path 2, but since Path 2 is deterministic,

the perceived travel time remains at 22.0. The choice probabilities remain the same

as on day 4 and through random sampling Path 1 is chosen with a realized travel time

of 32.3. On day 5, there are two instances for Path 1 from days 1 and 4 respectively

and their weights are calculated following Eq. (2.1) as 0.449 and 0.551 respectively.

The perceived travel time on Path 1 is then calculated as the weighted sum of the
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Table 2.1 Application of the IBL Model in A Binary Route-Choice Network over 5
Days

Day t Choice

Experienced

travel time

xi(t0)

Weight of experienced

travel time on current

day wni(t0, t) using Eq. (2.1)

Perceived

Travel time

bni(t)

using Eq. (2.2)

Choice

probability

Pni

using Eq. (2.5)

Path 1 Path 2 Path 1 Path 2 Path 1 Path 2 Path 1 Path 2

1 1 20.7 1.00 0.000

2 2 22.0 0.000 1.00

3 2 22.0 wn1(1, 3) = 1.00 wn2(2, 3) = 1.00 20.7 22.0 0.627 0.373

4 1 32.3 wn1(1, 4) = 1.00
wn2(2, 4) = 0.414

wn2(3, 4) = 0.586
20.7 22.0 0.627 0.373

5 2 22.0
wn1(1, 5) = 0.333

wn1(4, 5) = 0.667

wn2(2, 5) = 0.449

wn2(3, 5) = 0.551
28.4 22.0 0.0718 0.928

two instances as 28.4. Perceived travel time on Path 2 remains constant and choice

probabilities are calculated as 0.0718 and 0.928 respectively.

Hot stove e↵ect

The hot stove e↵ect was first described by Mark Twain. “A cat who sits on

a hot stove will never sit on a hot stove again. But he won’t sit on a cold stove,

either.” Erev & Barron (2005) explained the hot stove e↵ect as in the absence of

information about forgone payo↵s, bad outcomes have a lasting e↵ect because they

inhibit future updating of the tendency to select this alternative. In other words,

bad outcomes remain in memory, thus prevent people from exploring the alternative.

Multiple studies have shown the existence of hot stove e↵ect (Barron & Erev, 2003;

Erev & Barron, 2005; Fujikawa, 2009; Denrell & March, 2001).

Figure 2.1 demonstrates the hot stove e↵ect captured by the IBL model. The

travel time of Path 1 follows Normal(20, 9) and that of Path 2 fixed at 22. The

travel time coe�cient is set at -100 so that the choice is almost deterministic. The

blue solid line and red dashed line represent the perceived travel times of Path 1

and 2 respectively. The black dots represent the experienced travel times of Path

1 when it is chosen. Over the first few days, the traveler switches between the two
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paths depending on the perceived travel times. On day 5, however, the very bad

experienced travel time of Path 1 (close to 30) makes her never choose the path again

despite its shorter mean travel time. Thus, the presence of the hot stove e↵ect leads

the traveler to deviate from minimizing the expected travel time.

Figure 2.1 Hot Stove E↵ect.

Payo↵ variability e↵ect

Psychological studies have found that when payo↵ variability is large, choice be-

havior moves toward random choice, and this e↵ect is particularly strong when the

variability is associated with the high payo↵ alternative (Erev & Barron, 2005; Haruvy

& Erev, 2001). Several studies have verified the robustness of the payo↵ variabil-

ity e↵ect in travelers’ route-choice behavior (Katsikopoulos et al., 2002; Avineri &

Prashker, 2005; Ben-Elia et al., 2008). To show that the IBL model can e↵ectively

capture the payo↵ variability e↵ect, the binary route-choice problems are simulated
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Table 2.2 Problem setting of payo↵ variability e↵ect
Problem 1 Problem 2

Path 1: 20 minutes with variation (low payo↵)

Path 2: 18 minutes with certainty (high payo↵)

Path 1: 20 minutes with variation (high payo↵)

Path 2: 22 minutes with certainty (low payo↵)

with various standard deviations of Path 1 travel time. For each problem, 1000 sets

of 20-day choices are generated using the IBL model, and the choice probability of

Path 1 on each day is calculated as the fraction of Path 1 choices out of the 1000 sets

on that day.

Table 2.2 presents the problem setting of the payo↵ variability e↵ect, where Path

1 is the low payo↵ alternative in Problem 1 and the high payo↵ alternative in Problem

2. The left graph in Figure 2.2 presents the result of Problem 1. When the objective

travel time of Path 1 is reliable (e.g., standard deviation is 1), its choice probability

stays close to 0 over time. When Path 1 has higher variability, its choice probability

starts o↵ higher and converges to 0 gradually. Therefore, Path 1 becomes more

attractive when it is riskier. The right graph shows the simulation result of Problem

2. When Path 1 is highly reliable (e.g., standard deviation is 1), its choice probability

is close to 1 at all time. However, as its objective travel time gets unreliable, the

choice probability goes to a lower value. Therefore, Path 1 becomes less attractive

when it is riskier. An interesting phenomenon is that when the objective travel time

of Path 1 becomes highly unreliable (e.g., standard deviation larger than 5 shown as

the blue and green lines), the choice probability decreases from over 0.5 to below 0.5

over time, which suggests that increasing the variability of the high payo↵ alternative

could reverse the choice preference. Compared to Problem 1, the payo↵ variability

e↵ect in Problem 2 is much stronger. The two facets of the payo↵ variability e↵ect

are both well captured by the IBL model.
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Figure 2.2 Payo↵ Variability E↵ect.

2.3 Computational Experiments Based on Synthetic Data

Synthetic data from a two-OD network in the Boston area is generated to demon-

strate the identifiability of the IBL model parameters and di↵erences in predicting

tra�c patterns compared to learning-free models. In Figure 2.3, the OD marked with

red paddles (OD1) is a work trip from home in Watertown to Massachusetts General

Hospital in Boston, with two path alternatives Path 1 and Path 2. Path 1 is an 8.4-

mile local path that is composed of two major road segments Soldiers Field Road and

Storrow Drive, landmarked by the Beacon Street Bridge, Boston University Bridge,

and Longfellow Bridge. Path 2 is an 8.8-mile path with a considerable portion of

toll road, the Massachusetts Turnpike. OD1 represents a daily work trip, and the

traveler’s perceptions of the travel time distributions of the two paths evolve over

time. The OD marked with green paddles (OD2) is an occasional recreational trip

from a friend’s house in Brookline to the New England Aquarium in Boston with two

path alternatives Path 3 and Path 4. The major road segments of Path 3 are defined
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by Commonwealth Avenue and Storrow Drive, and Path 4 contains two major road

segments of Route 9 and Downtown Boston. In this experiment, spatial knowledge

carryover is explicitly considered in that although the recreational trip is an entirely

new OD to the traveler, its overlap with the regular work trip Path 1 (Storrow Drive

passing the Hatch Shell) alters her perception of travel time distribution of Path 3.

Figure 2.3 A Two-OD Network with Overlapping.

The perceived travel time, b, and toll price, c are included as explanatory variables.

An error component, ⌘, normally distributed over individuals with a mean of zero and

a standard deviation of � is added to the utility functions of Path 1 and Path 3 to

account for the panel e↵ect. The estimation parameters are � = {�, d, �time, �cost}.

The original path size is used to account for path overlapping, as in Eq. (2.7) (Ben-

Akiva & Bierlaire, 1999).

Uni(t) = �timebni(t) + �costci + lnSi + ✏ni(t) + ⌘ni (2.6)

Where:

�time: coe�cient to travel time

�cost: coe�cient to toll price
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✏ni(t): error terms being i.i.d. extreme over individuals, alternatives and time

⌘ni: zero-mean error components on Path 1 or 3, independent over individuals and

alternatives .

Si =
X

a2�i

la
Li

1P
j2C �aj

(2.7)

Where:

Si: path size for path i

�i: the set of links in path i

la: the length of link a

Li: length of path i

�aj link-path incidence variable. It is 1 if link a is on path j, 0 otherwise

2.3.1 Observation generation

The postulated true value of the decay parameter d follows its conventional value

of 0.5 (Gonzalez & Dutt, 2011; Lejarraga et al., 2012; Erev et al., 2010), and those

of the travel time coe�cient �time and toll coe�cient �cost are set at -0.4 (following

empirical studies such as Frejinger & Bierlaire (2007); Ben-Akiva et al. (2015)) and

-1.2 respectively , such that the value of time (VOT) is 0.333 $/min, which is of

similar magnitude as those reported in empirical studies (see, e.g., Gomez-Ibanez

et al. (1999)). ⌘ni is assumed to follow a standard normal distribution, i.e., � = 1.

The toll price for each path is uniformly sampled between 0 and 20. For OD1, 50 sets

of 98-day observations are generated with the postulated IBL model. For each set

of observations, the travel time of Path 1 follows normal distribution with the mean

uniformly sampled between 10 and 300 and the standard deviation uniformly sampled
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between 0.1 and 0.5 times the mean. The mean travel time of Path 2 is uniformly

sampled between 0.5 and 2 times the corresponding mean travel times of Path 1, and

the standard deviation uniformly sampled between 0.1 and 0.5 times the mean. For

OD2, 980 sets of 5-day observations are generated after a 100-day experience with

OD1. Path 3 contains an overlap segment with Path 1 and a non-overlap segment. For

each set of observations, the mean and variance of the overlap segment are uniformly

sampled between 0.5 and 1 times those of Path 1. The travel time on the non-overlap

segment is normally distributed with the mean uniformly sampled from 5 to 100 and

standard deviation uniformly sampled from 0.1 to 0.5 times the corresponding mean.

The mean travel time of Path 4 is uniformly sampled between 0.5 and 2 times the

corresponding mean travel times of Path 3, and the standard deviation is uniformly

sampled between 0.1 and 0.5 times the mean. The dataset contains path travel times

with adequate variabilities and the di↵erence between the two mean travel times vary

from negative to positive such that both the risk averse and risk seeking facets of the

payo↵ variability e↵ect can be captured.

2.3.2 Model estimation

Two baseline models are also estimated and later used in prediction for compari-

son. A mixed Logit model that assumes travelers’ full information of the underlying

travel time distributions is estimated for OD1. The utility function is a linear combi-

nation of the objective travel time mean, standard deviation (with a parameter �sd),

and toll price. Notice that the IBL model does not include explicitly a measure of

travel time variability such as travel time standard deviation, as the impact of travel

time variability is embedded in the learning process, such as the hot stove and payo↵

variability e↵ects demonstrated in an earlier section. To show the impact of ignoring

spatial knowledge carry-over from one OD to another, a no-carryover learning model

that does not consider travelers’ familiarity with Path 1 when traveling on OD2 is also
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estimated. Similar to the IBL model, a zero-mean normally distributed error com-

ponent over individuals is added to the utility function of Path 1 or Path 3 for the

two baseline models to account for panel e↵ect, while all other parameters are fixed

over travelers. Note that the estimation was done separately on two di↵erent ODs to

isolate the impacts of two di↵erent types of simplifications. In real-life applications,

data from all ODs are pooled.

Biogeme Python 2.2 Bierlaire (2003) is used for model estimation. Table 2.3

presents the estimation results. The t-tests for the IBL model are against the true

values (shown in parenthesis next to the parameter) for both ODs, while the t-tests

for the full-knowledge and no-carryover models are against zero. For both ODs, the

IBL model can consistently retrieve the true parameter values within two standard

errors. Compared to the IBL model, the adjusted ⇢2 of the two baseline models

are both lower. The standard deviation of the error component is much higher in

either baseline model than in the IBL model, suggesting that the baseline model that

ignores part or all learning is trying to capture the heterogeneity over individuals

resulting from idiosyncratic spatial knowledge through a more variable random error

component. Travelers’ sensitivity to travel time and toll price are underestimated.

The VOTs are 0.189 $/min and 0.275 $/min respectively, which are lower than the

true value of 0.333 $/min. For the full-knowledge model, the numerical value of the

coe�cient to travel time standard deviation is very small, since it assumes a fixed risk

attitude and cannot capture the payo↵ variability e↵ect that manifests as both risk

seeking and risk averse depending on the choice context. For the no-carryover model,

the estimate of the decay parameter d is smaller than the true value. The conjecture

here is that, to some extent, prior experience with Path 1 from the work trip stabilizes

the perception of Path 3 that overlaps with Path 1. Since the no-carryover model

ignores prior experience with Path 1, the forgetting rate has to be lower to achieve

similar stability of perception.
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Table 2.3 IBL Model Estimation Results based on Synthetic Data

Parameter

(true value)

OD1 OD2

IBL Full-knowledge IBL No-carryover

� (1.0)

Robust std err

t-test

0.956

0.163

0.270

4.00

0.375

10.7

1.34

0.353

0.960

10.6

2.68

3.95

�time (-0.4)

Robust std err

t-test

-0.376

0.0229

1.04

-0.148

0.0158

-9.37

-0.483

0.0586

-1.42

-0.228

0.0481

-4.74

�cost (-1.2)

Robust std err

t-test

-1.14

0.0710

0.852

-0.506

0.0503

-10.1

-1.45

0.192

-1.30

-0.828

0.207

-3.99

d (0.5)

Robust std err

t-test

0.550

0.0384

1.30

0.519

0.0160

1.19

0.164

0.143

1.14

�sd

Robust std err

t-test

-0.0428

0.0170

-2.51

Initial log-likelihood

Final log-likelihood

Adjusted ⇢2

No. of parameters

Sample size

-3396

-358

0.893

4

4900

-3396

-1074

0.683

4

4900

-3396

-122

0.963

4

4900

-3396

-507

0.850

4

4900

* t-tests for the IBL model are against the true values;

t-tests for the full-knowledge and no-carryover models are against 0;

BIOGEME Bierlaire (2003) is used for model estimation.
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2.3.3 Prediction

The path share and average travel time predicted by the four estimated models

in a specific network setting are compared to show that the IBL model can lead to

di↵erent prediction results that potentially better interpret travelers’ risk attitude

in route-choice behaviors. To avoid confusion, in this section travel time stands for

the experienced travel time and objective travel time stands for the underlying travel

time of a path.

All predictions are based on a period of 50 days to gain a representative picture

of the tra�c patterns. In OD1, the travel time of Path 1 is normally distributed with

a mean of 25, and that of Path 2 is deterministic at 20 to represent a highly reliable

path with a toll of $3. In OD2, Path 1 is assumed as a segment of Path 3. The travel

time of the non-overlap segment is fixed at 10 such that the travel time of Path 3 is

normally distributed with a mean of 35. Path 4 has a deterministic travel time of 30

and a toll price of $4. The stand deviation of Path 1 and Path 3 varies from 1 to 10

to represent a wide range of travel time uncertainties. At V OT = 0.333$/min, Path

1 and Path 3 are the risky path with superior systematic utility in their respective

OD despite their longer objective travel times, while Path 2 and Path 4 are the safe

path. For each OD, 100 sets of 50-day travel times from the underlying distributions

are sampled. For each set of the 50-day travel times, 200 travelers’ route choices

and perceived travel times are simulated following the specific models. Path share is

calculated based on the 200 travelers’ choices on each day and then averaged over 50

days. Travel time is averaged over both travelers and days. The expected path share,

path share standard deviation, mean and standard deviation of average travel time

are calculated based on the 100 sets of 50-day travel time realizations.

Figure 2.4 presents the impacts of travel time variability on the expected share

for the four models. In Figure 2.4 (a), the solid line represents the share on Path 1

predicted by the IBL model. It follows that the path share of the risky path decreases
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as its objective travel time standard deviation increases. This suggests that travelers

are risk aversion and more travelers switch to the safe path when the risky path

becomes highly unreliable. This downward trend is more obvious when the travel time

standard deviation is very large (i.e., greater than 8), because under such conditions

very bad outcomes are likely to happen and the hot stove e↵ect captured by the IBL

model makes the travelers never choose the risky path again once having experienced

a very bad travel time. The dashed line represents the share on Path 1 predicted

by the full-knowledge model. Compared to the IBL model, the full-knowledge model

underestimates the share on the risky path as well as travelers’ sensitivity to the travel

time variability. The small negative estimates of the travel time and toll coe�cients

tend to even up the utilities of the two paths such that the choice probability is close

to random. The insensitivity to travel time variability is due to the small estimate

of the travel time standard deviation coe�cient. Figure 2.4 (b) shows the expected

share on Path 3 predicted by the IBL model and no-carryover model. Compared

to Path 1, the expected share on Path 3 predicted by the IBL model yields a more

rapid decreasing trend. This is because travelers recall their past experiences from

the work trip when making choices for the recreational trip, so that the choice pattern

is more extreme with respect to travel time variability. The path share predicted by

the no-carryover model is more random and steady with respect to the travel time

variability because the small numerical value of the travel time coe�cient makes path

share insensitive to the perceived travel times and thus is much less a↵ected by the

underlying standard deviation.

Figure 2.4 (c) presents the change in path share standard deviation with respect to

the travel time variability. Since the path share standard deviation of the two paths

in the same OD are always equal in a binary network, paths from the same OD are

presented in one plot. For both ODs, the IBL model predicts an upward rend in path

share standard deviation with respect to the travel time variability. This is because
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as the travel time becomes uncertain, travelers’ experiences become more divergent

and thus their choices are also more divergent. It is expected that the full-knowledge

model predicts zero path share standard deviation, since travelers perceive the true

mean and standard deviation which are not a↵ected by any particular realizations.

The dashed line in Figure 2.4 (d) shows that the no-carryover model predicts very

small and steady path share standard deviations with respect to travel time variability.

This is because the small numerical value of the travel time coe�cient adds massive

noises to the choice rule, which makes the path shares fairly stable within each set

of the realizations. It is concluded that the path share standard deviations predicted

by the two simplifying models are insensitive to the objective travel time variability

of the risky route.

Figure 2.5 presents the prediction results of the expected average travel time and

its standard deviation with respect to the objective travel time variability by the four

models. Figure 2.5 (a) and (b) yield very similar patterns as their corresponding plot

in Figure 2.4, which is intuitive because the expected average travel time is directly

related to the expected path share. For example, as more travelers switch to the safe

path whose objective travel time is shorter than the risky path, the expected average

travel time decreases accordingly. In Figure 2.5 (c) and (d), it is expected that the

standard deviation of average travel time increases with respect to the travel time

variability. In Figure 2.5 (c), the upward trend is more rapid for the IBL model than

the full-knowledge model. This is because the path share of the risky path predicted

by the IBL model is constantly higher than the full-knowledge model, such that with

the increase of the travel time standard deviation the average travel times predicted

by the IBL model is also higher. In Figure 2.5 (d), when the travel time variability

gets large, the standard deviation of average travel time predicted by the IBL model

is larger than the no-carryover model despite its higher predicted share on Path 3.

This is because the hot stove e↵ect captured by the IBL model makes the travelers
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Figure 2.4 Impacts of Objective Travel Time Variability on Path Share.

choose the risky path only if very favorable outcomes are experienced, thus the more

divergent travel times have larger standard deviations.

2.4 Model Estimation Based on an Experimental Dataset

To demonstrate the applicability of the IBL model and its potential in more pre-

cisely capturing travelers’ learning process, the model is estimated using an experi-

mental dataset for repeated route-choice and the estimation results is compared with

a learning model in the literature.
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Figure 2.5 Impacts of Objective Travel Time Variability on Average Travel Times.

2.4.1 The experimental dataset

The data used in this section is an experimental dataset described in (Ben-Elia

& Shiftan, 2010). In the experiment, forty-nine participants were faced with three

scenarios of binary route-choice as presented in Table 3.3. A small degree of variation

was programmed (±5 or ±15 min around the mean) to simulate a simple variable

message sign (VMS). Each scenario included 100 trials so in total each participant

completed 300 trials. The participants were randomly assigned to the informed and

non-informed group to run through 1 out of the 6 (=3!) possible orders of the scenar-
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Table 2.4 Hypothetical travel time scenarios of the experimental data set

Scenario
Travel time ranges (minutes)

Route F - 25 min. Route S - 30 min.

Fast & Safe

Fast & Risky

Low-Risk

±5

±15

±5

±15

±5

±5

ios. For each choice situation the informed group (24 participants) received real-time

information about the travel time range (the minimum and maximum travel times) for

each of the two routes, while the non-informed group did not. Following the choice, a

feedback was received regarding the “actual” travel time on the chosen route but not

of the alternative one. This travel time was randomly drawn from the distribution of

the travel time range. The non-informed group (25 participants) received the same

feedback.

2.4.2 Model specification

The baseline model

The baseline model closely follows that in Ben-Elia & Shiftan (2010), except that

only the coe�cient to the mean travel time is treated as random for estimation ef-

ficiency. Eq. (2.8) shows the utility functions. On a given day t, mean travel times

(MEANS, MEANF) are specified as the average of the travel times obtained in each

choice trial and for each route from the simulated VMS according to the scenario de-

sign. Feedback travel times (TIMEF, TIMES) are the travel times displayed following

each participant’s choice. The stickiness (STICK) represents inertia, i.e., repetition

of previous behavior. Learning in the long run is defined as a function of all previous

outcomes which reflects the e↵ect of memorization, and a cumulative weighted aver-

age (CWA) of the preceding choices is specified as a harmonic average. See Ben-Elia

& Shiftan (2010) for the specification of CWA. Two di↵erent levels of experience are

also specified with dummy variables to represent distinct behavioral tendencies in the
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short (first 10 trials) and long (last 50 trials) runs. Low experience (EXL) reflects

choices within the first 10 trials and high experience (EXH) reflect choices in the last

50-100 trials. Sensitivity to variability of the travel times is represented using dummy

variables indicating the travel time ranges (LRISK and FRISKY).

8
>>>>>>>>>><

>>>>>>>>>>:

USLOW (t) = �MEAN(�MEAN)MEANS(t) + �TIMESTIMES(t)

UFAST (t) = �MEAN(�MEAN)MEANF (t) + �TIMEFTIMEF (t)

+�LRISKLRISK(t) + �FRISKY FRISKY (t) + �EXLEXL(t)

+�EXHEXH(t) + �STICKSTICK(t) + �CWACWA(t)

(2.8)

The IBL model

In Eq. (2.9), the IBL model has the same specification as the baseline model for

fair comparison, except that the feedback travel times (TIMEF, TIMES) are replaced

with the perceived travel time TFAST and TSLOW following Eqs. (2.1) through (2.3).

The feedback travel time can be viewed as a simplified version of the perceived travel

time calculated using the IBL model, where the forgetting rate is very high and thus

only the latest experienced travel time is activated.

8
>>>>>>>>>><

>>>>>>>>>>:

VSLOW (t) = �MEAN(�MEAN)MEANS(t) + �TIMESTSLOW (t)

VFAST (t) = �MEAN(�MEAN)MEANF (t) + �TIMEFTFAST (t)

+�LRISKLRISK(t) + �FRISKY FRISKY (t) + �EXLEXL(t)

+�EXHEXH(t) + �STICKSTICK(t) + �CWACWA(t)

(2.9)
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2.4.3 Estimation results

The IBL and baseline learning models are estimated for the informed and non-

informed groups respectively and the results are shown in Table 2.5. The memory

decay parameter d are estimated at 1.11 and 1.64 respectively, both are within the

typical range Lejarraga et al. (2012). For both scenarios, the IBL model yields better

model fit than the baseline model represented by the adjusted ⇢2.

The ratio of the feedback (or perceived) travel time coe�cient over the stickiness

coe�cient shows the relative importance of learning over inertia. The IBL model

reveals a dramatically larger (more than 10 times) ratio than the baseline model in

both scenarios. Consider the travel time coe�cients on the slow route (�TIMES). The

ratios are -0.288 and -0.0135 for the IBL and baseline models respectively for the

informed group, and -0.150 and -0.0124 for the IBL and baseline models respectively

for the non-informed group. The drastic di↵erence between models are similar when

travel time coe�cients on the fast route (�TIMEF ) are used. The IBL model thus

seems to suggest a much larger role of learning compared to inertia than the baseline

model.

Comparing the ratios across the informed and non-informed groups could suggest

how information impacts with learning. Both the IBL and baseline models reveal

a higher ratio for the informed group than the non-informed group, suggesting that

information facilitates learning. The IBL model suggests a larger benefit of the infor-

mation than the baseline model does, given that the ratio from the IBL model almost

doubles with information (-0.150 vs. -0.288), while that from the baseline model only

increases slightly with information (-0.0125 vs. -0.0135).

2.4.4 Cross validation

Cross validation is performed for both models for the informed and non-informed

groups respectively. For each group, 10 sets of data are generated. In each set, 2/3 of

33



Table 2.5 Estimation Results for the Experimental Dataset

Parameter
Informed Non-informed
IBL Baseline Model IBL Baseline Model

d
Robust std err
t-test

1.11
0.230
4.81

1.64
0.884
1.85

�MEAN

Robust std err
t-test

-0.353
0.220
-1.60

0.528
0.129
4.09

-0.0894
0.204
-0.430

0.577
0.136
4.24

�MEAN

Robust std err
t-test

0.269
0.0372
7.23

0.241
0.0324
7.46

0.142
0.0200
7.04

0.152
0.0213
7.07

�TIMES

Robust std err
t-test

-0.123
0.0414
-2.98

-0.0601
0.0192
-3.25

-0.134
0.0541
-2.71

-0.077
0.0212
-3.95

�TIMEF

Robust std err
t-test

-0.228
0.0372
-6.12

-0.0731
0.0224
-3.67

-0.181
0.0681
-2.65

-0.104
0.0184
-5.66

�STICK

Robust std err
t-test

0.427
0.537
0.800

4.45
1.03
4.33

0.893
0.356
2.51

6.22
0.458
13.6

�FRISKY

Robust std err
t-test

0.806
0.294
2.75

0.554
0.376
1.47

0.128
0.281
0.450

-0.0261
0.243
-0.112

�LRISK

Robust std err
t-test

2.11
0.444
4.75

1.73
0.437
3.97

0.398
0.238
1.67

0.297
-0.237
1.25

�EXL

Robust std err
t-test

-0.495
0.221
-2.24

-0.613
0.193
-3.18

-0.854
0.113
-7.52

-0.813
0.117
-6.98

�EXH

Robust std err
t-test

0.0912
0.165
0.554

0.135
0.152
0.893

0.849
0.135
6.28

0.783
0.132
5.93

�CWA

Robust std err
t-test

2.86
0.784
3.64

3.29
0.782
4.21

1.47
0.707
2.08

1.89
0.468
4.04

Initial log-likelihood
Final log-likelihood
Adjusted ⇢2

No. of parameters
Sample size

-4941
-1398
0.715
11
7128

-4941
-1435
0.708
10
7128

-5147
-2274
0.556
11
7425

-5147
-2328
0.546
10
7425
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Table 2.6 Average Cross Validation Result of the IBL and Baseline Models
Informed Non-Informed

IBL Baseline IBL Baseline

Average over

10 estimation datasets

FLL

Adjusted ⇢2
-875

0.731

-905

0.722

-1385

0.576

-1421

0.565

Average over

10 prediction datasets

FLL

Adjusted ⇢2
-735

0.557

-769

0.545

-932

0.427

-965

0.408

No. of parameters 11 10 11 10

the participants’ data are randomly chosen as the training set for model estimation,

while the remaining 1/3 of the participants’ data are used as the validation set for

prediction. The random coe�cient to the mean travel time is drawn 1000 times and

simulated likelihood is calculated. Log-likelihood and adjusted ⇢2 are computed to

compare estimation and prediction quality.

Table 2.6 shows the estimation and prediction results averaged over the 10 sets.

Compared to the estimation results from the full dataset, the adjusted ⇢2 of the

estimation datasets is about the same for both models and both groups, while those

of the prediction datasets are noticeably lower. This is expected as the prediction

test is in general a stricter test than the estimation test. For both informed and

non-informed groups, the IBL model has higher adjusted ⇢2 for prediction. Table 2.7

shows the estimation and predictions results of each set of training and validation

data in detail. For each set, the IBL model consistently performs better than the

baseline learning model in terms of prediction adjusted ⇢2.

2.5 Summary

An instance-based learning (IBL) model for route-choice is developed based on

the power law of forgetting and practice. Experiments based on synthetic datasets

show that the true parameter values of the IBL model can be consistently retrieved

and the model can potentially predict di↵erent tra�c patterns compared to non-
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Table 2.7 Cross Validation Results of the Baseline Learning Model and IBL Model
Informed Non-Informed

IBL Baseline IBL Baseline

Set 1
Estimation

FLL
Adjusted ⇢2

-916
0.719

-949
0.709

-1607
0.509

-1646
0.497

Prediction
FLL
Adjusted ⇢2

-639
0.614

-704
0.585

-1014
0.378

-1127
0.310

Set 2
Estimation

FLL
Adjusted ⇢2

-867
0.736

-882
0.729

-1355
0.585

-1659
0.493

Prediction
FLL
Adjusted ⇢2

-825
0.503

-832
0.488

-985
0.395

-1041
0.362

Set 3
Estimation

FLL
Adjusted ⇢2

-848
0.739

-899
0.724

-1241
0.620

-1349
0.588

Prediction
FLL
Adjusted ⇢2

-6499
0.608

-744
0.598

-857
0.473

-870
0.466

Set 4
Estimation

FLL
Adjusted ⇢2

-986
0.697

-879
0.730

-1367
0.582

-1270
0.611

Prediction
FLL
Adjusted ⇢2

-680
0.589

-710
0.580

-905
0.444

-924
0.433

Set 5
Estimation

FLL
Adjusted ⇢2

-857
0.737

-1012
0.690

-1497
0.542

-1399
0.572

Prediction
FLL
Adjusted ⇢2

-666
0.598

-682
0.588

-936
0.425

-944
0.421

Set 6
Estimation

FLL
Adjusted ⇢2

-952
0.708

-899
0.724

-1409
0.569

-1540
0.529

Prediction
FLL
Adjusted ⇢2

-706
0.574

-708
0.562

-898
0.448

-908
0.443

Set 7
Estimation

FLL
Adjusted ⇢2

-834
0.743

-980
0.699

-1322
0.595

-1436
0.561

Prediction
FLL
Adjusted ⇢2

-591
0.642

-623
0.630

-959
0.411

-977
0.401

Set 8
Estimation

FLL
rho

-829
0.745

-863
0.735

-1294
0.604

-1441
0.559

Prediction
FLL
Adjusted ⇢2

-883
0.469

-921
0.457

-841
0.483

-896
0.450

Set 9
Estimation

FLL
Adjusted ⇢2

-798
0.754

-858
0.736

-1129
0.654

-1317
0.597

Prediction
FLL
Adjusted ⇢2

-834
0.498

-848
0.479

-979
0.399

-985
0.396

Set 10
Estimation

FLL
Adjusted ⇢2

-866
0.734

-832
0.745

-1627
0.503

-1155
0.646

Prediction
FLL
Adjusted ⇢2

-875
0.473

-913
0.479

-9487
0.418

-980
0.399
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learning models. The IBL model is compared with a baseline learning model using

an experimental dataset of repeated route-choice. Estimation results show that the

IBL model suggests a larger role of learning compared to inertia and achieves better

model fit. Cross validation experiments suggest that the forecasting ability of the

IBL model is better than the baseline learning model.
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CHAPTER 3

THE INITIAL CONDITION PROBLEM WITH
COMPLETE HISTORY DEPENDENCY IN LEARNING

MODELS FOR TRAVEL CHOICE

In a learning model such as the IBL model introduced in Chapter 2, a traveler’ s

perception of an alternative’s attribute (e.g., travel time) evolves over time based on

all her past experience with the alternative. When forming the perception, each past

experience with the alternative takes a weight in memory and the perception is a

weighted average of all past experience. The weighting scheme of past experience is

specific to the learning model in use. Compared to non-learning models where the

perception of an alternative is static over time, estimation of a learning model re-

quires data of travelers’ complete past experience with the alternatives. Longitudinal

data collection in real life, however, inevitably starts midstream, and rarely includes

subjects’ complete choice histories. Specialized data collection targeted at newcom-

ers (e.g., new employees or students) to a region might provide the needed data, but

such e↵orts are di�cult to implement. In the case of incomplete data, the missing

initial observations can lead to biased estimate of the perceived value of the attribute

in question, and thus inconsistent parameter estimates. Note that the majority of

empirical studies on learning models for travel choice are based on experimental data

in a laboratory, where subjects make choices from “day” and thus the stated problem

does not exist. In this chapter, the initial condition problem in learning models illus-

trated and correction methods are proposed and assessed using both synthetic and

empirical data.
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In this chapter, a literature review on endogeneity and importance sampling is

provided first. The cause of the endogeneity problem due to missing initial observa-

tions is then illustrated using the IBL model developed in Chapter 2. The estimation

biases of the parameters are demonstrated using synthetic data. Two correction meth-

ods, i.e., the MSLrs and MSLis, are proposed within the IBL framework and their

e↵ectiveness and computational e�ciency are assessed using Monte Carlo experimen-

tation. Sensitivity analysis are conducted to investigate the impact of sampling size

in random sampling and number of high probability choice sequences in importance

sampling. In the end of this chapter, the proposed correction methods are applied to

empirical data to prove their applicability and e↵ectiveness.

3.1 Literature Review

3.1.1 Endogeneity problem with learning models

An econometric model is said to su↵er from endogeneity when the systematic

part of the utility is correlated with the error term. The variables that cause the

correlation are called the endogenous variables. Endogeneity can lead to inconsistent

estimation of model parameters, since changes in the error term are misinterpreted as

changes of the endogenous variable. Endogeneity is common in discrete choice models

(e.g., probit, logit, nested logit) as the assumption that the explanatory variables

are independent from the error term is often violated. Guevara (2010) classifies

endogeneity into three types based on their causes: (1) Omission of the variables

that are correlated with some observed variables; (2) Simultaneous determination of

multiple variables; and (3) The propagation of measurement errors in explanatory

variables to the error term. Several correction methods have been developed to solve

endogeneity problems (e.g., Guevara & Polanco, 2016; Heckman, 1978; Berry et al.,

1995; Schenker & Welsh, 1988; Brownstone, 1991; Guevara, 2010; Fernández-Antoĺın

et al., 2016) . The endogeneity problem this thesis tackles can be classified within
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the third group, a special case in which endogeneity arises because the researcher has

an incorrect measure of the attributes of the alternatives perceived by the decision

makers.

Solving the initial observation problem for dynamic panel data discrete choice

models is known to be a di�cult task. Most existing studies deal with first-order

Markov process where the dependent variable is only lagged once. The major focus

of these studies is that the initial condition is not exogenous due to correlation of error

terms over time. Therefore, if there is no serial correlation, first-order Markov process

model would not su↵er from the problem. For example, Heckman (1981a) and Lee

(1997) examined the problem of initial conditions in a time-discrete data stochastic

process when serially correlated unobservable variables generate the process. Correc-

tion methods were proposed and tested with Monte Carlo experiments. More of such

studies can be found in the reference list (e.g. Blundell & Bond, 1998; Wooldridge,

2005; Honore & Kyriazidou, 2000; Carro, 2007). In the learning models for travel

choice, a current decision depends on the entire history of past experience, defined as

a Polya process in Heckman (1981b). The complete history dependence makes the

initial condition problem more challenging than those in the existing studies. The

model will su↵er from the initial observation problem even without serial correlation.

To the best of our knowledge, no solution has been developed to date.

In this chapter, the proposed method is based on noting that the likelihood func-

tion of this problem can be written as a sequence of integrals over the conditional

distribution of the possible choices on the missing days. This multifold integral is then

maximized using a variation of the maximum simulated likelihood (MSL), which is de-

scribed in detail by Train (2009). The MSL numerical estimation method has reached

great popularity in the past 15 years, thanks to the significant improvement in com-

putational power. This method has been mainly used for the estimation of Logit

Mixture models aimed to account for random coe�cients or di↵erent error compo-
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nent. The application of the method in this thesis is di↵erent from the usual ones,

although all the conditions for consistency described in Train (2009) are extendable,

e.g., the need for having the number of draws growing faster than the square root

of the sample size. Despite its popularity, the MSL is not exempt from drawbacks.

For example, MSL estimators have a downward bias for a finite number of draws,

and they may su↵er from empirical identification problems, both in the form of false

empirical identification and lack of empirical identification. More importantly for this

application, MSL may su↵er from the problem known as the curse of dimensionality,

which in this case implies that the number of draws required for estimation grows ex-

ponentially with the number of missing days, quickly making estimation impractical.

This problem is shared by all estimation methods based on simulation. This issue

will be illustrated and investigated with Monte Carlo experimentation.

Two sampling methods are proposed for the correction. The MSL random sam-

pling (MSLrs) method randomly draws a set of missing choice sequences following the

learning model and a simple average of the simulated choice probabilities is used in

the simulated likelihood. This sampling method is expected to su↵er from the curse of

dimensionality as the number of missing days grows. To overcome this limitation, the

MSL importance sampling (MSLis) method is proposed. It can be seen as a variation

of the kernel conditional density nonparametric estimator proposed by Rosenblatt

(1969) and enhanced by Hyndman et al. (1996). In this case, instead of randomly

simulating a large enough number of missing choice sequences to evaluate the Logit

Kernel function, a small number of sequences with high probability of occurrence are

sampled and the kernel, conditioning on the said probability are evaluated.
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3.2 Endogeneity Due to Missing Initial Observations

For illustrative purpose, the IBL model developed in Chapter 2 is defined within a

binary route-choice context without path size and random parameters in this chapter

(see Eq. (3.1)).

Uni(t) = Vni(t) + "ni(t) = �timebni(t) + ↵0zi + "ni(t) (3.1)

Suppose the data are collected from day C. It is likely that the travelers have

already accumulated some experience with the alternatives prior to day C. In such

cases, the dataset only contains observations from day C to day K, while those

from day 1 to day C � 1 are missing. In this chapter, the dataset without missing

observations is referred as the full dataset, and that with missing observations is

referred as the cuto↵ dataset. Variables in the cuto↵ dataset are all denoted with

asterisks (*), while those of the full dataset are denoted without asterisks. In this

section, the cause of endogeneity due to missing initial observations is derived and

the estimation biases are demonstrated.

3.2.1 Cause of endogeneity

The true likelihood of the cuto↵ dataset is the one shown in Eq. (3.2). However,

this likelihood is impractical to compute because the true perceived travel time bni(t)

cannot be calculated. Recall that for the full dataset, the perceived travel time of

alternative i on day t is the weighted average of all past instances (Eq. (2.2)). Instead

of bni(t), a curtailed version b⇤ni(t) could be used, resulting in the modified likelihood

shown in Eq. (3.3), where maximization will not retrieve consistent estimators of the

model parameters.

`NC =
NX

n=1

KX

t=C

log


Pn(1|t, {1, 2})an1(t)

�
1� Pn(1|t, {1, 2})

�1�an1(t)
�

(3.2)
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`⇤NC =
NX

n=1

KX

t=C

log


P ⇤
n(1|t, {1, 2})an1(t)

�
1� P ⇤

n(1|t, {1, 2})
�1�an1(t)

�
(3.3)

To illustrate the problem, consider that the perceived travel time can be written

as the sum of the weighted average of the perceived travel time derived from the

instances from day 0 to day C � 1 and the perceived travel time derived from the

instances from day C to day t� 1 as in Eq. (3.4).

bni(t) =
C�1X

t0=0

wni(t
0, t)xi(t

0) +
t�1X

t0=C

wni(t
0, t)xi(t

0) (3.4)

In the cuto↵ dataset, an initial perception bIPi is assumed to happen on day C� 1

to approximate the perceived travel time prior to day C (it is e↵ectively assumed zero

if experiences prior to day C are simply ignored), and the perceived travel time at day

t is the weighted average of the initial perception and instances happened from day

C to day t � 1 (Eq. (3.5)). The absolute value of activation of an observed instance

(that occurs on or after day C) stays the same as in the full dataset, however it is

normalized over a smaller set of instances including the assumed initial perception on

day C � 1, as shown in Eq. (3.6). Therefore, the weights of the observed instances

are scaled up compared to their true weights in the full dataset. Figure 3.1 illustrates

the measurement di↵erence in perceived travel time between the full dataset and the

cuto↵ dataset.

b⇤ni(t) = w⇤
ni(C � 1, t)bIPi +

t�1X

t0=C

w⇤
ni(t

0, t)xi(t
0) (3.5)
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Figure 3.1 Measurement di↵erence in perceived travel time between the full dataset
and cuto↵ dataset

w⇤
ni(t

0, t) =
ani(t0)(t� t0)�d

(t� C + 1)�d +
Pt�1

⌧=C ani(⌧)(t� ⌧)�d
(3.6)

where:

w⇤
ni(t

0, t): weight of the experienced travel time on day t0 for the perceived travel time

on day t for alternative i traveler n in the cuto↵ dataset

w⇤
ni(C � 1, t): weight of initial perception on day C � 1 for the perceived travel time

on day t for alternative i for traveler n in the cuto↵ dataset

b⇤ni(t): perceived travel time of alternative i on day t for traveler n in the cuto↵ dataset

bIPi : initial perception of alternative i

The discrepancy between the perceived travel time in the cuto↵ dataset b⇤ni(t)

and that of the full dataset bni(t) is propagated to the error term, such that the

error term in the utility function of the cuto↵ dataset eni(t) = "ni(t) + �time(bni(t)�

b⇤ni(t)) is correlated to the systematic part of the utility function. Thus, the perceived

travel time is the endogenous variable, and the model that omits the missing initial
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observations can be seen as a model that su↵ers from a special case of endogeneity

due to measurement error.

3.2.2 Experiments based on synthetic data

The impact of the endogeneity problem on parameter estimates is illustrated using

synthetic datasets. Since VOT has important policy indication, toll price is included

in the utility function as an attribute that is constant over time to exemplify travel

cost. VOT is calculated based on the perceived travel time coe�cient �time and toll

coe�cient �cost. The estimator of VOT is used to investigate the e↵ectiveness of the

correction method. The true value of the decay parameter d follows its conventional

value of 0.5, and the true values of the perceived travel time coe�cient �time and toll

coe�cient �cost are postulated at -0.4 and -1.2 respectively. The underlying travel

time distributions are generated following truncated normal distribution.

100 datasets are generated following the true model. For each dataset, 200 sets

of 50-day observations are generated. For each set of observations, the travel time of

Path 1 follows a normal distribution with the mean uniformly sampled between 10

and 50 and the standard deviation uniformly sampled between 0.1 and 0.3 times the

mean. The mean travel time of Path 2 is uniformly sampled between 0.8 and 1.2 times

the corresponding mean travel times of Path 1, and the standard deviation uniformly

sampled between 0.1 and 0.3 times the mean. The travel time distributions of both

paths are truncated at half of its mean travel time to mimic a distribution with a

lower bound set by the free flow travel time. The toll price of both paths is uniformly

sampled between $0 to $10. Without any other information, the mean travel time of

an alternative is the best approximation one can find to use as the initial perception.

For simplicity, the decay parameter d is fixed at its true value and only the travel

time coe�cient �time and toll coe�cient �cost are estimated. Unreported Monte Carlo

experiments show that the decay parameter d can be retrieved in the full dataset,
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and in Section 3.4.3 d is estimated in the empirical dataset. The software R-3.2 is

used for both data generation and estimation throught the research, and Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm is used for likelihood maximization.

Table 3.1 shows the estimation results of the full dataset and cuto↵ datasets with a

variety of number of missing initial observations. The average, percent error from the

true value, p-value against the true value, and empirical coverage of each estimate are

reported. The empirical coverage is calculated as the percent of the tests among the

100 repetitions where the null hypothesis that the estimator is equal to its true value

is accepted with 95% confidence. For the full dataset, the percent errors of the model

parameters and VOT are all very small. Both the empirical coverages and p-values

suggest the retrieval of the true values with 95% confidence. For the curtailed model,

however, all the metrics suggest that the null hypothesis of the retrieval of the true

value is rejected even when only 1 observation is missing. Thus, it is concluded that

the missing initial observations can cause the endogeneity problem in a learning model

and this problem gets more severe as the number of missing observations increases.

3.3 Maximum Simulated Likelihood (MSL) Method

Realized travel times are assumed observable, since tra�c monitoring devices are

generally available to obtain travel time measurements. Therefore, the choice histories

prior to day C are the only latent variables. The MSL method uses simulation to

integrate out the latent variables. The likelihood function of the IBL model with

missing observations can be written as a sequence of integrals over the conditional

distribution of the possible missing choices. The multivariate integration is carried

out numerically through simulation, and an iterative algorithm is utilized to find the

maximum simulated likelihood. At each iteration, the log-likelihood function needs

to be evaluated for a given trial values of the parameters. A set of choice sequences

prior to day C is obtained based on a specific sampling method for the log-likelihood
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Table 3.1 Endogeneity due to missing initial observations

Parameter
# of missing

observations
Average

Percent

error
p-value

Empirical

coverage (%)

�time

(-0.4)

0

1

5

10

15

20

25

30

35

40

-0.399

-0.339

-0.273

-0.241

-0.216

-0.200

-0.183

-0.167

-0.151

-0.131

0.0433

15.2

31.9

39.8

46.0

49.9

54.3

58.2

62.2

67.3

0.873

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

96

59

1

0

0

0

0

0

0

0

�cost

(-1.2)

0

1

5

10

15

20

25

30

35

40

-1.199

-1.168

-1.172

-1.183

-1.181

-1.183

-1.177

-1.169

-1.161

-1.147

0.05

2.61

2.31

1.39

1.58

1.41

1.92

2.59

3.25

4.39

0.780

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

94

91

92

97

96

96

93

94

91

92

VOT

(0.333)

0

1

5

10

15

20

25

30

35

40

0.333

0.390

0.233

0.204

0.183

0.170

0.156

0.143

0.130

0.114

0.00168

12.9

30.2

38.9

45.1

49.1

53.3

57.1

60.9

65.7

0.944

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

<1e-05

99

66

3

0

0

0

0

0

0

0

*Estimation results are based on 100 repetitions.

The nominal value of empirical coverage is 95%.

P-values are calculated against true values.
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function. The total probability theorem is used to obtain an estimator of the log-

likelihood corresponding to the trial values of the paramenters. The consistency of

this method can be demonstrated using an approach equivalent to the one described

in Train (2009). The algorithm is described in detail below. As it occurs with other

methods to correct for endogeneity in discrete choice models, the proposed MSL

method will consistently recover the linear utility coe�cients, in general, only up to

a scale (Guevara & Ben-Akiva, 2012). For example, if the utility considers travel

time and travel cost of each route, then only the ratio of their coe�cients, i.e., the

VOT, will be consistently recovered with the proposed method, but not the individual

coe�cients. Conversely, the decay parameter should be fully recovered because of the

nonlinear way in which it defines the normalized weights in Eq.2.1.

The random sampling and importance sampling approaches are proposed to im-

plement the MSL method. The random sampling method follows the simulation

approach described by Train (2009) for the Logit Mixture model. It sequentially

simulates the missing choice sequences prior to day C following the IBL model with

given trial values of �. Sample R times to form the choice sequence set Hn. For

each simulated choice sequence hn, the likelihood of observing choices starting from

day C is calculated as Pn(i|t, {1, 2}, hn). Due to the nature of random sampling, the

simulated log-likelihood is thus

P̂n(i|t, {1, 2}) =
1

R

X

hn2Hn

Pn(i|t, {1, 2}, hn) (3.7)

The importance sampling approach can be better described if the complete enu-

meration method, a special case of importance sampling that quickly becomes imprac-

tical as the number of missing days grows, is reviewed first. The complete enumeration

method finds the setHn by enumerating each possible choice sequence that could have

been chosen prior to day C by each traveler n. The probability of occurrence of each

possible choice sequence, ⇡hn , is the product of the sequence of conditional choice
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probabilities, shown in Eq. (3.8). Based on the total probability theorem, the choice

probability to be considered in the likelihood function can be calculated as a weighted

average of the conditional choice probabilites and their respective probability of oc-

curence ⇡hn as in Eq. (3.9).

⇡hn =
C�1Y

t=1

Pn(i|t, {1, 2}, h1
n, h

2
n, ..., h

t�1
n ) (3.8)

P̂n(i|t, {1, 2}) =
X

hn2Hn

Pn(i|t, {1, 2}, hn)⇡hn (3.9)

The complete enumeration method becomes quickly impractical as the set of

unique choice sequences grows exponentially in the number of missing observations.

To avoid this limitation, the importance sampling method defines the choice sequence

set Hn by keeping a subset of the full choice sequence set with high probability of

occurrence. Based on the total probability theorem, the choice probability to be con-

sidered in the likelihood function is calculated as in Eq. (3.10). The choice sequences

in Hn are sampled by simulating the missing choices prior to day C � 1 sequentially

following the IBL model with given trial values of �. If a choice sequence for a given

traveler n is drawn twice, the second draw is discarded to keep the sequence set

unique. The sequence set Hn is fixed over MSL iterations, and can be re-sampled

after a certain number of MSL iterations. In practice, the choice of sampling size

shall depend on the number of missing observations and number of high probablity

choice sequences. Since the sampling process is independent of the estimation proce-

dure and once a choice sequence is sampled, it can be reused for any given number

of high probability sequences, the rule of thumb is to sample a large number of times

to cover the sampling distribution of the choice sequences as much as possible.

P̂n(i|t, {1, 2}) =
P

hn2Hn
Pn(i|t, {1, 2}, hn)⇡hnP

hn2Hn
⇡hn

(3.10)
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Maximum Simulated Likelihood Algorithm with Random Sampling or

Importance Sampling

Given the initial trial values �0, which could be gathered, e.g., from the estimators

of the curtailed model.

Iteration k = 1

1. Obtain a choice sequence set Hn for the missing days t = 1 to t = C � 1

for each traveler n following the IBL model.

For random sampling, Hn is sampled at each iteration. For importance

sampling, Hn is fixed over iterations.

2. For each choice sequence hn 2 Hn

i. For each day t � C, calculate the perceived travel time bni(t) using the

weights w(t0, t) and the sampled choices from hn,

that is, ani(⌧) = ahn
ni (⌧) for ⌧ < C.

ii. Calculate the choice probabilities for the current choice sequence hn for

each day t � C as Pn(i|t, {1, 2}, hn)

3. Based on the chosen sampling method, the choice probability P̂n(i|t, {1, 2})

to be considered in the likelihood function is calucated

based on Pn(i|t, {1, 2}, hn), 8hn 2 Hn.

4. Find new trial values �k to maximize the following simulated likelihood to

retrieve the estimators �̂:

˜̀MSL
NC =

NX

n=1

KX

t=C

log

✓
P̂n(1|t, {1, 2}))

◆an1(t)✓
P̂n(2|t, {1, 2}))

◆1�an1(t)�
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k = k + 1 to repeat steps 1-4 till convergence. For importance sampling, the

set of choice sequences Hn can be re-sampled

after enough number of iterations.

3.4 Computational Experiments

The MSLis method can be seen as a variation of the kernel conditional density

nonparametric estimator proposed by Rosenblatt (1969) and enhanced by Hyndman

et al. (1996). In this case, instead of drawing a large number of choice sequences with

potentially very low probability of occurrence, the e↵ort is concentrated on drawing a

small number of choice seuqences with large probability of occurrence and evaluating

the kernel, conditioning on the said probability. Monte Carlo evidence provided in

the following section shows that this modification is critical to avoid the problem of

the curse of dimensionality as the number of missing observations grows, achieving a

full recovery of the model parameters up to a scale with feasible estimation time.

3.4.1 Monte Carlo experimentation based on synthetic data

The e↵ectiveness of the MSL using the two sampling methods, i.e. MSLrs and

MSLis, is investigated using the same cuto↵ datasets as in Section 3.2.2. The exper-

imentation was conducted using the Massachusetts Green High Performance Com-

puting Center (MGHPCC)1 clusters. For the reported results in Table 3.2, 1,400

jobs (100 datasets ⇥ 7 di↵erent numbers of missing observations ⇥ 2 methods) were

submitted to the center specifying 4GB of memory per job. The estimates before

correction given the specific number of missing observations are used as the starting

values for all experiments.

1http://www.mghpcc.org
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Table 3.2 reports the estimation results before and after applying correction. For

the MSLrs method, the choice sequence is sampled 2000 times. It should be noted

that this does not necessarily mean that 2000 draws will be enough for a general case,

neither even for the synthetic problem at hand. Because of the curse of dimensionality,

the number of draws is a dimension of the problem that needs to be investigated in a

case by case basis. After correction, the percent error of VOT is generally more than

5 times better than before correction. The empirical coverage is greatly improved

although it is still below the nominal value of 95%. The null hypothesis that the

estimator is statistically equal to the true parameter value is rejected at all numbers of

missing observations. This result is interpreted as evidence that, although consistency

is achieved with the proposed correction method, the curse of dimensionality precludes

formal recovery of the population parameters for the finite sample size. The MSLis

method is proposed as a potential cure for the curse of dimensionality issue for this

particular problem. The empirical results suggests that, for the problem at hand, the

issue is satisfactorily resolved.

For the MSLis method, the complete enumeration sampling method is used for up

to 5 missing days (32 unique choice sequences), and the importance sampling method

is used when the number of missing days is 10 (1024 unique choice sequences) and

above. The choice sequence set is generated by simulating the missing choices using

random numbers following the IBL model. If a choice sequence for a given traveler is

drawn twice, the second draw is discarded, since the set must contain unique choice

sequences. For 10 and 15 missing days, the choice sequence is sampled 1000 and

2000 times respectively, and 20 and 100 high probability sequences are used in the

estimation procedure. It should be noted that the setting does not necessarily mean

that it will be enough for a general case, and the choice of sampling size and number of

high probability choice sequences shall depend on the specific setting of the problem.

The impact of number of high probability choice sequences on the e↵ectiveness of the
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correction methods is preliminarily investigated in Section 3.4.2. After correction,

the percent error of VOT is consistently below 1% and the empirical coverage of

VOT is almost always above the nomial value of 95%. The p-values (¿0.05) suggest

that the null hypothesis that the estimator is statistically equal to the true value

is not rejected. Thus, for the problem at hand, the curse of dimensioanlity issue is

satisfactorily resolved.

In the experimentation, the runtime of the MSLis is significantly shorter than that

of the MSLrs. For the MSLis, since the full choice sequence set grows exponentially in

the number of missing observations, the sampling size and number of high probability

sequences required to statistically retrieve the true value of VOT is also expected to

grow rapidly. Therefore, the runtime of larger numbers of missing observaitons is

significantly longer but still 10 times smaller than that of the MSLrs, which also does

not fully recover the population parameters.

The box-plots of VOT in Fig.3.2 show the sampling distributions of VOT before

and after the corrections with 10 missing initial observations. The red diamonds

are the means of the estimators. It is shown that the population value of the VOT

(0.333) is not covered by any point of the whole empirical distribution of the model

without correction, not even by its outliers. The result is substantially improved after

the MSLrs correction, in that not only the mean and median are much closer to the

true population value but also the population value falls within the upper and lower

(25%) quartiles. After the MSLis correction, the mean and median of the estimators

are almost equal to the true population value and the population value falls within

the upper and lower (25%) quartiles, confirming again that the proposed MSLis can

retrieve the population parameters.
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Table 3.2 Monte Carlo experimentation results
Correction
Method

# of
missing
obs

Parameter Average
Percent
error

p-value
Empirical
coverage

Runtime Sampling method

No correction

1
�time

�cost

VOT

-0.339
-1.17
0.290

15.2
2.16
12.9

<1e-05
<1e-05
<1e-05

59
91
66

12.9 sec

2
�time

�cost

VOT

-0.313
-1.17
0.269

21.7
2.87
19.3

<1e-05
<1e-05
<1e-05

23
93
31

12.4 sec

3
�time

�cost

VOT

-0.296
-1.17
0.254

29.5
2.84
27.4

<1e-05
<1e-05
<1e-05

7
90
13

12.2 sec

4
�time

�cost

VOT

-0.281
-1.17
0.242

29.5
2.84
27.4

<1e-05
<1e-05
<1e-05

2
91
2

11.8 sec

5
�time

�cost

VOT

-0.273
-1.17
0.233

31.9
2.31
30.2

<1e-05
<1e-05
<1e-05

1
92
3

11.8 sec

10
�time

�cost

VOT

-0.241
-1.18
0.204

39.8
1.39
38.9

<1e-05
0.00303
<1e-05

0
97
0

9.18 sec

15
�time

�cost

VOT

-0.216
-1.18
0.183

46.0
1.58
45.1

<1e-05
<1e-05
<1e-05

0
96
0

7.56 sec

MSLrs

1
�time

�cost

VOT

-0.407
-1.21
0.337

1.89
0.899
0.991

<1e-05
0.00005
0.00123

93
94
93

278 min

2000 draws2
�time

�cost

VOT

-0.411
-1.22
0.338

2.76
1.27
1.48

<1e-05
<1e-05
0.00003

90
90
90

299 min

3
�time

�cost

VOT

-0.416
-1.22
0.341

3.90
1.68
2.21

<1e-05
<1e-05
<1e-05

82
86
90

320 min

4
�time

�cost

VOT

-0.420
-1.23
0.343

5.01
2.20
2.77

<1e-05
<1e-05
<1e-05

75
88
88

332 min

5
�time

�cost

VOT

-0.424
-1.23
0.345

6.10
2.48
3.56

<1e-05
<1e-05
<1e-05

76
85
88

345 min

10
�time

�cost

VOT

-0.436
-1.25
0.350

8.89
3.79
4.92

<1e-05
<1e-05
<1e-05

71
82
85

744 min

15
�time

�cost

VOT

-0.444
-1.27
0.354

11.1
6.12
6.27

<1e-05
<1e-05
<1e-05

66
79
83

1209 min

MSLis

1
�time

�cost

VOT

-0.403
-1.21
0.332

0.102
1.67
0.232

<1e-05
<1e-05
0.676

96
89
97

0.541 min
Complete enumeration:
2 choice sequences

2
�time

�cost

VOT

-0.406
-1.22
0.332

1.72
2.05
0.296

<1e-05
<1e-05
0.447

94
84
95

0.952 min
Complete enumeration:
4 choice sequences

3
�time

�cost

VOT

-0.410
-1.233
0.332

2.44
2.76
0.271

<1e-05
<1e-05
0.549

93
84
96

1.87 min
Complete enumeration:
8 choice sequences

4
�time

�cost

VOT

-0.413
-1.24
0.332

3.15
3.58
0.363

<1e-05
<1e-05
0.476

90
74
97

2.85 min
Complete enumeration:
16 choice sequences

5
�time

�cost

VOT

-0.414
-1.25
0.331

3.42
4.12
0.675

<1e-05
<1e-05
0.220

92
69
94

6.70 min
Complete enumeration:
32 choice sequences

10
�time

�cost

VOT

-0.402
-1.21
0.333

0.607
0.743
0.111

0.216
0.00613
0.809

94
91
95

23.3 min
Importance sampling
sampling size:1000
choice sequence:20

15
�time

�cost

VOT

-0.396
-1.20
0.331

1.05
0.338
0.689

0.0503
0.253
0.168

93
96
95

149 min
importance sampling
sampling size:1000
choice sequences:100

* Estimation results are based on 100 repetitions. The nominal value of empirical coverage is 95%.
P-values are calculated against true values. A p-value greater than 0.05 indicates no statistical di↵erence.
Runtime is the average of one repetition.
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Figure 3.2 Box-plots of VOT before and after corrections with 10 missing intial ob-
servations.

3.4.2 Sensitivy analysis to other simulation assumptions

Sampling size in random sampling

In Section 3.4.1, the choice sequence is sampled 2000 times for the MSLrs method.

Fig.3.3 investigates the impact of sampling size on the percent error of VOT using

500, 1000, and 2000 draws. The estimators based on 2000 draws are generally better

than those based on 500 and 1000 draws, but the improvement is not significant.

Theoretically, as the sampling size increases, the quality of the estimators should also

increase, however, this can be very computationally expensive.

Number of high probability choice sequences in importance sampling

For the MSLis method, the impacts of the size of high probability choice sequence

set on the percent error of VOT and runtime are investigated for 10 missing obser-

vations. In this experiment, the choice sequence is sampled 1000 times to represent

an adequate sampling size. In Fig. 3.4, as the number of high probability sequences

increases from 2 to 50, the percent error decreases from close to 5% to below 1%.
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Figure 3.3 Impact of Number of Draws on Percent Error of VOT.

When the number of high probability sequences is greater than 20, the percent error

increases slightly. The hypothesis is that the inclusion of the choice sequences with

very low probability of occurrence may cause numerial issues in the estimation proce-

dure. It should be noted that not all numbers of high probability choice sequences can

statistically retrieve (i.e., p-value¿0.05) the true VOT value. The runtime increases

with the number of high probability sequences. When computational e�ciency is a

major concern, it is recommended to reduce the number of high probability sequences

for large number of missing observations.

3.4.3 Computational experiments based on empirical data

To confirm the applicability of the proposed methods, the IBL model is estimated

using the experimental dataset described in Ben-Elia & Shiftan (2010). For illustra-

tive purpose, only the data of the informed group is used for the estimations. In the

experiment, twenty-four participants were faced with three scenarios of binary route-

choice as presented in Table 3.3. A small degree of variation was programmed (±5 or

±15 min around the mean) to simulate a simple variable message sign (VMS). Each

scenario included 100 choices so in total each participant completed 300 trials. For
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Figure 3.4 Impact of Number of High Probability Choice Sequences on Percent Error
of VOT and Runtime with 10 Missing Observations.

Table 3.3 Hypothetical travel time scenarios of the experimental dataset

Scenario
Travel time ranges (minutes)
Route F - 25 min. Route S - 30 min.

Fast & Safe
Fast & Risky
Low-Risk

±5
±15
±5

±15
±5
±5

each choice situation the participants received real-time information about the travel

time range (the minimum and maximum travel times) for each of the two routes.

Following the choice, a feedback was received regarding the “actual” travel time on

the chosen route but not of the un-chosen one. This travel time was randomly drawn

from the distribution of the travel time range.

A simplified version of the IBL model developed in Chapter 2.4.2 is specified.

Eq.(3.11) shows the utility functions for the two paths. On a given day t, TSLOW ,

TFAST are the perceived travel times for the two paths respectively and are non-linear

functions of the decay parameter d. Note that d is estimated in the experimental

dataset, as opposed to fixed in the Monte Carlo tests. The cumulative weighted
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average (CWA) of the preceding choices is used to reflect travelers’ trends to repeat

past choices. See Ben-Elia & Shiftan (2010) for specification. Sensitivity to variability

of the travel times is represented using dummy variables for the scenarios, LRISK for

Low-Risk and FRISKY for Fast & Risky. Although the model is a simplification of

that developed in Chapter 2.4.2, the perceived travel time and CWA of the preceding

choices that have complete history dependency are kept in the model to assess the

proposed correction methods.

8
>>>>>><

>>>>>>:

USLOW (t) = �TIMESTSLOW (t)

UFAST (t) = �TIMEFTFAST (t) + �LRISKLRISK(t)

+�FRISKY FRISKY (t) + �CWACWA(t)

(3.11)

The cuto↵ dataset is generated by removing the first 10 observations for each

participant. The IBL model is estimated using the full dataset and the estimates are

assumed to be the “true” parameter values. The cuto↵ dataset is used to estimate the

IBL model before correction and after the MSLrs and MSLis correction methods. The

sampling size for the MSLrs method is 1000, and the sampling size and high proba-

bility sequences are set to 1000 and 20 respectively for the MSLis method. With the

correction methods applied, the estimates obtained from the cuto↵ dataset are used

as the priors to mimic real-life practice. The Hausman-McFadden test (Hausman &

McFadden, 1984) is used to exam whether the estimators of the cuto↵ dataset are

statistically equal to the estimators of the full dataset. Table 3.4 presents the estima-

tion results. For the full dataset, all estimates are statistically significant according

to the t-test against 0. For the cuto↵ dataset, before correction the null hypothesis of

Hausman-McFadden test that the estimators are statistically equal to the estimators

of the full dataset model is rejected (95% confidence, degree of freedom of 6, and crit-

ical value of 12.59). After applying the correction methods, the null hypothesis of the

Hausman-McFadden test is accepted, meaning the estimators are statistically equal
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Table 3.4 Estimation results based on empirical data
Experiment Metric d �TIMEF �TIMES �LRISK �FRISKY �CWA

Full dataset

Estimate

Std. error

t-test (against 0)

1.28

0.137

9.31

-0.198

0.015

-13.2

-0.086

0.013

-6.62

0.864

0.144

6.00

0.405

0.120

3.38

5.71

0.192

29.7

10 missing observations,

no correction

Estimate

Std. error

1.19

0.140

-0.205

0.0176

-0.0697

0.0156

0.805

0.168

0.276

0.132

6.74

0.245

Hausman-

McFadden test
22.7

10 missing observations,

MSLrs correction

Estimate

Std. error

1.180

0.129

-0.212

0.016

-0.0843

0.014

0.782

0.152

0.300

0.126

6.35

0.227

Hausman-

Mcfadden test
9.96

10 missing observations,

MSLis correction

Estimate

Std. error

1.20

0.149

-0.196

0.0144

-0.0852

0.0164

0.842

0.213

0.312

0.161

6.24

0.213

Hausman-

McFadden test
8.56

to the estimators of the full dataset model. The di↵erence between the estimators of

the curtailed model and corrected models is expected to be larger as the number of

missing initial observations increases. Finally, note that the finite sample bias of the

MSLis correction is notably smaller than that of the curtailed and the MSLrs models.

3.5 Summary

Learning-based models that capture travelers’ day-to-day learning process in re-

peated travel choice can su↵er from the common problem of missing initial observa-

tions in longitudinal data collection that leads to inconsistent estimate of the perceived

value of the attribute in question, and thus inconsistent parameter estimates. In this

chapter, the MSL with two sampling methods is developed and assessed to address

the endogeneity problem due to missing initial observations in learning models with

complete history dependency. An IBL model in recent literature is used for its capa-
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bility of precisely capturing travelers’ learning process in repeated choice and model

complexity.

Monte Carlo experimentation based on synthetic data shows that the proposed

method drastically reduces the finite sample bias of the estimators compared to the

curtailed model. For the MSLrs method, a size distortion that reflects in p-values

against the true VOT value is detected, which suggests the ine�ciency of the sam-

pling method makes the method su↵er from the curse-of-dimensionality problem. In

contrast, the MSLis method can retrieve the true VOT value. Moreover, the compu-

tational e�ciency of the MSLis is significantly better than the MSLrs method. The

impacts of the sampling size in the MSLrs method and number of high probability

choice sequences in MSLis are investigated. Empirical results suggest that when the

number of missing observations is large, the number of high probability sequences in

MSLis should be limited for computational e�ciency. The two methods are also ap-

plied to empirical data to demonstrate their applicabilities. Estimation results show

that the estimators after correction are statistically equal to the estimators of the full

dataset model.
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CHAPTER 4

DAY-TO-DAY DRIVING BEHAVIOR INTERVENTION

This chapter is based on collaborative work with Tao Jiang

4.1 Project Overview

Apart from modeling travelers’ day-to-day travel behavior, this dissertation also

investigates travelers’ day-to-day driving behavior intervention. A study of Mitigation

Techniques to Modify Driver Performance to Improve Fuel Economy, Reduce Emis-

sions and Improve Safety, was undertaken as part of the Massachusetts Department

of Transportation Research Program. This program is funded with Federal Highway

Administration (FHWA) Statewide Planning and Research (SPR) funds.

Transportation has a major impact on our society and environment, contributing

70% of U.S. petroleum use, 28% of U.S. greenhouse gas (GHG) emissions (Bureau of

Transportation Statistics., 2013), and over 34,000 fatalities and 2.2 million injuries in

2011 (Environmental Protection Agency (n.d.).). MassDOT is a major contributor to

energy use and greenhouse gas emission, the state-owned vehicle fleet consumes a fair

amount of fuel each year. Thus, investigating techniques which could improve fuel

economy, reduce emission and improve safety is in urgent need. This in furtherance

is of MassDOT’s mission and goals of the GreenDOT implementation plan.

This project investigates the e↵ectiveness a combination of static and dynamic

eco-driving techniques to modify driver performance to improve fuel economy, reduce

emission and improve safety. The static eco-driving technique refers to eco-driving

training and follow-up email tips, the dynamic technique is real-time in-vehicle feed-
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back device, which could display drivers’ driving performance in several detailed cate-

gories, i.e., acceleration, braking, cornering, lane handling and speeding, so as to help

modifying their driving behavior instantaneously. Evaluation of e↵ectiveness of the

two general types of techniques would be made based on di↵erence in performance

cross test and control groups between each experiment phase.

The project involves 133 MassDOT vehicles installed with in-vehicle tracking de-

vices provided by GreenRoad Technology, Inc. Two types of behavior interventions

were tested as mentioned in the previous paragraph: in-vehicle real-time feedback and

classroom eco-driving training with follow-up email tips. Then a two-factor, two-level

design results in four groups with vehicles assigned randomly from the 133 vehicles

with five major and four minor factors which would a↵ect fuel economy equally dis-

tributed across groups. All four groups went through three chronological phases: 1)

Phase I (baseline): 6/1-7/27/2015, no real-time feedback, no eco-driving training, 2)

Phase II (intervention period): 7/28-10/09/2015, real-time feedback was provided to

two groups and training was conducted for two groups, followed by bi-weekly eco-

driving tip emails, and 3) Phase III (o↵ period): 10/10/2015-02/01/2016, real-time

feedback was turned o↵ and eco-driving tips discontinued.

4.2 Literature Review

4.2.1 Factors a↵ecting fuel economy, greenhouse gas and air pollutant

emission and safety

Fuel consumption (FC) factor is defined as the volume of fuel consumed for a

vehicle to travel a unit distance (gallon per mile or liter per kilometer). Similarly,

the CO2 emission factor is defined as the mass of CO2 emission for a unit distance

traveled (gram per mile or gram per km).

Speed, instantaneous speed especially, is a major factor a↵ecting fuel economy

and greenhouse gas emission. Tong et al. (2000) studied four di↵erent instrumented
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vehicles under four standard driving modes. The FC factor was monotonically de-

creasing until the maximum speed and the optimum fuel e�ciency range approached

at least 60-70 km/h for the petrol passenger car and diesel van. During acceleration

process, FC was more than 80% higher than that during cruising for passenger car,

slightly higher than that of deceleration for the petrol passenger car and van, and

almost the same as that of deceleration for the diesel van. In addition, the NOx,

HC, and CO emission factors decreased as the instantaneous speed increased, and

the decrease rate became more gradual as the speed increased, similar to the trends

for FC.

Ericsson (2001) conducted a comprehensive study in an average-sized Swedish

city about factors that a↵ect fuel consumption and emissions, which is based on real-

tra�c data of 2,550 journeys and 18,945 km of driving of five passenger cars. By

using factorial analysis, only the factor for speed 50-70 km/h was found to have a

significant negative e↵ect on fuel-use and CO2 emissions. This indicated that the

most fuel e�cient cruise speed is in the range of 50-70 km/h. The stop factor was

highly significant, suggesting that idling was a very important contributor to FC and

CO2 emission. Ericsson (2001) also demonstrated that HC emissions were primarily

a↵ected by factors for acceleration with high power demand and extreme acceleration,

none of the speed factors were significant for either NOx or HC emissions. This

suggests that acceleration increased pollutant emissions more than it increased FC

and CO2 emissions.

Idling a vehicle for any amount of time significantly reduced e�cient fuel economy

for a trip, as Saboohi & Farzaneh (2009) implied. In an experiment that lasted 276

seconds, an additional fuel consumption of 0.33 liters (0.08 gallons) was detected.

Thus, for every hour of idle running for an average passenger car, 4.3 liters (1.14

gallons) of petrol was burnt. Another experiment mentioned in Sivak & Schoettle

(2011) monitored vehicles on a 16 km course. By turning o↵ the engine during each
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of the ten idle periods, lasting two minutes each, there was a 19% fuel economy

improvement.

In addition, speed is an important factor in road safety. At high speeds the time

to react to changes in the environment is shorter, the stopping distance is larger, and

maneuverability is reduced. Aarts & Van Schagen (2006) provided a literature review

of studies on the speed-crash risk relationship. The authors noted an Australian study

by Fildes et al. (1991) that applied a self-report method. Drivers with di↵erent driving

speeds were stopped and asked about their history of road crashes during the last

5 years. The relationship had the shape of an exponential function, and the similar

trend was also reported in other studies (see, e.g., Kloeden et al. (2002)). Later Taylor

et al. (2002) suggested that accident frequency increased with driving speed to the

power of approximately 2.5.

Aggressive acceleration and deceleration are also leading factors in contributing

fuel wasting and extra pollutant emissions. Wang et al. (2011) found that the FC

factors were the highest at acceleration, modest at cruise speeds and the lowest at

deceleration for non-idling buses. Kim & Choi (2013) estimated critical values of

aggressive acceleration about FC factors and came to the same conclusion as in Wang

et al. (2011). Aside from that, Wang et al. (2011) also found similar relationships

between pollutant emissions and acceleration as those between FC and acceleration.

Quick acceleration and deceleration also lead to higher crash risk. Since they

increase the potential for loss of vehicle control and reduce the time available to the

driver to respond to the actions of other drivers and to take evasive actions to avoid a

crash should a conflict materialize. Conclusions taken from researches done by Elvik

(2006) and Bagdadai & Varhelyi (2011).
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4.3 Methodology

4.3.1 Experiment design

All vehicles in the field test were owned by MassDOT with a designated driver

so that potential behavioral changes could be properly attributed to interventions.

Vehicle types were restricted to sedan, SUV, van, and pick-up truck, where heavy

trucks and state police vehicles were explicitly excluded. Two types of behavioral

interventions were tested: in-vehicle real-time feedback and classroom training with

follow-up email tips. A two-factor, two-level factorial design results in four groups: 1)

Receive in-vehicle feedback and eco-driving training, 2) Receive in-vehicle feedback

but no eco-driving training, 3) Receive eco-driving training but no in-vehicle feedback,

and 4) No eco-driving training and no in-vehicle feedback. Vehicles were randomly

assigned to groups with four major and four minor factors that could potentially a↵ect

fuel economy and safety performance were counterbalanced. The major factors were:

1) Vehicle type (sedan, SUV/van, and pick-up truck), 2) Manufacture year (2000-

2004, 2005-2009, and 2010-2015), 3) Fuel type (gasoline and hybrid), and 4) Driving

distance in Phase I (baseline period). The four minor factors were: 1) Driver gender

(male and female), 2) Age (21-30, 31-40, 41-50, 51-60, 61+), 3) Vehicle carrying

weight typically (<100 lb, 100-200 lb, 200-300 lb, and >300 lb), and 4) Previous

eco-driving feedback device experience (yes or no). During the whole study period,

all groups went through three chronological phases: 1) Phase I (baseline phase): 6/1-

7/27/2015 (8 weeks), No eco-driving interventions provided, 2) Phase II (intervention

phase): 7/28-10/9/2015 (10 weeks), Real-time feedback was provided to two groups

throughout Phase II, and classroom training was conducted for two groups at the

beginning of Phase II, followed by bi-weekly eco-driving tip emails from the eco-

driving trainer, and 3) Phase III (o↵ phase): 10/10/2015-02/01/2016 (16 weeks),

Real-time feedback was turned o↵ and eco-driving tip emails discontinued.
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4.3.2 Data Collection

Each driver contributed one data point in each phase for fuel economy, idling

rate, overall safety score and each safety score by category. The daily raw data were

obtained from GreenRoad Central (an online user interface where driver performance

could be retrieved), and will be averaged over all days for a given phase. A variety of

reports were available on a daily basis regarding fuel economy, idling, and safety per-

formance in GreenRoad Central. In addition, a customized Amazon EC2 database

was created by GreenRoad for this particular study, which provided the following

information every 30 seconds: vehicle location coordinates with timestamps, cumula-

tive fuel consumption, fuel economy, and cumulative traveling distance. This allows

for analysis based on geographic location.

4.3.3 Regression analysis

After all the data were cleaned up. The researcher carried out multiple linear

regression analysis to test whether the two interventions, eco-driving training and

real-time feedback are e↵ective in improving fuel economy, reducing idling rate and

improving drivers’ safety performance. The response variables are fuel economy per-

centage change, vehicle idling rate percentage change and safety score percentage

change, which are defined as follows:

response variable =
value of variable in phase II or III� value of variable in phase I

value of variable in phase I
(4.1)

Three dummy variables, corresponding to training, feedback, and interaction ef-

fect of training and feedback, were used as explanatory variables. Traditionally, a

dummy variable equals 1 if a driver receives the corresponding intervention, and 0

otherwise. The interaction variable equals 1 if a driver receives both interventions,

and 0 otherwise. In this study, the level of significance was chosen as 0.10, with
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the interpretation that p-value equals or less than 0.10 indicating significant e↵ect,

otherwise not.

Intuitively, the multiple linear regression for the changes between Phases I and

II test the short-term e↵ect of interventions, while for the changes between Phases I

and III test the long-term e↵ect. In addition, Phase II was further divided into two

periods: first month (July 28 - Sep 9, 2015) and second month (Sep 10 - Oct 09,

2015). Analysis was also done for hybrid / non-hybrid vehicles separately, and based

on vehicle types, namely, SUV, pick-up truck and sedan. Lastly, data collected from

“Express way” and “Local way” were treated separately, since tra�c condition and

vehicle performance are quite di↵erent between the two types of road.

4.4 Analysis Results

4.4.1 Short-term e↵ect

Safety

Safety analysis results (Table 4.1) show that overall safety score has been reduced

in Phase II due to feedback at a 1% level of significance. Specifically, the positive

e↵ect of feedback in reducing speeding score was significant at a 0.01% level during

phase II. Note that a lower safety score means safer behavior.

Further analysis by vehicle type (sedan, SUV, pickup truck) shows that pickup

trucks benefit the most from real-time feedback.

1. Feedback reduced overall safety score for pickup trucks at a 5% significance

level, during Phase II, while the e↵ect was not significant for sedans or SUVs.

2. Feedback reduced acceleration score for pickup trucks at a 10% significance level

during Phase II, and the e↵ect sustained in Phase III.
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Table 4.1 Regression analysis result of safety performance measures

-

Overall safety

score for all

vehicle (Phase I/II)

Overall safety

score for

pickup truck

(Phase I/II)

Acceleration score

for all vehicle

(Phase I/II)

Acceleration score

for pickup truck

(Phase I/II)

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Intercept 0.127 0.033 0.136 0.15 0.07 0.6 0.3297 0.15

Training 0.025 0.787 -0.087 0.517 -0.058 0.782 -0.51 0.124

Feedback -0.284 0.002* -0.32 0.023* -0.35 0.088* -0.64 0.055*

Training &

Feedback
0.071 0.589 0.275 0.158 0.0002 0.999 0.414 0.381

-

Acceleration score

for sedan (Phase I/III)

Acceleration score

for pickup truck

(Phase I/III)

Braking score for

all vehicle

(Phase I/III)

Braking score

for SUV

(Phase I/III)

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Intercept -0.08 0.77 0.8 0.001 0.37 0.017 -0.76 0.025*

Training 0.58 0.2 -0.9 0.009* -0.24 0.31 0.056 0.87

Feedback 0.77 0.1 -0.68 0.039* -0.53 0.019* -0.76 0.025*

Training &

Feedback
-1.28 0.046* 0.72 0.13 0.52 0.11 0.36 0.46

-

Speeding score

for all vehicle

(Phase I/II)

Speeding score

for SUV

(Phase I/II)

Speeding score

for pickup truck

(Phase I/II)

Speeding score

for pickup truck

(Phase I/III)

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Intercept 0.11 0.07 0.02 0.83 0.18 0.079 0.11 0.49

Training -0.014 0.88 0.22 0.16 -0.16 0.25 -0.26 0.28

Feedback -0.36 1.04e-4* -0.32 0.04* -0.46 2.17e-03 -0.4 0.08*

Training &

Feedback
0.12 0.38 -0.034 0.88 0.4 0.055* 0.53 0.12

3. Feedback reduced speeding score for pickup trucks at a 0.01% significance level

during Phase II, and the e↵ect sustained in Phase III (at a 10% significance

level).

Idling

Result of idling rate change (Table 4.2) shows that training have a positive e↵ect

in reducing idling rate in the first month of Phase II at a 10% level of significance.

Idling rate is a major contributor to fuel ine�ciency, so reducing idling rate could

potentially lead to improvement of fuel economy. The in-vehicle feedback device did
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Table 4.2 Regression analysis results of idling rate and fuel economy percentage change

-

Idling rate of

all vehicle (PhaseI/First

month of Phase II)

Fuel economy of

sedan (Phase I/First

month of Phase II)

Fuel economy of

SUV (Phase I/First

month of Phase II)

Fuel economy of

hybrid vehicles

(Phase I/II)

Estimate p-value Estimate p-value Estimate p-value Estimate p-value

Intercept 0.549 0.019 -0.015 0.765 -0.04 0.052 0.132 0.118

Training -0.724 0.033* -0.095 0.252 0.008 0.778 -0.167 0.161

Feedback -0.472 0.15 -0.023 0.777 0.046 0.0705* -0.17 0.138

Training &

Feedback
0.734 0.109 0.196 0.091* 0.011 0.781 0.28 0.077*

not provide feedback on idling and only monitors it, thus it is not surprising that

feedback does not have any e↵ect in reducing idling rate. The classroom training

session discussed idling as a major factor and the first two follow-up tip emails were

mostly about idling with clear guidelines. This suggests that targeted education on

an implementable behavioral change could be e↵ective.

Fuel Economy

The e↵ect of real-time feedback has a positive impact on fuel economy for SUVs in

the first month of Phase II at a 10% level of significance (Table 4.3). The combination

of feedback and training, however, has a positive e↵ect in improving fuel economy for

sedans in the first month of Phase II at a 10% significance level, and for hybrid vehicles

throughout Phase II at a 10% significance level. Based on geographic location, the

combination of training and feedback has a positive e↵ect in improving fuel economy

for pickup truck in the first month of Phase II at a 10% level of significance on “Local

Way”. And it improves the fuel economy for hybrid vehicle in the first month of

Phase II at a 10% level of significance on “Express Way” (Table 4.3).

Classroom training provided drivers with a systematic treatment of eco-driving

theories and practices, while real-time feedback provided immediate indication of

driving performance. On one hand, it takes conscious e↵ort and practice to translate

what is learned in a classroom training session to real-world behaviors. On the other
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Table 4.3 Regression analysis results of fuel economy percentage change based on
geographic location

-

Fuel economy of pickups on “Local Way”

(Phase I/First month of Phase II)

Fuel economy of hybrid vehicles on “Express Way”

(Phase I/First month of Phase II)

Estimate p-value Estimate p-value

Intercept 0.037 0.333 0.004 0.77

Training -0.049 0.33 -0.009 0.65

Feedback -0.087 0.091 -0.008 0.71

Training &

Feedback
0.118 0.094 0.052 0.09

hand, real-time feedback might be di�cult to understand if drivers are not familiar

with energy-e�cient driving styles. It is thus hypothesized that a combination of

the two interventions could overcome the shortcomings of each intervention, that

is, drivers do not need to make conscious e↵ort but are rather reminded to change

behaviors and can understand what to change based on the real-time feedback. The

exception for SUVs could be the reason that the major driving areas of SUVs are

construction or other working sites. Generally, the terrain characteristics or the tra�c

conditions of working zones are typically less-than-ideal. Thus drivers tend to receive

more alerting indicators, and also have a larger chance of modifying behaviors while

driving. The above result provid es some preliminary support to these hypotheses.

Remarks

As suggested by results for idling rate and safety scores, training has a positive

e↵ect on reducing idling, while feedback has a positive e↵ect in reducing speeding

and aggressive acceleration. Idling, speeding, and aggressive acceleration are major

contributors to fuel ine�ciency, GHG emissions and unsafe driving, according to the

literature synthesis. It is plausible that the goal of improving fuel e�ciency, safety and

reducing emissions is more likely to be achieved when all three factors are accounted

for, and thus combined training and feedback is needed.
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4.4.2 Long-term e↵ect

Drivers no longer received any feedback or eco-driving tip emails in Phase III and

eco-driving training has passed for 10 weeks. The regression analysis of the change

from Phase I provides evidence as to whether the intervention have long-term e↵ects.

From the regression analysis results, there was no significant positive improvement

in fuel economy or idling rate. While some safety improvements sustained (Table

4.2). In general, the e↵ects diminished in Phase III. This suggests that drivers tend

to slip back to old driving habits after feedback devices were turned o↵, and e↵ect of

training diminishes in a couple of months after in-classroom training.

4.4.3 Cost saving estimation

Aggressive acceleration, speeding and idling are major factors that would a↵ect

fuel economy according to studies by Tong (3), Ericsson (4) and Saboohi (5). As

there are no direct measurements of estimating fuel savings on reduction in first two

factors, we focus on the idling factor.

From the regression results, we could see that the idling rate has been reduced by

17.5% compared with control group due to training factor (Table 4.2). Assuming all

conditions in (5) apply here, where 1.14 gallons of petrol was burnt for every hour of

idling running of average passenger car (5). Using average idling rate in control group

during Phase I as baseline (which is 0.0713, not shown in table). We could estimate

the fuel savings per hour driving as follows. This indicates that 0.039 dollar would

be saved per hour driving for an average passenger car, with an average gas price of

2.75 $/gallon in Western Massachusetts currently.

Unit Saving =
1.14Gallon

1Hour Idling
⇤0.0713 Unit Idling Time

Unit Driving Time
⇤0.175 = 0.0142

Gallon

Hour Driving
(4.2)
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4.5 Conclusions and Recommendations

4.5.1 Conclusions

Based on the analysis in the previous section, several major conclusions could be

drawn as below:

1. Real-time feedback had a highly significant e↵ect in reducing speeding. The

e↵ect however disappeared after the feedback was discontinued. According to

the conclusion from the literature synthesis, abiding by speed limits on highways

not only can significantly reduce crash risk, but also improves fuel economy and

reduces emissions (50-90 km/h has emerged as optimum fuel consumption and

emission speed ranges from the literature).

2. Real-time feedback had a moderately significant e↵ect in reducing aggressive ac-

celeration and lane handling. The e↵ect however disappeared after the feedback

was discontinued. According to the literature synthesis, aggressive acceleration

significantly increases fuel consumption, CO2, NOx, HC, and CO emissions,

and is a contributor to crash risk.

3. Training had a moderately significant e↵ect in reducing idling rate in the first

month after training. The e↵ect disappeared after the first month. According

to the conclusion from the literature synthesis, idling (stops) or driving at a

very low speed significantly worsens fuel consumption and emissions.

4. Combined classroom training and real-time feedback had a moderately signifi-

cant e↵ect in improving fuel economy for hybrid vehicles. The e↵ect disappeared

after the feedback was discontinued.

5. In the long run, eco-driving not only helps reduce fuel consumption and emis-

sions, but also contributes to reduced accidents because of smoother and less
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aggressive driving behavior. Savings due to reduced accident costs and in-

surance premiums should also add to the long-term benefits of implementing

eco-driving.

4.5.2 Recommendations

Widespread deployment options for real-time feedback devices

Based on major conclusions #1 and #2 in conclusion section, we make the follow-

ing recommendations regarding the widespread deployment of real-time feedback de-

vices. Three options are available with regard to the deployment of real-time feedback

device with the increment of system complexity, namely feedback device only, feed-

back device with periodic self-evaluation and feedback device, periodic self-evaluation

with fleet manager monitoring.

For real-time feedback device-only option, the vehicles will be installed with the

feedback device only. While no inspection or evaluation of driver performance would

be provided during driving or after that, or drivers will not be able to get access to

their driving records. This greatly protects drivers’ privacy and reduce the cost of

system. But the e↵ectiveness might be the least significant overall. Adding the other

two options with feedback device would possibly serve as stimuli to achieve a better

driving performance so as to save more fuel and reducing emissions. But drivers’

privacy will not be guaranteed and the system cost would be larger.

Widespread deployment options for eco-driving training

Majorly two options are readily available for the deployment of eco-driving train-

ing, online training and classroom training. The cost for online training course is

lower than classroom training as no travel costs (and energy consumption) for the

trainer or trainees are needed. Drivers have the time flexibility and can take the

course at their own pace. Also, online training can be as e↵ective as classroom train-

ing if properly designed. For classroom training, the cost might be higher than online
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training, but it allows for face-to-face interactions that usually promotes better learn-

ing e↵ects. Additionally, the classroom training could be delivered by fleet members

who received training from training program vendors (refers to trained by trainer op-

tion in literature synthesis section), which would reduce costs and the training would

be easy to implement logistically.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Research Summary

In this thesis, an instance-based learning (IBL) model for travel choice is developed

in a route-choice context based on the power law of forgetting and practice. This

model is shown to be capable of capturing the recency, hot stove and payo↵ variability

e↵ects embedded in travelers’ day-to-day learning process. Experiments based on

synthetic datasets show that the true parameter values of the IBL model can be

consistently retrieved and the model predicts di↵erent tra�c patterns compared to

a model that completely ignores learning and a learning model that ignores spatial

knowledge carryover. The IBL model is also compared to a baseline learning model

using an experimental dataset of repeated route-choice. Estimation results show that

the IBL model suggests a larger role of learning and achieves better model fit. Cross

validation experiments suggest that the forecasting ability of the IBL model is better

than the baseline learning model.

Learning-based models with complete history dependency can su↵er from the com-

mon problem of missing initial observations in longitudinal data collection that leads

to inconsistent estimate of the perceived value of the attribute in question, and thus

inconsistent parameter estimates. In this thesis the MSL with two sampling methods

is developed and assessed to address the stated problem. The IBL model is used for

its capability of precisely capturing travelers’ learning process in repeated choice and

model complexity. Monte Carlo experimentation based on synthetic data shows that

the proposed method drastically reduces the finite sample bias of the estimators com-
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pared to the curtailed model. For the MSLrs method, a size distortion that reflects in

p-values against the true VOT value is detected, which suggests the ine�ciency of the

sampling method makes the method su↵er from the curse-of-dimensionality problem.

In contrast, the MSLis method can retrieve the true VOT value. Moreover, the com-

putational e�ciency of the MSLis is significantly better than the MSLrs method. The

impacts of the sampling size in the MSLrs method and number of high probability

choice sequences in MSLis are investigated. Empirical results suggest that when the

number of missing observations is large, the number of high probability sequences in

MSLis should be limited for computational e�ciency. The two methods are also ap-

plied to empirical data to demonstrate their applicabilities. Estimation results show

that the estimators after correction are statistically equal to the estimators of the full

dataset model.

Another aspect of this thesis is to gain insights on day-to-day driving behavior

intervention. A study on mitigation techniques to improve ruel economy, reduce emis-

sions and improve safety was undertaken as part of the Massachusetts Department of

Transportation Research Program. Major conclusions include: 1) Real-time feedback

has a significant e↵ect in reducing speeding and aggressive acceleration. 2) Training

has a significant e↵ect in reducing idling rate in the first month after training. 3)

Combining training and feedback is expected to significantly improve fuel economy,

reduce emissions and improve safety.

5.2 Future Research Directions

In this thesis, an exploratory e↵ort in understanding, specifying and applying the

IBL model is presented in route-choice context. For the model to be operational,

practical considerations need to be accounted for, as discussed below.

First, choice set generation in a real network needs to be considered in contrast

to the well defined choice set in a binary choice context. A number of choice set
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generation methods have been developed to serve this end (Ramming, 2002; Bekhor

et al., 2002). More recent studies have focused on the dynamic formation of choice

set, where the addition or deletion of alternatives during the learning and repeated

choice process is explicitly considered (Han et al., 2008, 2011). The IBL model also

has potentials to be expanded and applied to the dynamic formation of choice set.

Second, past experience gained from work trips is retrieved for the occasional

leisure trip to illustrate that spatial knowledge can be carried over from one trip to

another. In real practice, the context of the experience (e.g., AM/PM/mid-day/other,

weekday/weekend) will be considered and a matching score between the context in an

instance and the current context is calculated such that only instances over a certain

matching threshold can be retrieved.

The research on the correction method for the intitial condition problem in learn-

ing models with complete history dependency can be extended in the following direc-

tions.

First, since the runtime of the MSLis increases as the number of missing observa-

tions grows, the possibility of limiting the number of missing initial observations to be

simulated needs to be investigated. Due to the nature of the model that more recent

and frequent outcomes take larger weights in memory, only the omission of recent

instances will cause estimation biases for practical purposes. Thus, the hypothesis

is that only a certain number of unobserved instances prior to the first observation

needs to be simulated to improve the estimators up to a desired threshold.

Second, we would like to explore alternative correction methods. For example, the

Multiple Imputation (MI) principle proposed by (Little & Rubin, 1987) can be used

to develop a correction method using importance sampling. In this method, instead

of simulating the likelihood as with MSL, each simulated choice sequence is used to

estimate the model parameters via maximum likelihood estimation. The vectors of

estimators obtained from all choice sequences are used to build the sampling distri-
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bution of the estimators with standard complete-data methods. Other alternative

methods similar to the method proposed by (Guevara & Ben-Akiva, 2013a,b) may

also be explored.
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APPENDIX

WEIGHT FUNCTION OF THE ORIGINAL IBL MODEL

In the IBL model proposed by Lejarraga et al. (2012), the activation of a past

instance is regulated by a noise term µn(t0), a random variable distributed between 0

and positive infinity. The instance is defined at the path level.

fwni(t
0, t) =

µn(t0)(t� t0)�d

Pt�1
⌧=0 µn(⌧)(t� ⌧)�d

(A.1)

Where:

fwni(t0, t): perturbed weight of the experienced travel time of day t0 for the perceived

travel time on day t for traveler n and path i

µn(t0): a noise term added to the weight function, µn(t0) =

✓
1��n(t0)
�n(t0)

◆�

�n(t0): a uniformly distributed random variable between 0 and 1

�: a free noise parameter
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