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DEDICATION

Although the world is full of suffering, it is also full of the overcoming of it.
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CHAPTER 1

CLUSTERING NETWORK TREE DATA FROM
RESPONDENT-DRIVEN SAMPLING WITH

APPLICATION TO OPIOID USERS IN NEW YORK
CITY

1.1 Abstract

There is great interest in finding meaningful subgroups of attributed network

data. There are many available methods for clustering complete network. Unfortu-

nately, much network data is collected through sampling, and therefore incomplete.

Respondent-driven sampling (RDS) is a widely used method for sampling hard-to-

reach human populations based on tracing links in the underlying unobserved social

network. The resulting data therefore have tree structure representing a sub-sample

of the network, along with many nodal attributes. In this paper, we introduce an ap-

proach to adjust mixture models for general network clustering for samplings by RDS.

We apply our model to data on opioid users in New York City, and detect commu-

nities reflecting group characteristics of interest for intervention activities, including

drug use patterns, social connections and other community variables.

1.2 Introduction

Network clustering is used to detect groups within a graph where nodes in the

same group have stronger social connections than nodes in different groups and where

nodal attributes are more similar within groups. However, there are no existing

methods for clustering social networks sampled with link-tracing mechanisms, such

as Respondent-driven sampling (RDS). Traditional network clustering methods are
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not appropriate for RDS networks because of the link tracing procedure in RDS.

Clustering of networks with node or edge features is well studied [Yang et al., 2013],

[Xu et al., 2012], [Qi et al., 2012]. In this paper, we build a mixture model for RDS

network sample with node features, and add sampling weights to the likelihood to

find clusters for the RDS network sample.

Respondent-driven sampling (RDS) [Heckathorn, 1997] is a link-tracing network sam-

pling method popularly used in sampling data from hard-to-reach populations, such

as drug users and sex workers. It starts by selecting several people in the target

population as seeds, then those seeds expand the sample by distributing coupons to

people they know, those newly added samples distribute coupons in a similar way,

and this process continues until reaching the desired sample size. Each coupon has a

unique number which makes clear who recruited whom. RDS is a sampling method

without replacement and its resulting observed network has tree structure with each

tree starting with a different seed. The maximum number of coupons one person

can distribute or the maximum number of people each person can recruit is usually

small, like 3, to make sure the tree is deep enough, which helps reduce dependency

of samples in a tree on its seed.

Each sampled person in the RDS network completes a survey, creating a node-

attributed RDS network. Some node-attributed RDS networks have obvious ho-

mophily [Gile and Handcock, 2010], which is the correlation between trait values of

nodes connected by an edge. For example, in the opioid drug user RDS network,

heavy drug users are more likely to be tied to, and therefore recruit heavy drug users.

Network clustering methods have been developed extensively. Maximizing modular-

ity [Newman, 2006], minimizing cut [Ding et al., 2001], eigenvector related spectral

clustering [Ng et al., 2001] [Shi and Malik, 2002], and hierarchical clustering [Bandy-

opadhyay and Coyle, 2003] are widely used in computer science and biology to cluster

complex graphs. Methods for clustering networks statistically through assigning dis-
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tributions to network structures are also well developed. In the stochastic block model

[Nowicki and Snijders, 2001][Karrer and Newman, 2011] [Airoldi et al., 2008], mixture

and Bayesian mixture models [Daudin et al., 2008], edges follow Bernoulli or Bernoulli

mixture distributions with the same connection probabilities if they’re in the same

block or community. Model based network clustering methods have also been used to

cluster graphs with node or edge features. Handcock et al. (2007) models node pair

connection probability as a logistic regression on covariates and the distance of the

node pair in a latent social space. In Communities from Edge Structure and Node

Attributes (CESNA) [Yang et al., 2013], links of the network and node attributes are

modeled separately but connected by the node community membership probabilities.

Xu et al. (2012) proposed a Bayesian probability model assuming network structure

and node attributes are independent given node group status. In this paper, we build

on Xu et al. (2012)’s assumption that node features and network structures are inde-

pendent given node clustering status and build a mixture model from it. Since RDS

generates incomplete network data with nodes and edges unequally sampled from

a full network, the above network clustering methods are not valid. Therefore, we

propose a weighted log-likelihood approach, adding nodal and edge inverse sampling

probability weights (IPW) to the log-likelihood for inference.

In this paper, we are not only interested in clustering the RDS sample data, but

also interested in the interpretation of those clusters and individuals within those

clusters. To better interpret populations in each cluster, we should find and use less

biased parameters given the sampled data. Weighting is a common way to reduce

bias in sampled data. Weighted likelihood has been used in mixture models for re-

ducing bias when outliers exist in the data [Markatou, 2000]. The inverse selection

probability-weighted likelihood method has also been studied for fitting sampled data

[Li et al., 2008] [Saegusa and Wellner, 2013]. Weighted likelihood has been used for

automatic model selection in density mixture clustering [Cheung, 2005]. Weighted it-
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erative clustering algorithms have also been well studied for better clustering [Topchy

et al., 2004][Zhang, 2001][Hamerly and Elkan, 2002]. Based on those literatures and

considering the un-equal sampling probabilities in RDS, the instances or nodes and

edges in the RDS sample should not be treated equally. Therefore, we propose to add

inverse sampling probabilities to the likelihood of the mixture model from the node

attributed RDS sample data to approximate the likelihood in the pseduo-population,

thus getting less biased parameter estimation and reasonable clustering.

In this paper, we review sampling probabilities in RDS in Section 1.3. We propose

a mixture model without weights as Benchmark model and extend the Benchmark

model by adding IPW in Section 1.4. Furthermore, we propose the weighted likeli-

hood mixture model with tuning parameter to balance contribution of node features

and network structure. In Section 1.5, we talk about evaluation of clustering algo-

rithms and tuning parameter selection. In Section 1.6, we compare the approaches

proposed in Section 1.4 through simulation studies. In Section 1.7, we apply our ap-

proach to opioid users’ RDS data from New York City. In Section 1.8 , we summarize

the weighted log-likelihood mixture model for clustering incomplete node attributed

RDS network data.

1.3 Background

1.3.1 RDS network Structure and Notation

As a link-tracing without replacement sampling method, RDS results in tree struc-

tured graphs as in the RDS network sample in Figure 1.1. Each person in the network

is called a node. If two nodes are connected, we say there is an edge or a tie connecting

them. In general, an adjacency matrix is used to describe connections between nodes

in the network. Assume there are N nodes in the full network and n(n ≤ N) nodes

in the RDS sample. Denote Y = [yij]N×N and Ỹ = [ỹij]n×n as adjacency matrices

describing the full and RDS network structures, respectively.

4



In this paper, we focus on un-directed networks only, such that

yij = yji =


1, if nodes i, and j are connected in full network

0, otherwise,

ỹij = ỹji =


1, if nodes i, and j are sampled and connected in the RDS sample

0, if node i, node j are sampled, but not connected in the RDS sample.

The number of edges incident to a node is called the degree of that node. In Figure

1.1, each node has a degree at most 4. This is because RDS restricts each respondent’s

recruitment has to be no more than 3. This results in two types of degree for nodes in

the RDS network sample, one is their degree in the RDS sample, and the other one is

their degree in the hidden full network. For example, in the drug user RDS network,

if person A is recruited as a sample, even though its degree in the RDS network is 3,

its degree in the population might be greater than 3 because person A might know

more than 3 drug users and he just recruited two or three of them into the sample.

We denote the degree for node i in the hidden full network as di. In this paper, when

we use degree we mean degree in the population if not otherwise specified.

RDS data usually have node features describing each sample. We focus on clustering

node-attributed RDS sample in this paper. Assume we have one continuous and one

discrete feature describing the nodes. Without loss of generality, we label the sampled

nodes with indices 1, · · · , n. Then,

• X1 and X̃1 are the continuous variables for the full and RDS networks, respec-

tively.

• X2 and X̃2 are the discrete variables for the full and RDS networks, respectively.

5



• Z = [zik]N×K and Z̃ = [z̃ik]n×K are matrices describing latent cluster status for

the attributed full and RDS networks. K is the number of latent clusters in the

full network.

zik =


1, if node i is in the kth cluster

0, otherwise,

z̃ik =


1, if node i is in the kth cluster and is sampled

0, otherwise,

Note that our goal is to get latent group memberships for nodes in the RDS

network sample, which reflect their group memberships in the full network,

which is zik = z̃ik for node i in the RDS network. Furthermore,

• S = [Si]n×1 is the node sampling probability vector, where

Si = P (node i is sampled).

• SS = [SSij]n×n is the node pair sampling probability matrix,

SSij = P (node i and node j are sampled).

• R = [Rij]n×n is the edge sampling probability matrix,

Rij = P (Ỹij = 1|Yij = 1).

6



1.3.2 Node and Node Pair Sampling Probabilities in RDS

The sampling probability for each node is highly related with its degree in the

population. Taking an extreme case as an example, when we sample drug users’

networks using RDS, if drug user A knows zero other drug users, and drug user

B is a drug dealer who knows many other drug users, then person B has much

higher degree than drug user A and has much higher probability to be sampled than

person A, because person B knows many more other drug users and is more likely to

be recruited into the sample. Since we have node features describing each node in

the RDS network, unequal node sampling probabilities also means that those node

features are sampled unequally. Therefore, in order to get a log-likelihood representing

the full network from node features of the sample, taking node sampling probabilities

into consideration is necessary.

RDS is a without replacement sampling procedure, so node sampling probability is

not simply proportional to its degree. Gile (2011) proposed successive sampling (SS)

to get improved node sampling probabilities. By iterating the successive sampling

procedure to approximate RDS, Gile (2011) mapped nodes with degree k to their

sampling probabilities Sk with f : d → Sk. Following Gile (2011)’s node sampling

probability, we can extend to get node pair sampling probabilities SSkh for node pairs

with one node having degree k and the other having degree h, through g : (k, h) →

SSkh. In the second step of estimating node sampling probabilities in Gile’s (2011)

paper, we can add estimating node pair sampling probabilities by

gSS((k, h);n,N i) ≈ Uk · Uh + 1

M ·N i
k ·N i

h + 1
,

where Uk, k = 1, · · · , K is total number of observed units of size k in the M simula-

tions.
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1.3.3 Edge Sampling Probabilities in RDS

In a RDS network sample, if two nodes are connected, they must also be connected

in the population network. If they are not connected in the RDS network sample,

they may still be connected in the population network because of the without replace-

ment sampling property of RDS. Node connections or edges play an important role

in network clustering, so reflecting a true connection underlying the RDS network is

critical. Therefore, edge sampling is worth considering if we want to get population

clustering of nodes from the RDS network.

Due to link-tracing and without replacement sampling, edge sampling probabilities

are not uniform in RDS. Ott and Gile (2006) extended the successive sampling ap-

proximation to estimate edge sampling probabilities in RDS [Ott and Gile, 2016].

Sampling probabilities are summarized below,

Node pair sampling probability SSij = P (i,j are sampled)

= P (i,j are sampled|Yij = 1)

= P (i,j are sampled|Yij = 0),

Edge sampling probability Rij = P (i,j are sampled and connected in RDS|Yij = 1)

= P (Ỹij = 1|Yij = 1),
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P (i,j are sampled and not connected in RDS|Yij = 1)

= P (Ỹij = 0|Yij = 1)

= P (i,j are sampled|Yij = 1)− P (i,j are sampled and connected in RDS|Yij = 1)

= P (i,j are sampled)− P (Ỹij = 1|Yij = 1)

= SSij −Rij,

P (i,j are sampled and connected|Yij = 0)

= P (Ỹij = 1|Yij = 0)

= 0,

P (i,j are sampled and not connected|Yij = 0)

= P (Ỹij = 0|Yij = 0)

= P (i,j are sampled|Yij = 0)− P (i,j are sampled and connected|Yij = 0)

= SSij − 0

= SSij,

Overall, we can summarize edge sampling probabilities in the contingency table:

Table 1.1. Edge sampling probability

Full
Network

RDS
Network

Ỹij = 0 Ỹij = 1 (i,j) not sampled

Yij = 1 (SSij −Rij)P (Yij = 1) RijP (Yij = 1) (1− SSij)P (Yij = 1)
Yij = 0 SSijP (Yij = 0) 0 (1− SSij)P (Yij = 0)
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1.4 Mixture Model and Weighted log-likehood Mixture Model

For Clustering Node Attributed RDS Network Data

Mixture modeling is a widely used clustering method. Gaussian mixtures are used

for clustering continuous variables. Stochastic block models are used for clustering

social networks. In this paper, we build a mixture model on both node features and

network structures by assuming conditional independence between them given the

cluster membership.

1.4.1 Mixture model

Assuming conditional independence between the social network and node features

given their community labels, we can build a mixture model for the full network:

(Xi1|zi = k) ∼ N(µk, σk),

(Xi2|zi = k) ∼ Cat(θ1k, · · · , θMk),

(Yij|zi = k, zj = h) ∼ Bernoulli(φkh),

zi ∼ Cat(λ1, · · · , λK),

where

• k, h = 1, · · · , K, K is the number of latent clusters in the population.

• µk, σk are the mean and standard deviation of the continuous variable in the

kth cluster.

• θmk = P (Xi2 = m|zi = k) is probability that discrete variable Xi2 = m given

node i in the kth cluster, for any i = 1, · · · , N , M is the number of categories

for discrete covariate X2,
M∑
m=1

θmk = 1.
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• φkh = P (Yij = 1|zi = k, zj = h) is the probability that node i and j are

connected given node i in the kth cluster and node j in the hth cluster.

• λk = P (zi = k) is the probability that node i is in the kth cluster, for any

i = 1, · · · , N ,
K∑
k=1

λk = 1.

If we ignore sampling, a naive approach is to apply the mixture model for the full

network directly to the RDS network sample. We set it as our Benchmark Model:

(X̃i1|zi = k) ∼ N(µk, σk),

(X̃i2|zi = k) ∼ Cat(θ1k, · · · , θMk),

(Ỹij|zi = k, zj = h) ∼ Bernoulli(φkh),

z̃i ∼ Cat(λ1, · · · , λK).

In this paper, we apply variational EM algorithm to do approximate maximum like-

lihood inference. This algorithm is applicable even for large networks with thousands

of nodes [Daudin et al., 2008].

Given the above mixture model, the variational EM algorithm contains two steps, the

variational E-step and the variational M-step. In the E-step of the traditional EM

algorithm, we calculate the expectation of the full log-likelihood:

Q(Θ|Θ(t+1)) = EZ̃|X̃1,X̃2,Ỹ ,Θ(t) logL(Θ; X̃1, X̃2, Ỹ , Z̃)

=
n∑
i=1

K∑
k=1

πik[logP (X̃
i1
|zik) + logP (X̃

i2
|zi = k) + logP (zi = k)]

+
1

2

n∑
i,j=1,i 6=j

K∑
k,h=1

πik,jhlogP (Ỹij|zi = k, zj = h),

where πik = P (zi = k|X̃1, X̃2, Ỹ ), πik,jh = P (zi = k, zj = h|X̃1, X̃2, Ỹ ).

It is not easy to calculate πik and πik,jh because the cluster of node i is not only
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associated with nodes connecting with it but is also dependent with other nodes

not connecting with it. Considering this, the variational EM [Daudin et al., 2008]

is proposed by approximating P (Z|X̃1, X̃2, Ỹ ,Θ
(t)) with R(Z) = Πn

i=1τizi , where

τik ≈ P (zi = k|X̃1, X̃2, Ỹ ,Θ), τik,jh = τikτjh ≈ P (zi = k, zj = h|X̃1, X̃2, Ỹ ,Θ),

and
∑K

k=1 τik = 1 for any i = 1, · · · , n.

• The variational E-step: Modify the E-step of the traditional EM algorithm by

approximating πik with τik:

Q(Θ|Θ(t)) = ER(Z)logL(Θ; X̃1, X̃2, Ỹ )− ER(Z)DKL(R(Z)||P (Z|X̃1, X̃2, Ỹ ))

= ER(Z)logL(Θ; X̃1, X̃2, Ỹ , Z̃)− ER(Z)logR(Z)

=
n∑
i=1

K∑
k=1

τik[logP (X̃
i1
|zik) + logP (X̃

i2
|zi = k) + logP (zi = k)]

+
1

2

n∑
i,j=1,i 6=j

K∑
k,h=1

τikτjhlogP (Ỹij|zi = k, zj = h)−
n∑
i=1

K∑
k=1

τiklogτik,

whereDKL(R(Z)||P (Z|X̃1, X̃2, Ỹ )) =
∑

Z R(Z)log R(Z)

P (Z|X̃1,X̃2,Ỹ )
is Kullback–Leibler

(KL) divergence from R(Z) to P (Z|X̃1, X̃2, Ỹ ), DKL ≥ 0. The closer it is to 0,

the better R(Z) approximates P (Z|X̃1, X̃2, Ỹ ).

• The variational M-step: Similar to the M-step in the EM algorithm, in this step,

we also update parameters by maximizing the expectation in the variational E-

step.

Θ(t+1) = max
θ
Q(Θ|Θ(t)),

Taking the derivative of Q(Θ|Θ(t)) for each parameter, in the (t+ 1)th iteration

we update parameters with:
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τ̂
(t+1)
ik ∝ λ̂

(t)
k P (X̃i1|µ̂(t)

k , σ̂
(t)
k )P (X̃i2|θ̂(t)

mk,m = 1, ...,M)

Πj 6=iΠ
K
h=1[P (Ỹij|φ̂(t)

kh)],

λ̂
(t+1)
k =

∑n
i=1 τ̂

(t+1)
ik

n
,

µ̂
(t+1)
k =

∑
i τ̂

(t+1)
ik xi1∑
i τ̂

(t+1)
ik

, σ̂2
(t+1)

k =

∑
i τ̂

(t+1)
ik (xi1 − µ̂(t+1)

k )2∑
i τ̂

(t+1)
ik

,

θ̂
(t+1)
mk =

∑
i τ

(t+1)
ik I(Xi2 == m)∑

i τ
(t+1)
ik

,

φ̂
(t+1)
kh =

∑
i 6=j τ

(t+1)
ik τ

(t+1)
jh Ỹij∑

i 6=j τ
(t+1)
ik τ

(t+1)
jh

.

1.4.2 Weighted Log-likelihood Mixture model

As we discussed in Section 1.3, RDS results in non-uniform node and edge sam-

pling probabilities and it’s necessary to consider both of them for valid clustering

results and parameters estimation. In the paper, we modify the log-likelihood in the

mixture model in Section 1.4.1 by adding node and edge weights as the inverse of their

sampling probabilities to approximate the log-likelihood in the underlying graph of

the RDS network. Based on this weighted log-likelihood we can update parameters

and find cluster membership for nodes in the underlying graph. We call this model

the weighted log-likelihood mixture model.

Given the full network mixture model, for nodes i, j = 1, · · · , N :

(Xi1|zi = k) ∼ N(µk, σk),

(Xi2|zi = k) ∼ Cat(θ1k, · · · , θMk),

(Yij = 1|zi = k, zj = h) ∼ Bernoulli(φkh),

Zi ∼ Cat(λ1, · · · , λK),

the variational E-step starts with:
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Qfull(Θ|Θ(t)) = ER(Z)logL(Θ;X1, X2, Y )− ER(Z)DKL(R(Z)||P (Z|X1, X2, Y ))

=
N∑
i=1

K∑
k=1

τik[logP (X
i1
|zik) + logP (X

i2
|zi = k) + logP (zi = k)] · · · · ·A

+
1

2

N∑
i,j=1,i 6=j

K∑
k,h=1

τikτjh[YijlogP (Yij = 1|zi = k, zj = h)] · · · · ·B

+
1

2

N∑
i,j=1,i 6=j

K∑
k,h=1

τikτjh[(1− Yij)logP (Yij = 0|zi = k, zj = h)] · · · · ·C

−
N∑
i=1

K∑
k=1

τiklogτik. · · · · ·D

In Qfull(Θ|Θ(t)), the full network log-likelihood contains four parts, part A is the

log-likelihood of node features, part B is the log-likelihood of two connected nodes,

part C is the log-likelihood of two nodes not connected, and part D is the penalty

term from the KL divergence.

Based on node sampling probabilities S = {Si, i = 1, · · · , n}, part A can be approxi-

mated by weighted log-likelihood from node features in the RDS network:

part A ≈
n∑
i=1

K∑
k=1

τik
1

Si
[logP (X

i1
|zik) + logP (X

i2
|zi = k) + logP (zi = k)],

Part D can be approximated using node sampling probabilities as well:

part D ≈
n∑
i=1

K∑
k=1

τik
1

Si
τiklogτik,

Since all edges in the RDS network are sampled from edges in the full network with

sampling probabilities R = Rij,i,j=1,··· ,n and Rij = P (Ỹij = 1|Yij = 1), part B can be

approximated by weighted log-likelihood of edges in the RDS network:

part B ≈
n∑

i,j=1,i 6=j

K∑
k,h=1

τikτjh
1

Rij

[ỸijlogP (Yij = 1|zi = k, zj = h)].
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Two nodes not connected in the RDS network may still be connected in the full

network. To approximate part C, we first need to estimate the probability that un-

connected nodes in the sample are also not connected in the full network, denoted by

P (Yij = 0|Ỹij = 0):

P (Yij = 0|Ỹij = 0)

=
P (Yij = 0, Ỹij = 0)

P (Ỹij = 0)

=
P (Yij = 0, Ỹij = 0)

P (Yij = 0, Ỹij = 0) + P (Yij = 1, Ỹij = 0)

=
P (Ỹij = 0|Yij = 0)P (Yij = 0)

P (Ỹij = 0|Yij = 0)P (Yij = 0) + P (Ỹij = 0|Yij = 1)P (Yij = 1)

=
SSijP (Yij = 0)

SSijP (Yij = 0) + (SSij −Rij)P (Yij = 1)

=
SSijP (Yij = 0)

SSij −RijP (Yij = 1)
.

Assume sampling probabilities are independent given cluster labels. We have P (Yij =

0|Ỹij = 0, zi = k, zj = h) =
SSijP (Yij=0|zi=k,zj=h)

SSij−RijP (Yij=1|zi=k,zj=h)
. Meanwhile, from Table 1.1 we

also have sampling probabilities of two unconnected nodes, P (Ỹij = 0|Yij = 0) = SSij.

Then we can approximate part C by:

part C

≈
n∑

i,j=1,i 6=j

K∑
k,h=1

τikτjh
1

SSij
[P (Yij = 0|Ỹij = 0, zi = k, zj = h)(1− Ỹij)logP (Yij = 0|zi = k, zj = h)]

=
n∑

i,j=1,i 6=j

K∑
k,h=1

τikτjh
1

SSij
[

SSijP (Yij = 0|zi = k, zj = h)

SSij −RijP (Yij = 1|zi = k, zj = h)
(1− Ỹij)logP (Yij = 0|zi = k, zj = h)]

=
n∑

i,j=1,i 6=j

K∑
k,h=1

τikτjh[(1− Ỹij)
P (Yij = 0|zi = k, zj = h)logP (Yij = 0|zi = k, zj = h)

SSij −RijP (Yij = 1|zi = k, zj = h)
].

With all these weights, we get the full log-likelihood approximation for the variational

E-step:
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Qfull(Θ|Θ(t)) = part A + part B + part C - part D

≈ Qw(Θ|Θ(t))

=
n∑
i=1

K∑
k=1

τik
1

Si
[logP (X

i1
|zik) + logP (X

i2
|zi = k) + logP (zi = k)] · · · · ·w-A

+
1

2

n∑
i,j=1,i 6=j

K∑
k,h=1

τikτjh
1

Rij

[ỸijlogP (Yij = 1|zi = k, zj = h)] · · · · ·w-B

+
1

2

n∑
i,j=1,i 6=j

K∑
k,h=1

τikτjh[(1− Ỹij)
P (Yij = 0|zi = k, zj = h)logP (Yij = 0|zi = k, zj = h)

SSij −RijP (Yij = 1|zi = k, zj = h)
] · · · · ·w-C

−
n∑
i=1

K∑
k=1

1

Si
τiklogτik · · · · ·w-D

=
n∑
i=1

K∑
k=1

τik
1

Si
[log(

1

2σk
√

2π
)− (xi1 − µk)2

2σ2
k

+ log
M∑
m=1

I{xi2 == m}θmk + logλk]

+
1

2

∑
i,j=1,··· ,n;i 6=j

K∑
k,h=1

τikτjh[Ỹij
logφkh
Rij

+ (1− Ỹij)(1− φkh)
log(1− φkh)
SSij −Rijφkh

]

−
n∑
i=1

K∑
k=1

1

Si
τiklogτik.

In the variational M-step, we update parameters by maximizing the weighted log-

likelihood in the variational E-step:

Θ(t+1)
w = max

θ
Qw(Θ|Θ(t)),
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τ̂
(t+1)
ik ∝ [λ̂

(t)
k P (Xi1|µ̂(t)

k , σ̂
(t)
k )P (Xi2|θ̂(t)

mk,m = 1, ...,M)]Πj 6=iΠ
K
h=1[P (Ỹij|φ̂(t)

kh)]τ
(t)
jh Si

= [λ̂
(t)
k P (Xi1|µ̂(t)

k , σ̂
(t)
k )P (Xi2|θ̂(t)

mk,m = 1, ...,M)]

Πj 6=iΠ
K
h=1[(φ̂

(t)
kh)Ỹij/Rij(1− φ̂(t)

kh)(1−Ỹij)(1−φ̂(t)kh)/(SSij−Rij φ̂
(t)
kh)]τ

(t)
jh Si ,

λ̂
(t+1)
k =

∑n
i=1 τ̂

(t+1)
ik /Si
n

,

µ̂
(t+1)
k =

∑
i τ̂

(t+1)
ik /Sixi1∑
i τ̂

(t+1)
ik /Si

, σ̂2
(t+1)

k =

∑
i τ̂

(t+1)
ik /Si(xi1 − µ̂(t+1)

k )2∑
i τ̂

(t+1)
ik /Si

,

θ̂
(t+1)
mk =

∑
i τ

(t+1)
ik /SiI(Xi2 == m)∑

i τ
(t+1)
ik /Si

,

∂Qw
∂φ

(t+1)
k,h

=
∑

i,j=1··· ,n;i 6=j

τ
(t+1)
ik τ

(t+1)
jh [

Ỹij

Rijφ
(t+1)
k,h

+ (1− Ỹij)
(Rij − Sij)log(1− φ(t+1)

k,h )− (Sij −Rijφ
(t+1)
k,h )

(Sij −Rijφ
(t+1)
k,h )2

].

Set
∂Qw
∂

φ
(t+1)
k,h = 0, and we can solve for φ

(t+1)
k,h using Newton-Raphson iteration.

1.4.3 Weighted log-likelihood mixture model with tuning parameter

In the weighted log-likelihood mixture model, the full log-likelihood approximation

is

Qw(Θ|Θ(t)) = part w-A + part w-B + part w-C− part w-D,

where part w-A is the weighted log-likelihood from covariates, and (part w-B +

part w-C) is the weighted log-likelihood from the network structure. In this section,

we add a tuning parameter to balance contribution of the network structure and

covariates, where

Qw;α(Θ|Θ(t)) = part w-A + α ∗ (part w-B + part w-C)− part w-D.

When α = 0, the clustering is based on covariates only, when α = 1, Qw;α(Θ|Θ(t)) =

Qw(Θ|Θ(t)), larger α, contribution of the network structure is larger. This is similar
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to spectral clustering with covariates ([Binkiewicz et al., 2017][Shiga et al., 2007]).

Adding the tuning parameter α only effects the cluster memberships of nodes.

τ̂
(t+1)
ik;α ∝ [λ̂

(t)
k P (Xi1|µ̂(t)

k , σ̂
(t)
k )P (Xi2|θ̂(t)

mk,m = 1, ...,M)]Πj 6=iΠ
K
h=1[P (Ỹij|φ̂(t)

kh)]ατ
(t)
jh Si

= [λ̂
(t)
k P (Xi1|µ̂(t)

k , σ̂
(t)
k )P (Xi2|θ̂(t)

mk,m = 1, ...,M)]

Πj 6=iΠ
K
h=1[(φ̂

(t)
kh)Ỹij/Rij(1− φ̂(t)

kh)(1−Ỹij)(1−φ̂(t)kh)/(SSij−Rij φ̂
(t)
kh)]ατ

(t)
jh Si .

Updates for all the other parameters are the same as those of the mixture model with

weighted log-likelihood in Section 1.4.2.

1.5 Clustering evaluation and tuning parameter selection

When both node features and network have communities, we need to decide the

tuning parameter value α to get desired clusters. To check if the clustering is what we

want for the network with node attributes, we need to evaluate the clustering qual-

ity in terms of network structure and in terms of node attributes. Then the tuning

parameter α can be chosen based on clustering evaluation metrics.

Evaluating the quality of clustering algorithms is typically in two ways, internal eval-

uation and external evaluation. The internal evaluation uses a score to summa-

rize clustering quality and the external evaluation compares a known classification

in the data with the clustering got from the model. Popular internal evaluation

metrics for network clustering include modularity, conductance, coverage [Newman,

2006][Kobourov et al., 2014][Schaeffer, 2007] and common internal evaluations for at-

tributes are Silhouette index, Dunn’s indices, Davies-Bouldin index, etc [Rousseeuw,

1987] [Dunn†, 1974][Davies and Bouldin, 1979]. Popular external clustering evalution

metrics include purity, entropy, normalized mutual information, F measure, Rand

index [Larsen and Aone, 1999][Strehl and Ghosh, 2003][Rendón et al., 2011]. In this

paper, we focus on modularity for the network clustering evaluation and normalized
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mutual information for evaluating clustering of node features. For both of them,

larger value indicates better clustering, can be used to compare different clustering

algorithms and choose number of clusters for the clustering algorithm. In this paper,

we use these two clustering evaluation metrics to determine tuning parameter α as

well.

Modularity evaluates the strength of division of a network into clusters. Assume

network G is clustered into K clusters with vertex sets C = {C1, · · · , CK}, then the

modularity Q(C) is

Q(C) =
K∑
k=1

ekk − a2
k,

where Ekl =
∑

i 6=j(Ỹij|zi = K, zj = l), ekk = Ekk∑
k,l Ekl

is fraction of edges with both

vertices in cluster k. ak =
∑

l Ekl∑
k,l Ekl

is the fraction of ends of edges incident to cluster

k, a2
k is the expected fraction of edges with both vertices in cluster k if edges were

randomly distributed. The range of modularity is [-1, 1]. Higher modularity means

more edges are within clusters than between clusters.

Mutual Information measures mutual dependence between two random variables, X

and C:

I(X,C) =
∑
x

∑
c

p(x, c)log
p(x, c)

p(x)p(c)
.

The Normalized Mutual Information (NMI) is:

NMI(X,C) =
I(X,C)√
H(X)H(C)

,

where NMI(X,C) ∈ [0, 1], NMI(X,C) = 0 indicates X and C are independent, and

larger NMI means better clustering. H(X) = −
∑

x p(x)logp(x) is entropy of X.

It is also true that I(X,C) = H(X) + H(C) − H(X,C) = H(X) − H(X|C) =

H(C)−H(C|X).
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In our dataset, we have continuous and discrete node features. To calculate the NMI

for all features, we have three steps. Step 1, we cut the continuous variables into

discrete variables. Step 2, we calculate NMI for each node feature. Step 3, we take

average of NMIs got in step 2 as our final NMI for node features.

Since RDS gives an incomplete social network, we don’t know ekk and ak for the full

network. Fortunately, we can estimate them through sampling weights,

êkk =
Êkk∑
k,l Êkl

,

âk =
Êkk +

∑
l 6=k Êkl∑

k,l Êkl
,

where Êkl =
∑

i 6=j
Ỹij
Rij
I(zi = k, zj = l), then Q̂(C) =

∑
k êkk − (âk)

2.

We can also estimate NMI(X,C) for the full network ˆNMI(X,C) = Î(X,C)√
Ĥ(X)Ĥ(C)

with

Ĥ(X) = −
∑
x

p̂(x)logp̂(x), p̂(x) =

∑
i I(Xi = x)/Si∑

i 1/Si
,

similarly, we can estimate Ĥ(C) and Ĥ(X|C).

By looking at how the clustering evaluation metrics, normalized mutual information

ˆNMI and modularity Q̂ change with different values of α, we can decide the best

tuning parameter α.

1.6 Simulation Study

In this section, we compare clustering performance using the mixture model with

and without weighted log-likelihood and with different values of tuning parameters in

four different cases. For each case, we simulate 100 full networks with one continuous

variable and one categorical variable, then we sample a RDS network from each full

network. Finally, we apply the candidate mixture models on those RDS networks. A
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Table 1.2. Parameters for different simulation cases. φ is parameter for the network
connection, µ is mean of the continuous variable, θ is parameter for the categorical
variable, λ is parameter for the cluster membership.

φ µ θ λ

Case I: Both separate well φ =

[
0.1 0.02
0.02 0.2

]
[-2,2] θ =

[
0.8 0.4
0.2 0.6

]
1/3

Case II: Features separate
well, Network does not

φ =

[
0.05 0.05
0.05 0.05

]
[-2,2] θ =

[
0.8 0.4
0.2 0.6

]
1/3

Case III: Network separates
well, Features do not

φ =

[
0.1 0.02
0.02 0.2

]
[0,0] θ =

[
0.5 0.5
0.5 0.5

]
1/3

Case IV: Both do not sepa-
rate well

φ =

[
0.05 0.05
0.05 0.05

]
[0,0] θ =

[
0.5 0.5
0.5 0.5

]
1/3

summary of the different cases is in Table 1.2.

The full networks are generated by:

G ∼ SBM(N = 600, φ = φ, block.size = c(200, 400)),

(Xi1|zi = k) ∼ N(µk, 1), k = 1, 2; i = 1, · · · , 600,

(Xi2|zi = k) ∼ Cat(θ1k, θ2k), k = 1, 2; i = 1, · · · , 600,

where SBM(N = 600, φ = φ, block.size = c(200, 400)) is a stochastic block model with

size N = 600, two blocks or communities of size 200 and 400. The social connection

parameter within and between blocks is denoted by φ.

The RDS network sample is obtained by RDS sampling from the complete network

G with 5 seeds for n = 300, 3 seeds for n = 100 and 3 coupons for each node. The

distribution of number of recruitments for each sample is [0, 1, 2, 3] with probabilities

of [0.1, 0.2, 0.3, 0.4] respectively. One example of the full network and its sampled

RDS network is plotted in Figure 1.1. In both networks, nodes are colored by their

cluster labels, frame colored by their categorical values and sized by their continuous

variable values. In this full network, both features and network structure separate

well. We can see from the full and RDS network that people in the same cluster have

similar node features and are more likely to connect. In the RDS network sample,
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Figure 1.1. Full network and one RDS network sampled from it

nodes in different trees may be in the same cluster even though they come from

different seeds in the RDS network sample and are not connected visually. To detect

this latent clustering truth, node features play an important role. From the RDS

network sample, we can also see that sampled degree for all nodes is at most 4 which

is the maximum number of coupons each person can distribute plus 1.

In the simulation study, we take a full network of size N = 600 and consider two

types of its RDS sample with node samples of n = 300 and n = 100. Figures 1.2

to 1.5 are plots of modularity and NMI with different values of tuning parameter α,

based on which we can determine the best tuning parameter for each RDS sample.

Figures 1.6 to 1.9 are boxplots for parameter estimation, number of mis-clusterings,

modularity and normalized mutual information by using five different models for the

four different cases when n = 300 and Figures 1.10 to 1.13 are boxplots for RDS

sample with n = 100. Five different models we use are mixture model without
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weighting and α = 0 (noW-alpha=0), mixture model without weighting and α = 1

(noW-alpha=1), mixture model with weighting and α = 0 (W-alpha=0), mixture

model with weighting and α = α (W-alpha=0.1 for case I and II, W-alpha=0.4 for

case III and IV) and mixture model with weighting and α = 1 (W-alpha=1).

1.6.1 Tuning parameter selection

The tuning parameter α controls contribution of network structure to the node

cluster membership as we discussed in Section 1.4.3. The following talks about how

tuning parameters influence modularity, NMI and clustering of the attributed RDS

sample in the four different cases.

For case I (Both network and node features separate well), we can see from Figure 1.2

that NMI gets its largest value when α = 0 and it decreases with increasing α. The

modularity increases with increasing α. Meanwhile, modularity is not too small when

α = 0 which indicates that communities found by covariates only can reflect some

community structures in the network. This captures the property that network and

node features have the same communities in case I. If we care more about separation

of node features, we can choose α = 0. If we want a clustering with better network

clustering, we can choose α = 0.1 because the modularity increases obviously when α

changes from 0 to 0.1 and NMI decreases more than the increase of modularity when

α changes from 0.1 to 0.2. Therefore, we use W-alpha=0.1 as our best model for

the weighted mixture model with tuning parameter in case I. For the mixture model

without weighting, modularity increases almost linearly, NMI decreases slowly then

faster, so we choose α = 1 where NMI starts to drop faster as the tuning parameter

value for the unweighted model (noW-alpha=1).

For case II (Features separate well, network does not) in Figure 1.3, when α = 0

and α = 0.1, the NMI is much larger and the modularity is very close to 0. This

tells us that clustering of node features are not consistent with clustering of network
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Figure 1.2. Plot of Modularity and NMI vs Tuning parameter α in mixture model
w/ and w/o weights for case I (both separate well)
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Figure 1.3. Plot of Modularity and NMI vs Tuning parameter α in mixture model
w/ and w/o weights for case II (features separate well)
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Figure 1.4. Plot of Modularity and NMI vs Tuning parameter α in mixture model
w/ and w/o weights for case III (network separate well)
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structures or the network structure does not separate well. Since if α changes from

0.1 to 0.2, NMI decreases obviously and modularity is still small, we conclude that

the network does not have obvious communities and choose α = 0.1 as our preferred

tuning parameter value for this case. For the unweighted model, both modularity

and NMI decrease with increasing α, especially when it’s greater than 1. This further

tells us that the network does not have communities.

For case III (Network separates well, node features don’t) in Figure 1.4, when α = 0,

it’s very similar with the plot for the case II Figure 1.3. However, when α increases
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Figure 1.5. Plot of Modularity and NMI vs Tuning parameter α in mixture model
w/ and w/o weights for case IV (both do not separate well)
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from 0 to 0.1, the modularity increases and the NMI decreases quickly. This tells us

that clustering exists within the network structure. We choose α = 0.4 for case III

because it is within the range where both the modularity increases and NMI decreases

very slowly. Similar to case I and case II, the unweighted model in case III also choose

α to be 0 and 1.

For case IV (both do not separate well), plots in Figure 1.5 are similar to plots

in Figure 1.4 in case III. We again choose α = 0.4. However, when α increases,

modularity does not increase as quickly as in case III and it’s not a large value. This
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tells us that this network data does not separate well. The modularity and NMI vs

α plots are very similar for RDS sample with size n = 300 and n = 100. Therefore,

we use the same choosen α for the same case in those two types of RDS sample.

1.6.2 Clustering evaluation and parameter estimation

For case I (both separate well), from Figure 1.6 we can see that all five models are

not bad in clustering and parameter estimation, this makes sense because both net-

work and features separate well in case I. However, the mixture model with weights are

better in parameter estimation, especially in the estimation of latent class proportions

λ and network connections φ. The model with our choosen α = 0.1 (W-alpha=0) has

smaller number of mis-clusterings than the model with α = 1 (W-alpha=1) because

it has larger NMI and similar modularity, as we can see from the bottom two plots.

The model noW-alpha=1 has the smallest number of mis-clusterings, because it has

similar NMI and larger modularity as we can see from Figure 1.2. Therefore, mod-

ularity and NMI reflect clustering quality. We can use them to get some idea about

clustering even though we don’t have true labels in real data.

For case II (only features separate well), Figure 1.7 shows that when node features

separate well, but the network does not, all models except the weighted model with

α = 1, get pretty good clustering results. Also, the model with weighting gives better

network structure parameter estimation φ. This case tells us that when only node

features are important and have obvious communities, the tuning parameter is essen-

tial to avoid overfitting of the noisy network structure.

Figure 1.8 are the result for the third case, only the network structure separates

well. We can still see models with weighting give better parameter estimates. In

this case, we can also see that the models with weights and larger tuning parameter

(W-alpha=0.4 and W-alpha=1) have better clustering results. This is also consistent

with the modularity and NMI plots in Figure 1.4. This case tells us that using a
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Figure 1.6. Parameter estimations, Number of mis-clusterings, Modularity and NMI
by using different models for case I (both separate well) when n=300
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Figure 1.7. Parameter estimations, Number of mis-clusterings, Modularity and NMI
by using different models for case II (features separate well) when n=300
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Figure 1.8. Parameter estimations, Number of mis-clusterings, Modularity and NMI
by using different models for case III (network separate well) when n=300
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larger tuning parameter is important when the network has clear communities. Both

case II and case III support the importance of the tuning parameter in clustering

sampled network data with node features by using the weighted mixture model.

For the last case, when both network and features don’t separate well, Figure 1.9

shows that all methods give large numbers of mis-clusterings. But we can see that

models with weighting still give better parameter estimates.

To study the effect of sample size, we do the same work for the RDS sample data

with n = 100 and the results are summarized in Figures 1.10 to 1.13. We can see

that those plots give similar conclusion as we got for RDS sample with n = 300. It’s

also worth to notice that the uncertainty of parameter estimations are larger when

n = 100 if we compare parameter estimation box-plots in Figures 1.6 to 1.9 with

Figures 1.10 to 1.13. This suggests that our proposed mixture model with weighting

and tuning parameter for sample network data with node features is pretty robust to

sample size of the sampled data in clustering even though smaller sample size results

larger standard error for parameter estimates.

From all the simulation result we find that the mixture model with weights gives

better parameter estimates. Adding tuning parameter α is essential in finding more

interpretable communities. Modularity and normalized mutual information help to

determine reasonable tuning parameter values and give us information about the

quality of the clustering result.

1.7 Application

In this section, we apply the mixture models with and without weights to cluster

RDS data collected on young adult opioid users in New York City (NYC).

Young adult opioid users RDS data in NYC

The data we use are RDS data sampled from opioid users aged 18-29 who had non-

medical use of prescription opioids and/or heroin in the past 30 days, currently living
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Figure 1.9. Parameter estimations, Number of mis-clusterings, Modularity and NMI
by using different models for case IV (both do not separate well) when n=300
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Figure 1.10. Parameter estimations, Number of mis-clusterings, Modularity and
NMI by using different models for case I (both separate well) when n=100
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Figure 1.11. Parameter estimations, Number of mis-clusterings, Modularity and
NMI by using different models for case II (features separate well) when n=100
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Figure 1.12. Parameter estimations, Number of mis-clusterings, Modularity and
NMI by using different models for case III (network separate well) when n=100
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Figure 1.13. Parameter estimations, Number of mis-clusterings, Modularity and
NMI by using different models for case IV (both do not separate well) when n=100
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in NYC, speak English and are able to provide informed consent. Each participant

was interviewed for personal demographic information and drug use behavioral ques-

tions. Since participants in this network are recruited through referral, it is believed

that community structure exists in this observed recruitment network. To detect

those communities, we apply the weighted log-likelihood mixture model with choosen

tuning parameter to the NYC young adult opioid users data. Node features used for

this clustering are age, borough, opioid injection years, other drugs injection years,

homeless, how many are older than 29 among people you know that use POs and

live in NYC (NetChar4) and how many inject drugs among people you know that

use opioids and live in NYC (NetChar22). The clustering results are summarized in

Tables 1.3 and 1.4 and Figure 1.15.

To balance opioid users’ attributes and their network connections, we first find a

tuning parameter. From Figure 1.14 we can see that the modularity is not small for

this sampled network dataset which indicates social communities exist in the opioid

users’ RDS dataset. When α = 0, modularity and NMI are around 0.2. We conclude

that communities based on node features explains some community structures of the

network which is reasonable for our opioid users RDS dataset because opioid users

with similar use behavior are more likely to be connected.

In the mixture model with weighting, the modularity increases and NMI decreases.

We choose α = 1 as our tuning parameter values because the corresponding NMI

values are still not very small and the modularity values are relatively large. In this

way, our clustering result is based on both node features and network structure. For

the model without weight, α = 1 is also reasonable because NMI does not change

much with different α values but modularity increase more appreciably from 0.8 to

1.0.

Hepatitis C Virus (HCV) is not included in the clustering model, but from the clus-

tering result graph Figure 1.15, we can see that the weighted mixture model is more
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Figure 1.14. Modularity and NMI vs α in the weighted and un-weighted mixture
model for the Opioid users RDS data
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Figure 1.15. Clustering result using mixture model with and without weights on
young adult opioid users RDS data in NYC

Table 1.3. Feature Comparisons based on clustering from weighted log-likelihood
mixture model with = 1 on the young adults opioid users RDS data in NYC.

Cluster Prop Prop-HCV Age Inj-
years

Inj-
Others-
years

Prop-
(NetChar4≥5)

Prop-
(NetChar22≥5)

Prop-
Homeless

Strong 0.36 0.43 25 5 6.6 0.4 0.74 0.5
Moderate 0.21 0.17 24.5 3.9 2.1 0.27 0.66 0.17

Mild 0.43 0.016 23 0 0.6 0.2 0.21 0.09

• Prop: proportion of sample in each cluster.

• Prop-HCV: proportion of HCV position.

• Age, Inj-years, Inj-Others-year: average age, opioid injection years and others
drugs injection years in each cluster.

• NetChar4: how many are older than 29 among people you know that use opioids
and live in NYC?

• NetChar22: how many inject drugs among people you know that use opioids
and live in NYC?

• Prop-(NetChar4≥ 5): sample proportion in each cluster with NetChar4 ≥ 5.

• Prop-(NetChar22≥ 5): sample proportion in each cluster with NetChar22 ≥ 5.

• Prop-Homeless: proportion of homeless people in each cluster.

40



Table 1.4. Sample proportion by clusters from weighted log-likelihood mixture model
in each borough for the young adults opioid users’ RDS data in NYC.

Cluster Count Prop Prop-
Manhattan

Prop-State
Island

Prop-
Brooklyn

Prop-
Bronx

Prop-
Queens

Strong 192 0.36 0.47 0.49 0.24 0.17 0.29
Moderate 110 0.21 0.04 0.3 0.26 0.17 0.51

Mild 230 0.43 0.48 0.21 0.49 0.67 0.20

likely to group people with HCV in cluster 1, which contains most heavy opioid drug

users. 43.4% people in cluster 1 are HCV positive based on Table 1.3. Also, based on

Table 1.3, cluster 1 has people with larger age values, more opioid and drug injectors,

people who know more opioid users older than 29 and know more drug injectors, and

much more homeless than cluster 2 and cluster 3. Cluster 2 contains moderately risky

opioid users. Although average age in it is similar to average age in cluster 1, people

in cluster 2 are much newer in terms of injection years, they know fewer 29+ years

old opioid users and most of them are not homeless. Cluster 3 is the least risky opioid

users group because most of them are young, do not inject, know many fewer older

opioid users and injectors. Overall, these three clusters separate opioid drug users

very well in terms of those characteristics and drug use behaviors.

Table 1.4 tells us that participants from Bronx and Brooklyn are more likely in the

mild cluster (cluster 3), samples from Queens and State Island are more likely to be in

the strong cluster (cluster 1). Participants from Manhattan are evenly clustered into

strong and mild groups, which we can see from Figure 1.15 that the tree on the top

has most of its samples coming from Manhattan and most of them are not homeless.

Other people from Manhattan in other trees have much more homelessness. This

supports the clustering result that about half participants from Manhattan are mild

opioid drug users and half are strong opioid drug users.

With estimated network connection parameter φ̂, we can clearly see that people in

the same cluster have more ties than people from different clusters. Among connec-

tions between two different clusters, people from moderate and mild clusters have
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much stronger cross-cluster connections than people from strong and moderate clus-

ters, people between strong and mild clusters are least likely to be connected. This

tells us that mild opioid drug users are much more likely to be influenced by mod-

erate opioid drug users than strong opioid drug users, which targets the population

we should focus on for intervention to protect young mild and potential opioid drug

users.

Meanwhile, we also applied the mixture model without weights to cluster this NYC

young adults opioid users’ RDS data. Its clustering result is included in Figure 1.15.

From Figure 1.15 we can see that the weighted log-likelihood mixture model clusters

more people in the strong opioid drug user group (cluster 1). This is because the

weighted log-likelihood mixture model detects network structure better than the one

without weights, which results in a clearer social connection effect in the clustering

result. Capturing social connection effect is important in the NYC young adults opi-

oid users’ RDS data because it gives us guidelines for future interventions.

The network connection parameter estimation (assumed the full network size N =

1e4) based on the weighted log-likelihood mixture model with α = 1 is

φ̂ =

Strong Moderate Mild


0.015 0.0005 0.0002 Strong

0.0005 0.016 0.001 Moderate

0.0002 0.0014 0.009 Mild

1.8 Discussion and Conclusions

In this paper, we build a mixture model with weighted log-likelihood inference

for clustering node-attributed RDS sample data. We also propose to add a tuning

parameter to the weighted log-likelihood to balance contribution of node features and

network structure in clustering. Node features in RDS network clustering enable us

to understand how nodes differ across groups, and critically help to detect clusters
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despite the multiple isolated tree structures generated by the RDS. From the simula-

tion study with two different RDS sample sizes, we see that the clustering algorithm

is robust to the sample proportion. Adding weights as inverse sampling probabili-

ties to the log-likelihood reduces bias in parameter estimation because RDS is not

simple random sampling. Edge sampling probabilities are essential to capture the

truth that two un-connected nodes in the RDS data does not necessarily mean they

are not connected in the full network. This relates a very sparse RDS network to

a less sparse underlying network. Weighted log-likelihood inference results in better

network connection parameter estimation which tells us a closer truth about how

strong the connections are within and between clusters in the underlying social net-

work. To evaluate the clustering quality and find a proper tuning parameter value, we

also discussed modularity and normalized mutual information and modified it for the

pseudo-population network data. We recommend using these two metrics together to

select a value for the tuning parameter.
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CHAPTER 2

NESTED DIRICHLET PROCESS FOR POPULATION
SIZE ESTIMATION FROM MULTI-LIST RECAPTURE

DATA

2.1 Abstract

Heterogeneity of response patterns is important in estimating the size of a closed

population from multi-list recapture data when capture patterns are different over

time and location. In this paper, we extend the one layer Dirichlet Process mix-

ture model proposed by Manrique-Vallier (2016) to a Nested Dirichlet Process model

with the first layer modeling individual heterogeneity and the second layer modeling

location-time differences. In the Nested Dirichlet Process mixture model, location-

time groups with similar recording patterns are in the same top layer latent class and

individuals within it are dependent. The Nested Dirichlet Process mixture model

incorporates hierarchical heterogeneity into the modeling to estimate population size

from multi-list recapture data.

2.2 Introduction

The estimation of the size of a closed population from multi-list recapture data has

been studied in many settings, for example estimation of census undercount [Chao

and Tsay, 1998][Darroch et al., 1993], estimation of deaths in armed conflict [Ball

et al., 2003][Manrique-Vallier et al., 2013a], fatal victims [Manrique-Vallier et al.],

estimation of drug injectors [Overstall et al., 2014] and estimation of human traffick-

ing victims [Heijden, 2016]. In general, each record in multi-list recapture data has
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descriptive features, like time, location, gender, age, etc. To reduce uncertainty of

list capture probabilities imposed by hierarchical structure, such as location differ-

ences, it’s necessary to account for heterogeneity of response patterns in estimating

the population size. One way to account for this part of heterogeneity is stratifi-

cation. However, expert based stratification are too subjective. Another method

is to stratify by location or time which may results in too many strata [Ball et al.,

2003] [Manrique-Vallier et al.]. In this paper, we put heterogeneity caused by location

and time into the model by building a non-parametric multi-layer latent class model

based on the non-parametric one layer latent class model, Dirichlet process mixtures

of product-Bernoulli distributions, proposed by Manrique-Vallier (2016) [Manrique-

Vallier, 2016b]. In Manrique-Vallier (2016)’s paper, the latent layer models individual

heterogeneity and individuals in the same latent class are independent. To reflect the

hierarchical structure of the data, we add one more layer on top of the individual

layer to capture the top group (location-time) differences and to allow dependence

among individuals in the same top latent layer.

Many techniques estimate the population size by modeling list dependency. A class

of generalized linear models, known as loglinear models [Bishop et al., 1975] assume

the expected log of cell count is linearly related to a set of list interactions. Averaging

over Bayesian graphical decomposable models, which represent graphical models of

list dependency, is also a classical method to estimate population size from multi-

list recapture data [Madigan et al., 1995]. Those methods treat all individuals the

same which may not be proper in some cases, for example in our Syrian war casu-

alties application civilian and military deaths are captured differently by some lists.

Rasch models and extensions on them [Rasch, 1993] [Darroch et al., 1993] [Agresti,

1994] [Fienberg et al., 1999] incorporate individual heterogeneity into log-linear mod-

els to model list dependence. A more flexible method, mixture models have also

been used to capture individual heterogeneity [Manrique-Vallier and Fienberg, 2008]
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[Manrique-Vallier, 2016b]. One strong assumption in the one layer latent class model

is that individuals are independent given class label, which might not be proper for

data with hierarchical structure.

A popular alternative to the one layer latent class model for solving the individual

dependence problem in nested data is multi-level latent class models [Vermunt, 2003]

[Teh et al., 2006] [Rodrlguez et al., 2008]. However, multi-level latent class models

haven’t been applied in population size estimation for multi-list recapture data. In

over-time and across-location multi-list recapture data, we want the top layer to cap-

ture location-times that having similar recording patterns and the bottom layer to

capture hidden classes of individuals within each top layer latent class. To realize

this goal, both the hierarchical Dirichlet process (HDP) [Teh et al., 2006] and the

nested Dirichlet process (NDP) [Rodrlguez et al., 2008] models are great candidates.

NDP allows both mixture components and weights to change within different top

layer classes, but HDP components only differ in weights. Due to the complicated

and potentially highly distinct list dependencies among top layer classes in our Syr-

ian conflict application, recording patterns might differ very much between one class

containing governorates with intense conflicts and one class containing governorates

with much less conflict. Therefore, we choose Nested Dirichlet Process (NDP) mod-

els in this paper. NDP is usually applied in clustering nested data, like documents

[Blei et al., 2010][Blei et al., 2007][Fox et al., 2011]. In this paper, we apply a NDP

of product-Bernoulli mixtures to identify more accurate hidden homogeneous classes

among top level groups and among individuals within top level groups to better esti-

mate population size.

The article is organized as follows. In Section 2.3, we talk about the data and prob-

lem that motivates us for this paper. Then we introduce our proposed approach and

MCMC inference for parameter estimation in Section 2.4. In Section 2.5, we do sim-

ulations to compare results from the one layer Dirichlet Process and Nested Dirichlet
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Process. In Section 2.6, we apply the NDP mixtures in the Syrian conflict data to

estimate population sizes. In Section 2.7, we make conclusions and discuss potential

future work.

2.3 The Syrian conflict data

Human Rights Data Analysis Group (HRDAG) is a non-profit organization that

applies rigorous science to the analysis of human rights violations around the world.

One of its projects is to estimate the total number of killings during the Syrian

conflict based on multi-list recapture data. The Syrian conflict data we are using

contains identifiable people who were killed during Syrian conflict from March 2011

to March 2016. Each death record has variables describing this person, which include

the person’s name, death date, governornate (region in Syria), gender, age. Deaths

were recorded by four data sources (S = 4) investigating deaths in the Syrian con-

flict, namely Syrian Center for Statistics and Research (SCSR), Damascus Center for

Human Rights Studies (DCHRS), Syrian Network for Human Rights (SNHR) and Vi-

olations Documentation Center (VDC). Each record might be captured by more than

one data source, thus the number of capture patterns is 2S − 1 = 15 excluding the

undocumented killings, with S as number of data sources. Due to data confidentiality,

in this paper we randomly generate a sample of n = 36226 from all the documented

killings. The number of killings recorded under each pattern in this sampled Syrian

conflict data is summarized in Table 3.3. We can see that n1000 = 6039 deaths are

captured by VDC only, n1010 = 652 are captured by VDC and DCHRS, not by SNHR

and SCSR, and n1111 = 4252 are captured by all four data sources. Estimating the

number of undocumented killings is equivalent to estimating n0000, and is the goal of

our inference.

In the Syrian conflict data, documented killings are from 14 governorates across

the country. From Figure 2.1, we can see that recording patterns within governorate

47



Table 2.1. Number of killings under each recording pattern in the Syrian conflict
data

VDC SNHR DCHRS SCSR Num-Records
1 0 0 0 n1000 = 6039
0 1 0 0 n0100 = 3273
0 0 1 0 n0010 = 1363
0 0 0 1 n0001 = 2370
1 1 0 0 n1100 = 3099
1 0 1 0 n1010 = 652
1 0 0 1 n1001 = 2060
0 1 1 0 n0110 = 921
0 1 0 1 n0101 = 1410
0 0 1 1 n0011 = 514
1 1 1 0 n1110 = 1346
1 1 0 1 n1101 = 6483
1 0 1 1 n1011 = 1572
0 1 1 1 n0111 = 872
1 1 1 1 n1111 = 4252
0 0 0 0 n0000 =?

change overtime. For example from 04/2011 to 12/2012 deaths captured by all four

sources overtake records in other patterns in Rural Damascus. From 01/2013 to

08/2014, more deaths are captured by VDC, SNHR and SCSR together, but not

by DCHRS. From 03/2015 to 12/2015, n1101 is larger than others or more deaths

were captured by VDC, DCHRS and SCSR, but not by SNHR. Some sources cap-

ture killings better than others in some governorates, for example, most killings were

recorded by VDC in Tartus. Meanwhile, the documented number of killings recorded

in different governorates differs much too. All those differences are not hard to ex-

plain if we think about the location of each governorate, when and where a small or

a big conflict happened. With those findings, we believe that it’s not a good idea

to combine all the death records simply over all time and governorates like what we

did in Table 3.3 to estimate the total number of killings. Due to the long period and

many governorates in this data set, it’s also a challenge to do proper stratification
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subjectively. Therefore, our nested model is important for detecting higher level (e.g.

governorate-time) strata in this problem.

2.4 Nested Dirichlet Process of product-Bernoulli mixtures

2.4.1 Bayesian non-parametric product-Bernoulli mixtures with NDP prior

In this paper, we build a product-Bernoulli mixtures model with Nested Dirich-

let Process as prior for population size estimation from multi-list recapture data.

Assume individuals belongs to latent classes in layer 1, and covariate groups (e.g.

location-time) belong to latent classes in layer 2. Conditional on both latent layers,

individual capture probabiities for each list are independent, of both other lists and

other individuals. The probability that an individual is captured by the sth list is

denoted λk,l,s, where k is their top-layer class and l is their layer 1 class. This means

this probability is influenced by both the individual’s layer 1 latent class l and its

top level latent class k. Meanwhile, for individual i in location-time j, its first layer

latent class z
(1)
i,j depends on its top layer latent class z

(2)
j . From Figure 2.4.1, we can

see that individuals in the same latent class are independent given class in the one

layer latent class model. From Figure 2.5, we can see a graphical model with nested

structure. Its top layer latent class reflects group (e.g. location-time) heterogeneity

and the first layer models individual heterogeneity within its top layer. In the two

layer latent class model, we relax the local independent assumption in the one layer

latent class model. Individuals in the same top layer latent class are allowed to be

dependent. If our data are given by

yi,j,s =


1, if person i, in the jth top group is captured by the sth data list

0, otherwise,

our model is:
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Figure 2.1. Stacked barplots for proportion of records by 15 capture patterns over
time. This plot only shows barplots from four governorates and it’s based on monthly
data. The recording pattern corresponds to data sources VDC, SNHR, DCHRS,
SCSR in order.
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(yi,j,s|z(1)
i,j = l, z

(2)
j = k) ∼ Bernoulli(λk,l,s)

(z
(1)
i,j |z

(2)
j = k) ∼ Cat(π

(1)
k,1, π

(1)
k,2, · · · , π

(1)
k,l , · · · )

z
(2)
j ∼ Cat(π

(2)
1 , π

(2)
2 , , · · · , π(2)

k , · · · )

λk,l,s ∼ Beta(1, 1)

(π
(1)
k,1, · · · , π

(1)
k,l , · · · ) ∼ SB(αk), αk ∼ Gamma(ak, bk)

(π
(2)
1 , · · · , π(2)

k , · · · ) ∼ SB(α0), α0 ∼ Gamma(a0, b0),

where

• i = 1, · · · , Nj; j = 1, · · · , J ; s = 1, · · · , S; Nj and nj are the number of total

and observed individuals in the jth second layer group (e.g. jth location-time),

J is the number of second layer groups, S is the number of data sources. Total

number of observed individuals is n =
∑J

j=1 nj and the population size is N =∑J
j=1 Nj.

• (z
(1)
i,j = l|z(2)

j = k) means the ith person in the jth top group falls into the lth

first layer latent class given its second layer latent class as k. k, l = 1, 2, · · · .

• We use a stick-breaking prior, which is popularly used in non-parametric Bayesian

mixture models to learn the number of mixture components from data.

(π
(2)
1 , · · · , π(2)

k , · · · ) ∼ SB(α0), (π
(1)
k,1, · · · , π

(1)
k,l , · · · , ) ∼ SB(αk),

where π
(2)
k = U

(2)
k Πk−1

h=1(1 − U (2)
h ), U

(2)
k ∼ Beta(1, α0) and π

(1)
k,l = U

(1)
k,l Πl−1

h=1(1 −

U
(1)
k,h), U

(1)
k,h ∼ Beta(1, αk).

Suppose (π
(2)
1 , · · · , π(2)

k , · · · ) ∼ SB(α0). For a unit-length stick, each time break

a proportion U (2) of the remaining stick. After the (k − 1)th break, there is

Πk−1
h=1(1−U (2)

h ) left, then the kth break length will be U
(2)
k Πk−1

h=1(1−U (2)
h ), which
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Figure 2.2. One layer Latent class model: Z, individual latent class

Figure 2.3. Two layer latent class model: Z(1), individual layer, Z(2), top (e.g.
location-time) layer.

equals to π
(2)
k . Since U

(2)
k ∼ Beta(1, α0), large α0 gives small break proportions

U
(2)
k for k = 1, · · · , then small break length π

(2)
k and large number of breaks.

Thus, α0 controls the number of latent classes in the second layer and αk controls

the number of latent classes in the first layer given its top layer in latent class

k. Large π
(2)
k s, k = 1, · · · , and π

(1)
k,l s, l = 1, · · · , will corresponding to cluster

proportions learnt from data by the model. We take large enough upper bounds

K∗ and L∗ for number of latent classes in the second and first layers.

2.4.2 Markov Chain Monte Carlo for parameter estimation

An MCMC based Gibbs sampling procedure has been well developed for pa-

rameter estimation in the one layer mixture model in the multi-list recapture set-

ting [Manrique-Vallier, 2016b] [Manrique-Vallier and Fienberg, 2008] [Fienberg et al.,
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1999]. Meanwhile, MCMC for the Nested Dirichlet Process is also studied in the clus-

tering nested data problem [Rodrlguez et al., 2008]. In this paper, we use data aug-

mentation and jointly update population size N and latent variables z(2),0 and z(1),0

using a conditional decomposition [Manrique-Vallier, 2016b] [Basu and Ebrahimi,

2001] to update parameter N . For the Nested Dirichlet Process mixture model

above, the full likelihood given latent classes z(1), z(2) and parameter set Θ =

{λ, π(2), π(1), αk=1,···, α0, ak=1,···, bk=1,···, a0, b0} is

P (Y,w|z(1), z(2),Θ) ∝
(

N

n,w1,1, · · · , wk,l, · · ·

)
ΠkΠl

[
π

(2)
k π

(1)
k,l Π

S
s=1(1− λk,l,s)

]wk,l

ΠkΠlΠ
S
s=1

[
π

(2)
k π

(1)
k,l (1− λk,l,s)

]nk,l,s;0ΠkΠlΠ
S
s=1

[
π

(2)
k π

(1)
k,l λk,l,s

]nk,l,s;1

I(n+
∑

k

∑
l wk,l=N)

where w = {wk,l; k = 1, · · · , K; l = 1, · · · , L}, wk,l = size of set {(yi,j,s=1,··· ,S =

0)&(z
(2)
j = k)&(z

(1)
i,j = l)} is the number of un-documented records that fall into

the second layer latent class k and the first layer latent class l. nk,l,s;1 = ||{(yi,j,s =

1)&(z
(2)
j = k)&(z

(1)
i,j = l)}|| is the number of documented records falling into the

second layer latent class k and the first layer latent class l and captured by the sth data

list. nk,l,s;0 = ||{(yi,j,s = 0)&(z
(2)
j = k)&(z

(1)
i,j = l)&(yi,j,s=1,··· ,S not all equals to 0)}||

is the number of documented records falling into the second layer latent class k and

the first layer latent class l and not captured by the sth data list.

Instead of setting the number of latent classes to be infinity, truncated approximation

is used by setting large numbers K,L to the second and first level latent classes

[Ishwaran and James, 2001][Ishwaran and James, 2002]. The MCMC iterates as

follows:

1. Update top layer latent class z
(2)
j :
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P (z
(2)
j = k|Y, π(1)) =

∑
z
(1)
1,j

· · ·
∑
z
(1)
Nj,j

P (z
(2)
j = k, z

(1)
1,j , · · · , z

(1)
Nj ,j
|Y )

∝
∑
z
(1)
1,j

· · ·
∑
z
(1)
Nj,j

P (Y |z(2)
j = k, z

(1)
1,j , · · · , z

(1)
Nj ,j

)P (z
(2)
j = k, z

(1)
1,j , · · · , z

(1)
Nj ,j

)

=
∑
z
(1)
1,j

· · ·
∑
z
(1)
Nj,j

P (yi,j; i = 1, · · · , Nj|z(2)
j = k, z

(1)
1,j , · · · , z

(1)
Nj ,j

)

∗ P (z
(1)
1,j , · · · , z

(1)
Nj ,j
|z(2)
j = k)P (z

(2)
j = k)

=

Nj∑
i=1

L∑
z
(1)
i,j =1

ΠS
s=1λ

yi,j,s

k,z
(1)
i,j ,s

(1− λ
k,z

(1)
i,j ,s

)1−yi,j,sπ
(1)

k,z
(1)
i,j

π
(2)
k ,

where Nj = nj + n0,j, nj is the number of documented recordings and n0,j is

the estimated missing recordings in the jth location-time, n0,j = n0

n
nj. n, n0 are

the total number of documented recordings and missing recordings.

2. Update first layer latent class z
(1)
i :

P (z
(1)
i,j = l|z(2)

j = k, Y, π(1))

∝ P (yij|z(2)
j = k, z

(1)
i,j = l)P (z

(1)
i = l|z(2)

j = k)

∝ ΠS
s=1λ

yi,j,s
k,l,s (1− λk,l,s)1−yi,j,sπ

(1)
k,l .

3. Update list capture parameters λk,l,s:

P (λk,l,s| · · · ) ∝ (1− λk,l,s)wk,lΠJ
j=1Π

nj

i=1λ
yi,j,s
k,l,s (1− λk,l,s)1−yi,j,s

(λk,l,s| · · · ) ∼ Beta(1 + nk,l,s;1, 1 + nk,l,s;0 + wk,l).

4. Update π
(2)
k : π

(2)
k = U

(2)
k Πh<k(1− U (2)

h ):

since
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P (π
(2)
k , π

(1)
k,l | · · · ) ∝ P (y|π(2)

k , π
(1)
k,l , · · · )P (π

(2)
k , π

(1)
k,l )

∝ ΠS
s=1

[
π

(2)
k π

(1)
k,l

]nk,l,s+mk,l,s+wk,l,sλ
nk,l,s

k,l,s (1− λk,l,s)mk,l,s+wk,l,sP (π
(2)
k , π

(1)
k,l ),

changing π
(2)
k to an expression with U

(2)
k using π

(2)
k = U

(2)
k Πh<k(1 − U (2)

h ) and

combining with Beta prior of U
(2)
k , gives a Beta posterior for U

(2)
k , which we

can use the update π
(2)
k . Let U

(2)
K∗ = 1, U

(2)
k ∼ Beta(1 + u

(2)
k , α0 +

∑
h>k u

(2)
h ) for

k = 1, · · ·K∗ − 1, and u
(2)
k = n

(2)
k + w

(2)
k . n

(2)
k , w

(2)
k are the numbers of captured

and non-captured individuals whose second layer latent class is k.

5. Update α0: α0 ∼ Gamma(a0 − 1 +K∗, b0 − logπ
(2)
K∗).

6. Update π
(1)
kl : π

(1)
kl = U

(1)
kl Πh<l(1− U (1)

kh )

let U
(1)
kL∗[k] = 1, U

(1)
kl ∼ Beta(1 + u

(1)
kl , αk +

∑
h>l u

(1)
kh ) for l = 1, · · ·L∗[k] − 1,

and u
(1)
kl = nkl +wkl. nkl, wkl are the numbers of individuals captured and non-

captured in the class with it’s first layer latent class l and second layer latent

class k.

7. Update αk: αk ∼ Gamma(ak − 1 + L∗[k], bk − logπ
(1)
kL∗[k]).

8. Update N,wkl for all k, l: Given P (N) ∝ 1/N ,

P (N,wkl| · · · ) ∝
(N − 1)!

ΠK
k=1Π

L∗[k]
l=1 wkl!(n− 1)!

ΠK
k=1Π

L∗[k]
l=1 ρwk1

kl (1−
K∑
k=1

L∗[k]∑
l=1

ρwk1
kl )n.

This is a negative multinomial distribution with N =
∑K

k=1

∑L∗[k]
l=1 wk1 + n =

n0 + n, ρkl = π
(2)
k π

(1)
kl ΠS

s=1(1− λk,l,s).

Then,

n0 ∼ NegBinomial(n, 1−
K∑
k=1

L∗[k]∑
l=1

π
(2)
k π

(1)
kl ΠS

s=1(1− λkl;s)),

(wkl; for all k, l) ∼ Multinomial(n0, (pkl; for all k, l)),

where pkl ∝ ρkl.
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Table 2.2. Two layer latent class proportions and list capture probabilities

List capture probabilities
Layer 2 proportion Layer 1 proportion list 1 list 2 list 3 list 4

0.4
0.8 0.9 0.8 0.7 0.6
0.2 0.01 0.3 0.1 0.2

0.6
0.6 0.1 0.01 0.2 0.05
0.4 0.9 0.02 0.1 0.01

2.5 Simulation Study

In this section, we generate multiple systems recapture data from a two layer

latent class model, then we estimate the population size in three different ways:

1. DP: Dirichlet Process mixture model.

2. Multi-DP: Fit Dirichlet Process mixture model on each top layer latent class

which is known in the simulated data, and then sum up population size estima-

tions for those sub-groups to get the overall population size.

3. NDP: Nested Dirichlet Process mixture model.

For the simulated data, we use S = 4 data sources, J = 100 (e.g. 100 location-times)

top layer groups, N = 10000, and number of individuals under each top layer group

(Nj) ranging from 2 to 602 with a standard deviation of 116. Other parameters for the

simulated data are listed in table 3.4. We simulate data by assuming groups within

each top layer have similar recording patterns. About 40% of top groups belongs to

the first latent class and 60% in the second latent class. From both table 3.4 and

figure 2.4, we can see that all four data sources have high capture probabilities and

they have many overlapping records when the top layer latent class is 1 (z(2) = 1).

Individuals are most likely to be captured by the first data source only when they

are in the top layer latent class 2 (z(2) = 2). Therefore, we can see an obvious nested

structure in our simulated data.

Figure 2.5 is boxplot of posterior estimation of population size under three different
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Figure 2.4. Stacked bar-plot of capture pattern proportions by top layer latent class
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models: DP, Multi-DP and NDP. The purple line is the true population size. We can

see that the estimation in DP (red boxplot) is severely biased. However, if we use DP

to estimate the population size separately by the top layer latent classes, the estima-

tion is much better. This result makes sense because the data within each top layer

latent class is from a one layer latent class model. If we stratify the data based on the

true top layer latent class, we’ll get very good population size estimation using DP

for each strata, thus ideal estimation for the overall population size. The estimation

from NDP (blue boxplot) is very close to the result from the Multi-DP method. This

means that NDP successfully detected the capture pattern differences among top level

groups and dependency among individuals in the same top layer latent class. We can

also see that NDP gives much smaller uncertainty for the population size estimation

than NP. All these comparisons strongly suggest the importance of accounting for

hierarchical structure in multi-list recapture data when true hierarchy is present.
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Figure 2.5. Posterior quantiles for Population size estimation under three different
models. These boxplots are based on 100 replicates, the center boxes summarize point
estimates, and the left and right sets summarize lower and upper boundaries of the
95% posterior credible intervals.
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2.6 Application

From the description in Section 2.3, we know that the Syrian conflict multiple

systems recapture data has a hierarchical structure over time and governornate. From

the simulation results we know that hierarchical structure is important to consider

when estimating the population size. Therefore, we take governornate-time as the top

group (or second layer) and individuals as the first layer. Then we apply the Nested

Dirichlet Process mixture model to estimate the total number of killings based on

sampled Syrian Conflict data. We also apply DP (or LCMCR) and Bayesian model

averaging over decomposable graphical models (BMA-DG) to compare the results,

which are summarized in Table 2.3.

From Table 2.3 we see that the population size estimation results from the NDP

and DP are similar, but NDP has a litter higher estimate, smaller credible interval

and higher lower credible interval bound. Model averaging Bayesian decomposable

graphical models (BMA-DG) give much smaller estimates.

Figure 2.6 summarizes clustering results of the top layer (location-time). We can see

that most records from Tartus, As-Suwayda and Latakia are clustered into the circle

class. From Figure 2.1 we know that it is because they have similar recording patterns

and most deaths recorded in those governorates were from VDC. If we look at Figure

2.7, larger black triangles are mainly from Tartus, As-Suwayda, Latakia, Quneitra,

AI-Hasaka and Ar-Raqqah. From Table 2.4, we can find this group corresponding to

the second gov-time layer and the first individual layer with four small list capture

probabilities and VDC capture probability (0.39) relatively larger than the other

three (0.22 for SNHRS, 0.006 for DCHRS and 0.14 for SCSR). Larger green colored

triangles are mainly from the other governorates and from around 09/2012 to 09/2014.

Individuals in those groups are much more likely to be captured by VDC, SNHRS,

and SCSR together, but not by DCHRS, which is also reflected in Table 2.4 which

shows list capture probability less than 0.1 for DCHRS, but more than 0.85 for the
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Table 2.3. Estimated number of killings and its 95% credible intervals based on the
sampled Syrian Conflict data from 03/2011 to 03/2016

Model n N̂ N̂L N̂U

NDP 36226 53405 51605 56094
DP 36226 53069 47389 69848

BMA-DG 36226 38302 36534 43530

Table 2.4. Parameter estimates and 95% credible intervals for the sampled Syrian Conflict
data

List capture probabilities
gov-time layer prop individual layer prop VDC SNHRS DCHRS SCSR

0.47
(0.46,0.48)

0.19
(0.17,0.23)

0.62
(0.54,0.67)

0.93
(0.85,0.99)

0.55
(0.45,0.61)

0.32
(0.25,0.39)

0.23
(0.21,0.27)

0.88
(0.86,0.90)

0.70
(0.68,0.72)

0.87
(0.90,0.93)

0.90
(0.97,0.99)

0.57
(0.53,0.60)

0.30
(0.27,0.33)

0.16
(0.11,0.20)

0.17
(0.15,0.19)

0.19
(0.17,0.21)

0.43
(0.42,0.44)

0.59
(0.45,0.61)

0.39
(0.32,0.47)

0.22
(0.18,0.25)

0.006
(0.0005,0.01)

0.14
(0.10,0.17)

0.02
(0.008,0.15)

0.075
(0.003,0.19)

0.25
(0.16,0.35)

0.44
(0.08,0.96)

0.27
(0.19,0.38)

0.39
(0.37,0.40)

0.90
(0.89,0.91)

0.88
(0.86,0.90)

0.09
(0.08,0.10)

0.87
(0.84,0.90)

other three data sources. Similarly, we can see from Figure 2.8 that most individuals

captured after 09/2014 (larger green circles) are clustered into the first gov-time layer

and the third individual layer. In this group, all four data sources have small capture

probabilities, which means that many killings are not documented in this period.

Individuals under larger black circles are mainly from Latakia, Quenitra, AI-Hasaka

and Ar-Raqqah before 06/2012, and they are more likely to be captured by VDC

and SNHR, not by the other two data sources. This group corresponding to the first

gov-time layer and the first individual layer in Table 2.4. Overall, from our proposed

nested Dirichlet process for estimating population size of the capture-recapture data,

we are able to group location-times with similar recording patterns into the same top

layer latent class and then cluster individuals within it into proper sub-groups within

which the probabilities of being captured are similar.
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Figure 2.6. Clustering of the location-time group
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2.7 Discussion and Conclusions

In this paper, we find similar capture patterns in some governorates and months

in the sampled Syrian conflict recapture data, which means that the heterogeneity

is clear in this dataset. In order to combine heterogeneity with modeling and allow

information sharing across and within strata, we extend the Dirichlet Process mixture

model for multi-list capture data to a Nested Dirichlet Process mixture model to

estimate population size from multi-list capture data. In clustering problems, NDP

is preferred when the data has a hierarchical structure as it allows dependence for

objects within the same top layer latent class. In our multi-list capture setting,

NDP retains its flexible property and uses heterogeneity from both top groups (e.g.

location-time) and individuals to detect better latent classes in the data and thus

gives more reasonable population size estimation with smaller uncertainty.
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Figure 2.7. Proportion of individuals by the individual layer for each gov-time
within the first gov-time layer; colored by individual layer, sized by proportion
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Figure 2.8. Proportion of individuals by the individual layer for each gov-time
within the second gov-time layer; colored by individual layer, sized by proportion
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CHAPTER 3

BAYESIAN NON-PARAMETRIC LATENT CLASS
MODEL FOR POPULATION SIZE ESTIMATION AND

MISSING COVARIATE IMPUTATION IN
MULTI-SOURCE RECAPTURE DATA

3.1 Abstract

In the Bayesian non-parametric latent class model for multi-list recapture data

(LCMCR), different recording patterns across latent classes are used to reflect individ-

ual heterogeneity when covariates are not available. In this paper, we add covariates,

assuming capture patterns and covariates are independent given the latent classes.

In this way, individuals in each latent class are similar in capture patterns and also

in covariate distributions. When they have strong association, individual attributes

reduce uncertainly of the latent classes and thus uncertainly of the population size

estimation. Comparing those latent classes, we can better understand how capture

patterns relate with individual characteristics. Meanwhile, there are missing covari-

ate values. We apply data augmentation to impute missing values during MCMC for

parameter estimation.

3.2 Introduction

In multi-list recapture data, multiple data sources record partial data from a tar-

get population, for example victims in a conflict [Ball et al., 2003][Price et al., 2015],

diabetic persons [Seber et al., 2000], patients with alcohol related problems [Corrao

et al., 2000], Lethal Violence in Casanare during the Colombian conflict [Guberek
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et al., 2020]. To estimate the population size of the target population, we need to es-

timate the number of un-observed records. Whether a person is captured or not may

relate with their characteristics, for example adults are more likely to be recorded

than young people, and people living in cities are more likely to be captured than

people in rural areas. Therefore, probabilities of being captured are different among

individuals. This difference is called individual heterogeneity and models considering

it have been well studied in Rasch models, log-linear models, and Bayeisan models

[Sanathanan, 1972][Darroch et al., 1993][George and Robert, 1992][Fienberg et al.,

1999][Manrique-Vallier, 2016a].

When people’s traits are not available, the Bayesian non-parametric latent class model

(LCMCR) can be applied to find hidden strata, within which individuals have similar

probabilities of being captured or have similar capture patterns, thus reflecting simi-

lar individual characteristics. Often, multi-list recapture data has features describing

each record, for example, time, location, gender and age. Stratification based on

categories of those discrete attributes can be made to reduce bias induced by strata

heterogeneity [Guberek et al., 2020][Manrique-Vallier et al., 2013b]. The drawback of

this method is that it divides individuals into strata with smaller sample size which

may reduce model power and cause identifiability problems [Manrique-Vallier et al.].

Also, this method cannot handle covariate missing values. EM algorithm was pro-

posed for the incomplete stratification problem in multi-list recapture data and used

in a Log-linear model with list indicators, categorical variables and their interac-

tions [Sutherland et al., 2007]. However, Log-linear models are not flexible enough

to handle complex dependencies. Manrique-Vallier et al. (2019) accommodates the

stratification into a flexible model, Bayesian non-parametric latent class model for

multi-list recapture data. They assign a discrete distribution to the categorical vari-

able and the individual’s capture probability depends on the latent class and value

of the attribute [Manrique-Vallier et al.]. In this way, covariate missing values can
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be imputed using data augmentation. However, the number of capture probability

parameters increases exponentially with the number of attributes and this model does

not apply to continuous attributes. In this paper, we propose another way to deal

with covariates and missing values in them. We extend the Bayesian non-parametric

latent class model for multi-list recapture data (LCMCR) by modeling covariates

in parallel with capture pattern variables and assuming they’re conditionally inde-

pendent given the latent class. In this way, latent classes detected by the proposed

Bayesian non-parametric latent class model with covariates reflect capture pattern

differences and attribute heterogeneity together, based on which we’ll have a better

idea about which attribute combinations correspond to which capture patterns.

A latent class model for multiple imputation of incomplete categorical data is pro-

posed by Vermunt et al. (2008) and has been used to impute missing values in a life

questionnaire [Peyre et al., 2011], and impute missing values in a large-scale survey

[Si and Reiter, 2013], etc. It is preferred over log-linear models when the variables

have complex association structures and the number of variables is large. Due to

differences among lists, among individuals and possible copying between lists, com-

plexity is not rare in the multi-list recapture data problem. Modeling multivariate

categorical data using non-parametric Bayesian models is also well studied by Dun-

son and Xing (2009), which handles attributes with more than two categories and

can easily combine with latent class model imputation if there are missing covariate

values [Dunson and Xing, 2009]. Even though we focus on categorical variables in

this paper, the method can be extended to include continuous variables.

This paper is organized as follows. In Section 3.3, we review the Bayesian method

proposed by Manrique-Vallier et al. (2019) and propose our conditionally indepen-

dent version with covariates. In Section 3.4, we introduce the data augmentation

method used for missing covariate imputation and parameter estimation. In Section

3.5, we do simulation to compare the model with and without covariates. We apply
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our model to the sampled Syrian conflict data in Section 3.6. In Section 3.7, we

discuss our model and make conclusions.

3.3 Bayesian non-parametric latent class model with covari-

ates

The Bayesian non-parametric latent class model for multiple recapture data (LCMCR)

finds homogeneous individuals by grouping individuals with similar capture patterns

into the same latent class. It infers that individual heterogeneity affects the probabil-

ity of being captured when individual characteristics are not available. In this paper,

we add information on individual characteristics and given by categorical variables.

The straightforward way to deal with heterogeneity caused by categorical variables

is stratification by their categories. However, this results in too many strata if sev-

eral categorical variables are available, for example 24 = 16 strata if we have four

categorical variables and each has two categories. With so many strata, the sample

size in each strata will reduce sharply which may results in identifiability problems

[Manrique-Vallier et al., 2019]. Manrique-Vallier et al. (2019) proposed a hierarchical

way to impute covariate missing values when one categorical variable is available. It

suffers similar problems with stratification because it gives one set of parameters for

each category combination. Let

yi,j =


1, if person i, is captured by the jth data list

0, otherwise,

such that
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(yi,j|zi = k, xi,1, · · · , xi,R) ∼ Bernoulli(λk,j;xi,1,··· ,xi,R)

zi ∼ Cat(π1, · · · , πk, · · · )

x
(r)
i ∼ Cat(θ

(r)
1 , · · · , θ(r)

Mr
)

(θ
(r)
1 , · · · , θ(r)

Mr
) ∼ Dirichlet(1, · · · , 1)

λk,j;xi,1,··· ,xi,R ∼ Beta(1, 1)

(π1, · · · , πk, · · · ) ∼ SB(α)

α ∼ Gamma(a, b),

where

• λk,j;xi,1,··· ,xi,R is the probability of being captured by the jth data source if a

individual is in latent class k and has attributes xi,1, · · · , xi,R.

• x(r)
i is the rth covariate with number of categories Mr.

∑Mr

m=1 θ
(r)
m = 1. r =

1, · · · , R, where R is the number of covariates.

• The number of possible values for the capture probability λ is K ∗ J ∗ ΠR
r=1Mr

for this model and number of parameters for covariates is
∑R

r=1(Mr − 1).

• zi is the latent class for the ith person. It has a categorical distribution with

infinite number of categories,
∑∞

k=1 πk = 1.

• The latent class proportion parameters πk, k = 1, · · · , has a stick-breaking

prior (π1, · · · , πk, · · · ) ∼ SB(α), which enables a non-parametric way to learn

the number of latent classes from the data. Often, a large K∗ is given instead

of using ∞. The model will learn the number of latent classes as K (K < K∗)

which corresponds to the first K largest latent class proportions. The prior for

α is a Gamma distribution, a = 0.25 and b = 0.25 as usually used in Dirichlet

process mixture model [Manrique-Vallier, 2016a][Dunson and Xing, 2009][Si and

Reiter, 2013].
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In this paper, we add covariates to the Bayesian non-parametric latent class model

(LCMCR) by assuming capture patterns and covariates are independent given the

latent class. In this way, we put individuals having similar characteristics with ho-

mogeneous capture patterns in the same latent class. Then our proposed model is

(yi,j|zi = k) ∼ Bernoulli(λk,j)

(x
(r)
i |zi = k) ∼ Cat(θ

(r)
k,1, · · · , θ

(r)
k,Mr

)

zi ∼ Cat(π1, · · · , πk, · · · )

(θ
(r)
k,1, · · · , θ

(r)
k,Mr

) ∼ Dirichlet(1, · · · , 1)

λk,j ∼ Beta(1, 1)

(π1, · · · , πk, · · · ) ∼SB(α)

α ∼Gamma(a, b),

where

• λk,j is the probability of captured by the jth data source if an individual is in

latent class k.

• θ(r)
k,m is the probability that an individual’s rth covariate is m, x

(r)
i = m, given

this individual is in the kth latent class.
∑Mr

m=1 θ
(r)
k,m = 1.

In our model, the number of parameters for capture probabilities and covariates is

K ∗ J + K ∗
∑R

r=1(Mr − 1) which is much less than those of Manrique-Vallier et al.

(2019) when the number of categorical variables or the number of categories is large.

This is because this model does not do strict stratification, but combines individuals

with similar covariate distributions and having similar recording patterns. By com-

paring latent classes from this model, we’ll know how covariate differences relate with

capture pattern differences. Meanwhile, if groups have similar characteristic distri-

butions but different recording patterns, it may also give us information about other
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potential factors that influence recording patterns, for example other characteristics

not included in the model or factors relating with list dependence.

If we have missing values in the covariates, this conditional independent Bayesian

non-parametric latent class model with covariates (LCMCR-cov) still holds by as-

suming the missing data are MAR and people in the same latent class have the same

distribution whether their covariates are observed or not, which is (x
(r)
i |zi = k) ∼

Cat(θ
(r)
k,1, · · · , θ

(r)
k,Mr

) for r ∈ Oi or r ∈ Mi, where Oi is the observed covariate index

set for the ith person, and Mi is the missing covariate index set for the ith person,

i = 1, · · · , N .

3.4 Data Augmentation and Gibbs Sampler

The MCMC algorithm to estimate model parameters and population size in the

Bayesian non-parametric latent class model for multi-list recapture data (LCMCR)

is developed by Manrique-Vallier (2016). In this paper, we will do two main exten-

sions: update covariate parameters and impute missing covariates, for our Bayesian

non-parametric latent class model with missing covariates (LCMCR-cov). Data aug-

mentation is used to impute missing covariates and update parameters. The main

idea of data augmentation is to impute missing values and then update parameters

based on the observed data and the imputed data.

For the ith person:

P (x
(r)
i , r ∈Mi|zi = k, yi,j, x

(r
′
)

i , r
′ ∈ Oi, j = 1, · · · , J,Θ)

≈ P (x
(r)
i , r ∈Mi, yi,j, x

(r
′
)

i , r
′ ∈ Ori , j = 1, · · · , J |zi = k,Θ)

= C ∗ P (x
(r)
i , r ∈Mi|zi = k, θ

(r)
k,1, · · · , θ

(r)
k,Mr

)

thus, (x
(r)
i , r ∈Mi|zi = k, ..) ∼ Cat(θ

(r)
k,1, · · · , θ

(r)
k,Mr

), where constant

C = P (yi,j, x
(r
′
)

i , r
′ ∈ Oi, j = 1, · · · , J |zi = k,Θ)

70



which does not relate with θ
(r)
k,m for r ∈Mi and m = 1, · · · ,Mr.

The Gibbs sampler procedures for updating parameters and imputing missing at-

tributes are as follows:

• Impute missing attributes: (x
(r)
i , r ∈ Mi|zi = k, ..) ∼ Cat(θ

(r)
k,1, · · · , θ

(r)
k,Mr

), for

i = 1, · · · , n. Denote the imputed covariates as Ximp.

Note: The initial values for z’s and θ’s can be obtained by randomly assign or

selection or by running the algorithm with observed covariates only for some

iterations, and using its result to initialize the algorithm with imputation [Vi-

dotto et al., 2018].

• Update zi for i = 1, · · · , n:

P (zi = k|yi,j, j = 1, · · · , J ;Ximp, ..)

≈ P (yi,j, j = 1, · · · , J ;Ximp|zi = k, ..)P (zi = k)

= ΠJ
j=1λ

yi,j
k,j (1− λk,j)1−yi,jΠR

r=1ΠMr
m=1θ

(r)
k,m ∗ I(x

(r)
i,imp == m)πk

• Update list capture parameters λk,j: λk,j ∼ Beta(1 + nk,j;1, 1 + nk,j;0 + wk,j)

where nk,j;1 = ||{i = 1, · · · , n; zi = k, yi,j = 1}||, nk,j;0 = ||{i = 1, · · · , n; zi =

k, yi,j = 0}||, and wk,j = ||{i = n + 1, · · · , N ; zi = k, yi,j = 0}||, where persons

i = 1, · · · , n are captured and persons i = (n+ 1), · · · , N are unobserved.

• Update attribute parameters θ
(r)
k,m for m = 1, · · · ,Mr and r = 1, · · · , R:

Similar to λk,j,

(θ
(r)
k,1, · · · , θ

(r)
k,Mr

) ∼ Dirichlet(1 + n
(r)
k,1 + w

(r)
k,1, · · · , 1 + n

(r)
k,Mr

+ w
(r)
k,Mr

)

, where n
(r)
k,m = ||{i = 1, · · · , n; zi = k, x

(r)
i,imp = m}||, and w

(r)
k,m = ||{i =

(n+ 1), · · · , N ; zi = k, x
(r)
i = m}||.
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• Update P (πk|...):

πk = UkΠh<k(1− Uh), k = 1, · · · , K∗,

where Uk ∼ Beta(1 + uk, α +
∑K∗

h=k+1 uk), for k = 1, · · · , K∗ − 1 and UK∗ = 1.

• Update P (α|..): α ∼ Gamma(a− 1 +K∗, b− logπK∗).

• Update P (N,w|...):

As in Manrique-Vallier (2016), given N has vague prior P (N) ∝ 1/N , joint

distribution of N,w1, · · · , wK∗ has a negative multinomial distribution. The

number of undocumented records n0 = N −n has a negative binomial distribu-

tion:

n0 ∼ NegBinomial(n, 1−
K∗∑
k=1

ρk),

where ρk = πkΠ
J
j=1(1− λk,j).

In each latent class, the number of unobserved people:

(w1, · · · , wK∗) ∼ Multinomial(n0; p1, · · · , pK∗), pk ∝ ρk.

In the kth latent class, the number of unobserved people with different rth at-

tribute values is:

(w
(r)
k,1, · · · , w

(r)
k,Mr

) ∼ Multinomial(wk; θ
(r)
k,1, · · · , θ

(r)
k,Mr

),

where k = 1, · · · , K∗, m = 1, · · · ,Mr and r = 1, · · · , R.

3.5 Simulation Study

In this section, we generate 100 replicates from the latent class model with covari-

ates. The population size N = 5000, and other parameters are listed in Tables 3.1 and
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Table 3.1. Parameters for recapture latent class model with covariates

List capture probabilities covariate parameters

π list 1 list 2 list 3 list 4 θ
(1)
1:K,1:V [1] θ

(2)
1:K,1:V [2]

0.1 0.01 0.05 0.15 0.1 (0.7 ,0.3) (0.8,0.2)
0.3 0.9 0.3 0.4 0.7 (0.1 ,0.9) (0.6,0.4)
0.6 0.1 0.4 0.05 0.01 (0.6,0.4) (0.1,0.9)

Table 3.2. Missing proportions by recording patterns

missing proportions by recording pattern
1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111

X(1) 0 0.04 1 1 0 0.51 0.28 0.47 0.39 1.00 0.11 0.14 0.60 0.79 0.22

X(2) 0 0.034 0 0.004 0 0 0 0 0 0 0 0 0 0 0

3.2. We generate missing covariates based on recording patterns so that the missing

data are MAR. X(1) has about 40% missing values and X(2) has a small number of

missing values. Then we use the Bayesian non-parametric latent class models with and

without covariates to estimate the population size. From figure 3.1 we can see that

our model LCMCR-cov-IM, Bayesian non-parametric latent class model for multi-list

recapture data with missing covariates, gets population size estimation with less bias

and uncertainty than models LCMCR and LCMCR-cov-random (missing values are

imputed randomly). The model fitting covariates without missing values (LCMCR-

full) gives the best estimation which makes sense because there is no bias and errors

induced by missing covariates. The estimation from our model LCMCR-cov-IM is

much closer to the result got from LCMCR-full. Those indicate that LCMCR-cov-

IM helps estimate population size in multi-list recapture data through latent class

imputation.

3.6 Application

The Syrian conflict data contains deaths during the Syrian conflict. Those deaths

are recorded by four data centers, Violations Documentation Center (VDC), Syr-

ian Network for Human Rights (SNHR), Damascus Center for Human Rights Studies

(DCHRS), and Syrian Center for Statistics and Research (SCSR). We take a subset of
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Figure 3.1. Population size estimation using Bayesian non-parametric latent class
model with and without covariates. LCMCR: use LCMCR model for data without
covariates; LCMCR-cov-missing: use LCMCR-cov model for data with missing co-
variate values; LCMCR-cov-full: use LCMCR-cov model for full data or data without
missing values.

●

●
●

●

●

●

●

●

●

●

●

●

●

4000

5000

6000

7000

CI_lower Median CI_upper

N

Model LCMCR LCMCR_cov_IM LCMCR_cov_random LCMCR_full

74



the Syrian conflict data for application in this paper due to confidentiality. This sub-

set data is death records from governorates Damascus, Rural Damascus, Latakia and

Tartus in 2014. The total number of death records is n = 10412 in our Syrian conflict

sample data and the number of records under each recording pattern is summarized in

Table 3.3. Each death record also has covariates: gender, age-group (adult or child),

civilian status (Civilian or Military), and under-torture (Yes or No). As we can see

from Figure 3.2, among documented records, about 7014
10412

∗ 100% = 67.4% are missing

under-torture values, about 5277
10412

∗ 100% = 50.7% are missing age-group information,

1839
10412

= 17.7% are missing civilian status and only 26
10412

∗ 100% = 0.2% do not have

gender values. For the under-torture and age-group variables, most missing values

come from the ′1, 0, 0, 0′ recording pattern which corresponds to captured by the VDC

only. For the civilian status attribute, most missing values come from death records

only captured by the SCSR. Therefore, missing covariates relate with capture pat-

terns. We assume the missing pattern is MAR that P (x
(r)
i , r ∈Mi|yi,j=1,··· ,J , x

(r
′
)

i , r
′ ∈

Oi, other factors) = P (x
(r)
i , r ∈ Mi|yi,j=1,··· ,J , x

(r
′
)

i , r
′ ∈ Oi). Due to the high missing

proportion (67.4%) for under-torture, we don’t use this covariate in the model.

As we can see from the estimation, the LCMCR with covariates (LCMCR-cov) gives

a slightly larger estimate than the Benchmark Bayeisan model averaging of decom-

posable graphical models (BMA-DG) and the Bayeisan non-parametric latent class

model (LCMCR). Moreover, Table 3.5 gives us list capture probabilities and covari-

ate parameters in each latent class based on the LCMCR-cov model, as we can see

that the first class mainly captures Male, Military and Adults and VDC has higher

capture ability than other data sources in this group of people. Deaths captured in

the second class are mainly Male, Adults and about 60% are civilians. The capture

probabilities for VDC, SNHR, and SCSR are all pretty high. Deaths in the third

class are mostly Male, Civilian, and Adults. Comparing the first three classes, we

see that civilians are more likely to be captured by SNHR and military are more
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Table 3.3. Number of deaths under each recording pattern in the Syrian conflict
sample data

VDC SNHR DCHRS SCSR Num-Records
1 0 0 0 n1000 = 2820
0 1 0 0 n0100 = 814
0 0 1 0 n0010 = 123
0 0 0 1 n0001 = 870
1 1 0 0 n1100 = 466
1 0 1 0 n1010 = 48
1 0 0 1 n1001 = 826
0 1 1 0 n0110 = 63
0 1 0 1 n0101 = 423
0 0 1 1 n0011 = 56
1 1 1 0 n1110 = 72
1 1 0 1 n1101 = 2750
1 0 1 1 n1011 = 158
0 1 1 1 n0111 = 82
1 1 1 1 n1111 = 841
0 0 0 0 n0000 =?

Table 3.4. Estimated total number of deaths and 95% posterior credible intervals
in the Syrian conflict sample data

n N̂ N̂L N̂U

LCMCR 10412 16591 14039 19615
LCMCR-cov 10412 17903 15454 22481

BMA-DG 10412 17684 14821 20484

Table 3.5. Estimation and 90% credible intervals of latent class proportions, list
capture probabilities and covariate proportions

List capture probabilities covariate parameters

π VDC SNHR DCHRS SCSR θ
(sex)
1:5,Female θ

(civilian)
1:5,Civilian θ

(age−group)
1:5,Adults

0.55
(0.48,0.63)

0.27
(0.19,0.35)

0.27
(0.01,0.03)

0.0008
(0.0001,0.003)

0.07
(0.05,0.08)

0.0009
(0.0001,0.003)

0.12
(0.08,0.14)

0.99
(0.98,0.9995)

0.15
(0.06,0.19)

0.92
(0.90,0.94)

0.89
(0.85,0.98)

0.005
(0.0004,0.016)

0.89
(0.85,0.92)

0.0021
(0.0002,0.007)

0.69
(0.26,0.75)

0.997
(0.992,0.9996)

0.07
(0.05,0.10)

0.15
(0.04,0.27)

0.84
(0.51,0.98)

0.05
(0.004,0.08)

0.23
(0.10,0.31)

0.19
(0.16,0.22)

0.985
(0.96,0.996)

0.998
(0.993,0.9998)

0.06
(0.04,0.075)

0.93
(0.91,0.96)

0.98
(0.94,0.998)

0.89
(0.70,0.99)

0.94
(0.91,0.96)

0.07
(0.04,0.09)

0.997
(0.990,0.9998)

0.96
(0.94,0.97)

0.05
(0.02,0.14)

0.94
(0.86,0.99)

0.91
(0.85,0.99)

0.04
(0.004,0.15)

0.92
(0.84,0.99)

0.36
(0.13,0.91)

0.995
(0.98,0.9995)

0.995
(0.97,0.9996)
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Figure 3.2. Number of death record by covariate and stacked by recording pat-
tern; Four covariates: under-torture, sex, age-group and civilian-status. The missing
category represents missing values
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likely to be captured by VDC. The fourth and fifth latent classes capture more child

deaths. VDC and SCSR have relatively higher capture probabilities in these clusters.

Even though covariate distributions are similar in latent classes two and four, the list

capture proabilities differ very much. This tells us that other heterogeneity besides

those three attributes impacts list captures. It is possible, for example, that copying

patterns between data sources create different capture patterns over time.

3.7 Discussion and Conclusions

In this paper, we extend the Bayesian non-parametric latent class model for multi-

list recapture data by adding individual attributes into the model and assuming con-

ditional independence between capture patterns and individual covariates given the

latent class. The latent class detects attribute differences and capture patterns relat-

ing with it. Comparing latent classes, we are able to see which data sources capture

which groups of people. Meanwhile, our model handles missing values in covariates

through data augmentation by assuming MAR. In this paper, we focus on categor-

ical variables with a small number of categories only. We can easily extend it to

continuous variables, for example if we use numerical age instead of the age-group

category, we can assign a mixture of normals or truncated normal distribution to it.

If we have categorical variables with many categories, such as time and location, we

recommend use the Nested Bayesian non-parametric latent class model, grouping by

time and location as the top (or second) layer and modelings variables with less cat-

egories, like sex or civilian-status, in the first layer together with the capture pattern

variables. These methods help understand individual attribute-related heterogeneity

and how attributes relate with capture patterns. We can see from our application

that there are other potential sources of heterogeneity besides individual attributes.

List heterogeneity and other factors, like copying among lists, may also cause cap-
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ture pattern differences. Adding those sources of heterogeneity into the model is a

potential direction for further work.
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