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ABSTRACT 

EXPLORING FAULT SYSTEM DEFORMATION WITH NUMERICAL MODELS 

AND ANALOG EXPERIMENTS 

SEPTEMBER 2014 

JUSTIN WILLIAM HERBERT, B.A., FRANKLIN AND MARSHALL COLLEGE 

M.A., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Michele L. Cooke 

This dissertation aims to understand fault system deformation using numerical 

models and analog experiments. In southern California, the southern Big Bend of the San 

Andreas fault (SAF) is a zone of transpression that accommodates deformation associated 

with the Pacific-North American plate boundary. Using three-dimensional boundary 

element method (BEM) models, I test the sensitivity of fault slip rates to a range of 

tectonic boundary conditions constrained by Global Positioning System (GPS) studies of 

the region (45Ð50 mm/yr and 320¡Ð 325¡). I have modified fault configurations derived 

from the Southern California Earthquake Center Community Fault Model of the San 

Gorgonio knot and the eastern California shear zone (ECSZ) to better represent the 

disconnected nature of active faults in southern California. The models with revised fault 

geometry produce slip rates that better match geologic strike-slip rates, thus validating 

the revisions. More northerly plate velocity (325¡) produces greater transpression along 

the SAF system associated with greater uplift of the San Bernardino Mountains, greater 

reverse-slip rates along range bounding reverse thrust faults, lower strike-slip rates along 

the San Andreas and San Jacinto faults, and greater strike-slip rates along the eastern 

California shear zone (ECSZ) and Garlock fault. These results suggest that the degree of 
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regional transpression controls the partitioning of deformation between uplift and slip 

along both the SAF system and the ECSZ. 

Along the San Bernardino strand of the SAF and across the ECSZ, geologic slip 

rates differ from those inverted from geodetic measurements, which may partly be due to 

inaccurate fault connectivity within geodetic models. I compare results from fault 

networks that follow mapped geologic traces and resemble those used in block model 

inversions, which connect the San Jacinto fault to the SAF near Cajon Pass and connect 

distinct faults within the ECSZ. The connection of the SAF with the San Jacinto fault 

decreases strike-slip rates along the SAF by up to 10% and increases strike-slip rates 

along the San Jacinto fault by up to 16%; however, slip rate changes are still within the 

large geologic ranges along the SAF. The insensitivity of modeled interseismic surface 

velocities near Cajon Pass to fault connection suggests that inverse models may utilize 

both an incorrect fault geometry and slip rate and still provide an excellent fit to 

interseismic geodetic data. Similarly, connection of faults within the ECSZ produces 36% 

greater cumulative strike-slip rates but less than 17% increase in interseismic velocity. 

Within the models that follow the mapped traces, off-fault deformation accounts for 40% 

± 23% of the total strain across the ECSZ. This suggests that a significant portion of the 

discrepancy between the geologic and geodetically modeled slip rates in the ECSZ could 

be due to the geodetic inversion model assumption of zero permanent off-fault 

deformation. When using overconnected models to invert GPS for slip rates, the reduced 

off-fault deformation within the models can lead to overprediction of slip rates. 

Analog models of sandbox experiments performed at the Universite de Cergy-

Pontoise (UCP) shed light on the amount of work required to create faults (Wgrow) in 
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coarse sand. Casagrande shear experiments calculate a Wgrow that is consistent with that 

calculated in the sandbox and both values scale properly to crustal calculations. 

Calculations of Wgrow are higher for thicker sand pack layer experiments. Utilizing 

different materials within the compressional sandbox (GA39 sand and glass beads) shows 

the control of material properties on Wgrow as well. Numerical simulations of the UCP 

sandbox experiments test whether fault growth occurs via work minimization. To the first 

order, faults observed in sandbox experiments match the model predicted faults that 

minimize work in two-dimensional BEM simulations. The BEM models and work 

minimization shed light on fault growth path and timing. 
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PREFACE 

 
Chapter 1 

Chapter one was published in the Bulletin of the Seismological Society of 

America (2012) and is therefore written with the plural first person with co-author 

Michele Cooke. No changes have been made here to the published manuscript, which 

improves upon Cooke and DairÕs (2011) Boundary Element Method models of southern 

California by testing the validity of alternate fault geometries and varying both the 

orientation and magnitude of plate velocity that drives model slip. 

Chapter 2 

Chapter two has been published in Geology (2014) and is therefore written with 

the plural first person with co-authors Michele Cooke, Mike Oskin (University of 

California, Davis), and Ohilda Difo (now at Concordia University, Portland, Oregon). No 

changes have been made here to the published manuscript. Mike Oskin contributed as a 

geologic expert on the area and Ohilda Difo helped modify the fault mesh in the model.  

We further improve the geometry of faults within our models of southern 

California, particularly the faults within the eastern California shear zone. In addition, we 

quantify the percentage of deformation that takes place on and off major faults, which 

may strongly impact the potential discrepancy between geologic and geodetic slip rate 

estimates within the region. 

Chapter 3 

Chapter three appears in the January 2014 issue of the Journal of Geophysical 

Research Ð Solid Earth and is therefore written with the plural first person, as both 



 x 
 

Michele Cooke and Scott Marshall (Appalachian State) are both co-authors of this work. 

Scott Marshall provided expertise in Global Positioning System (GPS) processing. 

This chapter focuses on the role fault geometry may have on the discrepancy 

between geologic and geodetic slip rates, particularly the fault geometry within models 

that invert GPS velocities. These models utilize the refined mesh of chapter two and 

modifications to both the SAF fault near Cajon Pass and the ECSZ that mimic those of 

block model inversions. Supplementary material for this manuscript is available at 

http://onlinelibrary.wiley.com/doi/10.1002/2013JB010472/suppinfo. 

Chapter 4 

 Chapter four is a collaborative effort between researchers at the University of 

Massachusetts Amherst (Michele Cooke and Elizabeth Madden), the UniversitŽ de 

Cergy-Pontoise (UCP; Bertrand Maillot, Pauline Souloumiac, and Baptiste Mary), and 

Stanford University (Leonardo Cruz and George Hilley). Chapter four is expected to be 

submitted to Geophysical Research Letters and is therefore written with the plural first 

person. Analog experiments were performed at both UCP and Stanford University, while 

all analysis of these experiments was performed at the University of Massachusetts 

Amherst. 

Chapter 5 

 Chapter five will be another collaborative project between the University of 

Massachusetts Amherst (Michele Cooke and Elizabeth Madden) and UCP (Bertrand 

Maillot, Pauline Souloumiac, and Baptiste Mary) scientists. Numerical modeling efforts 

that utilize different techniques from both universities will likely result in a publication 

that explores fault prediction within an anolog experiment performed at UCP. 
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CHAPTER 1 

SENSITIVITY OF THE SOUTHERN SAN ANDREAS FAULT SYSTEM TO 

TECTONIC BOUNDARY CONDITIONS AND FAULT CONFIGURATIONS 

 

1.1. Introduction 

 Transpression within restraining bends is controlled by the geometric complexity 

and orientation of the faults accommodating deformation and the orientation and 

magnitude of plate motion (e.g., Sanderson and Marchini, 1984; Dewey et al., 1998; 

Spotila et al., 1998, 2007). Seemingly small variations in plate boundary velocities may 

affect slip rates and vertical deformation within transpressional systems. Furthermore, the 

sensitivity of slip rates along any fault segment to tectonic loading may depend on the 

segmentÕs orientation, as well as the configuration and level of complexity of the fault 

network. In addition to providing a first-order control on deformation within 

transpressional zones, strike-slip fault complexities, such as discontinuities, step-overs, 

and overlaps, hinder prediction of seismic events and rupture patterns (e.g., Matti and 

Morton, 1993; Morton and Matti, 1993; Yule and Sieh, 2003; Wesnousky, 2006, 2008). 

 The southern Big Bend of the San Andreas fault (SAF) is a complex restraining 

bend along the predominantly right-lateral strike-slip fault system and is associated with 

an area of transpression (Figure 1.1; Matti and Morton, 1993; Spotila et al., 1998, 2007; 

Yule and Sieh, 2003). Long thought to be composed of a through-going system of 

vertical faults (e.g., Rasmussen and Reeder, 1986), field relationships (Matti et al., 1985; 

Matti and Morton, 1993; Morton and Matti, 1993; Yule and Sieh, 2003), microseismicity 

(Nicholson et al., 1986; Seeber and Armbruster, 1995; Seeber et al., 2001; Carena and 
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Suppe, 2001; Suppe, 2002; Nicholson et al., 2003; Fuis et al., 2012), and potential fields 

(Fuis et al., 2012) within the San Bernardino Mountains region have shown that the 

complex active fault system contains intersecting non-vertical and non-planar subsurface 

fault geometries. These complex fault geometries within the San Gorgonio Pass may 

serve as a region of earthquake nucleation or termination, making the prediction of 

rupture patterns and seismic hazards difficult (Matti and Morton, 1993; Yule and Sieh, 

2003). 

 Cooke and Dair (2011) developed three-dimensional (3D) boundary element 

method (BEM) mechanical models of the San Bernardino Mountains region that 

accurately simulate fault slip rates and uplift patterns by incorporating the complex fault 

geometries based on the Southern California Earthquake CenterÕs (SCEC) community 

fault model (CFM), which defines faults within the seismogenic crust (depths ! ! 20 km) 

based on geologic mapping, seismicity, and geophysical investigations (Plesch et al., 

2007). In this study, we improve upon the 3D fault geometry used in Cooke and Dair 

(2011) in an effort to reduce some discrepancies between the model results and geologic 

slip rates. We add active faults not included in the SCEC CFM and explore alternate fault 

geometries. We also investigate the sensitivity of deformation to tectonic boundary 

conditions by varying the magnitude and orientation of relative plate motion along the 

North American and Pacific plate boundaries within present-day uncertainties. Although 

the relationship between tectonic loading and slip rate is straightforward for a planar and 

isolated fault, even small changes in tectonic loading may strongly affect deformation 

partitioning within restraining bends where fault interactions are complex. By exploring 

the uncertainties in tectonic loading, we can report associated uncertainties of fault slip 
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rates. This is an improvement to previous models that report only a single value for slip 

rates at each point along the fault. Furthermore, the sensitivity of fault slip rates to 

boundary conditions may provide insight into the evolution of restraining bends and the 

potential abandonment of old faults for new ones as tectonic boundary conditions change. 

 

1.2. North America and Pacific Plate Boundary Velocities 

Today, the various strands of the SAF, the San Jacinto fault (SJF), and the Eastern 

California Shear Zone (ECSZ) take up a majority of the plate motion between the North 

American and Pacific plates (e.g., Bennett et al., 1999; Becker et al., 2005; Meade and 

Hager, 2005; Smith and Sandwell, 2006; Bird, 2009). Measurements from permanent and 

campaign Global Positioning Systems (GPS) estimate ! 45Ð50mm/yr of motion along this 

plate boundary (DeMets and Dixon, 1999; Beavan et al., 2002; Gonzales-Garcia et al., 

2003; Shen et al., 2003; Marquez-Azua et al., 2004; Plattner et al., 2007; Kogan and 

Steblov, 2008; Argus et al., 2010; DeMets et al., 2010). Additionally, Fialko (2006) 

showed that interferometric synthetic aperture radar (InSAR) measurements in the 

southern section of the study area showed relative plate motion of 43Ð47 mm/yr, which 

correlates well with the GPS measurements. 

The mid-ocean ridge velocity model (MORVEL) estimates that the Pacific plate 

moves at 324¡ relative to the North American plate using seafloor spreading rates and 

oceanic transform fault azimuths within a closure-enforced, angular-velocity model 

(DeMets et al., 2010). Other GPS studies determine a range of orientations from 320¡ to 

325¡ (Beavan et al., 2002; Gonzales-Garcia et al., 2003; Marquez-Azua et al., 2004; 

Plattner et al., 2007; Kogan and Steblov, 2008; Argus et al., 2010). 
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Our models investigate the sensitivity of regional deformation to tectonic 

boundary conditions ranging in velocity from 45 to 50 mm/yr and orientation from 320¡ 

to 325¡. This range incorporates much of the available data on plate motion across this 

region. These relatively modest changes in tectonic loading may have significant impact 

on slip rates along some faults. 

 

1.3. Slip Rates Along Faults 

 We summarize geologic slip-rate data for the San Andreas, San Jacinto, Crafton 

Hills, and Garlock faults, and the ECSZ, and highlight mismatches between these slip 

rates and results from three-dimensional forward models of Cooke and Dair (2011). The 

slip rates from these models match geologic slip rates for most faults in the region. Areas 

with slip-rate mismatch are discussed in detail in this section as our revisions to the fault 

configurations strive to reduce these discrepancies. We aim to model the regional 

deformation in order to match as many geologic slip rates as possible. 

1.3.1. Right-Lateral Strike-Slip and Dip-Slip Rates along the San Andreas Fault 

 Observed strike-slip rates vary greatly along the strands of the SAF within the San 

Bernardino Mountains region (Figure 1.2; Table 1.1). Strike-slip rates along the San 

Bernardino strand of the SAF generally decrease from ! 24 to ! 5 mm/yr from the Cajon 

Pass to the 20 km left-stepover or southern Big Bend of the SAF (Weldon and Sieh, 1985; 

Yule and Sieh, 2003; Orozco, 2004; McGill et al., 2008, 2010). The decrease in strike-

slip along the SAF indicates that deformation is being locally accommodated by uplift, 

off-fault deformation, and/or transfer of slip to other faults (Dair and Cooke, 2009; Cooke 

and Dair, 2011). 
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 At the southern Big Bend, slip is transferred from the San Bernardino strand of 

the SAF to the north-dipping San Gorgonio Pass thrust and the vertical Banning strand of 

the SAF (Figure 1.1; Matti and Morton, 1993; Yule and Sieh, 2003). Yule and Sieh (2003) 

record a value of > 2.5 mm/yr of reverse slip on a northeast-striking segment of the San 

Gorgonio Pass thrust. Within San Gorgonio Pass, the right-lateral Banning strand of the 

SAF is only currently active near Millard and Potrero canyons (1.3Ð1.6 mm/yr of right-

lateral strike-slip), but its formerly active trace can be mapped throughout the pass (Yule 

and Sieh, 2003). 

 The eastern end of the San Gorgonio Pass thrust splits into the Banning and north-

dipping Garnet Hill strands of the SAF (Yule and Sieh, 2003). These faults trend 

southeastward as they near Biskra Palms where the Banning strand merges into the 

Coachella Valley segment of the SAF (Yule and Sieh, 2003). Right-lateral strike-slip 

rates along the SAF near Biskra Palms are 12Ð21 mm/yr (Behr et al., 2010) and 12.5Ð

19.3 mm/yr (van der Woerd et al., 2006). 

 The model of Cooke and Dair (2011) produces slip rates that match many of the 

geologic rates along the SAF except that the model produces left-lateral slip along the 

San Gorgonio Pass thrust. This left-lateral strike-slip contradicts Yule and SiehÕs (2003) 

field evidence for right-lateral slip along the San Gorgonio Pass thrust in addition to 

reverse slip. The model follows the SCEC CFM fault configuration, with the Banning 

fault active along its entire mapped trace. Because the Banning fault parallels the San 

Gorgonio pass thrust, Cooke and Dair (2011) suggest that removing inactive segments of 

the Banning fault may allow for right-lateral slip taken up by the Banning fault in the 

model to be accommodated instead by the San Gorgonio pass thrust. This revision is 
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explored in this study. 

1.3.2. Normal Slip Along the Crafton Hills Fault Zone 

 The Crafton Hills fault zone is a series of normal faults between the San 

Bernardino strand of the SAF and San Jacinto Valley strand of the SJF (e.g., Matti and 

Morton, 1993; Yule and Sieh, 2003). The activity of the Crafton Hills fault zone is 

revealed by offset Holocene alluvium (Yule and Spotila, 2010). The model of Cooke and 

Dair (2011), based on the SCEC CFM, did not include the Crafton Hills fault zone. Their 

model also produced a few millimeters of normal slip along the western end of the San 

Gorgonio Pass thrust fault where field evidence suggests reverse slip. Incorporating the 

active Crafton Hills fault zone in the model may reduce the slip-sense discrepancy along 

the western San Gorgonio Pass fault as the Crafton Hills fault zone takes up local 

extension and the San Gorgonio Pass fault undergoes reverse-slip motion. 

1.3.3. Right-Lateral Strike-Slip Rates Along the San Jacinto Fault 

 The SJF has numerous overlapping and discontinuous sub-vertical segments that 

influence the distribution of strike-slip rates along the fault (Figure 1.2; Table 1.1; e.g., 

Blisniuk et al., 2010; Janecke et al., 2010). Strike-slip rates along the northernmost 

segment of the San Jacinto Valley fault range from 6 to 13 mm/yr (Prentice, 1986) to as 

high as > 20 mm/yr (Kendrick et al., 2002). Along the central part of the Anza segment of 

the SJF, strike-slip rates range from 7 to 15 mm/yr (Rockwell et al., 1990; Rockwell, 

2008; Blisniuk et al., 2010, 2011; Janecke et al., 2010). Lower strike-slip rates (1.8Ð3.7 

mm/yr) occur near the southern Santa Rosa Mountains at the southern end of the Anza 

segment (Blisniuk et al., 2011). Janecke et al. (2010) determined a rate of > 3.2±1.2 

mm/yr for the Coyote Creek segment. The Borrego segment is a continuation of the 
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Coyote Creek segment of the SJF and only slips ! 1Ð3 mm/yr (Sharp, 1981). The model 

of Cooke and Dair (2011) matches well the right-lateral slip rates along the SJF. 

1.3.4. Right-Lateral Strike-Slip Within the Eastern California Shear Zone 

 The faults of the ECSZ, the majority of which have right-lateral slip and strike 

northwestÐsoutheast, accommodate between 9% and 23% of the total motion between the 

North American and Pacific plates (Dokka and Travis, 1990). Oskin et al. (2008) show 

that the six major faults across the ECSZ have a cumulative strike-slip rate of ! 6.2±1.9 

mm/yr since the Holocene (Figure 1.2). Strike-slip rates along the individual faults range 

from 0.2 to 2.1 mm/yr (Table 1.1; Figure 1.2). 

 Geologic slip rates and rates from models that invert for slip from GPS velocities 

do not agree. GPS inversion studies for the Southern ECSZ (Sauber et al., 1994; Miller et 

al., 2001; Becker et al., 2005; Meade and Hager, 2005; Spinler et al., 2010) suggest that 

12 ± 2 mm/yr of right-lateral strike-slip is accumulated across the ECSZ, nearly double 

the rate determined from geologic data (Oskin et al., 2008). The three-dimensional 

forward model of Cooke and Dair (2011) produces a summed average slip rate of 7.5 ± 

0.2 mm/yr, which overlaps within the range of the cumulative geologic slip rate and their 

uncertainties. In this study, we implement a range of tectonic boundary conditions, which 

is likely to expand the slip-rate range produced by the forward models. 

1.3.5. Left-Lateral Strike-Slip Along the Garlock Fault 

 Radiocarbon dates of Holocene sediments provide reliable left-lateral strike-slip 

rates between 4 and 10.7 mm/yr along the Garlock fault (Clark and Lajoie, 1974; McGill 

and Sieh, 1993; McGill et al., 2009). Strike-slip rates increase from the east and west tips 

of the fault toward the center (Figure 1.2; Table 1.1). 
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1.4 Three-Dimensional Numerical Simulations of Deformation in Southern California 

 Our mechanical models use the three-dimensional BEM code, Poly3D (Thomas, 

1993), to simulate geologic timescale deformation. BEM models have proven to be well 

suited for this type of problem because they allow complex fault geometries where only 

fault surfaces are discretized, rather than the entire volume as in finite element method 

models (e.g., Crouch and Starfield, 1990; Cooke, 2011). BEM models have been used to 

investigate three-dimensional active faulting in Southern California (e.g., Meigs et al., 

2008; Dair and Cooke, 2009; Marshall et al., 2009; Cooke and Dair, 2011), Mexico (e.g., 

Willsey et al., 2002), Turkey (e.g., Muller et al., 2006), Utah (e.g., Hilley et al., 2010), 

and Northern Chile (Loveless et al., 2010). 

 Discretization of fault topology within the model is accomplished with a 

triangular mesh that has an average segment length of ! 4 km (Figure 1.3). In general, the 

models represent variations in fault geometry as small as 10 km, although smaller 

variations are captured in some detailed regions of fault complexity. The triangular mesh 

is preferred over that of rectangular because of its ability to define non-planar complex 

fault shapes. Rectangular meshes leave gaps and create overlap along curved surfaces, 

which can create local instabilities. 

 The three-dimensional fault geometries follow the SCEC CFM (Plesch et al., 

2007). Currently, 49 faults from the CFM are incorporated within our model. We extend 

the faults to a depth of 35 km where they are tied into a horizontal crack. The horizontal 

crack at depth simulates, to the first order, distributed deformation within fault zones 

below the seismogenic crust. The depth of the horizontal crack is arbitrarily chosen to 
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match the imaged depth of the Mohorovicic discontinuity in this region (e.g., Magistrale 

et al., 2000) but near surface deformation is insensitive to horizontal crack depths below 

20 km (Marshall et al., 2009). The faults are defined within a linear-elastic homogeneous 

and isotropic material, a reasonable assumption of crustal rheology on short time scales. 

All faults are frictionless and slip freely in response to both applied loading and 

interaction with nearby faults. Where a fault extends out of the study area, vertical 

patches with prescribed slip ensure that slip does not go to zero at the lateral fault tips. 

 The frictionless properties of the modeled fault surfaces mimic low-friction 

conditions that develop during slip events. During the course of multiple earthquake 

cycles, most fault slip accumulates during these earthquake events when dynamic friction 

is low. Dynamic models with frictionless faults cannot simulate the onset of slip, when 

the shear-to-normal stress ratio exceeds the static friction, but they are adept at simulating 

the overall accumulation of slip, which occurs during dynamic-friction conditions. As a 

consequence, any fault surfaces incorporated into the model will slip, and inactive faults 

should not be included in these models. 

 The horizontal crack is bounded on all edges by horizontal patches that have 

prescribed velocities to simulate motion between the North American and Pacific plates 

(Figure 1.3). In order to simulate observed plate boundary motions of 45Ð50 mm/yr at 

320¡Ð325¡, we vary the model edge velocity from 40Ð45 mm/yr and orientation from 

320¡Ð325¡. Version 2.0 of Poly3D limits the number of triangular elements to ! 5760. In 

order to focus on accurate deformation within the San Bernardino Mountains region, no 

faults are included in the model west of the SJF. Consequently, the model is not 

incorporating slip along all faults across the North American and Pacific plate boundary, 
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although the model does include elastic deformation west of the SJF; the faults west of 

the SJF accommodate ! 5 mm/yr of strike-slip (e.g., Platt and Becker, 2010). To account 

for the missing fault slip, we reduce the plate velocity applied to the model accordingly. 

Our study investigates fault deformation east from the SJF, including the San Andreas 

and Garlock faults, and the ECSZ. By investigating a range of plate velocities (40Ð45 

mm/yr at 320¡Ð325¡), we will test the sensitivity of fault slip rates and slip pattern to 

tectonic loading. 

 

1.5. Revisions to Fault Geometry 

 We have revised the three-dimensional models of Cooke and Dair (2011) by 

adding the Big Bear and Crafton Hills faults to the model and altering the geometry of the 

Banning fault. The Big Bear fault is defined in the CFM (Plesch et al., 2007) but was left 

out of the model of Cooke and Dair (2011). We first determine if our changes to the 

model improve mismatch with geologic slip rates before using the best-fitting fault 

geometry to access sensitivity of slip rate to tectonic boundary conditions. For this 

section, all slip rates are from a model with the same tectonic loading used in Cooke and 

Dair (2011), 45 mm/yr oriented at 308¡, in order to directly compare the effect of changes 

with fault geometries. 

 When model slip rates are compared with geologic rates, we report the rate along 

the fault trace (at the EarthÕs surface) at the site of the geologic investigation (Figure 1.2; 

Table 1.2). Because this slip rate may not be representative of the entire fault surface, we 

also report the average slip rate for the entire fault surface, weighted by fault area, with 

standard deviation. The surface slip rate and weighted average slip rate may not agree 
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because fault geometry varies with depth, which alters the interactions between and 

stresses along faults. 

1.5.1. Addition of the Big Bear Fault 

 An aftershock of the 1992 Landers earthquake, the 1992 Big Bear earthquakeÕs 

focal mechanism reveals a northeast-trending left-lateral strike-slip fault, although no 

trace of the fault has been observed on the surface (Brewer, 1992). In the CFM, the 

geometry of the planar and vertical faults is moderately constrained from aftershock 

distributions and assigned a confidence level of 2.5 out of 5 (Plesch et al., 2007). Using 

this geometry within our model, the Big Bear fault has an average left-lateral slip rate of 

4.1 ± 1.8 mm/yr in addition to a significant south-side up rate of 2.5 ± 1.5 mm/yr, which 

is not observed in the focal mechanisms. Alternative interpretations of the fault shape 

from the cloud of aftershock data could include complexities that reduce the discrepancy 

between the oblique model slip vector and the strike-slip Big Bear earthquake focal 

mechanism. For example, adding variations to fault dip with depth could impede reverse-

slip rates along the Big Bear fault but have little effect on strike-slip rates. Alternatively, 

unrecognized contractional features in the San Bernardino Mountains could 

accommodate the dip-slip that currently occurs on the modeled Big Bear fault. Although 

the Big Bear fault structure is not large, the model produces fast slip rates, perhaps 

because of the faultÕs position within the uplifting portions of the restraining bend. 

Additional information is needed to accurately assess slip rates on this fault. 

1.5.2. Addition of the Crafton Hills Fault 

 To incorporate the contribution of the Crafton Hills fault zone to local extension, 

we created a 60¡ south-dipping fault surface based on the mapped trace of the Crafton 
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Hills fault zone (Matti and Morton, 1993; Yule and Sieh, 2003). A series of normal faults 

are mapped in this area, but we simulate faulting in this area with only one fault surface 

in the model. 

 Inclusion of the Crafton Hills fault in our model reduces but does not eliminate 

the unexpected normal slip along the San Gorgonio Pass thrust produced in the model of 

Cooke and Dair (2011). Incorporating the Crafton Hills fault in the model reduces the 

maximum normal slip rate along the western portion of the San Gorgonio Pass thrust 

from 4.3 (Cooke and Dair, 2011) to 1.6 mm/yr. The weighted average normal slip rate for 

the western part of the San Gorgonio Pass thrust also decreases from 1.2 ± 0.1 mm/yr to 

0.6 ± 0.9 mm/yr. The increase in standard deviation reflects that parts of the fault surface 

undergo reverse slip. 

 The maximum dip-slip rates along the Crafton Hills fault occur on the eastern 

edge near the SAF and decrease to the west. This variation in slip rate mimics the 

morphology of the Crafton Hills, which have more rugged and higher topography in the 

east. Normal slip rates along the Crafton Hills fault trace range from 0.7 to 3.3 mm/yr 

while the weighted average normal slip rate along the entire fault surface is 1.0 ± 0.8 

mm/yr. Thus, the Crafton Hills fault is accommodating a significant component of local 

extension and reducing the amount of normal slip along the western part of the San 

Gorgonio Pass thrust in the model. Increasing the number of faults within Crafton Hills 

could further reduce the anomalous slip along the San Gorgonio Pass thrust. The 

sensitivity of fault slip rates to the presence of the Crafton Hills fault suggests that the 

Crafton Hills fault should be included in the CFM so that it can be incorporated in 

regional studies of crustal deformation and earthquake hazard. 
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1.5.3. Removing the Inactive Strands of the Banning Fault 

 The model of Cooke and Dair (2011) followed the CFM geometry with a through-

going Banning strand of the SAF and produced weighted average right-lateral slip rates 

of 7.5 mm/yr on the eastern part of the San Gorgonio Pass thrust and < 0.1 mm/yr of left-

lateral strike-slip on the western part. At the EarthÕs surface, the model of Cooke and 

Dair (2011) produces predominantly left-lateral slip along the trace of the San Gorgonio 

Pass thrust (Figure 1.4). In this study, our model excludes inactive portions of the 

Banning strand west of Millard Canyon (Yule and Sieh, 2003). Because our models use 

frictionless fault surfaces, the incorporation of inactive fault surfaces in the model distorts 

deformation distribution. When the inactive portions of the Banning strand of the SAF 

are removed, the model produces right-lateral strike-slip along all portions of the San 

Gorgonio Pass thrust trace (Figure 1.4). The revisions to the model geometry improve the 

accuracy of slip sense along the San Gorgonio Pass thrust and match geologic strike-slip 

rates along the active portions of the Banning strand of the SAF (Figure 1.4). The two 

strike-slip rates reported for the Banning strand span different times (Yule and Sieh, 

2003). The slower strike-slip rate, which is better matched for the model with inactive 

strands removed, is for the past ! 3 ka, whereas the faster slip rate, which is better 

matched for the model that includes inactive strands, is for the past 100 ka. The revised 

model better represents the most recent pattern of deformation along the faults. The 

abandonment of Banning strand segments could be associated with other transitions in 

the active configuration of the SAF that occurred at ! 100 ka (e.g., Matti and Morton, 

1993). The improvement of the San Gorgonio Pass thrust slip rates with removal of 

inactive segments of the Banning strand of the SAF suggests that the CFM and other 
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models should delineate between the strandÕs active and inactive segments. 

 

1.6. Sensitivity of Fault Slip Rates to Tectonic Boundary Conditions 

 Small changes to tectonic loading may influence convergence within the 

restraining bend of the southern Big Bend of the SAF. In this study, we vary tectonic 

plate velocity and orientation within the range of present-day uncertainty from 45 to 50 

mm=yr and from 320¡ to 325¡ in order to investigate the sensitivity of fault slip to 

tectonic boundary conditions. In Figures 1.5Ð1.8, we report the applied velocity to the 

model, 40Ð45 mm/yr, which is equivalent to 45Ð50 mm/yr across the plate boundary. 

Most faults in the region have changes in slip rates of < 0.25 mm/yr and are relatively 

insensitive to variations in tectonic boundary conditions. The faults with significant 

sensitivity (changes of " 0.25 mm/yr) are the Garlock and Garnet Hill faults, the Anza 

segment of the SJF, the San Bernardino strand of the SAF, and the eastern San Gorgonio 

Pass thrust (Fig. 5). For most faults, faster plate velocity produces greater strike- (Figure 

1.6) and dip-slip rates. 

1.6.1. Garlock Fault Sensitivity to Tectonic Boundary Conditions 

 Within our model, the Garlock fault has high sensitivity to tectonic boundary 

conditions. More northerly (325¡) plate velocities increase the average left-lateral slip 

rate by ! 0.7 mm/yr (Figure 1.5); the strike-slip rates along the trace of the Garlock fault) 

show similar sensitivity to tectonic loading (Figure 1.6). The more northerly (325¡) plate 

velocity acts oblique to the average strike of the Garlock fault and has greater resolved 

left-lateral strike-slip than the 320¡ plate velocity. Average dip-slip rates along the 

vertical Garlock fault are insensitive to tectonic loading (Figure 1.5). 
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1.6.2. San Andreas Fault Sensitivity to Tectonic Boundary Conditions 

 For all segments of the SAF, increased strike-slip rates occur for more westerly 

(320¡) loading, and increased dip-slip rates occur for more northerly (325¡) loading 

(Figures 1.5 and 1.6b). Of the strands of the SAF, the San Bernardino strandÕs modeled 

strike-slip rates are most sensitive to tectonic loading. The modeled strike-slip rate along 

the San Bernardino strand decreases by ! 0.7 mm/yr when plate velocity orientation is 

changed from 320¡ to 325¡, while modeled dip-slip rates are insensitive to orientation. 

 The modeled strike-slip rates along the eastern San Gorgonio Pass thrust, which is 

east of the junction with the San Bernardino strand of the SAF, decrease by ! 0.4 mm/yr 

when tectonic orientation is more northerly (325¡; Figure 1.5). Although the modeled 

right-lateral slip rates along the western San Gorgonio Pass thrust are insensitive to 

tectonic orientation, the average modeled dip-slip rates increase by ! 0.2 mm/yr with 

more northerly (325¡) loading (Figure 1.5). The increase in dip-slip rates includes a sense 

of slip reversal along portions of the fault from normal to reverse slip when plate motions 

are oriented at 325¡. This slip sense better agrees with geologic observations of slip rates 

along the western half of the San Gorgonio Pass thrust (Yule and Sieh, 2003). 

 Modeled strike-slip rates along the Garnet Hill and Banning strands of the SAF 

both decrease by ! 0.25 mm/yr under more northerly (325¡) plate orientations (Figure 1.5). 

Whereas the sensitivity of slip rates to tectonic loading varies by individual strands of the 

SAF, the general SAF has decreased strike-slip rates and increased dip-slip rates with 

more northerly plate velocity (Figures 1.5 and 1.6b). More westerly plate velocity 

produces greater slip along the SAF because the 320¡ plate velocity is closer to the strike 

of the San Bernardino and Coachella Valley segments of the fault than the 325¡ plate 
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velocity. 

1.6.3. San Jacinto Fault Sensitivity to Tectonic Boundary Conditions 

 More northerly plate motion decreases modeled strike-slip rates along the SJF and 

does not affect dip-slip rates (Figures 1.5 and 1.6c). The Anza segment of the SJF has the 

most significant decrease in modeled strike-slip rate (#0.3 mm/yr) with more northerly 

(325¡) plate motion (Figure 1.6). 

1.6.4. ECSZ Sensitivity to Tectonic Loading 

 For more northerly plate velocities, the Helendale, CalicoÐHidalgo, PisgahÐ

Bullion, and Ludlow faults have increased right-lateral strike-slip rates (Figure 1.5). In 

contrast, more northerly plate velocities decrease modeled strike-slip rates along the 

LenwoodÐLockhart fault and have no effect on the Camp Rock faultÕs modeled slip rates. 

The cumulative strike-slip rates across all faults are greatest when plate velocity is 

oriented at 325¡. This value is more closely aligned with the average trace of ECSZ faults 

and could account for greater strike-slip with 325¡ plate velocity. 

 The strike-slip rates at the site of geologic slip rate investigations along the Camp 

Rock fault are also insensitive to loading orientation, decreasing by 0.1 mm/yr when plate 

motion orientation is changed from 320¡ to 325¡ (Figure 1.7a). The Camp Rock fault is 

centrally located within the ECSZ, surrounded on the east and west by faults of similar 

length and orientation that are more sensitive to changes in tectonic boundary conditions. 

 Within the CFM, the LenwoodÐLockhart fault has an arcuate shape and merges 

with the Helendale fault to the north. The LenwoodÐLockhart fault has average strike of 

314¡, and the Helendale fault has more northerly average strike of 320¡. Strike-slip rates 

are higher along the Helendale fault for the same plate velocity orientations that produce 
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lower strike-slip rates along the LenwoodÐLockhart fault. For more northerly tectonic 

loading, strike-slip is favored along the more northerly striking Helendale fault; for more 

westerly loading, strike-slip is favored along the more westerly striking LenwoodÐ

Lockhart. 

1.6.5. Sensitivity of Vertical Deformation Pattern in San Bernardino Mountains 

 Uplift rate patterns within the San Bernardino Mountains reveal off-fault 

deformation within the mechanical models. Relative changes in uplift between models 

can also test the sensitivity of uplift rates and dip-slip rates along associated range-

bounding faults to tectonic loading conditions. Uplift rates from the linear elastic BEM 

models are corrected for isostatic compensation. Following Cooke and Dair (2011), we 

use a mantle density of 4100 kg/m3, crustal density of 2700 kg/m3, and flexural rigidity of 

the crust of 2 $ 1022 Pa m3 for our calculations. 

 Uplift rates within the San Bernardino Mountains region increase with magnitude 

of loading and with more northerly plate velocity orientation (Figure 1.8). The sharp 

gradients in uplift rates across faults reveal that uplift within the region is controlled by 

dip-slip along faults. The sensitivity of uplift patterns supports that of dip-slip rates along 

the SAF. Changing the plate velocity from 320¡ to 325¡ increases the deviation of the 

plate velocity from the overall trend of the SAF, resulting in decreased strike-slip rate and 

increased dip-slip rate, which produces greater uplift. 

 The percent change in uplift from 320¡ to 325¡ plate velocity orientation for four 

numbered locations within the San Bernardino Mountains is presented in Figure 8. These 

locations correspond to major fault-bounded structural blocks within the San Bernardino 

Mountains region undergoing vertical deformation at various rates: (1) Yucaipa Ridge, 
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(2) Morongo, (3) San Gorgonio, and (4) Big Bear blocks (Spotila et al., 1998). The 

positive percent changes show that a more northerly oriented plate velocity (325¡) results 

in increased uplift at those locations. The modeled uplift rates are more sensitive to 

changes in plate velocity orientation (0.15Ð0.25 mm/yr) than magnitude (< 0.05 mm/yr). 

However, the uplift rates are also far less sensitive to the range of tectonic loading tested 

than strike-slip rates along the faults (e.g., Figure 1.5). 

 

1.7. Comparison of Model and Geologic Slip Rates and Vertical Deformation 

 We compare modeled slip rates to rates revealed by geologic studies. Our 

improvements to the model of Cooke and Dair (2011), such as adding the Crafton Hills 

and Big Bear faults, and removing inactive segments of the Banning fault improve the 

match between modeled and geologic slip rates (e.g., reduces or eliminates erroneous 

normal and left-lateral strike-slip on the San Gorgonio Thrust fault). However, the 

tectonic loading (45 mm/yr at 308¡) used in Cooke and Dair (2011) is outside the range 

determined from geodetic studies of the region. Furthermore, Cooke and Dair (2011) 

report an average slip rate with standard deviation based on spatial variability of slip 

along faults but did not consider sensitivity to tectonic loading. By using a range of 

tectonic plate velocities and orientations, ranges of slip rates associated with plate motion 

uncertainty can be compared with geologic estimates. 

1.7.1. Comparison of Model and Geologic Slip Rates on the Garlock Fault 

 The modeled left-lateral slip rates overlap geologic slip rates of McGill and Sieh 

(1993) at site 6, overestimate slip rates of McGill et al. (2009) at site 2 and slightly 

underestimate the rates of Clark and Lajoie (1974) at site 3. Models with more westerly 
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oriented and slower plate velocities better match the geologic slip rate by minimizing 

both the under-estimation and overestimation of slip rates at sites 2 and 3, respectively. 

 The strike-slip rates along the fault trace are more sensitive to orientation of plate 

velocity than the average strike-slip rates along the entire Garlock fault (Figures 1.5 and 

1.6a). Whereas average strike-slip rates only change by ! 0.7 mm/yr, the surface-slip rates 

increase by as much as 1 mm/yr with more northerly plate velocity. 

1.7.2. Comparison of Model and Geologic Slip Rates on the San Andreas Fault 

 Modeled right-lateral strike-slip rates along the various segments of the SAF 

match well with the geologic rates (Fig. 1.6b). Geologic and modeled strike-slip rates are 

highest to the north and south of San Gorgonio Pass and decrease within the restraining 

bend. 

 Our model results match five of the six available geologic slip rates along the San 

Bernardino strand of the SAF but underestimate the rate of Harden and Matti (1989; 

Figure 1.6b). The slip rate of Harden and Matti (1989) has greater uncertainty than other 

studies for the San Bernardino strand of the SAF because they estimated age from soil 

profile development rather than radiometric dating. 

 Along the Banning strand of the SAF at Millard Canyon, our model matches the 

younger, ! 3 ka, strike-slip rate of 1.3Ð1.6 mm/yr (Yule and Sieh, 2003). Because our 

model implements the presently active fault geometry and plate velocities, the younger 

slip rate is more suitable for comparison. The older, ! 100 ka strike-slip rate may capture 

the transition in SAF geometry that occurred around this time (e.g., Matti and Morton, 

1993). Also at Millard Canyon, Yule and Sieh (2003) calculate a reverse slip rate of > 2.5 

mm/yr along the San Gorgonio Pass thrust during the past ! 13 ka. Our model produces 
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reverse slip rates at this site of 3.7Ð4.1 mm/yr and agrees with the geologic range. 

 Modeled strike-slip rates along the Coachella Valley strand of the SAF at Biskra 

Palms (sites 26 and 27) overlap with the 45Ð54 ka rates determined by Behr et al. (2010) 

and slightly overestimate the slip rate of van der Woerd et al. (2006). Slower plate 

velocities produce better match to geologic strike-slip rates at Biskra Palms (Figure 1.6b). 

Otherwise, all tectonic boundary conditions fit the geologic ranges equally for the SAF. 

 The decrease in right-lateral strike-slip rates along the SAF within the restraining 

bend 40Ð120 km south of Cajon Pass correlates well with the position of maximum right-

lateral slip rates along the Anza segment of the SJF (Figures 1.6b,c). Strike-slip lost from 

the SAF in the restraining bend is partly taken up by the SJF. 

1.7.3. Comparison of Model and Geologic Slip Rates on the San Jacinto Fault 

 Modeled right-lateral slip rates along the SJF match many of the available 

geologic rates (Figure 1.6c). Right-lateral slip rates along the modeled San Jacinto Valley 

segment of the SJF (Figure 1.6c) match the geologic rate of Prentice et al. (1986) but 

significantly underestimate the slip rate of Kendrick et al. (2002). The modeled strike-slip 

rates along the Anza segment show maximum slip rates south of the step-over at Hemet, 

California, and decrease southward to the tip of the fault segment. The modeled strike-

slip rates on the Anza segment of the SJF overlap most of the ranges of geologic strike-

slip rates (except site 9). The modeled Coyote CreekÐBorregoÐSuperstition Mountain 

(CC-B-SM) segment has lower strike-slip rates than geologic site 15 and higher strike-

slip rates than that of site 18 (Figure 1.6c). The model strike-slip rates overlap with 

geologic rates at sites 16 and 17. The general match of the model results to geologic slip 

data validates the model geometry for the San Jacinto Valley and Anza segments of the 
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SJF. This suggests that the fault surfaces used in the model are of sufficient detail to 

capture the first-order deformation of the SJF. However, the modelsÕ overestimation of 

strike-slip rates along the CC-B-SM fault may reflect oversimplification of these 

segments of the SJF within the CFM. 

1.7.4. Comparison of Model and Geologic Slip Rates Within the ECSZ 

 Modeled strike-slip rates along the Helendale and Camp Rock faults overestimate 

geologic slip rates (Figure 1.7a). The surface traces of these faults as defined within the 

United States Geological SurveyÕs Quaternary Fault and Fold Database (USGS and CGS, 

2006) are more segmented than represented in the CFM. Greater segmentation may 

reduce strike-slip rate. Modeled strike-slip rates along the Ludlow and LenwoodÐ

Lockhart faults overlap the geologic slip rates. Model results with more westerly and 

slower plate velocities overlap the geologic slip-rates along the CalicoÐHidalgo fault, but 

all other models overestimate the geologic rates. The modeled PisgahÐBullion fault 

underestimates the geologic strike-slip rate, and this is the only fault that has less of a 

mismatch of slip rates with more northerly loading. 

 The cumulative model slip rates across the ECSZ (7.9Ð9.8 mm/yr) are higher than 

the cumulative geologic slip rates across the ECSZ faults (4.3Ð8.1 mm/yr) but do overlap. 

The most westerly and slowest plate velocity produces the most overlap with the 

cumulative geologic strike-slip rate (Figure 1.7b). 

 

1.8. Discussion 

 Our results show that slip rates along some faults within the San Bernardino 

Mountains region are sensitive to tectonic boundary conditions. Understanding the 
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tradeoffs of slip rates between faults within the southern SAF system allows us to explore 

the evolution and partitioning of strain within the system. 

1.8.1. Uncertainties of Model Slip Rates Due to Uncertainties in Plate Velocity 

 Slip rate uncertainties associated with spatial variability along each fault and 

tectonic sensitivity are presented in Table 1.2. Spatial variability is assessed from the 

standard deviation of the weighted average slip rate. This value reflects the range of slip 

rates that occur along each fault segment. For example, an infinite, planar, and isolated 

fault would have uniform slip and low standard deviation in slip rates. Spatial variability 

in slip rate owes to both topological variations along faults and interaction with nearby 

faults. A consequence of spatial variability is that slip rates sampled at one point on the 

fault may not be representative of slip rates elsewhere. Tectonic sensitivity is the range in 

weighted average slip rates for the four models of end member observations of plate 

velocity magnitude and orientation. Total uncertainty is the sum of spatial variability and 

tectonic sensitivity. While tectonic sensitivity is smaller than spatial variability, both 

contribute to overall fault slip-rate uncertainty. The only slip rate with greater tectonic 

sensitivity than spatial variability is the strike-slip rate along the Helendale fault. This 

suggests that geometric variations along the Helendale fault do not contribute as much to 

errors in estimation of representative strike-slip rate as the uncertainties of tectonic 

loading. Ignoring tectonic sensitivity could lead to significant underestimation of strike-

slip rate uncertainty for this fault. For all other faults in the southern SAF system, a 

greater degree of spatial variability compared with tectonic sensitivity is yet another 

manifestation that geometric heterogeneities are a first-order control on fault-slip rates 

(e.g., Marshall et al., 2009; Dair and Cooke, 2009). 
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 Slip rates with > 0.4 mm/yr of tectonic sensitivity include strike-slip rates along 

the Garlock fault and the San Bernardino strand of the SAF, which is also the only fault 

with dip-slip tectonic sensitivity > 0.2 mm/yr. The sensitiv ity of strike-slip rate to spatial 

variability is ! 3Ð35 times larger than that of tectonic sensitivity along fault strands that 

are active within the restraining bend of the SAF. For these faults, which have complex 

topology, the fault geometry dramatically controls the distribution of strike-slip rates. 

Along the SJF, the spatial variability of such rates is ! 4Ð22 times greater than the 

tectonic sensitivity. For the SJF, the geometric control on the distribution of strike-slip 

rates is not a restraining bend but rather large stepovers between individual fault 

segments, such as those near Hemet, California. 

 The tectonic sensitivity of dip-slip rates is only significant for dipping faults such 

as the west and east portions of the San Gorgonio Pass thrust and the north-dipping 

Garnet Hill strand of the SAF. The Mission Creek strand of the SAF is vertical, but the 

sensitivity of dip-slip rate to tectonic loading may owe to this faultÕs intersection with the 

dipping Garnet Hill strand of the SAF. For all segments of the SAF and the SJF systems, 

the ECSZ, and the Garlock fault, the incorporation of tectonic sensitivity significantly 

increases the uncertainty of average strike-slip rates along these faults. 

1.8.2. Remaining Mismatch Between Model and Geologic Slip Rates 

 A comparison of model and geologic slip rates serves as validation of fault 

geometries, tectonic boundary conditions, and other assumptions in the model. This 

section discusses the remaining discrepancies between geologic and modeled slip rates, 

outlining possible errors within the model and potential methods to improve the match 

between model results and geologic data. While errors in tectonic loading could produce 
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erroneous slip rates, our model results show that inaccurate fault geometry has much 

greater impact on errors in slip rates. 

1.8.2.1. ECSZ 

 Cumulative strike-slip rates of the modeled ECSZ along a transect at ! 34¡45! 

latitude are slightly higher than the range of cumulative geologic rates from Oskin et al. 

(2008) but do overlap (Figure 1.7). The level of geometric detail incorporated in the 

modeled ECSZ faults may account for the differences. Although modeled as continuous 

features in the SCEC CFM, many of the faults in the ECSZ are discontinuous along their 

trace and include small bends and stepovers (Oskin et al., 2008). If the modeled fault 

trace geometry is oversimplified, the model will overestimate strike-slip rates. Adding 

this geometric detail to the model could reduce strike-slip rates along some sections of 

the faults. For example, if strike-slip rates were decreased along the Helendale and Camp 

Rock faults, our model would produce a better match to geologic data. 

 The cumulative strike-slip rates across the ECSZ in our models (7.9Ð9.8 mm/yr) 

are closer to the geologic cumulative slip rate (4.3Ð8.1 mm/yr) than those inferred from 

geodetic data for the region, which estimate 12 ± 2 mm/yr. Several factors may account 

for the overestimation of strike-slip rates in GPS studies. These GPS models do not 

incorporate the level of geometric detail presented in this paper; the planar, vertical, and 

connected fault geometries used in models that invert for slip from GPS velocities (e.g., 

Becker et al., 2005; Meade and Hager, 2005; Spinler et al., 2010) may oversimplify the 

fault network and overestimate slip rates. Furthermore, post-seismic deformation 

associated with recent large earthquakes within the ECSZ may create anomalously high 

GPS velocities that slowly diminish following each event accounting for mismatch 
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(Oskin et al., 2008). Additionally, distributed off-fault deformations may contribute to the 

relative displacement of GPS stations and be erroneously attributed to slip along the 

faults. 

1.8.2.2. San Gorgonio Pass Fault 

 The modeled San Gorgonio Pass thrust has portions with both normal and reverse 

slip. The Crafton Hills fault added to the model improved upon the results of Cooke and 

Dair (2011) but did not completely resolve the anomalous normal slip along some parts 

of the San Gorgonio Pass thrust. The San Gorgonio Pass fault, as defined within the CFM 

and this model, has a corrugated eastÐwest striking surface trace and dips 45¡ to the north. 

If the fault were steeper at depth, dip-slip may be reduced; conversely, it would be 

enhanced at shallow depths (Cooke and Dair, 2011). Yule and Sieh (2003) propose that 

this geometry could account for extensional features observed at the Cox Ranch fault 

zone and Beaumont Plain fault zone. Accommodation of extension along these structures 

may further reduce normal slip along the western San Gorgonio Pass thrust fault. 

1.8.2.3. San Bernardino Strand of the San Andreas Fault 

 Fuis et al. (2012) found that a 37¡ northeast-dipping San Bernardino strand of the 

SAF fits the magnetic data better than a vertical strand, as is incorporated in the SCEC 

CFM and this study. In the transpressional environment of the restraining bend, we 

expect that a northeast dip to the San Bernardino strand would increase reverse-slip rates 

along this fault and associated uplift of the San Bernardino Mountains. Future BEM 

models can explore this fault geometry, but dip-slip rates are not available at this time for 

validation of the model results. In the BEM models, a shallower dipping San Bernardino 

strand of the SAF is unlikely to alter strike-slip rates, which match the observed 
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distribution of strike-slip rates from Cajon Pass to Burro Flats (Figure 1.6b). 

1.8.3. Alternative Loading Along the Southern San Jacinto and San Andreas Fault 

 Along the southern edge of our model, strike-slip rates along the San Andreas and 

San Jacinto faults are driven by prescribed tectonic boundary conditions of 25 and 10 

mm/yr, respectively (Figure 1.3). This tectonic boundary condition follows the idea that 

the SAF accommodates more strain than the SJF (e.g., Sharp, 1981; Meade and Hager, 

2005; Becker et al., 2005; Fay and Humphreys, 2005). Other researchers propose that the 

SJF accommodates the same or more deformation than the SAF (e.g., Kendrick et al., 

2002; Fialko, 2006; Lundgren et al., 2009; Janecke et al., 2010). Distributing the total 

strain (35 mm/yr total) evenly between the two faults could change slip-rate profiles. We 

apply equal distribution of slip rates along the southern edge of the model and compare 

the resulting slip-rate profiles to those with 25 mm/yr and 10 mm/yr prescribed at the 

model edge. 

 The effect of increasing slip rate from 10 to 17.5 mm/yr decreases along the San 

Jacinto fault to the north, away from the applied load (Figure 1.9). Although higher 

strike-slip rates create a better match to geologic strike-slip rates at sites 9 and 11, higher 

strike-slip rates create more mismatches for sites 10, 14, 15, 16, 17, and 18. Modeled 

strike-slip rates along the San Jacinto Valley segment of the SJF are nearly unaffected by 

the increased loading. Under both edge loading, the maximum strike-slip rate along the 

Anza segment of the SJF exceeds the rate applied at the modelÕs edge. This suggests that 

strike-slip rates along the portion of the SJF are not controlled by partitioning of shear 

strain between the San Andreas and San Jacinto faults but by resistance to strike-slip of 

the SAF within the restraining bend. 
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 The effect of reducing the strike-slip rate along the southern edge of the SAF is 

only noticeable on three faults: the Coachella Valley segment, Mission Creek stand, and 

the southern portion of the Banning strand (Figure 1.9). Besides the Coachella Valley 

strand, which is directly connected to the vertical patch with applied slip rate, the change 

in strike-slip rate due to a more distributed loading between the San Andreas and San 

Jacinto faults is < 1 mm/yr at the surface. 

 The insensitivity of strike-slip rates along the southern San Andreas and San 

Jacinto faults to distribution of applied slip rates at vertical patches at the edge of the 

model reveals that slip rates are primarily controlled by fault geometry and the overall 

applied tectonic loading. Although these changes to the model-edge slip rate have some 

effect on strike-slip rates, they do not produce better matches to the geologic slip rates 

(Figure 1.9). These results also demonstrate that away from the boundary of the model, 

specific boundary loading conditions do not change slip rates within the central part of 

the model. 

1.8.4. Long-Term Change in Plate Boundary Strain Conditions 

 The southern SAF is interpreted to have changed its configuration > 95 ka (Matti 

and Morton, 1993; Kendrick et al., 2011). Recent luminescence dating of fault alluvium 

across the Mill Creek strand of the SAF shows that it has not slipped in 95 ka (Kendrick 

et al., 2011). Sometime prior to 95 ka, the Mill Creek strand connected the Mission Creek 

strand to the San Bernardino strand of the SAF via a gentler restraining bend than the 

active bend that follows the San Gorgonio Pass thrust and Garnet Hill strand of the SAF 

(Figure 1.1). Three-dimensional numerical models by Cooke and Dair (2011) suggest that 

> 95 ka the Mill Creek configuration of the SAF accommodated greater net slip rate 
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across the region than the present-day configuration and that the presently active system 

accommodates greater uplift. If faults evolve to more efficiently accommodate applied 

strains, we should expect more mature fault systems to have greater strike-slip rates. We 

consequently cannot explain why the SAF abandoned the through-going Mill Creek 

configuration for the complex, presently active fault system. However, this abandonment 

might be explained by an overall change in plate motion. Our model results suggest that 

north-south oriented plate motions slow down slip rates along the SAF and increase uplift 

rate (Figure 1.10). A change from more northwest-southeast to north-south plate motion 

along the boundary before 95 ka may explain why the SAF abandoned a seemingly 

efficient fault for a more kinked geometry that is associated with greater uplift. Northerly 

tectonic loading also promotes right-lateral slip along the ECSZ (Figure 1.10). A 

continued northerly shift in plate motion could favor the abandonment of the kinked SAF 

within San Gorgonio Pass and the linking of ECSZ faults with the Coachella Valley 

segment of the SAF. 

 

1.9. Conclusions 

 BEM models of deformation in the San Bernardino Mountains region suggest that 

tectonic boundary conditions influence slip rates along some faults more than others. The 

results of this study produce a range of fault slip rates, acknowledging uncertainties in 

slip variability due to both fault geometry and plate velocity of the system. Increasing 

plate velocity consistently increases fault-slip rate. This study reinforces previous 

research that fault geometry exerts a first-order control on deformation. Revisions to fault 

geometry improve the match of model-slip rates to geologic observations along both the 



 29 

revised and nearby faults. Fault slip rates are more sensitive to spatial variability due 

more to geometric variations than uncertainties of tectonic loading. The partitioning of 

strike-slip rates between the San Jacinto and San Andreas faults may owe to geometric 

controls rather than a direct partitioning of loading. A change from westerly (320¡) to 

northerly (325¡) oriented plate velocity facilitates uplift of the San Bernardino Mountains, 

left-lateral strike-slip on the Garlock fault and right-lateral strike-slip on the ECSZ. In 

contrast, more northerly plate velocities slow strike-slip rates on the San Andreas and San 

Jacinto faults. The relationship between the orientation of plate motion and slip rates may 

provide insights into the recent (> 95 ka) change in SAF configuration. The study results 

suggest that a shift to more northerly plate motions could facilitate the increased uplift of 

the San Bernardino Mountains within the southern SAF restraining bend at the expense 

of strike-slip rates along the SAF and may account for the > 95 ka change in SAF 

geometry. 
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1.10. Figures 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Fault trace map of the San Bernardino Mountains region. The acronyms 
denote Cajon Pass (CP), the San Andreas fault (SAF), and the Crafton Hills fault zone 
(CHFZ). 
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Figure 1.2. Fault traces within the study area with locations of Quaternary geologic slip-
rates indicated by circles (right-lateral) and squares (left-lateral) shaded by slip rate (site 
26 is the only reverse-slip rate and indicated by a solid black triangle). Numbers 
correspond to slip rate investigations listed in Table 1.   
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Figure 1.3. Oblique view of model setup. Faults are discretized into triangular elements 
as shown along part of the San Jacinto fault (SJF). Half of the plate motion (v) is applied 
to the southwest and northeast edges of the model. Applied plate motion decreases step-
wise toward the center of the model along the northwest and south-east edges. Where 
faults extend outside the boundary of the model, we prescribed slip rates along vertical 
edge cracks. 
  



 33 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.4. Strike-slip rates along the trace of the San Gorgonio Pass thrust and Banning 
strand with model tectonic loading of 45 mm=yr at 308¡. By removing the inactive 
portions of the Banning strand, the modeled slip rate along the San Gorgonio Pass thrust 
(solid lines) has the correct sense of slip. Furthermore, modeled strike-slip rates along the 
Banning strand of the San Andreas fault (SAF) still match geologic rates at Millard 
Canyon (Yule and Sieh, 2003). Vertical bars (25a and 25b) show geologic slip rates along 
the Banning strand within the Millard Canyon (Table 1; Yule and Sieh, 2003). 
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Figure 1.5. Change in weighted average dip-slip rate (circles) and strike-slip rate 
(triangles) from 320¡ to 325¡ plate velocity orientation. Circles and triangles outside of 
the horizontal rectangle are considered significant changes in slip rate (> 0:25 mm=yr). 
The change was calculated for both 40 and 45 mm=yr applied velocities shown side-by-
side in each gray column. A negative change indicates that strike-slip and dip-slip rates 
along the fault decrease with a more northerly plate velocity orientation, while a positive 
indicates greater slip rate. Along most faults, strike-slip is more sensitive to changes in 
plate velocity orientation than is dip-slip. With more northerly plate velocity, the strike-
slip rate increases along the Garlock fault and the Eastern California Shear Zone (ECSZ) 
while strike-slip rates decrease along the San Andreas and San Jacinto faults. More 
northerly plate velocity increases dip-slip rate along the San Andreas fault (SAF). The 
acronym CC-B-SM denotes Coyote CreekÐBorregoÐSuperstition Mountain segment. 
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Figure 1.6. Strike-slip rate profiles along the traces of the (a) Garlock fault, (b) San 
Andreas, and (c) San Jacinto faults for variations in tectonic loading. Vertical bars 
represent geologic slip rates along the faults (Fig. 1.2; Table 1.1). Vertical bars in (b) and 
(c) correspond to different strands of the San Andreas and San Jacinto faults. Surface 
strike-slip rates generally increase with greater plate velocity. With more northerly 
tectonic loading, strike-slip rates decrease on the San Andreas and San Jacinto faults and 
increase along the Garlock fault. The acronym CC-B-SM denotes Coyote CreekÐ
BorregoÐSuperstition Mountain segment. 
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Figure 1.7. (a) Geologic and modeled strike-slip rates along the six major faults of the 
Eastern California Shear Zone (ECSZ) at sites of geologic investigations. (b) Cumulative 
slip rates across the Eastern California Shear Zone. (c) Sites of geologic investigations. 
Gray vertical bars represent geologic slip rates in (a) and (b) (see Table 1 for site details). 
Horizontal black (45 mm=yr plate velocity) and gray lines (40 mm=yr plate velocity) 
show modeled strike-slip rates at the locations of the geologic investigations. The 
acronyms denote Helendale (H), LenwoodÐLockhart (LL), Camp Rock (CR), CalicoÐ
Hidalgo (CH), PisgahÐBullion (PB), and Ludlow (L). 
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Figure 1.8. (a) Contoured uplift rates within the San Bernardino Mountains region 
corrected for isostasy. Columns represent models of the same plate motion orientation 
and rows show different plate motion velocities. Maximum uplift occurs in models with 
faster and more northerly plate motions. (b) Change in uplift between 320¡ models and 
325¡ models at four locations of various rates: (1) Yucaipa Ridge, (2) Morongo, (3) San 
Gorgonio, and (4) Big Bear blocks. Positive numbers show an increase in uplift as plate 
motion becomes more northerly oriented (320¡Ð325¡). The uplift rates are less sensitive 
than strike-slip rates to the range of tectonic loading tested. 
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Figure 1.9. Slip rate profiles for the (a) San Jacinto and (b) San Andreas faults comparing 
different loading along vertical patches on southern boundary of the model. Dotted lines 
represent the distribution of velocity used in our models where the San Andreas fault 
(SAF) is prescribed 25 mm=yr and the San Jacinto fault (SJF) is prescribed 10 mm=yr. 
Solid lines represent equal velocity (17:5 mm=yr) on both faults. Slight changes occur 
along faults close to the prescribed velocity and these changes decrease along the fault to 
the north. 
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Figure 1.10. Schematic of strike-slip magnitude and uplift rates in the San Bernardino 
Mountains region for westerly (320¡) and northerly (325¡) plate motions. Red/bold 
indicates faster strike-slip/uplift rates and blue/thin indicates slower rates. The acronyms 
denote the San Andreas fault (SAF), the San Bernardino Mountains region (SBMR), San 
Jacinto fault (SJF), and Eastern California Shear Zone (ECSZ). 
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1.11. Tables 
 

 
 
 
 

Table 1.1. Recent geologic slip rates for the San Bernardino Mountains region. The sense 
of motion is indicated by LL (left-lateral), RL (right-lateral), and RV (reverse). Site 
locations are shown in Figure 1.2. 
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Table 1.2. Weighted average fault slip rates with spatial variability (standard deviation of 
slip) and tectonic sensitivity (Range of Average Slip for the Four Models). Values of slip 
rate and spatial variability are reported as the mean of the four models. Positive strike-
slip values are right-lateral, and positive dip-slip indicates reverse-slip. The acronym CC-
B-SM denotes Coyote CreekÐBorregoÐSuperstition Mountain. 
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CHAPTER 2 
 

HOW MUCH CAN OFF-FAULT DEFORMATION CONTRIBUTE TO THE SLIP 

RATE DISCREPANCY WITHIN THE EASTERN CALIFORNIA SHEAR ZONE? 

 

2.1. Introduction 

 The eastern California shear zone (ECSZ) in southern California contains an 

active network of predominantly northwest-southeastÐstriking right-lateral strike-slip 

faults that accommodate 12%Ð25% of the total plate motion between the Pacific and 

North America plates (e.g., Dokka and Travis, 1990). Uncertainty in the contribution of 

the ECSZ to plate boundary deformation is due to the differences in the findings from 

geologic and geodetic studies. While geologic estimates of the cumulative slip rate across 

the 6 major faults in the southern ECSZ sum to 6.2 ± 1.9 mm/yr (Oskin et al., 2008), 

inversions from GPS station velocities yield rates of 13.5Ð18 mm/yr (e.g., Meade and 

Hager, 2005; Loveless and Meade, 2011). The 7Ð12 mm/yr discrepancy in slip rates has 

been attributed to temporal differences within the strain field (e.g., Dolan et al., 2007; 

Oskin et al., 2008; Chuang and Johnson, 2011). Moreover, inaccurate and oversimplified 

fault geometries in the GPS inversion models may lead to overestimates of slip rates that 

can contribute significantly to this discrepancy. 

 Unlike long, straight, and planar faults that may have uniform distribution of slip 

rates along their traces, faults with bends, stepovers, or terminations will have gradients 

in slip that trade off with distributed strain of the surrounding crustal volume. The 

earthquake rebound theory conceptualizes that stored elastic strain should be entirely 

released during earthquake events; however, strain around fault irregularities may not be 
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completely released. Consequently, this strain can accrue over many earthquakes as 

measureable, permanent, and distributed off-fault deformation. Geodetic model 

inversions for fault slip rates that are based on kinematic assumptions require fault slip 

rates to sum to the GPS (i.e., plate boundary) velocity. The elastic models used in these 

inversions consequently assume zero permanent off-fault deformation and all of the 

observed GPS deformation is attributed to fault slip. 

 In this study we investigate the Mojave Desert portion of the ECSZ, located 

between the Garlock and San Andreas faults. This area is one of the most segmented and 

discontinuous sections of the PacificÐNorth America plate boundary and is the locus of a 

profound disparity between geologic and geodetic fault slip rates (e.g., Oskin et al., 2008). 

First, we update the fault geometry of the Southern California Earthquake CenterÕs 

Community Fault Model (CFM; Plesch et al., 2007) to more accurately represent the 

discontinuous nature of the active ECSZ system. To validate the revised faults, we 

compare the results from three-dimensional mechanical simulations of the region to 

measured geologic slip rates. We then use the deformation field from the validated model 

to determine the contribution of off-fault deformation across the ECSZ. 

 

2.2. Methods 

 We use the boundary element method (BEM) code Poly3D (Thomas, 1993) to 

simulate three-dimensional deformation of the ECSZ. With the BEM, faults are 

discretized using triangular elements, which can create complex fault geometries without 

overlapping or forming gaps along curved surfaces. The CFM represents subsurface 

geometries of active faults based on a variety of geologic and geophysical data (Plesch et 
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al., 2007). Our model incorporates 52 active faults within and around the ECSZ, 

including the San Andreas, San Jacinto, and Garlock faults. Within the mechanical model, 

we extend the faults to a depth of 35 km where they join into a horizontal crack that 

simulates distributed deformation beneath the seismogenic crust. Near-surface 

deformation is independent of horizontal crack depths >20 km (Marshall et al., 2009). 

Where faults extend to the model boundaries we prescribe known geologic slip rates to 

avoid zero slip at the lateral fault tips. On the outer edge of the basal crack, we apply a 

range of plate velocities of 45Ð50 mm/yr oriented between 320¡ and 325¡ that reflects 

uncertainty in plate motions (e.g., DeMets et al., 2010). The faults freely slip in response 

to both this loading and their interactions with nearby faults. The frictionless faults 

simulate the low strength conditions during earthquakes, which is when most slip 

accumulates along faults. Similar three-dimensional BEM models have been used 

recently to investigate active faulting in southern California (e.g., Marshall et al., 2009; 

Cooke and Dair, 2011; Herbert and Cooke, 2012). 

 Comparison of the Fault Activity Map of California (Jennings and Bryant, 2010) 

and the CFM reveals that within the central Mojave three faulted regions are inaccurately 

represented within the CFM (Figures 2.1A and 2.1B): the northern Calico fault, the 

region between the Harper Lake and Camp Rock faults, and the Lockhart and Lenwood 

faults region. The northernmost 10 km of the Calico fault, north of Interstate 15, has not 

had right-lateral slip within the past 700 k.y. Here the fault is evidently cutting bedrock 

(McCulloh, 1960), but does not disrupt overlapping late Quaternary alluvial fans. The 

CFM also links the Camp Rock and Harper Lake faults with a linear fault segment where 

no surface trace exists. Instead, both the Camp Rock and Harper Lake faults appear to 
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terminate within east-westÐstriking folded Miocene strata (Dibblee, 1970). Within the 

CFM, the Lockhart fault branches and is continuous with the Lenwood and Helendale 

faults; however, many segments of these faults have not ruptured for 700 k.y. and are 

inactive (Figure 2.1). It is conceivable that these connections do not exist, and these faults 

simply terminate without connecting to other faults. This is most evident for the Lenwood 

fault, which bends westward and loses slip within the Lenwood anticline at the faultÕs 

northernmost mapped extent (Dibblee, 1970). To produce a more accurate model of 

deformation in the region we remove the inactive and nonexistent fault segments from 

the CFM representation of these three faulted regions of the ECSZ. 

 

2.3. Changes in Fault Slip Rates Due to Fault Model Revisions 

 The geologic slip rates measured at specific sites along the Calico, Camp Rock, 

Lenwood, and Helendale faults are compared to model-predicted strike-slip rates (Figure 

2.2). Following the approach in Herbert and Cooke (2012), the ranges in slip rates that 

result from the applied boundary conditions reflect uncertainty in plate motions. 

 Along the Calico fault, both the CFM-based model and the revised model produce 

strike-slip rates that overlap the geologic rate (Oskin et al., 2007) at the study site (Figure 

2.2A). Strike-slip rates along the faults are similar; however, slip rates from the revised 

model are slightly higher near the site of geologic investigations (Figure 2.2A). This local 

increase includes slip transferred from the disconnection of the nearby Harper Lake and 

Camp Rock faults. 

 Removing the inaccurate connection between the Harper Lake and Camp Rock 

faults decreases right-lateral slip rates along both faults (Figure 2.2B). The slip rate for 
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the Camp Rock fault from the revised model agrees with the geologic rate of Oskin et al. 

(2008). The large improvement of the match between our model and the geologic slip 

rates with the removal of just one fault segment between the Harper Lake and Camp 

Rock faults highlights the large impact that small changes to fault geometries can have on 

crustal deformation. 

 The removal of three connecting fault segments between the Helendale, Lockhart, 

and Lenwood faults has a complex effect on strike-slip rates along these faults (Figure 

2.2C). Disconnection of the Helendale fault from the southern Lockhart fault greatly 

reduces the right-lateral slip rate along the Helendale fault, such that it overlaps the 

observed strike-slip rate (Oskin et al., 2008). With the revisions to the fault geometry, 

right-lateral slip rates along the Lockhart and Lenwood faults increased, and more 

notably, the Lockhart fault changes from having predominately left-lateral strike-slip to 

entirely right-lateral strike-slip. Although no geologic slip rates are available along the 

Lockhart fault, the right-lateral sense of slip within the model agrees with geologic 

evidence that the Lockhart fault is right-lateral (Jennings and Bryant, 2010). The 

increased right-lateral slip along the Lenwood fault is a consequence not so much of the 

disconnection of the Lockhart and Lenwood faults, but the disconnection of the nearby 

Helendale and South Lockhart faults that transfers right-lateral slip to the Lenwood fault. 

The revised model produces right-lateral slip along the Lenwood fault that overlaps the 

rate determined in Oskin et al. (2008). 

 In summary, the revisions to the geometry of the Calico, Harper Lake, Camp 

Rock, Lockhart, Lenwood, and Helendale faults better replicate the mapped active traces 

from Jennings and Bryant (2010) and better match the available strike-slip rates (Oskin et 



 47 

al., 2007, 2008; Figure 2.3). 

 

2.4. Off-Fault Deformation 

 Whereas long and planar faults may have relatively constant slip rates, the 

disconnected faults of the Mojave Desert portion of the ECSZ produce local gradients in 

slip (Figures 2.2 and 2.3) that may localize stresses and promote permanent off-fault 

deformation (e.g., Savage and Cooke, 2010). Mechanisms for permanent deformation 

include cleavage development, granular flow, folding, secondary faulting, pressure 

solution, and microcracking that can yield significant rotations of features adjacent to 

faults (e.g., Duebendorfer et al., 1998; Shelef and Oskin, 2010; Titus et al., 2011). 

 We investigate the pattern of off-fault deformation in the ECSZ using strain 

energy density, which shows the mechanical work of deformation in the rock surrounding 

the faults. The elastic properties of the BEM model do not explicitly consider inelastic 

processes, but the loci of high strain energy density highlight where inelastic processes 

should be prevalent. Strain energy density from linear-elastic models has been correlated 

to the development of permanent deformation that leads to the growth of faults (e.g., Du 

and Aydin, 1993; Okubo and Schultz, 2005; Olson and Cooke, 2005). The strain energy 

density is greatest near fault tips and bends along faults of the ECSZ (Figure 2.4A). For 

example, several faults terminate or bend near point A in Figure 4A to produce a large 

lobe of high-strain energy density at that location. 

 The model results reveal how fault slip and off-fault deformation each contribute 

to the total velocity across the fault zone. The plate-motion-parallel velocity profiles 

across the region of investigation highlighted in Figure 4A show sharp increases in 
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velocity across fault traces, corresponding to fault slip, and also gradual increases within 

the regions between the faults, corresponding to off-fault deformation (Figure 2.4B). The 

ratio of off-fault contribution to total velocity increases from the south to north in the 

region of investigation (Figure 2.4C). Velocity transects north of UTM northing ~3860 

km may have 60% of the total velocity contributed from off-fault deformation. Across the 

Mojave Desert region, between UTM northing 3820 km and 3890 km, off-fault 

deformation accounts for 40% ± 23% of the overall plate-parallel velocity across the 

ECSZ. This is consistent with the findings in Shelef and Oskin (2010) that show as much 

as 25% off-fault deformation adjacent to faults in the ECSZ. Our results are also 

consistent with more extensive deformation models of southern California that use less 

detailed fault networks. Across the PacificÐNorth America plate boundary, Bird (2009) 

and Johnson (2013) showed 33% and 28%Ð33%, respectively, off-fault deformation with 

greater than average off-fault deformation within the ECSZ. 

 Permanent strain may be expressed within the Mojave Desert portion of the ECSZ 

in a variety of ways. Off-fault deformation appears to be more prevalent in areas of local 

transpression, near fault tips, and where slip gradients are large. For example, the 

northern tips of the Lenwood and Camp Rock faults transition into the south limb of the 

Lenwood anticline (Dibblee, 1970). The northern Calico fault does not display recent 

ground rupture, but the nearby pediments are folded (Dibblee, 1968) and the Calico 

Mountains could be undergoing active uplift as well. Our models predict significant off-

fault deformation at these locations (Figure 2.4A). 
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2.5. Potential Role of Off-Fault Deformation on Geodetic Estimates of Slip 

 Our model results suggest that while the GPS velocity across the Mojave Desert 

portion of the ECSZ shows a total strike-slip rate of 13.5Ð18 mm/yr, ~40% of this strain 

may be expressed as off-fault deformation. Taking into account this off-fault deformation 

could reduce the GPS-derived cumulative slip rate along discrete faults of the ECSZ to 

8.1Ð10.8 mm/yr. Consequently, the discrepancy between geodetic and geologic slip rates 

decreases from 7 to 12 mm/yr to 2Ð5 mm/yr and nears the uncertainty of the geologic slip 

estimates. The remaining discrepancy may be due to temporal variations in the strain 

field (e.g., Dolan et al., 2007; Oskin et al., 2008; Chuang and Johnson, 2011) and/or 

sampling of slip rates at study sites that are located near the ends of the faults where slip 

decreases (Figure 2.3). The significant off-fault deformation across the ECSZ indicates 

that deformation models should consider this strain sink in their kinematic analyses of 

plate motion and its manifestation as future earthquakes on major identified faults. 

 

2.6. Conclusions 

 We revised existing models of the ECSZ to better replicate the disconnected 

mapped fault traces (Jennings and Bryant, 2010). BEM elastic modeling of slip on the 

disconnected ECSZ fault array produces a better match of right-lateral strike-slip rates 

along the Camp Rock and Helendale faults than the overly connected geometry of the 

CFM (Plesch et al., 2007). Within the disconnected fault models, off-fault deformation 

accounts for 40% ± 23% of the total strain across the ECSZ. This strain is not negligible 

and should be considered as a strain sink when determining fault slip rates from geodetic 

measurements. 
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 The Mojave Desert portion of the ECSZ is one of the most discontinuous sets of 

dextral faults within the PacificÐNorth America plate boundary. As such, off-fault 

deformation accounting for ~40% of the overall velocity across the ECSZ may represent 

an upper range for the amount of such deformation expected along other crustal-scale 

fault zones. Titus et al. (2011) showed that the off-fault deformation adjacent to the 

creeping section of the central San Andreas Fault contributes 10%Ð16% of the total 

relative motion. These observations, that significant off-fault deformation occurs along 

crustal faults ranging from the most immature and discontinuous parts of the ECSZ, to a 

mature plate-boundary fault renowned for its simple geometry and inferred weak 

properties, cast doubts on the universal assumption that interseismic geodetic 

measurements directly reflect slip rates on crustal faults and that fault slip should sum to 

the plate velocity. The hazard implications of this off-fault deformation will depend on 

whether it is released seismically in rare events, increasing hazard away from recognized 

active faults, or dissipated aseismically, reducing overall seismic moment release. 
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2.7. Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. A: Fault trace map of modeled eastern California shear zone faults based on 
Southern California Earthquake CenterÕs Community Fault Model (CFM), with 
modifications presented in this study. Small filled circles indicate locations of geologic 
investigations with right-lateral slip rates (Oskin et al., 2007, 2008). Dotted lines indicate 
segments of faults that were removed from CFM to better match active fault traces in this 
study. Dot-dash line shows location of Interstate 15. Gray line follows Lenwood anticline 
(LA) hinge. CMÑ Calico Mountains, HLÑ Harper Lake, SLÑ South Lockhart. B: Fault 
traces adapted from Jennings and Bryant (2010). Solid lines indicate Quaternary faults 
with activity in past 700 k.y. and dotted lines indicate no activity in that time. 
Abbreviations: HÑ Helendale, LHÑ Lockhart, LWÑ  Lenwood, GHÑ Gravel Hills, 
BWÑ Blackwater, CÑ Calico, CRÑ Camp Rock. 
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Figure 2.2. Surface strike-slip rates (RLÑ right lateral). A: Calico fault. B: Harper Lake 
and Camp Rock faults. C: Helendale, Lenwood, and Lockhart faults. Vertical bars 
represent geologic slip rate data (from Oskin et al., 2007, 2008) and are shaded to match 
corresponding faults. Disconnected fault geometry that more accurately replicates 
mapped fault traces produces better match to measured geologic right-lateral slip rates. 
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Figure 2.3. Right-lateral strike-slip rates along modeled faults in eastern California shear 
zone match geologic estimates. Stars indicate sites of geologic investigation with right-
lateral slip rates. Abbreviations: UTMÑ  Universal Transverse Mercator, HÑ Helendale, 
LHÑ Lockhart, SLÑ South Lockhart, LWÑ Lenwood, GHÑ Gravel Hills, BWÑ  
Blackwater, CÑ Calico, CRÑ Camp Rock, PBÑ Pisgah-Bullion, LÑ Ludlow. 
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Figure 2.4. A: Strain energy density at 12 km depth reveals pattern of off-fault 
deformation in eastern California shear zone (ECSZ). Many continuous GPS stations are 
located in regions of significant off-fault deformation. We analyzed off-fault deformation 
within shaded region of investigation. B: Cumulative off-fault 325¡ directed (plate 
motion parallel) velocity across ECSZ. C: Ratio of off-fault to total plate motion velocity 
integrated across east-west transects within region of investigation shows that off-fault 
strain contributes 60% of total velocity in northern region. Pink bar represents average 
off-fault deformation over entire region of investigation. 
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CHAPTER 3 

INFLUENCE OF FAULT CONNECTIVITY ON SLIP RATES IN SOUTHERN 

CALIFORNIA: POTENTIAL IMPACT ON DISCREPANCIES BETWEEN 

GEODETIC DERIVED AND GEOLOGIC SLIP RATES 

 

3.1. Introduction 

 The forecasting of seismic hazards depends on accurate slip rate estimates [e.g., 

Field et al., 2013]. In southern California (Figure 1), short-term slip rates inferred from 

geodetic data do not everywhere agree with long-term geologic slip rates determined 

from paleoseismic and tectonic geomorphology studies. Two areas with such 

discrepancies are the San Bernardino strand of the San Andreas fault (SAF) and the faults 

of the eastern California shear zone (ECSZ). Discrepancies between the short- and long-

term slip rates may owe to errors in geodetic data and/or geologic slip rates [e.g., Zechar 

and Frankel, 2009], unaccounted for off-fault deformation [Bird, 2009; Johnson, 2013; 

Herbert et al., 2014; Zeng and Shen, 2014] or temporal variations in the strain field 

[Peltzer et al., 2001; Bennett et al., 2004; Dolan et al., 2007; Freed et al., 2007; Oskin et 

al., 2008; Chuang and Johnson, 2011; Hearn et al., 2013; Johnson, 2013]. Even if the 

geodetic data are accurate, errors can be introduced to estimates of slip rates if regional 

fault geometries are represented inaccurately within inversion models [e.g., Maerten et al., 

2005]. 

 Models that infer slip rates across the Pacific and North American plate boundary 

by inverting geodetic data utilize different inputs and assumptions. For example, some 

models contain fault blocks that are allowed to accumulate long-term internal distortion 
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[e.g., McCaffrey, 2005; Johnson, 2013], while others assume no long-term internal 

deformation [e.g., Becker et al., 2005; Meade and Hager, 2005; Chuang and Johnson, 

2011; Loveless and Meade, 2011]. Additionally, some models incorporate geologic slip 

rate constraints in their inversions [McCaffrey, 2005; Bird, 2009; Chuang and Johnson, 

2011; Johnson, 2013; Field et al., 2013; Zeng and Shen, 2014]. Geodetic models typically 

assume steady deformation; however, some models incorporate viscoelastic earthquake 

cycle effects to successfully capture increased deformation rates near faults following 

large earthquakes [Chuang and Johnson, 2011; Hearn et al., 2013; Johnson, 2013]. All 

models that simulate deformation across southern California impose simplifications to the 

active fault network, but the overconnection of faults can be pronounced within block 

models that require a fully connected fault network in order to create closed-volume 

fault-bounded blocks [e.g., McClusky et al., 2001; Miller et al., 2001; Becker et al., 2005; 

Meade and Hager, 2005; McCaffrey, 2005; Spinler et al., 2010; Chuang and Johnson, 

2011; Loveless and Meade, 2011; Field et al., 2013; Johnson, 2013]. Because block 

models invert geodetic data directly using various error minimizing functions, the final 

solution typically produces an excellent fit to geodetic data [e.g., Meade and Hager, 

2005]. While nonuniqueness in block models partially arises from sparse geodetic data 

combined with inherent trade-offs between locking depth and slip rates, a large source of 

uncertainty arises because block boundaries do not correspond exactly to mapped fault 

traces and some block boundaries are arbitrary and do not correspond to any known faults. 

For example, in southern California, simplifications to the active fault network shared by 

most block models include (1) connecting the San Jacinto fault to the SAF near Cajon 

Pass where geologic evidence does not support a direct connection [e.g., Matti and 
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Morton, 1993] and (2) connecting faults within the ECSZ that have not produced surface 

rupture in the last ~700 ka [e.g., Jennings and Bryant, 2010] and removing others that 

have been active in the late Pleistocene [Oskin et al., 2008]. 

 In this work, we investigate how connectivity of the San Jacinto fault to the SAF 

and within the ECSZ changes strike-slip rates along faults and interseismic surface 

deformation patterns. We discuss how inaccurate connectivity of these faults may 

contribute to discrepancies between geologic slip rates and slip rates inverted from 

geodetic data using overconnected fault models. To accomplish this, we simulate 

deformation within southern California using geologically and geophysically constrained 

three-dimensional geometries of the areaÕs active faults [Plesch et al., 2007]. The fault 

configuration used in this study has successfully reproduced the geologic slip rates and 

uplift patterns along the southern SAF and ECSZ [Cooke and Dair, 2011; Herbert and 

Cooke, 2012; Herbert et al., 2014]. To test the effect of fault connectivity on slip rates, 

we modify the fault geometry by simplifying and connecting some faults to mimic the 

fault geometry used within most plate boundary-scale block models of southern 

California [e.g., Becker et al., 2005; McCaffrey, 2005; Meade and Hager, 2005; Spinler 

et al., 2010; Chuang and Johnson, 2010; Loveless and Meade, 2011; Field et al., 2013; 

Johnson, 2013; Zeng and Shen, 2014]. Specifically, we connect the San Jacinto fault to 

the SAF, and we connect individually mapped faults within the ECSZ to represent the 

type of fault network used in block models by Becker et al. [2005], Meade and Hager 

[2005], Spinler et al. [2010], and Loveless and Meade [2011]. We show that forward 

models with block-like fault networks produce significantly different strike-slip rates than 

the models with more accurate fault geometries. We also show that the fault connectivity 
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that we tested has far less effect on interseismic velocities than on slip rates. 

Consequently, using either an overconnected or complex fault geometry in geodetic 

inversions may provide the same good fit to geodetic data but could produce different 

geologic slip rates. 

 

3.2. Strike-Slip Rate Discrepancies 

 We focus on two areas within southern California with significant discrepancies 

between geodetic and geologic strike-slip rates. Along the San Bernardino strand of the 

SAF, geodetic estimates of strike-slip rates are slower than the geologic slip rates (Figure 

2). Across the ECSZ, geodetic strike-slip rate estimates are typically greater than the 

geologic slip rates (Figure 3). Because the San Jacinto fault plays a large role on 

deformation within our study area, we also report strike-slip rates along the San Jacinto 

Valley segment of the San Jacinto fault where geodetic and geologic rates are generally 

in agreement. 

3.2.1. Strike-Slip Rate Estimates Along the San Bernardino Strand of the SAF 

 Strike-slip rates along the San Bernardino strand of the SAF determined from 

geologic investigations decrease southward from Cajon Pass to San Gorgonio Pass from 

~25 mm/yr to ~8 mm/yr (Figure 2). This decrease suggests that slip is transferred to other 

faults, most likely the nearby San Jacinto fault [e.g., McGill et al., 2013] or onto oblique 

reverse faults within the San Gorgonio Pass [Yule and Sieh, 2003].  

 Block models that invert geodetic data without using geologic slip rates as 

constraints generally estimate slower strike-slip rates than geologic observations along 

the San Bernardino strand of the SAF (Figure 2). The strike-slip rate from Becker et al. 
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[2005], overlaps three geologic slip rates due to a very large error range (0.9. ± 12 

mm/yr). Meade and Hager [2005] report a slip rate of 5.1 ± 1.5 mm/yr, which overlaps 

the lower range of one paleoseismic slip rate. The study of Loveless and Meade [2011] 

has the fastest strike-slip rate of these models (10.2 ± 0.3 mm/yr) and overlaps with two 

of the five paleoseismic slip rates. The better match of Loveless and Meade [2011] may 

reflect the improved accuracy of fault geometries in their models compared to other block 

models. For example, Loveless and Meade [2011] include a north dipping San Gorgonio 

Pass thrust and closer match to the mapped fault traces than previous block models. In all 

of the block models, the San Jacinto Valley segment of the San Jacinto fault directly 

connects to the San Bernardino strand of the SAF near Cajon Pass, where the surface 

traces of these faults are nearly parallel and only 2 km apart but do not intersect [Matti 

and Morton, 1993; Yule and Sieh, 2003; Jennings and Bryant, 2010]. 

 Some inverse models use both GPS velocities and geologic slip rates to constrain 

deformation within the southern California fault system, consequently reducing the 

discrepancy between geologic slip rates and inversion-produced rates. Along the northern 

section of the San Bernardino strand of the SAF, such models produce 12.1Ð23.8 mm/yr 

of right-lateral slip [McCaffrey, 2005; Bird, 2009; Johnson, 2013; Zeng and Shen, 2014], 

which agrees with the geologic rates [Weldon and Sieh, 1985; McGill et al., 2010]. 

Similarly, the models produce strike-slip rates of 11.7Ð15 mm/yr along the southern 

section of the San Bernardino strand of the SAF, which also agree with the geologic rates 

[McGill et al., 2013; Orozco, 2004]. The Uniform California Earthquake Rupture 

Forecast, Version 3.0 (UCERF3) [Field et al., 2013] combines the results of five models 

with the same GPS velocities, geologic constraints, and fault geometry [McCaffrey, 
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2005; Hammond and Thatcher, 2007; Johnson, 2013; Bird, 2009; Zeng and Shen, 2014] 

to calculate Òaverage block modelÓ slip rate estimates. The UCERF3 average strike-slip 

rate along the northern (5.7Ð17.8 mm/yr) and southern (10.3Ð13.7 mm/yr) sections of the 

San Bernardino strand of the SAF generally agree with the geologic strike-slip rates 

along the central part of the fault (Figure 2). Studies by Zeng and Shen [2014] and 

Johnson [2013] reveal the sensitivity of inversion results to the incorporation of geologic 

slip rates by comparing kinematic fault network model results with and without geologic 

constraints. The inclusion of geologic slip rate constraints in the model inversion 

produces large increases in slip rates of 5Ð10 mm/yr along the San Bernardino strand of 

the SAF [Johnson, 2013; Zeng and Shen, 2014]. The slip rate difference highlights the 

challenge of honoring both the long-term geologic slip rates and the GPS velocities along 

the San Bernardino segment of the SAF. 

3.2.2. Strike-Slip Rate Estimates Along the San Jacinto Valley Segment of the San 

Jacinto Fault 

 Two geologic studies along the San Jacinto Valley segment of the San Jacinto 

fault have produced very different right-lateral strike-slip rates (Figures 1 and 3a): 6Ð13 

mm/yr [Prentice et al., 1986] and >20 mm/yr in the Timoteo badlands [Kendrick et al., 

2002]. Further south, San Jacinto fault slip rates along the Anza segment range from 5 to 

17.5 mm/yr [Rockwell, 2008; Janecke et al., 2010; Blisniuk et al., 2011], suggesting that 

the slower strike-slip rate along the northern San Jacinto fault may be more likely. The 

slower strike-slip rates on the Anza section could be consistent with faster rates along the 

San Jacinto Valley section, if strike-slip is transferred off of the San Jacinto fault south of 

the Timoteo badlands (geologic site 7; Figure 1); however, a structure to accommodate 
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this strike-slip has not been documented. 

 Block model inversions that use only geodetic data estimate strike-slip rates of 

11Ð13.1 mm/yr along the San Jacinto Valley segment of the San Jacinto fault [Meade and 

Hager, 2005; Spinler et al., 2010; Loveless and Meade, 2011] that are within the upper 

limits of the range given by Prentice et al. [1986] and less than the strike-slip rate of 

[Kendrick et al., 2002, Figure 3a]. The inversion model of Becker et al. [2005] has a large 

slip rate range (5.5Ð23.5 mm/yr) that overlaps the strike-slip rates from both geologic 

studies. 

 The inclusion of geologic slip rates as constraints for block model inversions 

alters slip rates by less than 1 mm/yr along the San Jacinto fault [Zeng and Shen, 2014]. 

The range in strike-slip rates along the San Jacinto Valley segment from models that 

invert GPS velocities and geologic constraints is 8.3Ð11.7 mm/yr [McCaffrey, 2005; 

Chuang and Johnson, 2011; Field et al., 2013; Zeng and Shen, 2014], which agrees with 

the geologic rate of Prentice et al. [1986] and is less than that of Kendrick et al. [2002]. 

The mismatch to the rate of Kendrick et al. [2002] likely stems from this rate not serving 

as a geologic constraint in these models. Johnson [2013] estimates 17 mm/yr for the San 

Jacinto fault, which misses both available geologic slip rates for this section of the San 

Jacinto fault. Johnson [2013] constrains his model using relatively fast geologic slip rates 

(10Ð23 mm/yr) that are measured south of our study area. These inversion outcomes 

highlight the sensitivity of inversion slip rates to the particular geologic constraints 

chosen. 

3.2.3 Strike-Slip Rate Estimates Across the ECSZ 

 The ECSZ has a well-documented and significant discrepancy between geologic 
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right-lateral strike-slip rates and geodetic estimates of slip rates [e.g., Sauber et al., 1994; 

Dolan et al., 2007; Oskin et al., 2008, Figure 3b]. The faults of the ECSZ, the majority of 

which are right-lateral NW-SE striking, accommodate up to 25% of the total motion 

between the Pacific and North American plates [Dokka and Travis, 1990]. Oskin et al. 

[2007, 2008] show that the six major faults across the ECSZ have a cumulative geologic 

slip rate of ! 6.2 ± 1.9 mm/yr throughout the Holocene. 

 The block models of the region simplify the ECSZ fault network compared to the 

mapped active fault traces by both connecting discrete fault segments and reducing the 

number of active faults. For example, instead of 27 mapped active major faults in the 

ECSZ [Jennings and Bryant, 2010], Loveless and Meade [2011] use only four faults 

across the ECSZ and estimate a cumulative right-lateral strike-slip rate across these four 

faults of ~17 mm/yr. Meade and Hager [2005] use three faults and estimate 16.8 ± 2.8 

mm/yr of cumulative slip across the ECSZ. The block models of Becker et al. [2005] 

have two faults to represent the ECSZ and estimate a cumulative slip rate across the zone 

of 13.9 ± 17 mm/yr. Spinler et al. [2010] use several different fault configurations and 

estimate a summed slip rate across the ECSZ of 13.5Ð18 mm/yr, depending on model 

fault geometries. All of these block models infer strike-slip rates from permanent and 

campaign GPS velocities that are significantly higher than the geologic slip rates. 

 Model inversions that include both GPS velocities and geologic slip rate 

constraints produce a wide range of fault slip rates for the ECSZ. Cumulative strike-slip 

rates across the ECSZ range from 4 to 15.1 mm/yr [McCaffrey, 2005; Chuang and 

Johnson, 2011; Johnson, 2013; Zeng and Shen, 2014]. Individual model inversions fall 

both below [Johnson, 2013] and above [McCaffrey, 2005; Zeng and Shen, 2014] the 
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range of geologic slip rates. This large range in inversion outcomes may owe to inclusion 

of different geologic constraints, different weighting of the geologic and geodetic data, 

and/or different fault network geometry. Slip rates from additional geologic sites in the 

region may help the model inversions produce slip rates more consistent both with 

geologic rates and with each other, but it is nonetheless clear that the GPS data alone 

appear to require slip rates that are faster than geologic estimates. 

 

3.3 Numerical Simulations of Geologic and Interseismic Deformation 

 In order to test the role of fault connectivity on slip rates and GPS velocities we 

utilize three-dimensional forward models that simulate both long-term geologic 

deformation across multiple earthquake cycles and, using a method equivalent to the back 

slip approach of Savage [1983], interseismic deformation between earthquakes. Within 

the linear elastic models, fault slip is driven by far-field GPS-derived plate motions so 

that the resulting fault slip distribution is both kinematically and mechanically compatible 

with the long-term plate motion. By varying the fault geometry from a model that 

matches the mapped fault traces to a model that mimics the geometries used within 

geodetic block simulations, we assess the effect of connecting the San Jacinto fault to the 

SAF and ECSZ faults on deformation patterns. Boundary element method (BEM) models 

with triangular elements are ideally suited for this study because they can simulate 

deformation on both separate and connected (block-like) fault networks with any degree 

of fault surface complexity. The results of both the discontinuous fault network and 

block-like fault network models are compared to geologic strike-slip rates and GPS 

velocities to determine which fault network best matches observations. Herein we refer to 
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the model that matches the mapped fault surface traces as the discontinuous model, and 

the two models that connect faults to form block-like geometries as the SAF and ECSZ 

block-like models. 

3.3.1 Fault Geometries 

 For the three-dimensional discontinuous model that follows the mapped active 

fault traces, we use the fault surfaces of the southern California Earthquake CenterÕs 

Community Fault Model (CFM) version 4.0 [Plesch et al., 2007]. For both the long-term 

geologic and interseismic models, 52 fault surfaces from the CFM are discretized using a 

triangular mesh with an average segment length of ~7 km in the seismogenic crust (see 3-

D PDFs in the supporting information for an interactive rendering of the fault meshes). 

This element size permits simulation of undulating geometric features as small as 10 km 

along most faults; though regions of high complexity use smaller elements. Herbert and 

Cooke [2012] modified the CFM by adding the Crafton Hills fault zone and removing 

inactive segments of the Banning strand of the SAF to match Yule and SiehÕs [2003] 

mapped active fault geometry within San Gorgonio Pass. These small changes to the 

Banning strand of the SAF improve the match to nearby geologic strike-slip rate 

estimates and model-calculated strike-slip rates elsewhere in the model match well the 

geologic strike-slip rates along the southern SAF from Cajon Pass to the Salton Sea and 

most geologic slip rates along the San Jacinto fault [Herbert and Cooke, 2012]. We have 

also modified the CFM version 4.0 faults within the ECSZ to match mapped faults that 

have been active at the surface within the last ~700 ka [Herbert et al., 2014]. These 

revisions within the ECSZ create a better match to the individual fault slip rates as well as 

the cumulative slip rate across the ECSZ determined by Oskin et al. [2008]. In this study, 
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we incorporate the CFM modifications to the San Gorgonio Pass and ECSZ of Herbert 

and Cooke [2012] and Herbert et al. [2014]. 

 The discontinuous model is modified to mimic a block-like model. For the first 

modification, we connect the SAF and San Jacinto fault near Cajon Pass where the two 

faults are mapped to be parallel and separated by 2 km (see SAF 3-D PDF in the 

supporting information). While no connection is mapped between the northern tip of the 

San Jacinto fault and the SAF [Matti and Morton, 1993, Figure 1], block models, due to 

their constraint of requiring closed volumes, directly connect the San Jacinto Valley 

segment of the San Jacinto fault to the San Bernardino strand of the SAF north of Cajon 

Pass [e.g., Becker et al., 2005; Meade and Hager, 2005; Loveless and Meade, 2011; Field 

et al., 2013; Johnson, 2013; Zeng and Shen, 2014]. To test the mechanical role of this 

connection on slip rates, we hard-link the San Jacinto fault to the SAF in the model (see 

SAF 3-D PDF in the supporting information). In the second block-like model, we create a 

simple ECSZ fault network of four faults that are continuous from north to south across 

the entire Mojave Desert (see ECSZ 3-D PDF in the supporting information). Block 

models simplify the mapped ECSZ fault geometry by both connecting and limiting the 

number of active faults to various degrees in their models [e.g., Becker et al., 2005; 

Meade and Hager, 2005; Spinler et al., 2010; Loveless and Meade, 2011; Field et al., 

2013; Johnson, 2013; Zeng and Shen, 2014]. Of these models, Loveless and Meade 

[2011] incorporate the greatest number of faults and have the closest fault geometry to 

that mapped in the ECSZ. To test the effect of a block-like fault network on strike-slip 

rates across the ECSZ, we mimic the network of Loveless and Meade [2011] with four 

NW-SE trending faults that connect with the Garlock fault in the north and the Pinto 
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Mountain fault in the south (see ECSZ 3-D PDF in the supporting information). Other 

changes to simulate a block-like fault network include removing the Blue Cut fault and 

combining the Mission Creek strand of the SAF with the Eureka Peak fault. 

 Faults within the model extend to a depth of 35 km where they merge into a 

horizontal crack that allows distributed deformation at the base of the model and prevents 

the artificial termination of slip at lower fault tips below seismogenic depths [e.g., 

Marshall et al., 2009]. This method of using a horizontal crack at depth reproduces the 

classic screw dislocation model of interseismic deformation [i.e., Savage and Burford, 

1973] without requiring extending all faults to infinite depth [Marshall et al., 2009]. 

Where a fault extends out of the study area, patches with prescribed long-term slip rates 

ensure that slip does not go to zero at the lateral fault tips. The basal horizontal crack is 

bounded on all edges by horizontal patches that apply the far-field relative plate motion 

between the Pacific and North American plates. We vary plate velocity from 45 to 50 

mm/yr and orientation from 320¡ to 325¡ to span the range of plate motions determined 

for the Pacific and North American plates [e.g., DeMets and Dixon, 1999; Beavan et al., 

2002; Gonzales-Garcia et al., 2003; Shen et al., 2003; Marquez-Azua et al., 2004; 

Plattner et al., 2007; Kogan and Steblov, 2008; Argus et al., 2010; DeMets et al., 2010]. 

To focus our efforts on the region of interest, no faults are included west of the San 

Jacinto fault (e.g., the Elsinore fault and faults of the Los Angeles Basin). Following 

Herbert and Cooke [2012], we reduce the total plate motion by 5 mm/yr to account for 

slip on these faults [e.g., Rockwell et al., 2000; Platt and Becker, 2010]. By investigating 

a range of plate velocities (40Ð45 mm/yr at 320¡Ð325¡), we can account for the 

uncertainty of plate motion along the Pacific and North American plate boundary. 
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3.3.2. Boundary Element Method Modeling 

 Mechanical models presented here use the three-dimensional BEM code, Poly3D 

[Thomas, 1993], to simulate both geologic and interseismic timescale deformation. BEM 

models work well for this type of investigation because the method requires the 

discretization of only fault surfaces, rather than the modelÕs entire volume, as in finite 

element method models [e.g., Crouch and Starfield, 1990]. BEM forward models have 

been used extensively to simulate three-dimensional active faulting in southern California 

over multiple earthquake cycles [Cooke and Marshall, 2006; Marshall et al., 2008; Meigs 

et al., 2008; Dair and Cooke, 2009; Cooke and Dair, 2011; Herbert and Cooke, 2012; 

Herbert et al., 2014] and over interseismic periods [Marshall et al., 2009, 2013] where 

fault geometry is well defined and complex [e.g., Plesch et al., 2007]. 

 To simulate both geologic and interseismic deformation, we use a two-step 

process following Marshall et al. [2009]. We apply geodetically constrained plate motion 

to the border of the basal horizontal crack as a tectonic boundary condition that drives 

slip on the modeled fault elements. Fault elements in the center of the model are allowed 

to slip freely and mechanically interact with each other in response to tectonic loading. 

Consequently, the models provide a quantitative method for estimating the distribution of 

fault slip that is both kinematically and mechanically compatible with the long-term plate 

motion. Because the bulk of fault deformation on fault surfaces occurs during 

earthquakes, most of the recorded deformation reflects the low-strength conditions during 

rupture [e.g., Dieterich, 1979; Ruina, 1983], which the frictionless faults approximate. To 

simulate interseismic deformation, we create a second model where faults are locked 

above a uniform locking depth constrained by Nazareth and HaukssonÕs [2004] average 
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seismogenic thickness for southern California to vary from 10 to 25 km, and the 

distribution of slip along faults from the geologic model is prescribed beneath the locking 

depth. As shown by Marshall et al. [2009], this is mathematically identical to the so-

called back slip process developed by Savage [1983], implemented in most block models 

[e.g., Becker et al., 2005; McCaffrey, 2005; Meade and Hager, 2005]. 

3.3.3. Regional GPS Processing 

 Increases in the number and availability of continuous GPS sites throughout 

southern California provide improved quantitative constraints on the spatial patterns of 

interseismic surface deformation. Before using this geodetic data, we first must attempt to 

remove all significant noninterseismic signals including coseismic, postseismic, and 

seasonal motions as well as time series offsets due to equipment changes. In this study, 

we utilize data from 84 continuously operating GPS stations within the Plate Boundary 

Observatory (PBO) network. Time series data are derived from the MEaSUREs-

combined filtered solutions (currently available at http://sopac-

ftp.ucsd.edu/pub/timeseries/measures/) that represent the combination of a GIPSY 

(http://gipsy-oasis.jpl.nasa.gov/) and GAMIT (http://www-gpsg.mit.edu/~simon/gtgk/) 

solution and have the common mode error from the entire network removed (following 

the methods described in Dong et al. [1998, 2006]). While network-wide filtering had 

already been performed on the MEaSUREs time series data, local noninterseismic signals 

may still be present. Furthermore, because many southern California PBO GPS sites are 

affected by the 1999 M7.1 Hector Mine and 2010 M7.2 El Mayor Cucapah earthquakes 

[e.g., Freed et al., 2007; Shen et al., 2011], we must carefully remove coseismic and 

postseismic effects of these events in our data to attain accurate interseismic velocity 
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estimates. Fortunately, because continuously recording GPS sites have sufficient 

temporal resolution to distinguish secular rates (potentially interseismic) from periodic 

(potentially seasonal and nontectonic) and irregular (potentially anthropogenic or 

postseismic), and step function (coseismic or equipment change-related) deformation 

signals, we can apply several standard time series analysis techniques to estimate both the 

interseismic and noninterseismic components of deformation. 

 Our time series analysis approach is identical to Marshall et al. [2013] and closely 

follows Dong et al. [2006], except that we do not implement the Karhunen-Loeve 

expansion for spatial filtering. Using the software package QOCA [Dong et al., 2006], we 

perform regional filtering by simultaneously estimating and removing (1) bias terms, (2) 

time series offsets due to episodic events (coseismic offsets, orbital shifts, or equipment 

changes), (3) annual/semiannual periodic motion, and (4) secular velocities. For any time 

series that show clear postseismic transients due to the 1999 M7.3 Hector Mine 

earthquake, we discard all data before 2004 (Figure 3.4). This is similar to the MIT 

analysis of Shen et al. [2011] where 2.2 years of data after the Hector Mine event (i.e., 

data before 2002) were removed before estimating the interseismic velocities. With 

longer time series now available, we can now be more conservative than Shen et al. 

[2011] and remove all data before 2004 (i.e., remove > 4 years of data) for any sites that 

exhibit clear transient postseismic motions. To illustrate that explicitly modeling the 

postseismic motions and the associated decay from the Hector Mine earthquake would 

yield little to no improvement in our velocity estimates, we perform a series of tests on a 

site that displays large postseismic motions. Site AGMT, located between the Pisgah-

Bullion and Calico-Hidalgo faults (Figure 3.1), shows the largest postseismic transient of 
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the selected PBO sites in its north component time series (Figure 3.4a). To determine the 

total postseismic motion at this site, we model the postseismic decay after the Hector 

Mine event and before the El Mayor Cucapah event using an exponential function of the 

form 

! ! ! !"#
! ! ! !

!
    (eq. 3.1) 

Where A is the total postseismic motion, t0 is the time of the Hector Mine event 

(1999.7904), t is any decimal year after the Hector Mine event, and % is the time decay 

constant. Because the decay constant typically correlates strongly with the secular 

velocity and the seasonal motions, we do not directly solve for %. Based on attaining a 

good visual fit, we choose % to be 1.1 years (Figure 3.4b). Given this value of %, we 

estimate that the total postseismic motion in the north component of site AGMT to be 

16.96 mm, of which only 0.37 mm would occur between 2004 and 2013.7. Thus, by not 

explicitly modeling the postseismic decay of this site, we only introduce a maximum 

velocity error of less than 0.04 mm/yr in the north component. Given that this site is an 

extreme example and most sites show far less postseismic motion, explicitly modeling 

the postseismic decay throughout the network will not result in a noticeable improvement 

to the velocity estimates. 

 Because the 2010 El Mayor Cucapah event occurs in the middle of most GPS 

time series, it is not practical to discard the associated postseismic-contaminated data 

from the time series. Fortunately, the time series for most sites are relatively long (~10 

years), and the El Mayor event was greater than 100 km from the closest GPS sites, 

producing postseismic motions generally at the millimeter level or much less. 

Experiments with two alternative methods of removing postseismic motions (exponential 
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and logarithmic decay) led to nearly identical velocity results. In the data presented here, 

we estimate and remove a coseismic offset at each GPS site for the El Mayor event. Then, 

to determine which of the remaining nonlinear signals are spatially coherent and likely 

related to postseismic deformation associated with the El Mayor Cucapah event, we 

perform a principal component analysis (PCA) on the residual data and remove the scaled 

first principal components from each raw time series [e.g., Dong et al., 2006]. 

 Because the time decay constant of postseismic motion for a given event are 

typically approximately equal, even at different sites [e.g., Shen et al., 2011], and PCA 

filters detect motions that are common to a network [e.g., Dong et al., 2006], the PCA 

filter successfully detects the majority of the postseismic motions due to the El Mayor 

Cucapah event in the network as the first principal components (Figure 3.4c). The PCA 

filter has the added bonus of removing a portion of the so-called common mode error 

[e.g., Dong et al., 2006]. Thus, by removing the scaled first principal components from 

the time series data, we have effectively removed the majority of the postseismic motions 

associated with the El Mayor Cucapah event, as well as a portion of the common mode 

error for each site resulting in dominantly linear time series and improved estimates of 

secular velocities (Figure 3.4c). 

 After the time series analysis is complete, the data exhibit dominantly linear time 

series (Figure 3.4) with a considerable reduction in weighted root-mean-square (WRMS) 

error. The median WRMS errors before and after processing are 2.61 and 1.60 mm/yr, 

respectively. This suggests that the majority of temporally variable noninterseismic 

signals have been removed. Formal errors on GPS velocities presented here are 

calculated using the standard white + flicker noise temporal model [Dong et al., 2006]. If 
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our time series data has a significant random-walk or power law noise component, our 

formal error ranges are likely to be approximately an order of magnitude too small 

[Langbein, 2012; Argus et al., 2010]. To reflect more realistic errors, we scale our white 

noise + flicker noise error estimates by a factor of 10. In the end, the GPS data presented 

here agree well with the velocities from Shen et al. [2011] in both velocity and error 

ranges, despite several differences in our time series analysis methodology (see GPS 

comparison in the supporting information). Furthermore, since the Shen et al. [2011] 

velocities only use data up to 2004, and our analysis dominantly uses data post 2004 

(including many new PBO sites), the consistency between our two results suggests that 

the secular interseismic velocity field can be well constrained despite the complications 

posed by coseismic and postseismic motions from several moderately large earthquakes. 

 

3.4 Geologic Model Slip Rate Estimates 

 We test the sensitivity of strike-slip rates along the San Bernardino strand of the 

SAF, the San Jacinto fault, and along ECSZ faults to changes in fault geometry by 

comparing our discontinuous model results and our block-like model results. 

3.4.1 Influence of Connecting the San Andreas and San Jacinto Faults  

 Connecting the San Jacinto fault to the SAF near Cajon Pass decreases right-

lateral strike-slip rates along the San Bernardino stand of the SAF (Figure 3.5). Both the 

SAF block-like and discontinuous models produce good match to the large geologic 

ranges of strike-slip rates along the San Bernardino strand of the SAF. The overall 

average strike-slip rate along the San Bernardino strand of the SAF decreases from 16.2 

mm/yr to 14.6 mm/yr with connection of the SAF and San Jacinto fault, a 10% decrease. 
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Individual elements along the modeled fault decrease strike-slip rate by as much as ! 

11% at the EarthÕs surface and near the connection with the San Jacinto fault. The slower 

strike-slip rate of the connected model is closer to the results of the block models that do 

not use geologic constraints in their inversions [Becker et al., 2005; Meade and Hager, 

2005; Loveless and Meade, 2011]. 

 Whereas connecting the San Jacinto fault to the SAF decreases strike-slip rates 

along the SAF, strike-slip rates along the San Jacinto Valley segment of the San Jacinto 

fault increase when the faults are connected (Figure 3.5). This implies that connecting the 

two faults promotes transfer of strike-slip from the Mojave section of the SAF to the San 

Jacinto fault at the expense of slip along the SAF. Slip transfer between the Mojave 

section of the SAF and San Jacinto fault near Cajon Pass has been suggested based on the 

proximity of the two faults [e.g., Weldon and Sieh, 1985; Matti and Morton, 1993]. 

McGill et al. [2013] show support for slip transfer due to the decrease in strike-slip rate 

between the Mojave segment and San Bernardino strand of the SAF. Along the San 

Jacinto fault, the strike-slip rates from both the SAF block-like and discontinuous models 

overlap with the geologic rate of Prentice et al. [1986] but are well below the slip rate of 

Kendrick et al. [2002]. By connecting the two faults, the overall weighted average strike-

slip rate along the San Jacinto Valley segment increases from 9.1 to 10.5 mm/yr (16% 

increase), but some locations change by up to 206% at the EarthÕs surface and near the 

intersection with the SAF. The connected model produces a faster average strike-slip rate 

that is closer to the results of the block models that do not use geologic constraints in 

their inversions [Meade and Hager, 2005; Becker et al., 2005; Spinler et al., 2010; 

Loveless and Meade, 2011]. 
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 The connection of the San Jacinto fault to the SAF involves adding a fault 

segment with only 2 km fault trace length; however, the addition of this small segment 

changes average fault slip rates by 10Ð16% and local near-surface strike-slip rates by up 

to 206% on the two faults. The patterns of slip rate decrease south along the San 

Bernardino strand of the SAF and slip rate increase south along the San Jacinto Valley 

segment of the San Jacinto fault in the discontinuous model suggests that abundant slip 

transfer occurs via soft linkage of these disconnected faults. One might expect that when 

the faults are sufficiently close (2 km) hard-linking the faults with a connecting segment 

would not create significant difference in slip rates. Our results indicate that the degree of 

the fault connection can significantly influence the distribution of strike-slip rates and 

additional subsurface constraints on the nature of this intersection are needed. 

3.4.2. Influence of Fault Connectivity Within the ECSZ 

 The simplified block-like fault network for the ECSZ produces cumulative strike-

slip rate across the sites of geologic investigations that is 9.1 ± 1 mm/yr, 2.4 mm/yr 

(36%) greater than the cumulative strike-slip rates from the discontinuous fault network 

(6.7 ± 0.8 mm/yr). The increased slip-rate with the connected and simplified network 

brings the cumulative closer to, but does not overlap, the strike-slip rates inferred by the 

block models that infer slip only from GPS velocities (Figure 3.6a). The slip rate of the 

block-like model approaches but does not overlap the geologic upper bound. The 

discontinuous model results, with the fault network that more closely matches the 

mapped traces of active faults, better matches the geologic slip rates. 

Most block model inversions for fault slip within the ECSZ require that the slip 

rate sums to the net velocity across the ECSZ recorded by GPS stations, implying no 



 75 

long-term strain accumulation in the off fault regions [e.g., Becker et al., 2005; Meade 

and Hager, 2005; Loveless and Meade, 2011]. Within the ECSZ, 30Ð40% of the recorded 

plate velocity could be expressed as permanent off-fault deformation [Bird, 2009; 

Johnson, 2013; Herbert et al., 2014]. Within a more disconnected fault network, greater 

off-fault deformation occurs due to stress concentrations at fault irregularities and at fault 

tips where slip, by definition, must go to zero. Both the ECSZ block-like and 

discontinuous ECSZ forward models accommodate the same far-field plate velocity but 

the disconnected model has greater off-fault deformation and lesser fault slip. The 36% 

difference in strike-slip rate between the forward models suggests that the overconnection 

of faults within inversion models could lead to overestimation of slip rates and 

underestimation of off-fault deformation. 

 

3.5. Comparison of Interseismic Model Surface Velocities to GPS 

 While the results from the forward models with discontinuous and block-like fault 

networks show that connecting active faults can lead to significant differences in strike-

slip rates, the impact of fault connections on surface deformation within the interseismic 

period may differ from that of slip rate. To determine if patterns of surface deformation 

measured by geodetic methods can discriminate between block-like and discontinuous 

fault network geometries, we utilize forward interseismic models to predict the surface 

velocities for the discontinuous and block-like models. We compare the regional 

continuous GPS velocities to interseismic surface displacements from the discontinuous 

and block-like fault models. We also test the sensitivity of surface deformation within the 

discontinuous model to both interseismic locking depth and uncertainties in tectonic 
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loading. 

 While the raw GPS time series data are processed in the ITRF2005 reference 

frame, we present GPS velocities here relative to local site, WWMT, within the San 

Gorgonio Pass, to highlight local deformation patterns. Overall, the spatial pattern of 

GPS velocities relative to station WWMT clearly shows a component of right-lateral 

shear consistent with strain accumulation along the locked SAF, San Jacinto fault, and 

ECSZ. Because we are interested in comparing localized deformation in two separate 

regions with different degrees of fault connectivity, we later also present the GPS 

velocities projected into simplified one-dimensional transects for the SAF/San Jacinto 

fault junction region and the ECSZ region. 

3.5.1 Best Fitting Locking Depth 

 We start with a uniform locking depth within the discontinuous model under 

different tectonic loading and compare results for locking depths ranging from 10 to 25 

km. Due to the inherent irregularity of the fault mesh, the locking depth is not a perfectly 

horizontal line on most fault surfaces, but given the number of fault elements and 

reasonable locking depths, the uneven locking depth effects are negligible. We evaluate 

the fit of the model results by analyzing the residuals between the GPS and model surface 

velocities and calculating the WRMS errors. The WRMS errors take into account the 

uncertainty in GPS velocities by linearly weighting residuals with smaller GPS errors as 

more significant. The model surface velocities with a 20 km uniform locking depth match 

best the velocities at all the GPS sites (Figure 3.7a), although the results are relatively 

insensitive to locking depth greater than 20 km (Figure 3.7a). This insensitivity may 

reflect that many faults are within 20 km of other active faults so that models with 
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locking depths below 20 km produce surface displacements that resemble distributed 

shear strain (i.e., approximately linear changes in velocity with distance). A 20 km 

locking depth is deeper than the average thickness of the seismogenic crust determined 

by Nazareth and Hauksson [2004] for southern California (~15 km). 

 Variation in the thickness of the seismogenic crust [Nazareth and Hauksson, 

2004] implies that locking depth may vary throughout southern California. To assess the 

effect of variable locking depth, we examine the residuals for the three domains of 

interest (SAF, San Jacinto fault, and ECSZ) separately, using GPS stations within 20 km 

to either side of the fault traces. Again, a 20 km locking depth creates the best fit to GPS 

velocities for each domain (Figures 3.7bÐ3.7d) relative to central site WWMT. The 

domains also reveal the relative error contributed by different faults. The WRMS errors 

of model results to GPS site velocities around the SAF (3.0 mm/yr) and San Jacinto fault 

(2.3 mm/yr) are much better than that of GPS sites within the ECSZ (4.7 mm/yr) but are 

each higher than WRMS errors from some inverse models that use only geodetic 

constraints (e.g., 0.8 mm/yr) [Spinler et al., 2010]. The mean residual velocity from our 

best fit model (3.6 mm/yr) is also larger than block model values (1.3Ð1.6) [Meade and 

Hager, 2005; Loveless and Meade, 2011]. We expect that block models that invert the 

GPS without any other constraints will have lower residuals than other models. The 

inclusion of geologic slip rate constraints in model inversions increases the residuals to 

the GPS data [Johnson, 2013; Zeng and Shen, 2014]. The normalized chi-square of 

residuals increase from 1.09 to 1.46 with addition of geologic constraints in JohnsonÕs 

[2013] comparative study and increase from 1.75 to 2.2 in the study of Zeng and Shen 

[2014]. Without directly inverting the GPS data, our forward models match much of the 
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geodetic velocity pattern by replicating the active fault geometry and honoring the 

mechanical compatibility of fault slip rates with the long-term plate motion. 

3.5.2 Comparison of Geodetic and Model-Calculated Interseismic Surface Velocities 

 Uncertainty in tectonic loading does not produce significant variability in model 

interseismic surface velocities. The variation due to uncertainty in total plate motion is 

generally < 10% of the site velocity, shown in Figure 3.8a (boxes at red arrow tips). The 

model velocities show, to the first order, the right-lateral shear accommodated by the 

relative motion between the Pacific and North American plates similar to that captured by 

the permanent GPS stations. 

 The residual of the model and GPS site velocities (model-GPS) show two 

dominant orientations (Figure 3.8b). East of 116.25¡ latitude, the residuals are oriented 

more north-south and the model velocities are slower than the GPS velocities. North of 

34.4¡ latitude and west of 116.25¡ latitude the residuals are oriented east-west. Model 

velocities in this zone are oriented more easterly than GPS velocities but have similar 

magnitudes. GPS gradients that the model does not match may be a result of missing 

faults, incorrectly modeled fault geometries, assumptions about rock rheology, or 

additional slip on faults that is not mechanically compatible with long-term far-field plate 

motion. If the model was missing secondary faults or utilized incorrect fault geometry, 

we would generally expect greater residuals near the missing or incorrect faults, 

assuming that the missing faults were relatively small compared to the GPS coverage 

area. The north-south residuals may indicate that we are missing right-lateral slip along 

the NW-SE striking faults of the ECSZ, which is discussed in section 5.3.2. The east-west 

residuals in the ECSZ do not resemble a buried dislocation and are unlikely to be the 
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result of a missing strike-slip fault in this system. Implementing contrasting basement 

rock types across the SAF with the eastern Transverse Ranges basement of Pelona Schist 

to the northeast and Peninsular Ranges basement to the southwest [e.g., Matti and Morton, 

1993] may alter interseismic velocities and orientations [Fialko, 2006; Schmalzle et al., 

2006]. However, the location of this basement contact does not correspond to the location 

of the east-west residuals in the ECSZ. The source of this residual between our results 

and the GPS data remains enigmatic. Mechanisms that differ from the long-term plate 

motion, such as the effects of a mantle drip beneath the San Bernardino Mountains [Fay 

et al., 2008], may contribute to residuals. 

3.5.3 Sensitivity of Surface Velocities to Fault Simplification 

 To investigate the ability of GPS station velocities to resolve connections of the 

San Jacinto fault to the SAF and the connections of faults within the ECSZ, we compare 

results of interseismic forward models with both discontinuous and block-like fault 

networks. We determine the effect that block-like fault network simplifications have on 

interseismic surface velocities. In this analysis, the CFM-based and block-like 

interseismic models are loaded below the locking depth with the distributions of fault 

slip-rate from each of their geologic model counterparts. We note that the distributions of 

slip in the discontinuous and block-like models differ, as discussed earlier, because the 

long-term slip-rates, determined from the geologic timescale models, are sensitive to fault 

connectivity. 

3.5.3.1 Interseismic Velocities Near the Cajon Pass 

 Two 90 km long transects (Figure 3.8b, A-A! and B-B!) oriented at N30¡E, 

roughly perpendicular to the SAF, show the correlation between GPS station velocities 
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and modeled velocities parallel to the average strike of the San Bernardino strand of the 

SAF through Cajon Pass (Figure 3.9a). Transect A-A! crosses the SAF and San Jacinto 

fault near where these faults are connected within our block-like model and transect B-B! 

crosses only the SAF north of Cajon Pass. The cumulative interseismic model velocities 

across the transects are faster than the GPS velocities by ~2 mm; however, both sets of 

velocities show similar profiles across the transect with the largest gradient associated 

with the SAF and San Jacinto fault, which are the fastest slipping faults in these transects. 

 Transect A-A! across the San Jacinto fault and SAF near the connection of the 

faults gives < 2.5% difference between modeled velocities (Figure 3.9), suggesting that 

surface deformation is not significantly influenced by connection of the faults in our 

models. Although connecting the two faults changes the strike-slip rates on the SAF and 

San Jacinto fault by 10% and 16%, respectively and up to 206% locally, the total 

cumulative velocity across the SAF/San Jacinto fault zone is nearly identical. The 

differences in partitioning of strike-slip rates below the 20 km locking depth in the 

interseismic model are not resolvable in surface velocities because the locked portion of 

the crust obfuscates the distinctive distributions of deep slip on these nearby faults. 

Consequently, both models produce equal fit to the GPS data. This implies that inverse 

models that use incorrect fault geometry and slip rates at fault branches can still match 

GPS data quite well but may nonetheless use incorrect fault geometries. 

3.5.3.2 Interseismic Velocities Across the ECSZ 

 Two 150 km long transects (Figure 3.8b, C-C! and D-D!) oriented at N90¡E show 

the correlation between GPS station velocities and modeled velocities parallel to the 

average strike of faults within the ECSZ (Figure 3.10b). The transect C-C! crosses the six 
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major faults of the ECSZ near the locations of geologic investigations of Oskin et al. 

[2008]. This transect also passes near the lateral tips of some faults where the 

discontinuous model, by definition, must predict little to no fault slip. The interseismic 

model velocities and GPS velocities are consistent with each other west of the Pisgah-

Bullion fault in transect C-C!, but the GPS stations velocities show a large increase in 

velocity near this fault that is not matched by the model results (Figure 3.10). To test if 

shallower locking depth for the ECSZ faults in the discontinuous model would improve 

the fit to GPS data, we compare interseismic surface velocity predictions for a model 

with 10 km locking depth only on the ECSZ faults. The total velocity across transect C-C! 

increases by only 1 mm/yr suggesting that the mismatch of the model results and GPS 

data does not owe to overly deep locking depth. The underprediction of surface velocity 

across transect C-C! may indicate that we are missing strike-slip within this system. 

 In transect D-D!, the model produces greater cumulative velocity across the ECSZ 

than in transect C-C! (Figure 3.10). The apparent fit to the overall GPS velocity across the 

ECSZ depends on the choice of reference station. With P582 as the reference station the 

cumulative model velocity increase across the ECSZ better matches the cumulative GPS 

data but does not match many stations west of the Pisgah-Bullion fault (Figure 3.10). A 

different reference station might match the western stations but would underpredict the 

cumulative velocity across the transect by a few mm/yr. Regardless of reference station, 

transect D-D! produces greater cumulative surface velocities than transect C-C!. The 

higher surface velocities in the southern ECSZ could reflect that transect D-D! passes 

over the center of the faults, which have higher strike-slip rates than the regions near the 

fault tips. 
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 When we simplify the ECSZ fault geometry to the block-like network with only 

four faults that are connected across the Mojave Desert, the cumulative interseismic 

surface velocity across transect C-C! increases by ~2mm/yr (17%) and better matches the 

GPS surface velocities (Figure 3.10a). Similarly, the cumulative interseismic velocity 

across transect D-D! increases by 1 mm/yr (7%). These velocity increases reflect the 2.4 

mm/yr faster geologic strike-slip rates along faults within the ECSZ from the block-like 

model. For both the block-like and the discontinuous models, transect D-D! has better 

match to the total GPS velocities than transect C-C!; however, transect D-D! does not 

match so well velocities at stations west of the Pisgah-Bullion fault. 

 Although the block-like model produces 36% faster long-term strike-slip rates 

across the ECSZ than the disconnected model, the increase in interseismic surface 

velocities is only 7Ð17%. In both the models, the interseismic surface velocities reflect 

both deep fault slip and accumulated off-fault deformation between the faults. Where 

fault slip rates decrease in the discontinuous model, the off-fault deformation increases so 

that the net effect of fault geometry on interseismic surface velocity is less than the effect 

on strike-slip rate. Consequently, inversion models with overconnected fault networks 

will underestimate off-fault deformation and may overpredict slip rates from the GPS 

velocities. 

 Recent deformation captured by permanent GPS station velocities follows a 

nearly linear trend across the ECSZ, with the exception of the GPS station velocities 

nearest the Pisgah-Bullion fault (Figure 3.10). Between 100-110 km along transect A-A!, 

stations AGMT and CDMT show a velocity increase of 3.7 mm/yr across the Pisgah-

Bullion fault (Figure 3.10a). This localized velocity increase suggests either a locally 
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very shallow locking depth or a deeper locking depth and faster slip rate on the Pisgah-

Bullion fault. 

Because inverse models fit the geodetic data directly, they accommodate the local 

increase in velocity across the Pisgah-Bullion fault with faster strike-slip rates on this 

fault. In contrast, our forward models are required to be both kinematically and 

mechanically compatible with the total plate motion rather than the local details of the 

geodetic data. Consequently, the forward models produce slower slip rates along the 

Pisgah-Bullion fault and no local increase in velocity. This suggests that the local 

velocity gradient associated with the Pisgah-Bullion fault is not mechanically compatible 

with the long-term total plate motion. 

 

3.6. Discussion 

3.6.1. Implications for Seismic Hazard 

 While the changes associated with linking the SAF and San Jacinto fault are 

minor, simplifications to the active fault geometry across the ECSZ in the block-like 

model involve significant changes in fault area that could affect the seismic potential. For 

example, using the CFM-based surface traces and assuming complete ruptures of 

individual faults, the longest fault trace within the ECSZ is the ~103 km long Calico fault. 

Using a constant fault depth of 15 km [Nazareth and Hauksson, 2004], the potential 

seismogenic fault area of the Calico fault is 1541 km2. In contrast, when the Calico fault 

connects to the Blackwater fault within the block-like model presented here, the fault 

trace length increases to ~207 km and the seismogenic fault area to 3105 km2. By 

assuming earthquake ruptures are limited to individual fault segments, we can calculate 
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the potential magnitude of earthquakes for strike-slip faults using the magnitude-area 

relationship. We follow UCERF3 [Field et al., 2013] with equal weighting of three 

magnitude-area relationships [Working Group on California Earthquake Probabilities, 

2003; Hanks and Bakun, 2008; Shaw, 2009]. The connection of the Calico fault with the 

Blackwater fault increases the potential magnitude from M7.4 to M7.7. The six major 

faults across the ECSZ range in area from 567 to 1541 km2 (potential M6.9ÐM7.4 events) 

within the discontinuous model and 2780Ð3110 km2 (potential M7.7 events) when the 

network is simplified to four fully connected faults. The increased earthquake magnitude 

estimates for the block-like fault network may provide a hazard estimate relevant for 

consideration of multifault ruptures, which pass across unconnected fault segments. For 

example, one recent ECSZ earthquake, 1992 Mw7.3 Landers, ruptured several unlinked 

fault segments at the surface, some of which had not previously been mapped [e.g., Sieh 

et al., 1993; Madden and Pollard, 2012]. 

 Just as the connected area of faults in a block-like network provides larger 

earthquake magnitude estimates because they consider the possibility of multifault 

ruptures, the strike-slip rates from connected models can also provide faster strike-slip 

rate estimates. If future earthquakes in the ECSZ release elastic stored energy as 

multifault rather than single-fault ruptures, the most appropriate long-term strike-slip 

rates may be from forward models that are driven by long-term plate velocity and have 

connected fault geometry. 

The effect of a connected SAF and San Jacinto fault on seismic hazard is less 

clear. When the faults are connected the faster strike-slip rate along the San Jacinto fault 

and slower strike-slip rate on the SAF produce corresponding changes to the moment rate 



 85 

on each of the faults, assuming that coseismic stress drops remain constant. Because the 

sum of the slip rates on the two faults is about the same for the two fault networks, we 

would not expect a change in moment rate for the region. However, differences in stress-

loading rates due to changes in slip rates between the connected and unconnected fault 

models could have impact on the duration of the earthquake recurrence intervals on the 

two faults for earthquakes of the same magnitude. 

3.6.2. How Much Fault Geometry Detail Is Needed? 

 Plate boundary-scale models used to simulate regional deformation for state-wide 

seismic hazard estimates may not incorporate fine enough detail in fault geometry for 

areas such as the San Bernardino Mountains region with its complex fault topologies and 

fault interactions. The differences in fault connectivity that we tested here change the 

average strike-slip rate for some individual faults by up to 16% (Tables S1ÐS3 in the 

supporting information). Even with these large changes in slip rate, discriminating 

between alternative fault geometry from the match to geologic slip rate data is hampered 

by large uncertainties in geologic slip rates. Uncertainties in both measuring offset and 

dating of materials contribute to these large slip rate ranges [e.g., Zechar and Frankel, 

2009]. Large ranges in geologic slip rates do not rule out the tested fault geometries of 

the San Jacinto fault and SAF, as most slip rates from the tested geometries are within the 

geologic ranges. The 1.6 mm/yr decrease in average slip rate along the San Bernardino 

strand of the SAF caused by the linkage with the San Jacinto fault creates a 10% increase 

in slip rate but still remains within the range of slip rates along the fault. The better match 

of Loveless and MeadeÕs [2011] strike-slip rate along the San Bernardino strand of the 

SAF to the geologic slip rates, relative to other block models that similarly invert only 
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GPS may reflect the improved fault network geometry within this block model compared 

to other models [Meade and Hager, 2005; Spinler et al., 2010]. Although inversion 

models that use reasonably complex fault-bounded blocks for the San Jacinto fault and 

the SAF may partition slip incorrectly between these faults, the total slip across both 

faults and the total moment rate may be the same. The appropriateness of a fault-bounded 

block model or a model that honors the mapped active fault traces may depend on the 

purpose of the investigation. 

 For the ECSZ, we see that connecting faults to form fault-bounded blocks 

produces significantly different strike-slip rates than the model that follows the mapped 

recently active fault traces. The long-term plate motion in both models is the same, so 

that the difference between the geologic slip rates and the long-term plate motion is taken 

up by differing amounts off-fault deformation. The degree of off-fault deformation 

depends on the geometry of the fault network and is estimated to be 30Ð40% of the total 

deformation in the highly disconnected ECSZ [Bird, 2009; Johnson, 2013; Herbert et al., 

2014]. The GPS data alone cannot resolve the portion of crustal deformation that is 

consumed by off-fault deformation and workers rely on geologic constraints to estimate 

off-fault deformation in their inversions. The excellent match of block model inversions 

to GPS data may not indicate that the models have achieved an accurate simulation of the 

ECSZ because the models can have good match to GPS and erroneous partitioning of 

deformation into fault slip and off-fault deformation. Consequently, the requirement of 

block models to have fault-bounded blocks that limit estimates of off-fault deformation 

may impede accurate simulation of crustal deformation within the ECSZ. Inversion 

models with disconnected fault systems can more accurately simulate deformation in the 
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ECSZ. Furthermore, the GPS data in the region show some enigmatic regional and local 

patterns that require further investigation with models that capture the complexity of the 

active fault network. 

 

3.7. Conclusions 

 We use BEM models to investigate the effects of fault connections used within 

block models on long-term strike-slip rates and interseismic surface velocities in southern 

California. The forward models are both kinematically and mechanically compatible with 

the total long-term plate motion. For the model that honors the disconnected mapped 

active fault traces, the modeled long-term strike-slip rates match well the geologic rates 

and the modeled interseismic deformation generally agrees with GPS surface velocities. 

The misfit with the GPS within the ECSZ may owe to incorrectly modeled fault 

geometries, wrong assumptions about rock rheology, or most likely interseismic 

deformation captured by the GPS that is not compatible with long-term plate motion. 

 By modifying the fault geometries that honor mapped active fault traces to instead 

follow the connected fault network used within some block models, forward model 

results show that connecting discrete faults significantly alters the distribution of strike-

slip rates on faults. Connecting the San Jacinto fault to the San Bernardino strand of the 

SAF increases the average strike-slip rates on the San Jacinto fault by 10% and decreases 

SAF average strike-slip rates by 16%, though local slip rates can change by 206%. 

Within the ECSZ, a block-like fault network produces 36% faster cumulative strike-slip 

rates across the ECSZ. Because of the large error bars on geologic slip rates our results 

cannot confirm if the SAF and San Jacinto fault are connected or not, as both the 
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discontinuous and block-like model slip rates fall within the large geologic slip rate 

ranges. More densely spaced geologic rates with tighter upper and lower bounds could 

help determine which geometry is more accurate. For the ECSZ, the discontinuous model 

results have much better match to the geologic strike-slip rates than the block-like model 

results. Both models, by design, accommodate the same long-term plate motion but this 

deformation is partitioned into greater off-fault deformation within the disconnected 

models. 

 The discontinuous fault network that matches mapped active fault traces and 

block-like fault network models produces smaller differences in interseismic deformation 

than their differences in strike-slip rates. This suggests that long-term slip rates measured 

by geologists at a single location are relatively sensitive to the fine details of fault 

geometry and connectivity, while geodetic measurements of interseismic surface 

deformation are relatively insensitive to details of fault geometry. In the Cajon Pass, the 

interseismic deformation from the two models is nearly indistinguishable given typical 

GPS error limits, suggesting that interseismic velocities are not overly sensitive to the 

fault geometry and connectivity chosen within interseismic models of these regions. This 

ultimately suggests that an inversion model may utilize both incorrect fault geometries 

and slip rates but still provide an excellent fit to the GPS data. The nonuniqueness of 

inverting GPS data is also demonstrated by the agreement of slip rates among across the 

ECSZ from block model inversions that use various fault different geometries; however, 

the role of fault connectivity is more directly tested with forward models. Our forward 

discontinuous and block-like models produce a measurable difference (7Ð17%) in 

interseismic surface velocities across the ECSZ that is only half of the 36% difference in 
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the strike-slip rates across the ECSZ between the two models. While the block-like 

models of the ECSZ overestimate strike-slip rates along the faults of the ECSZ, compared 

to the discontinuous model, they also predict less off-fault deformation. Because the 

interseismic surface velocities reflect both the fault slip and the off-fault deformation, the 

effects of changes in strike-slip rates on surface velocity are partially masked by the 

opposing changes in off-fault deformation. Consequently, the influence of fault network 

geometry on interseismic velocities is less than the network geometryÕs effect on strike-

slip rate. This suggests that inversion models can match GPS data well with both 

incorrect fault geometry and incorrect partitioning of deformation between fault slip and 

off-fault deformation. 

 The influence of fault geometry on seismic hazard is significant within the ECSZ. 

Fault networks that utilize fault-bounded blocks create larger possible earthquakes by 

increasing fault area and also increase earthquake recurrence with the associated with 

increase in strike-slip rates. Fault area changes between our discontinuous and block-like 

fault network increase earthquake potential from M6.9ÐM7.4 to M7.7 for single-fault 

ruptures. The block-like models may better approximate the seismic hazard associated 

with multisegment ruptures across the disconnected fault network of the ECSZ. More 

information is required in order to know the nature of fault intersections with greater 

confidence. In order to accurately simulate crustal deformation in regions of fault 

branching and regions of disconnected active faults, careful consideration of fault 

geometries is warranted. 

  



 90 

3.8 Figures 

 
 
 
 
 
 
 
 
 
 

Figure 3.1. Map showing the locations of CFM fault traces within the San Bernardino 
Mountains region. Sites of paleoseismic studies are indicated by small red circles: 1 = 
Weldon and Sieh [1985], 2 = McGill et al. [2010], 3 = McGill et al. [2010], 4 = McGill et 
al. [2013], 5 = Orozco [2004], 6 = Prentice et al. [1986], 7 = Kendrick et al. [2002], and 
8Ð13 = Oskin et al. [2007, 2008]. Blue triangles indicate locations of permanent GPS 
used in this study. Gold stars show epicenters of recent eastern California shear zone 
(ECSZ) earthquakes, and bold fault lines indicate ruptured faults. Abbreviations are as 
follows: BMF = Burnt Mountain fault, BS = Bullion splay, CHFZ = Crafton Hills fault 
zone, CP = Cajon Pass, EPF = Eureka Peak fault, GH = Garnet Hill, HM = Hector Mine 
earthquake, HSV = Homestead Valley fault, JTF = Joshua Tree fault, L = Landers 
earthquake, PS = Pinto splay, SAF = San Andreas fault, and SJF = San Jacinto fault. 
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Figure 3.2. Slip along the San Bernardino strand of the SAF from paleoseismic studies (1 
= Weldon and Sieh [1985], 2 = McGill et al. [2010], 3 = McGill et al. [2010], 4 = McGill 
et al. [2013], and 5 = Orozco [2004]), block models [Becker et al., 2005; Meade and 
Hager, 2005; Loveless and Meade, 2011; Field et al., 2013], and previous BEM model 
results [Herbert and Cooke, 2012]. At sites 1Ð3, forward model slip rates match geologic 
rates, whereas most geodetic inversions underestimate slip rates. 
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Figure 3.3. Slip rates along the (a) San Jacinto Valley strand of the San Jacinto fault and 
(b) across the ECSZ illustrating the discrepancies between geologic rates (6 = Prentice et 
al. [1986] 7 = Kendrick et al. [2002], and 8Ð13 = Oskin et al. [2007, 2008]), and geodetic 
rates from block models that do not use geologic rates as slip rate bounds [Becker et al., 
2005; Meade and Hager, 2005; Spinler et al., 2010; Loveless and Meade, 2011]. Forward 
model results from Herbert and Cooke [2012] and Herbert et al. [2014] overlap geologic 
slip rates for the San Jacinto fault and ECSZ, respectively. The block models 
overestimate the geologic slip rates for the ECSZ and overlap the slip rates along the San 
Jacinto fault (see text for geodetic errors). 
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Figure 3.4. (a) The raw detrended MEaSUREs north time series for site AGMT before 
any time series analysis. Note the strong postseismic signal from the 1999 Hector Mine 
earthquake, and an offset and smaller postseismic signal due to the 2010 El Mayor 
Cucapah earthquake. For the analysis presented here, we have removed all data before 
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2004 for sites exhibiting postseismic motions from the Hector Mine event. For the El 
Mayor Cucapah event, we have estimated and removed coseismic offsets for all sites, and 
the postseismic decay is effectively removed by removing the scaled first principal 
components of the stacked residual time series. (b) North time series for site AGMT from 
its beginning (1999.9767) to the time of the El Mayor Cucapah event (2010.2589). The 
time series plotted here has the secular velocity, annual, and semiannual motions 
removed. The blue curve shows the best fit of an exponential decay function, which 
provides an estimate of the postseismic relaxation. Based on visual fit to the data, we use 
a time decay constant of 1.1 years. The total estimated postseismic motion for the north 
component is 16.95 mm. Given this postseismic decay, negligible motion occurs after 
2004 due to the Hector Mine event. (c) Final detrended north time series for site AGMT. 
Red triangles show the unprocessed raw time series. Blue inverted triangles show the 
time series after estimation and removal of coseismic and equipment change-related 
offsets, and annual and semiannual motions. Green circles show the final detrended time 
series after removal of the scaled first principal components. Note that the removing of 
the scaled first principal components have effectively removed the postseismic motions 
due to the 2010 El Mayor Cucapah event, leaving a dominantly linear time series, 
suggesting secular interseismic motion. 
  
  



 95 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5. Strike-slip along the San Bernardino strand of the SAF and the San Jacinto 
Valley segment of the San Jacinto fault from our discontinuous and our SAF block-like 
model. Numbers correspond to paleoseismic studies along the SAF and San Jacinto fault 
(1 = Weldon and Sieh [1985], 2 = McGill et al. [2010], 3 = McGill et al. [2010], 4 = 
McGill et al. [2013], 5 = Orozco [2004], 6 = Prentice et al. [1986], and 7 = Kendrick et al. 
[2002]). Connecting the San Jacinto fault and SAF reduces the weighted average strike-
slip rates along the San Bernardino strand by 10% and increases average strike-slip rates 
along the San Jacinto Valley segment by 16%. At the EarthÕs surface near the intersection 
of the two faults, strike-slip rates along the San Jacinto fault can be as much as 206% 
faster for the block-like model. 
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Figure 3.6. (a) Cumulative slip rates across the ECSZ for our discontinuous and our 
ECSZ block-like model. Using a connected fault network increases the cumulative strike-
slip rates at sites marked with the (b) red and (c) light blue dots by 36% (6.7 to 9.1 
mm/yr). 
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Figure 3.7. (a) WRMS errors between GPS velocities and model surface velocities for all 
tectonic boundary conditions referenced to station WWMT (Figure 3.8). WRMS errors 
for sites within ~20 km of the (b) SAF, (c) San Jacinto fault, and (d) ECSZ. A locking 
depth of 20 km gives the lowest residual for all tectonic boundary conditions and all 
subregions. Residuals for stations around the SAF and San Jacinto fault are lower than 
those within the ECSZ. 
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Figure 3.8. (a) Permanent GPS (black arrows), discontinuous (DISC) model (red arrows), 
SAF block-like model (gray arrows), and ECSZ block-like model (blue arrows) 
interseismic velocities for a 20 km locking depth. All sites interseismic velocities are 
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plotted relative to WWMT, and a locking depth of 20 km minimizes the WRMS error for 
all sites (Figure 7a). GPS velocity 95% confidence ellipses are shown. Boxes at red arrow 
tips represent the variation of model results due to uncertainties in tectonic loading (40Ð
45 mm/yr at 320¡Ð325¡). (b) Model-GPS residuals for model with 20 km locking depth. 
The locations of two N30E oriented (90 km long) and two N90E oriented (150 km long), 
30 km spaced transects across the SAF/San Jacinto fault and ECSZ, are shown with 
dashed lines (Figures 9 and 10). 
  



 100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.9. N30E transects (a) A-A! and (b) B-B! across the San Jacinto fault and SAF 
near Cajon Pass showing the model surface displacements and GPS velocities relative to 
local site EWPP for a 20 km uniform locking depth. Locations of transects are shown in 
Figure 8b. Vertical gray lines show where the surface traces of faults intersect the 
transect. The 120¡ component of GPS velocities and locations are projected onto the 
transects (triangles), and gray error bars indicate the 120¡ component of the 95% 
confidence limits of the GPS. The surface velocities of the discontinuous and block-like 
models are nearly identical with differences less than 1%. Both models overestimate 
cumulative GPS velocity across the faults by ~2 mm/yr. 
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Figure 3.10. N90E transects (a) C-C! and (b) D-D! across the ECSZ showing the model 
surface displacements and GPS velocities relative to local site P582 for a 20 km uniform 
locking depth. Locations of transects are shown in Figure 8b. Various dotted and dashed 
lines represent strike-slip rates accruing from west to east from block models that invert 
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GPS without geologic constraints. Vertical gray lines show the surface traces of major 
faults from our discontinuous model. The 130¡ component of the GPS velocities are 
projected onto the transects (triangles), and gray error bars indicate the 130¡ component 
of the 95% confidence limits of the GPS. The difference in surface velocity between the 
discontinuous and block-like models for both transects is less than 17%. The closer match 
of interseismic velocities along transect D-D! to the GPS velocity across the region owe 
to this transect crossing the centers of many fault traces where transect C-C! crosses near 
the fault tips. The blue curve in C-C! shows the velocity profile for a discontinuous model 
with 10 km locking depth in the ECSZ and 20 km (best fitting) throughout the rest of the 
model. It also fails to reach the high velocity of the GPS. 
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CHAPTER 4 

THE WORK OF FAULT GENERATION IN LABORATORY SANDBOX 

EXPERIMENTS 

 

4.1. Introduction 

The development and timing of faulting is controlled by the work required to 

create new fault surfaces. Calculation of the work required to grow faults has large 

implications for failure prediction, which is often characterized by the empirical Coulomb 

criterion (e.g., Jaeger et al., 2007). The normal stress-dependent Coulomb criterion 

predicts failure of intact rock from the material properties of inherent shear strength and 

the internal friction coefficient, which are determined from laboratory testing of small 

rock samples. The Coulomb criterion predicts two failure surfaces for a given stress 

condition, which adds ambiguity to fault prediction. One challenge when using the 

Coulomb criterion to predict failure is that the growth of faults within analog experiments 

does not always occur where the Coulomb stresses are greatest (e.g., Del Castello and 

Cooke, 2007). Using a work budget approach, Del Castello and Cooke (2007) show that 

fault growth within numerical models of sandbox experiments occurs when the decrease 

in external work due to adding a fault exceeds the work required to create the fault. 

Direct calculation of the work required to grow faults within analog sandbox models may 

provide further insight into the prediction of both fault growth path and timing. 

For centuries, analog models have been used to investigate fault evolution on both 

length and time scales suitable for easily repeatable laboratory experiments (e.g., Hall, 

1815, Graveleau et al., 2012). Under controlled boundary conditions (i.e., applied 



 104 

displacements and stresses) and properly scaled material properties (with rock-like 

behavior), analog models provide quantitative data of fault system evolution (e.g., 

Hubbert, 1937). Sandbox experiments are particularly well suited for fault system 

evolution because boundary conditions and material properties can be well constrained, 

fault growth is observable, and the experiments provide quantitative measurements of 

both the evolving displacement field and total backwall force required to deform the sand 

body. The development of sandbox apparatuses that measure applied stress (Nieuwland et 

al., 2001; Cruz et al., 2010; Cubas et al., 2010; Souloumiac et al., 2012) permit direct 

observations of the work consumed during fault growth. 

We determine the work required to grow faults within compressional sandbox 

experiments conducted at the UniversitŽ de Cergy-Pontoise (UCP) and Stanford 

University (Cruz et al., 2010) from changes in backwall force due to faulting. Casagrande 

shear box experiments performed by Maillot (2013) at UCP provide additional 

measurements of sand strength that can be used to estimate the work of fault growth. We 

demonstrate that sandbox and Casagrande shear box tests reveal similar values for the 

work required to grow faults in sand, which may be useful for fault growth predictions. 

 

4.2. Work of Fault Growth 

The concept of a balanced energy budget has been widely applied in the Earth 

sciences to study geologic structures and tectonic deformation, usually following a work 

minimization approach (e.g., Cooke and Madden, in review). This derives directly from 

the work of Griffith (1920), who showed that, for a system that is at equilibrium, the 

energy required for crack growth is matched by an equal and opposite change in the 
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systemÕs mechanical energy. Irwin (1958) used GriffithÕs energy balance to define the 

critical energy release rate, which is related to a crackÕs near-tip stress field by the critical 

stress intensity factors, the stress magnitudes required for fracture propagation. Stress 

intensity factors are considered properties of the material containing the crack and are 

therefore independent of a crackÕs size, orientation relative to remote loading, and of the 

normal stress along the failure surface. The critical energy release rate has been 

successful in describing colinear crack propagation in many engineering materials; 

however, there are few empirical measures of the critical values required for crack 

growth in rock. Frictional failure according to the Coulomb criterion differs from 

GriffithÕs work, in that it depends on the material properties of inherent shear strength, 

internal friction, and also the normal stress resolved on the potential failure plane. This 

normal stress dependence means that higher shear stress is required to overcome higher 

normal stresses on incipient faults deeper in the Earth. In contrast, the energy release rate 

predicts that fault growth consumes the same work regardless of depth in the crust.  

The work required to propagate faults is one component of a fault system work 

budget. The complete fault work budget consists of five components, which sum to the 

total external work (Wext) applied to the system (e.g., Cooke and Murphy, 2004; Del 

Castello and Cooke, 2007; Savage and Cooke, 2010; Cooke and Madden, in review): 

internal work (Wint), work against gravity (Wgrav), work against friction (Wfric), seismic 

radiated energy (Wseis), and the work of fault propagation (Wprop). Wprop + Wseis, hereinafter 

referred to as Wgrow, are lost to the system during faulting, and are equal to the change in 

Wext (&Wext) before and after an episode of fault growth. Wgrow is calculated as the 

product of the change in force measured on the backwall and the distance over which the 



 106 

force drop takes place (force times distance): 

Wgrow = &Wext = 
!

!
!"#      (eq. 4.1) 

Here, &F is the difference in force measured at a peak/trough force pair and L is the 

change in backwall distance. We calculate Wgrow for fault events within analog sandbox 

models and Casagrande shear box experiments for various layer thicknesses to evaluate 

the dependency of fault growth on normal stress. 

 

4.3. Analog Sandbox Modeling 

 We analyze data from compressional sandbox wedge experiments performed at 

UCP and Stanford University that use similar coarse sand. We also ran experiments at 

UCP with either fine grain sand or spherical glass beads. Continuous measurements of 

strain, which have been calibrated to force, in combination with overhead and side 

photographs record deformation throughout experiments. 

4.3.1. Deformation Sandbox 

The UCP sandbox (Figure 4.1) is a rectangular shear box with inside dimensions 

of 41 cm in length, 28 cm in width, and 9 cm in height. The frontwall, basal plate, and 

sidewalls of the sandbox are made of 1 cm thick glass and fixed in position. The basal 

plate of the model has a slope of 0¡. An electric screw motor translates the backwall 

toward the frontwall at constant speed. Although the rate of backwall displacement varies 

between experiments (Table 4.1), the results at different speeds are consistent, as 

deformation is not affected by strain rate. The backwall consists of a foam block backed 

with strain gauges that record strain every 0.1 seconds (Figure 4.1). The strain gauges 

exhibit a known linear-elastic behavior, allowing backwall measurements of strain to be 
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converted to force (Cubas et al., 2010). In addition to the strain gauges, two cameras 

capture overhead and side photographs every 5 seconds. Particle Image Velocimetry (PIV) 

aids in the analysis of deformation within sand packs by providing the instantaneous 

velocity of sand grains through correlation of pixel constellations between successive 

images (Hoth, 2005). Where the foam block comes in contact with glass both along the 

bottom and sides, Teflon and felt reduce friction and prevent sand from becoming 

entrained between the foam block and glass plates. The indentation style sandbox 

minimizes sidewall friction, which can skew the results captured by the side camera 

(Souloumiac et al., 2012). Additionally, the sidewalls are coated with Rain-X and buffed 

prior to each experiment to further reduce sidewall friction from ~0.27 (untreated glass) 

to ~0.16 (treated with Rain-X), further reducing drag along the viewing glass (Cubas et 

al., 2010). 

In UCP experiments, the horizontal layer thickness is varied from 11-20 mm 

(Table 4.1). Prior to deformation and in addition to these flat layers, a small protowedge 

is added in front of the moving wall using the sedimentation device. The slope of the 

protowedge equals the granular materialÕs angle of repose. The small protowedge focuses 

the onset of deformation at the toe of the protowedge, away from the moving wall and 

facilitates a consistent sequence of initial faulting among experiments.  

We compare results from UCP experiments with an experiment performed in a 

different compressional sandbox at Stanford University (Cruz et al., 2010). The Stanford 

experiment consists of a 28 mm sand layer sitting atop a 2 mm glass bead layer. The glass 

bead layer serves as a weak detachment horizon at the base of the sand pack. The initial 

configuration consists of only horizontal layers. 
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4.3.2. Material Placement and Properties 

The material placement technique can greatly affect friction within granular 

material (Krantz, 1991; Lohrman et al., 2003; Panien et al., 2006; Maillot, 2013). Sifting 

granular material is preferred over pouring because sifting creates reproducible, planar, 

homogeneous, and dense layers (Krantz, 1991; Cubas et al., 2010; Maillot, 2013). A 

sedimentation device described by Maillot (2013) creates granular material packs for the 

UCP experiments. Material released from a reservoir above the sandbox passes through 

three sieves before settling in the box.  

The granular material used at UCP is either Fontainebleau aeolian quartz sand 

(CV32 and GA39) or glass beads. CV32 sand is coarse grained (median grain size of 250 

'm), poorly -sorted, and has a density of 1711 ± 7 kg/m3 (Cubas et al., 2010; Maillot, 

2013). GA39 is fine grained with a median grain size of 90 'm, well-sorted, and has a 

density of 1543 ± 20 kg/m3 (Maillot, 2013). Friction of the sand was measured using a 

Casagrande shear device (Maillot, 2013). The Casagrande shear box consists of a mobile 

lower half, which is displaced with a stepwise motor and an upper half held fixed in 

position by a force, which was measured throughout shearing. Maillot (2013) calculated 

the peak internal friction at failure and dynamic internal friction during sliding to be 0.96 

and 0.72, respectively. The decrease from peak to dynamic friction takes place over a slip 

distance of ~2 mm. 

The sand used by Cruz et al. (2010) is a moderately sorted, medium grained sand 

with a graphic mean grain size of 271 'm and density of 1538 kg/m3 (KlinkmŸller, 2011). 

In a side-by-side comparison in a ring-shear device, Stanford sand behaves similarly to 

the UCP CV32 sand, with a peak friction of 0.66 ± 0.03 and dynamic friction of 0.58 ± 
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0.01 (KlinkmŸller, 2011).  

 

4.4. Results 

The response of the sand pack to the moving wall is measured by the strain 

gauges and changes in wedge geometry are captured by the side and overhead 

photographs. Faults develop in response to the backwall displacement. Two types of 

faults form to thicken or lengthen the wedge in both UCP and Stanford experiments: 1) 

detachment faults form at the interface of the sand pack and basal plate and 2) ramp faults 

form within the sand pack. Ramp faults dip either towards the moving wall (forethrusts) 

or towards the toe of the wedge (backthrusts) and can occur as a forethrust-backthrust 

pair or individually (Figure 4.2a). Force drops associated with faulting are recorded for 

40 faulting events within eight experiments on the UCP device and eight faulting events 

within a single experiment on the Stanford device (Cruz et al., 2010). We calculate the 

Wgrow for each faulting event from force drops and backwall displacements. Force drops 

within experiments can be attributed to the fault system acquiring a more efficient 

configuration that requires less force to accommodate the prescribed displacement. 

Additionally, we analyze the changes in shear stress for different confining stresses 

within Casagrande shear box experiments performed by Maillot (2013) to calculate Wgrow. 

The Wgrow per fault area (Wgrow/A) from Casagrande shear box experiments is compared 

to that from sandbox experiments.  

4.4.1. Sequence of Faulting in Experiments 

The sequence of faulting within all CV32 experiments is consistent (Figure 4.2a 

and 4.2b). Initially, the detachment slips ahead of the wedge, then a forethrust-backthrust 
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pair develops. The detachment slip prior to ramp fault development is captured by the 

PIV analysis as compaction prior to discrete ramp fault slip. Significantly lower friction 

along the detachment (0.21-0.32; Cubas et al., 2010) relative to the internal friction of the 

sand (0.96; Maillot, 2013) could explain the lack of large drops in force at the time of 

detachment slip. In most of the experiments, a single out-of-sequence backthrust forms 

next between the backwall and forethrust-backthrust pair. This is followed by slip along 

the detachment and the growth of a forethrust within the undisturbed sand pack ahead of 

the wedge (Figure 4.2). New forethrust-backthrust pairs and individual forethrusts 

develop at the toe of the wedge in front of the previous fault to form while backthrusts 

develop behind the toe of the wedge. 

 The experiment performed by Cruz et al. (2010) follows a different sequence of 

faulting, with first a forethrust, then a backthrust, and then a second forethrust forming 

sequentially. After the first three events, only forethrust-backthrust pairs develop for the 

duration of the experiment. The initial setup of Cruz et al. (2010) does not include a 

protowedge, which may explain why the first three faults to form are short-lived and 

make contact with the backwall. These faults act to create a wedge against the backwall.  

4.4.2. Analysis of Force Measurements 

Force measurements for a typical UCP CV32 experiment are shown in Figure 4.3. 

The changes in measured force along the moving wall resemble force measurements from 

other analog models (Nieuwland et al., 2001; Cruz et al., 2010; Souloumiac et al., 2012). 

Prior to formation of the first forethrust-backthrust pair, force increases as the moving 

wall makes contact with the foam block and the sand is displaced (Figure 4.3). This is the 

linearly increasing segment of the force curve. Then force decreases sharply with the 
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initial, and each subsequent episode of fault growth, from a local peak to a trough (Figure 

4.3). Over all fault episodes, the force increases as the wedge grows in height and length. 

Generally, forethrust-backthrust pairs produce the largest decrease in backwall force 

because they have the largest fault area (Figure 4.3). In the UCP sandbox the average 

force drop recorded for pairs in CV32 is 1.2 ± 0.8 N, compared to 0.6 ± 0.3 N for 

backthrusts and 0.9 ± 0.8 N for forethrusts. The average distance over which CV32 force 

drops occur is 2.7 ± 0.9 mm. CV32 sand was previously shown to have a slip weakening 

distance of 3 mm in ring-shear experiments (KlinkmŸller et al., 2008) and 2.4 mm within 

Casagrande shear experiments (Maillot, 2013), which are in good agreement with the 

distance measured in these sandbox experiments.  

Average force drop for forethrust-backthrust pairs in the Stanford sandbox is 8.4 

± 2.5 N. Force drops for forethrusts are nearly half that of the pairs at 4.1 ± 2.5 N and 

backthrusts even less at 2.3 N (1 event). The backwall displacement during the force 

drops is 5.6 ± 0.8 mm, longer than UCP CV32 experiments. 

4.4.3. Measurements of Wgrow From Force Drops During Experiments 

We handpick the peak and trough force for each faulting event after force 

measurements have been smoothed using a 5-point moving average. We calculate the 

instrument noise in the force measurements by taking the average difference between the 

smoothed data and the raw force data. The instrument noise differs across experiments 

due to slight changes in instrument set-up (i.e., replacing worn felt or Teflon, new 

sidewall glass, etc.). In addition to instrument noise, uncertainty associated with the exact 

location of each peak and trough is calculated due to multiple maxima/minima. A wider 

moving average filter helps identify the location of both the average peak and trough of 
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each fault event. The difference in backwall displacement between the handpicked values 

and the average values gives the error of the displacement of the fault event. Both errors 

due to instrument noise and uncertainty in peak/trough location are carried throughout 

our calculations of &Wext. 

We observe faults developing across the entire sandbox and assume they have the 

same geometry on both sidewalls. To calculate fault area (A), we measure the fault length 

along the sidewall and multiply by the width of the sandbox (28 cm).  

While both detachment and thrust faults develop to accommodate the deformation 

caused by backwall displacement, the work required for the formation of each style of 

fault may not be equal. The contribution of ramp and detachment faults to changes in 

external work, &Wext, is calculated through an inverse analysis of the following 

relationship:  

&Wext = Wgrow-RAR + Wgrow-DAD    (eq. 4.2) 

Where Wgrow is the work of fault growth for ramps and detachments, AR is new ramp area, 

and AD is new detachment area. Values of Wgrow for ramps and detachments are 0.143 

J/m2 and -0.026 J/m2, respectively, for the sand CV32. The result of -0.026 J/m2 for 

detachment formation suggests that detachment fault growth comes at a low cost to the 

system. PIV results corroborate the inverse analysis, showing slip along the detachment 

fault occurs prior to the development of ramp thrusts, with no significant change in 

recorded force. We can assume that force drops only occur due to the area of new ramp 

fault developed during a faulting event (i.e., detachments are not recorded by the 

backwall force measurements). 

Figure 4.4a shows &Wext (Wgrow) as a function of fault area for the growth of each 
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ramp fault in CV32 experiments at UCP. The average Wgrow/A calculation for one square 

meter of new fault in the UCP sandbox for CV32 is 0.122 J/m2; however, the results 

show dependency of Wgrow/A on the thickness of sand packs within the experiments 

(Figure 4.4a; Table 4.2). The 12 mm (0.056 J/m2) and 14 mm (0.059 J/m2) thicknesses 

have nearly identical Wgrow/A, while Wgrow/A in the 16 mm (0.104 J/m2) and 20 mm 

(0.234 J/m2) experiments are sequentially larger. Figure 4.4b shows both the UCP and 

Cruz et al. (2010) fault data. The calculated Wgrow/A for the Stanford sandbox (30 mm) is 

the largest, at 0.757 J/m2. 

4.4.4. Work Calculated From the Casagrande Shear Box 

 Casagrande shear box tests performed by Maillot (2013) provide another direct 

measurement of Wgrow for UCP CV32 sand. These tests measure the evolution of force 

during fault slip for normal stresses along the shear surface that range from 6000-251000 

Pa, much higher than those within the sandbox (200-453 Pa) due to lithostatic loading. 

Wgrow can be calculated from changes in force throughout the experiments using (1). 

Figure 4.5a shows calculated Wgrow/A for Casagrande shear tests. Because normal stresses 

increase with depth in the Earth, deeper faults require greater work than shallower faults 

and result in a larger &Wext. Figure 4.5b shows the best fit line from Figure 4.5a and 

Wgrow/A values from Figure 4.4a and 4.4b for each depth at normal stresses calculated for 

due to lithostatic loading for UCP (12, 14, 16, and 20 mm) and Standford (30 mm) 

sandbox layer thicknesses. For 12, 14, and 16 mm sand packs, the match of the sandbox 

Wgrow to the Casagrande slope is quite good. The thicker sand packs show greater work 

required to generate faults than would be expected based on the Casagrande test data, but 

are of the same order of magnitude. While multiple experiments were run at 12 and 14 
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mm, only one experiment each were run for 16, 20, and 30 mm. The number of 

experiments for thicker sand packs may not capture all of the variation among 

experiments at a specific depth. Also, the Casagrande shear box explored normal stresses 

at least an order of magnitude larger than the sandbox experiments, which suggests that 

the best-fit line in 4.5a may not capture Wgrow/A at very low normal stresses. 

4.4.5. Material Comparison 

 We examine two experiments performed at UCP using different granular material 

(GA39 and glass beads) to qualitatively determine Wgrow estimates for these materials. In 

experiments with GA39 and glass beads (Table 4.1), changes in backwall force 

concurrent with faulting are smaller than the sensitivity of the strain gauges, and therefore 

not detectable. Faulting is evident in side and top photographs however, which allows for 

a qualitative comparison of Wgrow for glass beads and GA39. We do this by comparing the 

timing and frequency of faulting for a given backwall displacement to a CV32 

experiment (Figure 4.6). We examine experiments with 14 mm material thicknesses 

(Table 4.1). For the first 50 mm of backwall displacement, the glass bead experiment 

develops more faults than the GA39 experiment, which forms more faults than the CV32 

experiment. The timing and fault trace length reveal relative values of Wgrow for these 

three materials. Because faults grow when the work savings from producing a new fault 

is greater than the cost of fault creation, a lower value of Wgrow would result in more 

frequent and smaller faults developing under similar loading conditions. Higher Wgrow in 

CV32 suggests that for a new fault to develop in the system, the fault requires greater 

work to form. This work is stored as Wint within the system prior to fault growth. Larger 

Wgrow requires more backwall displacement to occur between faulting events because 
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more Wint has to accrue in order to grow the fault. 

 

4.5. Comparison of Wprop From Field, Laboratory, and Sandbox Experiments 

New faults develop or propagate when the work savings of having the new fault 

surface exceeds the cost of creating the fault (Del Castello and Cooke, 2007). While the 

measurements of Wgrow calculated from sandbox experiments represent the combined 

value of Wprop and Wseis consumed during fault growth, many laboratory experiments and 

field measurements have permitted the direct estimatation of Wprop (e.g., Wong, 1982; 

Chester and Wilson, 2005). Estimates of Wprop require accurate measurements of total 

area of new surfaces created and the specific surface energy for minerals, typically ~ 1 

J/m2 (e.g., Brace and Walsh, 1962). Measurements of surface energy in the lab are 101-

104 J/m2 (e.g., Wong, 1982; Ohnaka et al., 1997; Cox and Scholz, 1998; Kato et al., 2003). 

Field estimates from mining-induced earthquakes, pseudotachylyte formation for a single 

fault slip event, and fault gouge development range from 105-106 J/m2 (e.g., Olgaard and 

Brace, 1983; Chester et al., 2005; Wilson et al., 2005; Pittarello et al, 2008). For analog 

experiments to correctly simulate crustal deformation using analog models five orders of 

magnitude smaller than the crust, the strength of the analog materials needs to be five 

orders of magnitude smaller than the strength of the crustal material (Hubbert, 1937). The 

measured value of (Wprop + Wseis)/A from the sandbox experiments (0.122 J/m2) are five to 

seven orders of magnitude lower than both laboratory and field estimates of Wprop, which 

obeys proper scaling relations. 

Calculations of (Wprop + Wseis)/A from the sandbox experiments presented here are 

an order of magnitude smaller than that found within numerical simulations of the 
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sandbox of Adam et al. (2005) by Del Castello and Cooke (2007). This discrepancy may 

be due to the different sands used in these experiments or, alternatively, because Adam et 

al. (2005) use a conveyer type sandbox with significant sidewall friction (Souloumiac et 

al., 2012). The Adam et al. (2005) rig is also a narrow sandbox, where deformation 

viewed along sidewalls may be subject to edge effects (Souloumiac et al., 2012). 

 

4.6. Conclusions  

We calculate the work required to grow faults using analog sandbox experiments 

and Casagrande shear box results, which are consistent with one another and scale 

properly to crustal calculations. Calculations of Wgrow increase with thickness of sand 

pack layers. Utilizing different materials within the compressional sandbox (GA39 sand 

and glass beads) suggests that material properties also control work required for fault 

growth. Lower Wgrow results in more frequent and smaller faults developing in the 

sandbox. Calculation of Wgrow ultimately permits the potential prediction of fault growth 

path and timing. 
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4.7. Figures 

 
 
 
 
 
 
 
 

 
 
Figure 4.1. Oblique, side, and top views of the Universite de Cergy Pointoise (UCP) 
experimental sandbox set-up. Backwall is translated from left to right toward the 
frontwall by the electric screw motor. 
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Figure 4.2. Timing of first three faults to develop within the UCP sandbox for various 
depths of CV32 sand. Experiments are listed in Table 1 (1-189, 2-221, 3-222, 4-223, 5-
224, 6-240, 7-241, 8-272). With the exception of experiment 2, a forethrust/backthrust 
pair develops first, then a backthrust, followed by a forethrust. Inset shows the geometry 
of these faults. 
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Figure 4.3. Force-displacement for experiment 222 (Table 4.1). After making contact 
with the foam block, the force increases until the first faulting event, a forethrust-
backthrust pair, where there is a drop in force (shown by the highlighted area). The fault 
forms over the backwall displacement from peak to trough and then increases until the 
next force drop. The second fault is a backthrust and the third a pair of forethrusts.  
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Figure 4.4. Change in work versus new fault area for faults developed in the a) UCP 
(CV32 sand) and b) UCP (CV32 sand) and Stanford University (Cruz et al., 2010) 
sandboxes. Slope of the best fit line gives Wgrow/A (J/m2). The error bars are a 
combination of instrument noise and uncertainty associated with determining force drops. 
Increasing sand pack thickness requires greater work to grow faults. 
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Figure 4.5. a) Wgrow/A calculated from Casagrande shear box experiments performed by 
Maillot (2013). b) Calculated Wgrow/A from force drops in sandbox experiments (Figure 
4.4; Table 4.2) are shown for sand packs heights of 12 to 30 mm. Estimated Wgrow/A from 
Casagrande shear box data is shown by the solid black line. Wgrow/A for thinner sand 
packs from both calculations are in good agreement. More sandbox experiments at deeper 
sandpack depths (16, 20, and 30 mm) could change the total Wgrow/A.  
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Figure 4.6. Frequency of faulting and fault lengths during the first 50 mm of backwall 
displacement for CV32 (medium sand), GA39 (fine sand), and glass beads for 14 mm 
sand packs. Size of circles represents the surface length of new faults. The lower work 
required to grow faults in finer sand and glass beads is shown by the higher frequency 
and smaller length of growing faults. Larger faults develop within CV32 because the 
work required to grow faults is greater than for glass beads of GA39 sand. 
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4.8. Tables  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.1. Experimental parameters. The height of the horizontal sand pack and speed of 
the backwall displacement varied among experiments. Experiment S1 was conducted by 
Cruz et al., (2010). 
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Table 4.2. Calculations of Wgrow/A for UCP and Stanford experiments. Column 3 
(ÒSandboxÓ) and column 4 (ÒErrorÓ) are the Wgrow/A calculations from Figures 4.4a and 
4.4b and the respective error (±) of the slopes. Column 5 (ÒCasagrandeÓ) is the estimated 
Wgrow/A from the slope of Figure 4.5a for normal stresses in the sandbox due to layer 
thickness. 
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CHAPTER 5 

USING WORK MINIMIZATION TO PREDICT FAULTING WITHIN 

ACCRETIONARY SYSTEMS 

 

5.1. Introduction 

Accretionary wedges are excellent systems for studying fault growth because 

fresh material accreted at the toe of the wedge has not yet been faulted. Consequently, the 

analysis avoids issues of inherited planes of weakness and material heterogeneity. 

Furthermore, accretionary systems have been well studied with scaled analog 

experiments of dry granular materials (sand and glass beads), which permit careful 

observation of faulting as well as quantification of the deformation associated with 

faulting (Graveleau et al., 2012). Modern analog experiments provide rich datasets to test 

numerical models that use work minimization to predict faulting (e.g., Del Castello and 

Cooke, 2007).  

One challenge of using the Coulomb criterion for fault prediction is that two 

failure planes are predicted for a given stress state. Another challenge of using the 

Coulomb criterion to predict failure is that the growth of faults within analog experiments 

of accretionary systems does not always occur where the Coulomb stresses are greatest 

(Del Castello and Cooke, 2007). Work minimization can predict faulting by showing that 

when the Coulomb criteria is met, the preferred fault to grow minimizes the total work of 

the system (e.g., Mitra and Boyer, 1986; Hardy et al, 1998; Cooke and Murphy, 2004; 

Del Castello and Cooke, 2007; Mary et al., 2013, Cooke and Madden, in review). 

Numerical models that use work minimization have successfully revealed the mechanical 
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processes that control fault development within analog experiments of accretionary 

systems (e.g., Del Castello and Cooke, 2007; Mary et al., 2013). Furthermore, work 

minimization fault predictions show good match to observations of fault growth in analog 

experiments of accretionary systems (e.g., Gutcher et al., 1998; Hardy et al., 1998; 

Burbidge and Braun, 2002; Del Castello and Cooke, 2007; Mary et al., 2013).  

The work presented in this paper simulates fault growth during analog sandbox 

experiments performed at the UniversitŽ de Cergy-Pontoise (UCP) using Boundary 

Element Method (BEM) models. These models evaluate whether the sandbox deforms 

through work minimization by comparing numerical predictions with observations. If 

faults within the sandbox develop according to the principle of work minimization, then 

model simulations of analog experiments can provide an accurate fault growth prediction 

tool. Not only can these models predict fault growth path but, using the energy required 

to grow faults, can also predict the timing of fault growth.  

 

5.2. Work Budget 

The five components of a fault system work budget (internal work, Wint; work 

against gravity, Wgrav; work against friction, Wfric; seismic radiated energy, Wseis; work of 

fault propagation, Wprop) sum to the total external work (Wext) applied to the system 

(Figure 1; e.g., Mitra and Boyer, 1986; Cooke and Murphy, 2004; Del Castello and 

Cooke, 2007; Savage and Cooke, 2010; Cooke and Madden, in review). The work budget 

of a fault system is: 

 Wext = Wint + Wgrav + Wfric + Wseis + Wprop    (eq. 5.1) 

Wint and Wgrav, both recoverable work terms within the system, sum to Wext prior to 
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faulting, while Wfric, Wprop and Wseis are zero prior to fault slip. When faults slip, stored 

energy is released as Wfric, Wprop and Wseis at the expense of Wint and Wgrav (e.g., Scholz, 

2002; Kanamori and Rivera, 2006). According to the principle of work minimization, 

faults will grow in order to minimize Wext (e.g., Maillot and Leroy, 2003; Del Castello 

and Cooke, 2007; Cubas et al., 2008; Mary et al., 2013; Cooke and Madden, in review). 

Consequently, Wext can be used to evaluate the overall efficiency of a deforming system 

so that a lower Wext results from deformation of a more efficient fault system. Wext is the 

sum of the products of the shear traction (! !  and shear displacement (! ! ), and normal 

traction (! ! !  and normal displacement (! ! ), along the model boundaries (B): 

Wext = ! ! ! ! ! !! ! ! ! ! !"     (eq. 5.2) 

A deforming body will store energy as elastic strain energy, similar to the elastic 

energy stored in a compressed spring. The product of stress and strain within the 

deforming body defines the strain energy density (Jaeger et al., 2007), and integration 

over the two-dimensional area gives Wint, 

Wint = 
!

!
! !! ! !! ! !! !! ! !! ! ! ! !" ! !" !"    (eq. 5.3) 

Areas of high strain energy density lead to permanent deformation and fault growth that 

results in a reduction of strain energy density (e.g., Du and Aydin, 1993). 

Changes in topography between two deformation states reflect Wgrav throughout a 

deforming body. Wgrav is calculated from the vertical displacement of particles throughout 

the deforming body produced by vertical stresses. The two-dimensional calculation of 

Wgrav under lithostatic load depends on the density of the material, ! , gravitational 

acceleration, g, and particle depth, dz as a function of vertical position, z, 

Wgrav = !" ! ! ! !"     (eq. 5.4) 



 128 

Particles within a contractional system will have a positive Wgrav, while an extensional 

system with subsidence will have a negative Wgrav. 

Wfric is the energy required to slide two surfaces past one another and results in the 

formation of heat, an irreversible energy loss. Fault slip occurs when shear stress along 

the fault exceeds the frictional strength of the fault and work done against this slip 

resistance equals Wfric. Wfric depends on fault slip and shear stress, and is integrated along 

total fault length. 

Wfric = ! ! ! ! ! ! ! ! !"    (eq. 5.5) 

Here, c is cohesion along the fault, ! !  is normal stress,!! !  is dynamic friction coefficient 

during sliding, and A is the fault area that has slipped. 

The work required to grow faults (Wprop) and seismic energy (Wseis) equal Wgrow. 

The Wgrow depends on the shear stress drop and slip along fault surfaces, resulting in a 

reduction in friction along the fault from static to dynamic levels (Marone, 1998): 

Wgrow = 
!

!
! !"#$     (eq. 5.6) 

Where ! !  is the change in shear stress and s is the slip distance. Herbert et al. (in prep) 

calculate Wgrow in sandbox experiments at UCP and Stanford University (Cruz et al., 

2010). The average Wgrow/A for UCP sand is 0.122 J/m2 but shows a clear dependence on 

depth of sand layers (Herbert et al., in prep).  

Work budget analysis has provided insights into the shift from underthrusting to 

accretion in analog and numerical sandbox experiments (Gutcher et al., 1998; Hardy et al., 

1998; Burbidge and Braun, 2002; Del Castello and Cooke, 2007), fault formation and 

propagation (Mitra and Boyer, 1986; Cooke and Madden, in press), folding (Ismat, 2009), 

mountain building (Masek and Duncan, 1998; Meade, 2013), and dip-slip fault rupture 
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(Dempsey et al., 2012). In this analysis, we attempt to show that fault growth in the 

sandbox occurs via work minimization, by running hundreds of simulations and 

comparing the relative changes in Wext due to adding faults with various basal position 

and fault orientation. We also compare the most efficient fault with observed fault growth 

captured along the sidewall by cameras and subsequent particle image velocimetry 

analysis. The particle image velocimetry tracks sand particle movement facilitating 

extraction of quantitative information about deformation. In addition to particle image 

velocimetry, the UCP experiments incorporate measurements of force during the 

experiment. This permits comparison of model force with observations. Also, force 

changes demonstrate that growth of faults is associated with a decrease in force and Wext. 

 

5.3. Accretion Experiments 

 Sandbox models have been widely used to study accretionary wedges and fold-

and-thrust belts, giving key insights into mountain belt evolution and fault propagation 

(e.g., Davis et al., 1983; Koyi, 1997; Lohrmann et al., 2003; Adam et al., 2005; Cruz et 

al., 2010; Souloumiac et al., 2010; Ranalli, 2010; Graveleau et al., 2012). For example, 

analysis of sandbox accretionary wedge experiments has shown that wedges deform by 

oscillating between wedge thickening (underthrusting) and wedge lengthening (accretion) 

events in response to convergence (e.g., Mulugeta and Koyi, 1992, Gutcher et al., 1998). 

Recent laboratory work on the frictional behavior of sand has helped further understand 

the mechanical properties of materials used in sandbox accretionary experiments 

(Lohrmann et al., 2003; Panien et al., 2006; Maillot, 2013). Furthermore these materials 

scale properly to the Earth (Hubbert, 1937). Numerical models that simulate analog 
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experiments (e.g., Hardy et al, 1998; Burbidge and Braun, 2002; Ellis et al., 2004; Del 

Castello and Cooke, 2007; Cruz et al., 2010; Mary et al., 2013) reveal the mechanical 

processes that control laboratory observations. 

 

5.4. Fault Growth with BEM Models 

Fric2D (Cooke and Pollard, 1997), a two-dimensional BEM mechanical modeling 

code, simulates the sequence of faulting within a compressional analog sandbox 

experiment performed at the UCP with coarse sand. Fric2D incorporates the principles of 

continuum mechanics and allows for the determination of individual work terms from 

calculations of stress and displacements within the deforming body (e.g., Crouch and 

Starfield, 1990). Fric2D has been used to simulate crustal deformation (e.g., Cooke and 

Pollard, 1997; Roering et al., 1997; Cooke and Kameda, 2002; Cooke and Murphy, 2004), 

sandbox experiments (Del Castello and Cooke, 2007), and fracture propagation (Cooke 

and Underwood, 2001; Cooke and Madden, in press). The BEM models of this study 

mimic snapshots of cross-sectional deformation captured during the sandbox experiments.  

5.4.1. BEM Model Set-Up 

 BEM modeling is well suited for use in two-dimensional simulations of sandbox 

experiments because discretization is required only at boundaries and discontinuities 

within the deforming body (e.g., faults), rather than the entire model volume as in the 

finite element method (Crouch and Starfield, 1990). The BEM also accurately captures 

the stress field at any point in the model (e.g., around crack tips) without special mesh 

considerations. Furthermore, in contrast to the finite element method (e.g., Ellis et al 

2004 and Crook et al 2006), which requires model remeshing to accommodate fault 
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growth, the BEM only requires the addition of new fault elements.  

The model replicates deformation viewed along the sidewall of two sandbox 

experiments within the UCP deformation rig (Figure 5.2). The first model is of 

experiment 222 (E222) and the second is of experiment 240 (E240). Both numerical 

models aim to capture the development of the first forethrust-backthrust pair shortly after 

backwall displacement begins. A 0.5 mm normal displacement is applied along the 

moving wall, which displaces the backwall from left to right. All other boundaries are 

held fixed, and the topography, a free surface (! !  ! ! ! ! ), mimics that observed on the 

sidewall glass. Boundaries and faults are discretized into 1 mm linear elements. 

Observation grids, where stresses and displacements are calculated within the deforming 

body, are spaced 1 mm apart and cover the entire two-dimensional surface. Frictional 

surfaces are added to the models that represent the contact between the base plate and 

sand pack, as well as the backwall and the sand pack. 

5.4.2. Modeling Granular Material 

Fric2D models simulate linear elastic, isotropic, and homogeneous material 

properties, many of which have been calculated for CV32 sand at UCP. A sedimentation 

device creates reproducible, flat sand packs with a density, ! , of 1700 kg/m3 (Cubas et al., 

2010; Maillot, 2013) Casagrande shear box tests by Maillot (2013) determined the 

internal, ' s, and dynamic friction, ' d, of the sand (0.96 and 0.72). Fric2D captures the 

sandÕs slip-weakening behavior by using static and dynamic friction to calculate slip 

along fault elements. Once an element exceeds the slip weakening distance, L, slip occurs 

at a lower ' d. Here, we use L = 0.00025 m, which is our sand diameter. Faults also have a 

cohesion, c, of zero, and shear, ks, and normal stiffness, kn, which varies slightly between 
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the detachment and ramp faults (see Section 5.5.1.). 

PoissonÕs ratio (0.2), (, is chosen as a typical value for dry sand (e.g., Lambe and 

Whitman, 1969). The elastic modulus of the sand is calculated from direct measurements 

of force recorded during analog experiments (Figure 5.3a), which have been converted to 

stress by dividing the measured force by the backwall area. The backwall stress is 

calculated using two different fault areas; the height of the sandpack and height of the 

sandpack + protowedge along the backwall. Particle image velocimetry quantifies the 

strain of the compacting sand prior to ramp faulting. Together, stress along the backwall 

and strain of the sand pack create a stress-strain curve for the initial compaction of the 

sand (Figure 5.3b) The slope of the stress-strain curve reveals the elastic modulus of the 

sand body (Figure 5.3b). The elastic modulus likely increases during the compaction/slip 

along the detachment prior to ramp faulting, therefore, we calibrate the initial stage of the 

models with lower elastic modulus and the faulting stages with higher elastic modulus. 

The elastic modulus of the sand body for E240 ranges from 0.11-0.25 MPa.  

5.4.3. Fault Growth by Work Minimization 

 Faults are added to the model with various positions and orientations to evaluate 

the change in Wext relative to a model with no faults. The position is measured along the 

base of the sand pack at the glass-sand interface, relative to the undeformed foam block 

position at the start of the experiment. Backthrusts extend from the detachment towards 

the backwall and range from 0¡-89¡, while forethrusts extend from the detachment 

towards the frontwall, oriented from 91¡-180¡. The faults added to the models were either 

a single forethrust or backthrust, or a forethrust-backthrust pair. 

First, we calibrate the numerical models to the early deformation and observed 
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faulting. Then we test the most energy efficient position of faults using the observed fault 

geometry and varying position from the backwall. Finally, we search for individual faults 

that minimize work by varying position and fault orientation. 

The failure of added faults is controlled by the prescribed cohesion and friction, 

according to the Coulomb criterion. Work minimization is evaluated from the change in 

Wext associated with adding the fault(s). Faults that do not meet the Coulomb criteria will 

not slip and will therefore not record a change in Wext. A complete work budget analysis 

reveals the response of Wgrav, Wint, and Wfric due to the new fault plane. If faults that 

develop in the sandbox evolve through work minimization, the geometry that minimizes 

total work should match the observed faults. If the predicted fault propagation does not 

match observations in the experiment, this comparison may reveal that observed fault 

growth in the sandbox does not minimize Wext, which may owe to changing conditions 

within the sand pack, such as elastic modulus of the wedge throughout deformation. 

Furthermore, the timing of new faulting can be assessed by evaluating the Coulomb 

failure equation for fault elements and comparing the modeled stress to the Coulomb 

critical stress required for failure.  

 

5.5. Results 

 BEM results from two sandbox experiments evaluate the energetic cost of various 

fault geometries within the models. Before testing ramp fault geometries the model is 

calibrated to match the initial displacement along the detachment revealed by PIV. In the 

first model we hold the fault angles constant while varying the distance away from the 

backwall. In the second model, we perform a more robust search for the energy efficient 
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geometry by varying both fault angle and location.  

5.5.1. Calibration for E240 

 The calibration for E240 (Figure 5.4) shows a good match to the observed 

displacement revealed in the PIV just prior to ramp initiation and with higher elastic 

modulus, E = 0.25 MPa. The numerical model contains only the basal (detachment) and 

backwall frictional surfaces during the calibration. Slip 1 mm above the sandpack/base 

contact from analog experiments, captured by particle image velocimetry, is nearly linear 

for the first 40 mm from the backwall, then decreases steeply from 40 to 120 mm. Slip 

does not occur greater than ~140 mm from the backwall. To capture the behavior of the 

sand closer to the backwall we lower the shear and normal strength of elements, so they 

slip similarly to the observed displacements. The model does an excellent job matching 

slip along the detachment for the first 80 mm from the backwall. The model slightly 

overestimates slip from 80-150 mm. Capturing a good match to the observed slip closer 

to the backwall is ideal because this is where ramp faults occur in the experiments. A 

stiffer material will facilitate greater slip along faults where deforming internally will be 

harder than in a material with lower elastic modulus. 

5.5.2. Predicting Fault Location for E222 

The first fault observed to form in the analog sandbox during E222 is a forethrust-

backthrust pair. The pair develops 41.7 mm from the backwall, consisting of a forethrust 

oriented at 146¡ and a backthrust oriented at 54¡ (Figure 5.5). We evaluate the changes in 

Wext after translating the observed geometry from 31.7-82.7 mm from the backwall, 

keeping fault angle the same (Figure 5.5). We compare Wext from models using only 

forethrusts, only backthrusts, and forethrust-backthrust pairs. 
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Every fault added to the model has elements that slip, therefore every model 

reduces Wext (Figure 5.6a). Wext is relatively insensitive to the addition of forethrusts to 

the model; however, Wext decreases as forethrusts get closer to the backwall. The 

relatively small change in Wext with the addition of forethrusts is because only a few 

elements along these faults slip. In contrast, backthrusts slip along their entire length. 

Backthrusts are most energetically efficient between 31.7 mm and 43.7 mm away from 

the backwall and decrease further away. Changes in Wext are greatest for forethrust-

backthrust pairs. The modeled faults with position that matches the observed faultsÕ 

position create the largest change in work, suggesting that this fault pair that develops in 

the sandbox forms according to work minimization.  

Figure 5.6b shows the changes in Wext normalized to fault area. While the results 

show similar pattern to the Figure 5.6a, some backthrusts create larger change in Wext/A 

than the pairs. Even though changes in Wext for backthrusts are less than those for pairs 

(Figure 5.6a), the changes in Wext are large for the small fault area of backthrusts 

(compared to pairs). 

5.5.3. Predicting Fault Angle and Location for E240 

To model forethrust-backthrust pair development in E240, we first search for the 

single fault ramp that minimizes the total work, insert that fault in the model, then 

perform a second work minimization search for a fault with the same basal position. Only 

allowing the second fault to develop at the same basal position as the first fault is 

constrained by frequent observations of fault pairs in analog experiments, where 

forethrust-backthrust pairs always propagate from the same point along the detachment. 

The observed faulting occurs at 67.6 mm from the backwall, with a backthrust oriented at 
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44¡ and a forethrust oriented at 152¡. To test the sensitivity of Wext to both fault angle and 

basal position we vary the fault angle from ~30¡ to ~160¡ and basal position from 57.6 to 

77.6 mm (Figure 5.7). Faults far from the backwall and with low angle become 

approximately parallel to the topography of the wedge, which results in model 

instabilities. To prevent this from happening, we limited the difference between basal 

position and the upper fault tip to ~50 mm. 

Figure 5.8a shows the change in Wext as a function of both fault angle and distance 

from the backwall for E240. Unlike E222, not all faults slip in response to the backwall 

movement, resulting in no change in Wext (white areas of Figure 5.8a and 5.8b). 

Backthrusts are more favorable than forethrusts, which have only limited slip along their 

lengths. A lobe of low Wext develops from 65-70 mm backwall distance and 37¡-50¡ fault 

angle. The most energy efficient fault has a basal position of 67.6 mm, identical to the 

observed, and an angle of 39.7¡. The observed backthrust has a slightly steeper 

orientation of 44¡. When the change in Wext is normalized to fault area, the same fault 

conditions (basal position of 67.6 mm and angle of 39.7¡) produce the most efficient 

model. Although an isolated patch of low Wext exists at a distance from the backwall of 

75 mm and within 30¡-35¡, this model has a high condition number, therefore, the fault 

added to the model is chosen from within the large lobe between 65 and 70 mm backwall 

distance.  

With the most energy efficient backthrust (39.7¡ and 67.6 mm backwall distance) 

inserted into the model, the next stage of simulations aims to find the accompanying 

forethrust with the same backwall distance that further minimizes work. Figures 5.9a and 

5.9b show the change in Wext and change in Wext per fault area, respectively. While the 
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more vertically oriented forethrusts do not slip, decreases in Wext does occur with flatter 

forethrusts. The largest change in Wext occurs when the inserted forethrust has an 

orientation of 148.7¡. When the changes in Wext are normalized to fault area, a slightly 

steeper forethrust with 144.7¡ orientation is preferred. The observed fault has an 

orientation of 152.3¡, which is slightly shallower than the model preferred faults (Figure 

5.10). 

 

5.6. Fault Timing 

During the evaluation of Wext ramps faults have a cohesion of 0 Pa. To evaluate 

the timing of the first observed forethrust-backthrust pair in E222, cohesion is prescribed 

to the fault and 0.5 mm of displacement is applied to the backwall. Applying 75 Pa of 

cohesion to the forethrust-backthrust pair prevents nearly all fault elements from slipping. 

Shear stress along the fault can predict the amount of backwall displacement required to 

initiate fault slip. Evaluating the Coulomb criteria using a friction of 0.96 (Maillot, 2013) 

and cohesion of 75 Pa, the backwall displacement must be doubled, from 0.5 mm to ~1 

mm, to achieve fault slip. Fault slip is observed in the sandbox after 2.2 mm of backwall 

displacement. Laboratory measurements of cohesion for dry sand are quite variable 

though, ranging from 75 Pa (Lohrmann et al., 2003) to 5543 Pa (Maillot, 2013). Using 

the calculated stresses from the model and the same friction of 0.96, a fault with cohesion 

of 300 Pa would require ~2.2 mm of backwall displacement to slip. This analysis will 

predict future faulting events throughout experiments. 
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5.7. Force Changes During Fault Growth 

 We calculate the force before, during, and after faulting for the first forethrust-

backthrust pair to form in E222 and compare the model results with force observations 

from the UCP sandbox (Figure 5.11). Normal stress calculated along the backwall from 

numerical simulations divided by the backwall area determines modeled force. To the 

first order, the measured force from the moving wall of sandbox experiments and the 

moving wall of numerical simulations are of similar magnitude and shape, to the first 

order (Figure 5.11). The drop in force when faulting occurs (between location 6 and 7) 

captured by the gauge on the backwall also occurs in BEM models, although force is less 

in the numerical models. Numerical simulations that match forces measured in the 

sandbox have the potential, along with calculations of Wgrow, to predict faulting in the 

sandbox. 

 

5.8. Work Budget Results for E222 

While change in Wext shows which faults create the most energy efficient fault 

configuration for accommodating backwall displacement, the relative changes in other 

work terms, particularly Wint, Wgrav, and Wfric reveal the complete energy balance of the 

accretionary system during deformation. Figure 5.12 shows the change in calculated 

work terms for all E222 models with a forethrust-backthrust pair. &Wgrav and &Wfric are 

near their maximums at a backwall distance of 41.7, while &Wint is at a minimum. The 

change in &Wint is greater than the changes in &Wfric and &Wgrav, which leads to a 

minimization of &Wext. Although our approach involves placing faults in the model to 

evaluate the work budget, new faults will not develop in the sandbox until the energy 
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savings of creating the fault exceeds Wgrow. Analysis of the complete work budgets shows 

that even though not all work terms are minimized in a particular simulation, the ideal 

combination of all work terms creates the most efficient fault.  

Figure 5.13 shows the strain energy density calculated from our simulation of 

E222 prior to adding ramp faults. Strain energy density has been used in other linear-

elastic models to shed light on fault growth (e.g., Du and Aydin, 1993; Okubo and 

Schultz, 2005; Olson and Cooke, 2005). A high lobe of strain energy density develops 

within the wedge due to slip along the detachment fault; however, this location is not 

where the observed faults develop. Within the models, inserted faults closer to the 

backwall have less slip, likely from the increasing normal stress as the protowedge 

thickens. The strain energy density is greater where the backthrust develops than where 

the forethrust grows. 

In UCP sandbox experiments, the first faulting event in the sand is always a 

forethrust-backthrust pair. BEM model results suggest that backthrusts are the preferred 

fault in the pair and that they develop first in the sandbox. A likely mechanical 

explanation for the formation of the forethrust-backthrust pair in the sandbox could be 

that a backthrust forms first, reducing strain energy density in the material. High &Wgrav 

and &Wfric eventually make slip along the backthrust less efficient and leads to the 

development of a more energy efficient fault (a forethrust), that provides energy savings 

greater than Wgrow. Short-lived backthrusts are typical for analog experiments (e.g., 

Mulugeta and Koyi, 1992) and nature (e.g. MacKay, 1995), where backthrusts may 

persists for long periods of time when fluid pressure in a wedge is high. 
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5.9. Conclusions 

 We have shown that for the first faulting event within numerical simulations of 

analog experiments of accretionary wedges, the sand creates a forethrust-backthrust pair 

that minimizes the total work of the system. Observations from analog experiments show 

that each fault within the pair forms at nearly the same time, with forethrusts eventually 

taking over and accommodating large slip. Within our numerical simulations we see that 

in terms of a work minimization analysis, backthrusts are preferred over forethrusts, 

initially. Faults that minimize Wext may not minimize all work parameters, which 

suggests that faults that develop in deforming systems represent the most energy efficient 

combination of all work terms. Moreover, because faults within accretionary sandbox 

models develop to optimize energy efficiency, we can use the principle of work 

minimization to predict future faulting events, both geometry and timing.  
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5.10. Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1. Work budget of a sandbox wedge. Initial topography is represented by the 
dashed line and final topography represented by a solid line.  
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Figure 5.2. Boundary Element Method model setup for the initial stage of sandbox 
experiment E222. Normal displacement is applied to the backwall (arrows). 
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Figure 5.3. A) Force-displacement for first 30 mm of E240. B) Initial linear elastic 
response of the force-displacement curve gives elastic modulus (E) upper and lower 
bound. 
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Figure 5.4. Calibration showing slip along the detachment captured by particle image 
velocimetry (PIV) in analog experiment E240 and modeled slip from a BEM model. The 
slip profiles agree for the until 80 mm from the backwall, where the BEM results slightly 
over predict slip until the slip stops around 155 mm from the backwall. The match of the 
profiles closer to the backwall is ideal because observed faulting occurs at 67 mm from 
the backwall. 
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Figure 5.5. Range of experiments tested in numerical simulations of E222. Faults 
represent the observed faults within the analog model and the shaded area shows the 
extent of faults tested. 
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Figure 5.6. A) Change in Wext for E222 simulations with only forethrusts, only 
backthrusts, and forethrust-backthrust pairs. All faults added to the model reduce the Wext, 
with pairs producing the largest reduction at the location of the observed faults (gray 
vertical line; 41.7 mm from the backwall). B) Wext normalized to fault length suggests 
that a single backthrust closer to the backwall is a more efficicent fault configuration. 
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Figure 5.7. BEM model set-up for E240. All fault positions and orientations tested are 
shown in blue and observed faults are shown in black. 
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Figure 5.8. A) Change in Wext for E240 due to changes in fault angle and distance from 
the backwall for a single fault. B) Change in Wext normalized to fault length. Warmer 
colors represent lower values of Wext and the most energy efficient faults combinations. 
Some faults produce no slip and thus, no change in Wext (white spaces between ~35¡ and 
~160¡). 
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Figure 5.9. A) Change in Wext after adding a second fault to E240. Steep forethrusts do 
not slip, resulting in no change in Wext. Shallower forethrusts minimize Wext and are 
similar to the observed fault angle of 152.3¡. B) Change in Wext normalized to fault length 
produces similar results to A, except a slightly steeper forethrust is favored. 
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Figure 5.10. Observed and predicted forethrust-backthrust pair for E240.  
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Figure 5.11. Force measurements before (5), during (6), and after (7) the first faulting 
event (forethrust-backthrust pair) to occur in E222, measured along the backwall (gray 
dots). Stars represent backwall forces from numerical models. The variability in backwall 
force from numerical simulations is determined by change in force due to the amount of 
applied displacement in the models.   
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Figure 5.12. Complete work budget analysis for E222 (pairs only). The distance from the 
backwall where observed faults occur is marked by a gray vertical line (41.7 mm). 
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Figure 5.13. Strain energy density for un-faulted E222 model. Observed faults (red) do 
not occur where strain energy density is highest, rather where work minimization is 
optimized (Figure 5.10). 
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