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ABSTRACT 

SOLUTION-BASED ASSEMBLY OF CONJUGATED POLYMERS INTO NANOFIBERS 
FOR ORGANIC ELECTRONICS 

 
SEPTEMBER 2017 

 
DANIEL ENRIQUE ACEVEDO CARTAGENA, B.S., UNIVERSITY OF PUERTO RICO 

MAYAGUEZ 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Ryan C. Hayward 
 

Solution-based crystallization of conjugated polymers offers a scalable and attractive 

route to develop hierarchical structures for electronic devices. The introduction of well-defined 

nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, 

and therefore the morphology of the material. A crystallization method for generating metastable 

solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow 

P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found 

that the crystallization kinetics is faster with increasing P3HT molecular weight and 

concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow 

vertically in a face-on chain orientation (i.e., �W�K�H���Œ���R�U�E�L�W�D�O�V���S�D�U�D�O�O�H�O���W�R���W�K�H���V�X�E�V�W�U�D�W�H���Q�R�U�P�D�O�����I�U�R�P��

highly oriented pyrolytic graphite and graphene. Moreover, the P3HT crystal structure observed 

on the surface of graphene was identified to be the same one formed by solution crystallization. 

However, as confirmed by X-ray scattering and scanning electron microscopy the crystals 

transitioned from face-on to edge-on orientation (i.e., �W�K�H���Œ���R�U�E�L�W�D�O�V���S�H�U�S�H�Q�G�L�F�X�O�D�U���W�R���W�K�H���V�X�E�V�W�U�D�W�H��

normal) as the film grew thicker. As determined by X-ray scattering. the initial face-on 

conformation was partially preserved by embedding the P3HT structures in an indene C60 

bisadduct matrix when compared to pristine P3HT films. The resulting organic field effect 

�W�U�D�Q�V�L�V�W�R�U�V���K�D�G���K�R�O�H���P�R�E�L�O�L�W�L�H�V��������� ���������[������-3 cm2 V-1 s-1) two orders of magnitude higher than the 
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�G�H�Y�L�F�H�V���I�D�E�U�L�F�D�W�H�G���I�U�R�P���V�S�L�Q���F�D�V�W�H�G���3���+�7��������� �����������[������-3 cm2 V-1 s-1). The solution-processable 

fabrication of electrodes and semiconductors is potentially scalable and amenable to roll-to-roll 

manufacturing. 
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CHAPTER 1 
 

BACKGROUND  

1.1 Motivation  

Increasing concern about the detrimental effects of burning fossil fuels on human health 

and on the environment, have led to the necessity of developing inexpensive and cleaner energy 

alternatives with more efficient electronic devices. The Sun is a vast source of energy. In 2011 

Jacob and coworkers calculated that 6,500 trillion watts (TW) are available for energy harvesting 

from the sun, while at the same time 12.5 TW are required to satisfy global energy demands.1 

However, the United State Department of Energy (DoE) reported that for the same year only 

0.05% of the total electricity production was based on solar energy. In response to this situation 

the DoE created the SunShot Initiative, which has made the electricity produced from solar 

energy cost-competitive ($0.06 per kilowatt-hour) with other non-renewable forms of electricity.  

By 2020 SunShot aims to reduce it to $0.04 per kilowatt-hour by 2030.  

Currently, the electronic market is led by silicon-based technology. Single crystal silicon 

panels can reach a power conversion efficiency (PCE) of 25.6%,2 yet their efficiency has 

plateaued over the past decade according to the most recent report of the Best-Research Cell 

Efficiency from the National Renewable Energy Laboratory report. However, electricity 

produced from solar energy remains more expensive than non-renewable sources ($ 0.04 per 

kilowatt-hour)3. Interestingly, the Shockley�±Queisser caps the PCE of a single p-n junction to 

30%4. The promise of low cost production and large-scale availability offered by organic 

photovoltaics makes them a potentially transformative platform for affordable solar energy 

conversion.2,5�±10 Although overwhelming research progress have allowed the PCE of these 

organic solar cells to achieve values up to 11.2%,11 further investigation is required to fully 

optimize the device performance. Morphology within the active layer of solar cells plays a key 
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role in device performance.12 Despite the overwhelming advances in optimizing the morphology, 

an optimum morphology has not been fabricated and the principles that govern these processes 

are still in early stages.13,14 

Another major concern is the efficient usage of the electric current generated. From its 

invention in 1947, the transistor has revolutionized the field of electronic devices due to its ability 

to amplify signals by modulating the electric current. In principle, the lower operating voltage and 

higher charge mobility in a device, the better its performance. Silicon technology has achieved 

outstanding advances in increasing the performance electronic devices by doubling the number of 

transistors in integrated circuits, as postulated in �0�R�R�U�H�¶�V���/�D�Z.15 Although polymers cannot 

substitute silicon based transistors, they represent a lower cost alternative given their ability to 

processed at low temperature from solutions. It has been seen that the crystallinity increases in the 

performance of organic transistors. Therefore, it is important to better understand polymer 

crystallization and its effects on organic transistors. 

This work focuses on controlling the morphology of conjugated polymers to assemble 

structures suitable for electronic devices, while offering insight of the principles behind it. More 

specifically, this work aims to control and orient the crystal growth of model donor-type 

conjugated polymer, poly(3-hexyl thiophene) (P3HT), into structures that would be suitable for 

photovoltaic cells and transistors. 

1.2 Morphology considerations the performance of organic electronics  

Organic photovoltaic (OPV) cells commonly employ an easily processable blend of 

electron donor and acceptor materials in a heterojunction structure, which was patented by 

Sariciftci and Heeger to improve the performance of solar cells based on bilayer structures.16 As 

seen in Figure 1, the active layer is located between electrodes, which are selected to match the 

molecular levels of the semiconductors at the top and bottom of the device, commonly composed 
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of transparent indium tin oxide (ITO) and aluminum (Al), respectively. The physical mechanism 

for charge generation in OPV cells has been the subject of a vast number of studies.17�±22 The 

accepted mechanism21 consists of generating an excited state upon light absorption, charge 

separation and charge transport to the electrodes. In the formation of a localized excited state 

upon photon absorption, called Frankel exciton (i.e. bound electron�±hole pair), the binding is 

higher than kBT thus it requires the exciton to diffuse 10-20 nm to the interface to be separated 

into individual charge carriers before recombination.23 Finally, the charge carriers require a 

continuous pathway that possesses high crystallinity to reach the respective electrode. This 

mechanism provides the guidelines to generate an optimal structure for device performance, 

which requires continuous, interpenetrating and highly crystalline nano-scale domains that allow 

efficient charge generation.12 A cross-section of a interpenetrating strcuture of donor and acceptor 

materials is shown in Figure 1, where the pillars are on the order of 20 nm in diameter expanding 

all the way to the respective electrode, and a wetting layer on the respective electrode transport.  

 

Figure 1: Schematic of a cross-section of an organic photovoltaic cell (a). Typical chain 
configuration for poly(3-hexyl thiophene) (b). 

Attaining the proper direction of molecular orientation within device active layers can 

significantly improve charge mobility along the relevant direction (i.e., towards 

electrodes).20,24�±26 In conjugated polymers, high charge mobility is realized along the 

polymer chain backbone through its conjugation length, �D�Q�G���W�K�U�R�X�J�K���R�Y�H�U�O�D�S�S�L�Q�J���Œ��

orbitals between neighboring backbones of adjacent chains where the charges hope 

between chains, while charge transport is the minimum through the direction parallel to 

the alkyl chains.24 Therefore, an edge-on �R�U�L�H�Q�W�D�W�L�R�Q�����Z�L�W�K���W�K�H���Œ���S�O�D�Q�H�V���R�I���W�K�H���S�R�O�\�P�H�U��



 

4 

oriented perpendicular to the substrate, as seen on the right of Figure 1b) is beneficial for 

field effect transistors, which require good in-plane mobility,20 while face-on orientation 

���Œ���S�O�D�Q�H�V���R�I���W�K�H���E�D�F�N�Eone parallel to the substrate, as seen on the left of Figure 1b) is 

sought to increase out-of-plane charge transport.25 

To achieve control over the morphology, material considerations must be taken from the 

molecular level to the macroscopic scale. Through synthetic approaches the packing ability of the 

semiconductor have been modified to improve charge transport.27�±30 For example, block 

copolymers have been employed to segregate each block into well-defined structures.31�±33 

However, these materials incorporate insulating components that hamper the final performance of 

the device, and the morphology of the material is highly dependent on the processing conditions.20,34 

Commonly thermal annealing is employed to modify the morphology after film deposition to 

enhance its crystallinity. Annealing blends of P3HT and phenyl-C61-butyric acid methyl ester 

(PC61BM) significantly improves the performance of the device by crystallizing the polymer into 

nanofibers (NFs).35 It has been proposed that partial miscibility of PC61BM in amorphous P3HT 

prevent PC61BM crystallization, which establishes a delicate balance between temperature and time 

of annealing necessary for preventing macrophase separation.36 A wide variety of studies have 

illustrated morphology modification during and after film casting employing solvent additives and 

solvent annealing, respectively.8,35,37 However, reproducible morphological control with high 

degrees of crystallinity is necessary for the viability of these processes.8  

 

Figure 2: Schematic illustrating the cross-section of a transistor with a bottom-gate bottom-
contact architecture. 
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As for OPV devices, organic field effect transistors (OFETs) based on P3HT benefit from 

highly crystalline films.38 Figure 2 illustrates a typical architecture (e.g. bottom-gate bottom-contact 

architecture) for OFETs, where the source and the drain electrodes are buried in the semiconductor 

film. Essentially, an OFET operates as a capacitor. One of the plates is provided by the conductive 

channel formed in the organic semiconductor between two ohmic contacts (e.g. the source and 

drain electrodes). The density of carriers is modulated by the voltage applied in second plate called 

the gate electrode.  

Not surprisingly, the processing technique chosen to fabricate OFETs affects the formation 

mechanism. As found by Sirringhaus20 drop casted films showed mobilities up to one order of 

magnitude higher than spin casted films, due to a higher edge-on orientation content for the former 

when compared to the latter. In a separate study, Zhang and coworkers39 systematically increased 

the molecular weight of P3HT to study the morphology impact on OFETs. It was found that the 

lateral width of the NF increases with molecular weight, which was correlated to an exponential 

increment in the mobility of the films. Albeit the mechanism behind this relation is not completely 

understood, these results confirm the importance of the morphology of the polymer for OFETs.  

The following chapters describe a solution-based crystallization method, based on 

saturated solutions, to tailor the nanostructure of semiconducting polymers and deliver more 

efficient electronic devices such as transistor and solar cells. These supersaturated solutions 

crystallize selectively into NFs from nucleating agents such as graphene. Crystallization of NFs 

from graphene electrodes was established as a processing technique capable of increasing the 

charge transport by two orders of magnitude, when compared to more traditional spin casted 

films. Moreover, the P3HT crystal structure observed on the surface of graphene was identified to 

be the same one formed by crystallization in free solution. 
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CHAPTER 2 
 

CRYSTALLI ZATION  OF P3HT NANOFIBERS FROM GRAPHENE SURFACES* 

2.1 Abstract 

We demonstrate that graphene surfaces provide highly selective nucleation of poly(3-

hexyl thiophene) (P3HT) nanofibers (NFs) from supersaturated solutions. Solvent conditions are 

identified to give rise to a wide hysteresis between crystallization and melting, centered around 

room temperature, yielding metastable solutions that are stable against homogeneous nucleation 

for long periods of time but that allow for heterogeneous nucleation by nucleating agents. 

Selective growth of P3HT crystals is found for multilayer graphene (MLG) supported on either Si 

or ITO substrates, with nucleation kinetics that are more rapid for MLG on Si but slower in both 

cases than for highly oriented pyrolytic graphite (HOPG). Although the NFs grow vertically from 

the substrate with face-on orientation of P3HT chains, we observe edge-on orientation in dried 

films, presumably due to capillary forces that cause collapse of the NFs onto the substrate during 

solvent evaporation. Moreover, to control the NF length, long NFs with large length dispersity 

were sonicated to deliver short NFs to be used in seeded crystallization. Subsequently, these short 

NFs are extended in a metastable solution of the polymer. However, the resulting extended NFs 

have a wide distribution of lengths possibly attributed to aggregation of the seeds. Results show 

that seeds based on poly(3-hexyl thiophene)-b-poly(3-triethyleneglycol thiophene) (P3HT-

P3TEGT) may provide more stable seeds to prevent aggregation. 

                                                      
* Adapted with permission from Acevedo-Cartagena, D. E.; Zhu, J.; Trabanino, E.; 

Pentzer, E.; Emrick, T.; Nonnenmann, S. S.; Briseno, A. L.; Hayward, R. C. ACS Macro Lett. 
2015, 4 (5), 483�±487. Copyright (2015) American Chemical Society. 
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2.2 Introduction  

As polymer-based heterojunction photovoltaic cells often benefit from interpenetrating 

arrangements of crystalline domains of two semiconducting materials,13,40 one dimensional (1D) 

crystalline nanostructures are excellent building blocks for the device active layer. Approaches 

using top down techniques such as nanoimprinting and lithography have successfully produced 

active layers with vertically aligned structures from the micron to the nanoscale over wide areas. 

However, it is difficult to tailor the features near the dimensions of the exciton diffusion length 

(~10 nm).13 Solution-based assembly of conjugated organic materials represents a simple and 

scalable route to tailored crystalline nanostructures from the bottom-up.10 Ongoing efforts using 

solution-state processes to assemble nanostructures possessing the desired molecular ordering and 

orientation include the use of techniques such as dip coating,41 substrate rubbing,42 zone casting,43 

and substrate-directed epitaxial growth.44  

An elegant approach to provide consistent control over the morphology is the 

employment of pre-formed crystalline nanofibers (NFs) prior to film formation. Previous studies 

have demonstrated the structural benefit of NFs in the performance of solar cells.18,45 The NFs 

dimensions are highly sensitive to the polymer regioregularity, molecular weight, polydispersity, 

solvent and even processing conditions.30 The width dependence of P3HT structures obtained 

through solution crystallization was demonstrated by Liu and coworkers.46 Nanowhiskers (with 

widths of 7-13 nm) evolve into nanoribbons (with widths of 50-250 nm) by increasing the 

supersaturation of P3HT in anisole, only if the chains are shorter than the chain-folding threshold 

of 10 kg/mol (PS equivalents by GPC). Moreover, the NFs crystallized in solution possess 

different lengths due to comparable rates of nucleation and growth.47 If the nucleation rate is 

regulated, precise control of the lengths of P3HT crystals is obtained, as shown by Rahimi et al48. 

Aggregates are homogenously melted by heating the solutions close to the dissolution 

temperature. Consequently, in a self-seeding approach, the least defective crystals are preserved 
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and subsequently employed to seed dissolved material at a lower crystallization temperature, 

yielding large single crystals that are homogenous in length. Winnik and Manners49�±52 have 

shown exquisite control over the nanostructure of a gamma of crystalline block copolymer. These 

copolymers, including polyferrocenylsilane and P3HT based polymers, form one-dimensional 

�V�W�U�X�F�W�X�U�H�V���W�H�U�P�H�G���³cylindrical micelles�  ́through crystallization in solution. In their seeded 

crystallization method, �V�K�R�U�W���F�\�O�L�Q�G�U�L�F�D�O���P�L�F�H�O�O�H�V���F�D�O�O�H�G���³�V�H�H�G�V�´���D�U�H���I�L�U�V�W���J�H�Q�H�U�D�W�H�G���I�U�R�P���O�R�Q�J�H�U��

ones using ultrasound or by the addition of a good solvent, which upon addition of dissolve 

�S�R�O�\�P�H�U���W�H�U�P�H�G���³�X�Q�L�P�H�U�V�´���D�U�H���K�R�P�R�J�H�Q�R�X�V�O�\���H�[�W�H�Q�G�H�G����However, these block copolymers 

incorporate groups that are insulators, which are not ideal for organic electronics. We use NFs 

from pristine P3HT and fully conjugated polymers to overcome this disadvantage and potentially 

employ these structures into organic electronic devices. 

 



 

9 

Figure 3: Typical methods for crystallizing P3HT in solution. UV-vis spectra of dissolved P3HT 
(orange) and crystalline P3HT in solution (purple) (left). Transmission electron microscopy 
image of P3HT nanofibers (right).As depicted on Figure 3, NF formation is induced when 

dissolved P3HT is cooled in a marginal solvent, or a non-solvent is added. The P3HT 

crystallization is characterized by UV-vis spectroscopy (see Figure 3), where the evolution of a 

single peak from the dissolved material, with a maximum absorbance at ~454 nm, evolves into a 

�V�H�U�L�H�V���R�I���Y�L�E�U�R�Q�L�F���S�H�D�N�V���D�W���a���������Q�P�����a���������Q�P�����a���������Q�P���G�X�H���W�R���W�K�H���L�Q�F�U�H�D�V�L�Q�J���Œ-�Œ���L�Q�W�H�U�D�F�W�L�R�Q�V��

between chains, signature of solid-state P3HT.53 As shown in Figure 3 the NFs possess high 

aspect ratios with widths in the order of ~ 20 nm, which is roughly the exciton diffusion length. 

However, as seen in Figure 3, after being deposited the NFs crystallized in this matter have an 

edge-on orientation as they lay horizontally on the surface of the carbon film. Graphene54,55 

represent attractive platform to overcome this situation and direct organization of P3HT into 1D 

�Q�D�Q�R�V�W�U�X�F�W�X�U�H�V�����Z�K�H�U�H���Œ-�Œ���D�Q�G���Y�D�Q���G�H�U���:�D�D�O�V���L�Q�W�H�U�D�F�W�L�R�Q�V���E�H�W�Z�H�H�Q��molecules are known to drive 

face-on adsorption of crystallized chains.25,56 Moreover, graphene offers a potential alternative to 

ITO (indium tin oxide) as a transparent conductive electrode for photovoltaic devices,57 which 

can enable graphene surfaces to directly nucleate and orient structures within the active layer of 

the device. However, while graphene has been shown to nucleate P3HT NFs in suspension54 and 

modify crystal orientation in thin films,25,56 the use of graphene electrode surfaces to direct 

solution growth of conjugated polymer nanostructures has not been reported. 

Here, we present a simple method for selective growth of P3HT NFs directly onto 

multilayer graphene (MLG) coated Si and ITO substrates, as well as on highly oriented pyrolytic 

graphite (HOPG). Similarly, this method was used to extend short NFs. To achieve selective 

crystallization on these nucleating surfaces, a metastable P3HT solution was prepared for which 

the level of supersaturation is sufficient to allow heterogeneous nucleation but insufficient to 

induce homogeneous nucleation. 
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2.3 Material f abrication 

2.3.1 Poly(3-hexyl thiophene) (P3HT) synthesis 

Poly(3-hexyl thiophene) (P3HT) was prepared by Grignard metathesis polymerization 

(GRIM). The monomer, 2,5-dibromo-3-hexyl thiophene was prepared as previously reported,58 

and polymerized following standard protocol.59 Briefly, 2,5-dibromo-3-hexyl thiophene (1 g) was 

dissolved in anhydrous THF (24 mL) in a 2-neck round-bottom flask containing a magnetic stir 

bar and equipped with a reflux condenser. After addition of tert-butyl magnesium chloride (2.15 

mL of a 1.95 M solution in diethyl ether) the solution was heated to reflux for 2 h, then cooled to 

room temperature followed by addition of 1,3-bis(diphenylphosphino)propane dichloronickel (II) 

(Ni(dppp)Cl2, 19.5 mg). The mixture became dark red, and was stirred for 20 min. Then, the 

septum was removed and the mixture was poured into methanol (200 mL). The precipitated 

polymer was isolated by centrifugation, filtered into a cellulose extraction thimble, and purified 

by Soxhlet extraction (sequentially in methanol, hexanes, and chloroform). The chloroform 

fraction was collected and the solvent removed under reduced pressure to yield the desired 

product. 1H NMR (300 MHz, CHCl3-d3, �/): 0.9 (t, 3H), 1.41-1.45 (m, 6H), 1.67-1.72 (m, 2H), 

2.55-2.82 (t, 2H), 7.0 (s, 1H). Regioregularity = 93% (NMR), Mn� ���������N���D�Q�G������� ������������

(polystyrene equivalent by GPC.). 

2.3.2 Graphene fabrication 

The graphene film was grown on both sides of copper foil by chemical vapor deposition 

at 1000 ºC with methane as the carbon source following standard protocol.60 The reaction system 

was evacuated with a mechanical pump to 10-3 mbar. Then, the graphene film on copper foil was 

transferred onto a cleaned substrate for crystallization using a common wet-chemistry transfer 

method: spin coating of poly (methyl methacrylate) (PMMA) sacrificial layer, oxygen plasma 

treatment to etch one side of graphene, and treatment with a copper etchant to remove the copper 
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foil. The PMMA sacrificial layer was then removed using acetone. Thermal treatment at 300 °C 

under N2 flow was performed to remove PMMA residue left during the transfer procedure. For 

the indium tin oxide layer (ITO), annealing was performed at 250 °C to avoid damaging ITO. 

Finally, the substrate was washed with acetone and dried with flowing N2(g). Prior to transferring 

graphene, the substrates were cleaned in an ultrasound bath in three steps, using: 1:1 v/v of 

purified water and Versa Cleaner (Fisherbrand), acetone, and isopropanol. Subsequently, the 

substrates were dried with flowing N2(g) and subjected to UV-ozone cleaning for 10 min. The 

graphene deposited on Si was characterized by Raman spectroscopy as depicted in Figure 4c. The 

ratio between intensity of the G peak (1580 cm-1�����W�R���W�K�H�����'�����*�‰�����S�H�D�N���������������F�P-1) indicates that 

multilayer graphene (MLG) composed of 2 layers is obtained. Optical profilometry (Figure 4a, b) 

indicated that the MLG deposited on ITO was 1 ± 0.3 nm thick, corresponding to 2-4 graphene 

layers. 
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Figure 4: Graphene thickness. Typical optical profilometry measurement of graphene on ITO (a) 
and the thickness profile along indicated above (b). Raman spectrum of graphene transferred onto 

Si (c).  
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2.4 Results and discussion 

2.4.1 Stability of supersaturated solutions of P3HT 

As a solvent, we choose m-xylene, which was found by Oh et al47 to provide a high 

degree of crystallinity and a wide hysteresis window between crystallization and melting 

temperatures for P3HT NFs. With a relatively low molecular weight P3HT (Mn = 12 kg/mol), as 

shown below, a hysteresis window centered around room temperature is observed, thereby 

facilitating NF growth experiments.  

The degree of P3HT aggregation is assessed using a Hitachi U-3010 UV-vis 

spectrometer. Note that reported absorbance values reflect a base-10 logarithm. Firstly, to 

calculate the concentration of dissolved P3HT ca the absorption coefficient at 454 nm �0a was 

determined, using solutions of known concentration prepared by serial dilution (Figure 4a), while 

fixing the absorbance of pure solvent at zero. To determine the absorption coefficient at 602 nm 

for the NFs �0f, four solutions each with a concentration of dissolved P3HT of c = 0.50 mg/mL 

were first held for 10 min at -5 °C to initiate crystallization, followed by aging for 10 min at 

either -5 °C, 0 °C, 10 °C, or 20 °C, then finally allowed to rest at room temperature for 1 d. The 

amount of crystalline material was found to depend on the aging temperature used, as seen in 

Figure 5b. These solutions were then filtered using a PTFE membrane (0.2 µm pore size), which 

removed the aggregated portion (Figure 5c), allowing the concentration of dissolved polymer 

remaining in these solutions ca to be quantitatively determined using the previously-measured 

value of �0a. Plotting the absorbance from the 0-0 transition in the unfiltered suspension A602 

against the dissolved concentration ca (Figure 5Figure 4�G�����I�L�Q�D�O�O�\���D�O�O�R�Z�H�G���I�R�U���D���G�H�W�H�U�P�L�Q�D�W�L�R�Q���R�I���0f 

using the Beer-Lambert Law, as follows: 

 �#�:�4�6L �Ý�Ù�H�:�?F �?�Ô�; [1] 
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where l is the path length for the UV-vis measurement. The best-fit value of c = 0.51 ± 0.06 

mg/mL agrees with the initial concentration of the prepared solution (0.50 mg/mL), providing 

further confidence in the method. 
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Figure 5: Determination of the mass absorption coefficients of the dissolved (�0a) and crystalline 
(�0f). �'�H�W�H�U�P�L�Q�D�W�L�R�Q���R�I���0a using the absorbance at 454 nm for solutions of dissolved P3HT (a). UV-

vis absorpance spectra of P3HT crystallized first at -5 °C and subsequently incubated at the 
indicated temperatures (b), along with UV-vis spectra following filtration to determine the 

remaining concentration of dissolved polymer ca after crystallization (c). �'�H�W�H�U�P�L�Q�D�W�L�R�Q���R�I���0f from 
a plot of the absorbance at 602 nm of the crystallized solutions against ca (d).To study the 

stability of the supersaturated solutions of P3HT, a vial containing P3HT dissolved in m-xylene 

with a concentration of 0.5 mg/mL was kept inside a recirculating water bath to control the 

temperature and aliquots of the solution were taken to measure the absorbance in the 

spectrometer, which were immediately returned to the vial. From the UV-vis spectrum of a given 

sample with known total P3HT concentration, c, a direct measurement of the aggregated fraction, 

xf, can be calculated from the Beer-Lambert law, i.e., xf = A602/(�0f cl). We note that the value of xf 

is likely larger than the crystalline fraction xc, since the NFs are not single crystals and likely 

possess amorphous regions,61 but nonetheless provides an excellent proxy for the degree of 

crystallization.  

The hysteresis between crystallization and melting of P3HT NFs with changes in 

temperature can be clearly seen in Figure 6d. No aggregation is observed at room temperature on 

a time scale of ~ 10 min, but upon cooling below 0 °C, P3HT rapidly crystallizes into NFs that 

remain stable until they are heated to 40 °C. Curiously, xf increases while heating from -5 °C to 

20 °C, which may reflect slow crystallization kinetics at lower temperatures, or perhaps melting 

of some fraction of the crystals formed at low temperature as they warm to room temperature 

during UV-vis measurements. Regardless, the data in Figure 6d clearly demonstrate that at room 

temperature a sizeable thermodynamic driving force for crystallization exists, while the rate of 

crystal nucleation in solution is negligible. Therefore, these solutions exist in a metastable state at 

room temperature. 
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Figure 6: The hysteresis between crystallization and melting of P3HT NFs. UV-vis spectra of 

0.50 mg/mL solution of P3HT in m-xylene during (a) cooling and (b) heating, along with (c) the 
temperature profile employed (the sample was held for at least 10 min at each temperature), and 

(d) the degree of aggregation xf measured during the temperature cycle. 2.4.2 Nanofiber 
formation on multilayer graphene 

Remarkably, incubation of ITO substrates partially coated with MLG in the metastable 

solution at room temperature leads to highly selective crystallization of P3HT, as clearly seen by 

the purple color in the MLG-coated area, while the uncoated portion remains colorless (Figure 

7a). The absorbance spectra of these deposited films show vibronic peaks characteristic of 

crystalline P3HT, monotonically increases with time due to the increased growth of NFs. 

Similarly, atomic force microcopy (AFM)/optical profilometry measurements reveal a slow 

increase in the average film thickness with time, up to 5.4 ± 0.8 nm after 120 h of incubation 

(Figure 7b). 
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18 

Figure 7: Selective crystallization of NFs from different MLG coated substrates. UV-vis 
absorbance spectra of P3HT films grown on MLG on ITO at different times of incubation in a 

metastable solution of P3HT (a). The inset shows a photograph of a film of P3HT NFs grown for 
120 h on ITO coated with MLG only on the right side. Thicknesses of P3HT films as function of 

incubation time determined by AFM for MLG on Si (red) and HOPG (black), and by optical 
profilometry for MLG on ITO (green) (b). Error bars represent one standard deviation based on 
10 measurements. SEM images of the interface between MLG-coated regions (top) and the bare 

substrate (bottom) after 24 h of growth using ITO (c) and Si (d) substrates. Scale bars: 200 
nm.Surprisingly, as seen in Figure 7b, the rate of crystallization is substantially faster when a 

silicon wafer is used as the underlying substrate instead of ITO, leading to an average film 

thickness of 20 nm within 24 h, followed by much slower growth. Examination of the interface 

between the graphene-coated regions and the bare substrates with scanning electron microscopy 

(SEM) (Figure 7c, d) reveals that the P3HT films are composed of NFs with lengths over 100 nm. 

For MLG on Si, the surface is completely covered by NFs, while for ITO as an underlying 

substrate, the density of NFs is lower and some portions of the MLG surface remain exposed. 

These observations are consistent with the measured average film thicknesses of 1.2 ± 0.6 nm for 

MLG on ITO and 20 ± 0.9 nm for MLG on Si following 24 h of growth, since the individual NFs 

are 3 ± 0.9 nm thick (Figure 8). P3HT crystallization remains highly selective to MLG on both 

substrates; while NFs that presumably nucleated on the graphene surface stretch several hundred 

nanometers away from the interface onto the bare substrate surface (Figure 7 and Figure 8), no 

sign of NFs is observed further from the interface.  

 

Figure 8: AFM images of the Si/graphene interface with P3HT grown for 24h along with the 
thickness profile along the indicated black line, across a single NF. 

Amazingly, freshly cleaved HOPG allows P3HT to crystallize into a 90 ± 8.6 nm thick film. 

Assuming a density of 1.1 g/mL for P3HT,62 the film thicknesses form from graphene on ITO can 
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be compared to the UV-Vis spectra (Figure 7a) to determine an absorption coefficient at 602 nm 

for the solid films (�0s). Interestingly, the value of of �0s = 270 ± 30 mL cm�±1 mg�±1 is more than an 

order of magnitude larger than the value of �0f for the suspended NFs. Since the electric transition 

dipole of P3HT is oriented along the chain axis,63 orientation of NFs within the solid film should 

lead to a 3-fold increase in absorption of light with normal incidence, compared to a randomly 

oriented suspension.64 Additionally, the dried film shows a more intense absorption for the 0-0 

transition relative to the 0-1 and 0-2 peaks (Figure 9b), corresponding to increased intrachain 

planarity (J-aggregate character) in the dried NFs compared to those in suspension.53 
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Figure 9: �'�H�W�H�U�P�L�Q�D�W�L�R�Q���R�I���0s from a plot of absorbance at 602 nm of solid films against measured 
thickness (a). Normalized absorbance spectra of P3HT NFs in solution (black) and in a film (red) 

(b).The experimental conditions were carefully chosen to prevent adsorption of crystals on the 

substrate surface. The metastable solution was prepared by heating 0.5 mg of P3HT in 1 mL of 

m-xylene to 80 oC, beyond its melting point, using a water bath. After the polymer was dissolved, 

the solution was left to cool inside a water bath reaching room temperature in approximately 2 h. 

The substrate (e.g., graphene coated Si) was incubated in solution at room temperature (22 oC ) 

with mild agitation on an orbital shake plate for the desired time for P3HT crystallization. The 

metastable solutions showed no evidence of NF formation by UV-vis (Figure 10), even after 120 

h of aging at room temperature, thus the occurrence of NFs on MLG clearly results from surface-

driven nucleation rather than adsorption of solution-nucleated structures.  

 

Figure 10: Normalized UV-vis absorbance spectra of metastable solutions of P3HT incubated 
with graphene coated ITO substrates at room temperature for the lengths of time indicated in the 

legend. The curves are offset vertically for clarity. 

To discard the possibility that dissolved P3HT may crystallize during solvent drying, the samples 

were gently rinsed with fresh m-xylene. Furthermore, two control experiments were performed to 

verify that the observed NFs were not formed during solvent evaporation: a solution of P3HT at 

0.5 mg/mL in m-xylene was (Figure 11a) drop casted on a HOPG flake, and (Figure 11b) spin 

casted on a MLG coated Si. As seen in Figure 11, no evidence of NFs was found in either case, as 

the features and contrast observed are inherent to the bare substrates. 
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Figure 11: SEM images of P3HT films formed from a 0.5mg/mL solution by drop casting (a) on 
HOPG and spin casting on graphene coated Si (b). The images observed are like those for the 

respective bare substrates. Scale bar: 100 nm.The film thicknesses were measured using a 

NewView 7300 white light interferometer (optical profilometer) and a Veeco Dimension 3100 

AFM operated in tapping mode. At least 10 measurements were collected at the interface between 

P3HT and ITO using optical profilometry to determine the thickness of the P3HT films grown 

from MLG on ITO. A representative measurement of the thickness of graphene on ITO is 

illustrated in Figure 4. AFM images of P3HT crystallized from MLG on Si and HOPG were 

collected (Figure 12 and Figure 13, respectively), and from each one at least 10 thickness profiles 

were measured to determine the film thickness of the respective sample. In the case of HOPG, the 

surface was partially covered with polyacrylic acid (PAA) sacrificial layer by drop casting from 

methanol. After growing P3HT NFs, the PAA sacrificial layer was removed by soaking the 

substrate in methanol overnight to allow the P3HT film thickness to be measured. 
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Figure 12: AFM images of MLG deposited on Si (a), and following crystallization of P3HT for 
30 min (b), 1 h (c), 3 h (d), 6 h (e), 24 h (f), 72 h (g), and 120 h (h), along with the respective 

thickness profiles along the indicated black lines. 

 

Figure 13: AFM images of P3HT crystallization on HOPG for 1 h (a), 3 h (b), 24 h (c), 79 h (d), 
and 120 h (e), along with the respective thickness profiles along the indicated black lines. 

2.4.3 Effects of the underlying substrate on the formation of P3HT nanofibers 

The film thickness of P3HT NFs grown on MLG on Si and on HOPG seems to saturate, 

or at least slow down considerably in the later stages of growth, as seen in Figure 7. Since the 

solutions are agitated throughout growth, this is apparently not due to a diffusion-limited process. 

Instead, we suspect that this behavior reflects self-poisoning of the NFs growth caused by the 

accumulation of defects, or by the competing crystallization between folded and extended 

chains,65 since the molecular weight of P3HT used (Mn = 12 kg/mol) is close to the threshold for 

chain folding (10 kg/mol).46 Moreover, the observed sensitivity of crystallization kinetics to the 

underlying substrate may arise from several factors. Van der Waals interactions with the substrate 

likely represent an important contribution, and should be stronger for Si than for ITO (respective 

estimated polarizability values of 3.76 Å3 and 0.58 Å3 based on the Clausius-Mossotti relation 

and dielectric constants of 12.1 for Si66 and 3.68 for ITO,67 ignoring the influence of the native 

oxide layer on Si). The higher polarizability of HOPG compared to MLG (also invoked by 
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Shokri, et al68 to explain stronger adsorption of substituted aromatic molecules on HOPG) may be 

responsible for the high rates of growth on HOPG, although making a direct comparison is 

complicated by the relatively high defect density of MLG grown by chemical vapor deposition, as 

employed here. Substrate roughness may also play a role: as seen in Figure 7c, ITO is composed 

of grains with average sizes of 15 nm, which is comparable to the contour length of P3HT 

chains,69 possibly impeding crystal nucleation compared to the smoother Si surface (Figure 7d). 

Additionally, since the interaction between P3HT and graphene involves a degree of charge 

transfer,70 the impact of the underlying substrate on the electronics of graphene could further 

influence the nucleation rates. 

Additional insight into how graphene and HOPG substrates influence P3HT NF growth is 

provided by SEM images showing the evolution of film morphology with time. During the initial 

stages of growth on HOPG and MLG on Si (Figure 14a, c), individual P3HT NFs with lengths 

below 50 nm and widths of 16 ± 2 nm are observed. For MLG on Si, the short NFs in Figure 14c 

are observed after approximately 0.5 h, while for HOPG a high density of short NFs can already 

be seen after only 5 min (Figure 14a). At 3 h (Figure 14b, d) HOPG is completely covered with 

NFs, and MLG on Si shows long NFs. However, for MLG on ITO (Figure 14e, f), no evidence of 

NFs is seen at 3 h, while after 24 h, long NFs are observed. These results are consistent with a 

similar rate of growth of NFs on each substrate, but a nucleation rate that increases from MLG on 

ITO, to MLG on Si, to HOPG. Based on in situ measurements showing that P3HT possibly 

adsorbs with epitaxial registry on HOPG,71 the nucleation observed here is likely epitaxial. 
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Figure 14: SEM images of P3HT crystallized from a metastable solution on different substrates 
HOPG for 5 min (a) and 3 h (b); MLG on Si for 0.5 h (c) and 3 h (d); MLG on ITO for 3 h and (e) 

24 h. (g) Scale bar = 100 nm. The inset in (c) shows an individual short NF. 

Since P3HT chains have been reported to adsorb with face-on orientation on MLG56 and 

HOPG,71 �D�Q�G���W�K�H���G�L�U�H�F�W�L�R�Q���R�I���Œ-stacking is along the long axis of the fibers, we expect that the 

NFs would grow perpendicular to the substrate. However, the NFs observed by SEM in the dried 

films orient parallel to the substrate, even at the longest time studied (120 h), as seen in Figure 15. 

Moreover, grazing incidence wide angle X-Ray scattering (GIWAXS) measurements reveal 

strong (h00) reflections and no clear (010) reflection along the out-of-plane direction qz, with 

much weaker (h00) reflections and a clear (010) peak along the in-plane direction qxy, further 

confirming the edge-on orientation of crystalline NFs in the dried films (Figure 15d). 
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Figure 15: SEM images of P3HT NFs grown from a metastable solution from 120 h on MLG on 
ITO (a), MLG on Si (b) and HOPG (c). Scale bar = 100 nm. (d) Grazing incidence wide angle X-

ray scattering from P3HT films grown for 120 h on MLG on Si.  

However, if NFs crystallize along the substrate in an edge-on orientation, we would expect the 

film thickness to plateau around the thickness of an individual NF (~ 3 nm), rather than growing 

to 25 nm in the case of MLG on Si, or to 90 nm in the case of HOPG. Instead, we suspect that the 

observed edge-on orientation is the result of capillary collapse during solvent removal as 

illustrated in Figure 16.  

 

Figure 16: Schematic illustration of nanofibers grown in solution before (left) and after (right) 
removing the substrate from the fluid, with their respective chain orientations. 

Note that for a ribbon with thickness t, width w, and bending stiffness, B = Et3w/12 , surface 

tension �� will cause buckling beyond a critical length72:  
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using measured values of t = 3 nm and w = 16 nm, along with the surface tension �� = 0.029 N/m 

for m-xylene, and an plain-strain modulus for P3HT of E = 1.2 GPa73, we estimate a value of lc =  

10 nm. Thus, the flexibility of the thin NFs means that surface tension is sufficient to cause 

collapse of NFs oriented vertically in solution into a consolidated film with predominantly in-

plane orientation. 

 

Figure 17: AFM images taken during solution crystallization of a 0.5 mg/mL solution of P3HT-
12k from HOPG (a) and with their respective line profiles (b). In-plane orientation angle of the 

lateral long axis of the NF with respect of an arbitrary angle of the HOPG surface (c). 

The NF growth was examined in-situ using AFM as seen in Figure 17. To visualize the 

NF growth, HOPG was employed as nucleating substrate because it was found to provide the 

fastest crystallization kinetics. A 0.5 mg/mL solution was injected into the substrate located in the 

isolated sample chamber (perfusion chamber) of a Cypher ES AFM. Using tapping mode, the 

solid/liquid interface was imaged as seen in Figure 17. Remarkably, the HOPG surface was 

covered with features 1-14 nm tall 10 ± 3 nm wide and 25 ± 3 nm in length. Although there is a 

convolution error on the exact values a tip radius of ~ 9 nm permit visualization of the NF lateral 

dimensions, demonstrating that the NFs are orientated at 0 ° ± 3 °, 62 ± 7 °, 120 ° ± 6 ° along the 

three crystallographic axes of HOPG. This suggests that the P3HT epitaxially adsorbs on HOPG. 

This method provides a route to characterize the crystallization mechanism of P3HT NFs in situ. 
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2.4.4 Seeded Crystallization 

The NFs widths of 10 �± 20 nm are ideal for the diffusion and dissociation of excitons. 

However, controlling crystal nucleation vs. growth kinetics remains key, as uncontrolled 

crystallization can lead to unintentional defects and charge traps.45 As previously described, 

conditions have been identified for generating metastable solution of P3HT (Mn = 12 kg/mol) in 

m-xylene, thus opening the door to seeded crystallization using pre-formed P3HT crystals. NFs 

are formed by crystallizing at low temperature (e.g. 2 °C), where the super-cooling is sufficient to 

drive nucleation on time-scales of several hours. Once formed the NFs are subjected to 

centrifugation to remove any free polymer from solution. Two cycles of centrifugation at 10 krpm 

for 1 h were enough to remove most of the free polymer in the supernatant. The resulting fibers, 

with average lengths of 800 ± 100 nm are then shortened to 80 ± 10 nm by ultrasonication at 5°C, 

as shown in Figure 18. Constant low temperatures helped to dissipate the heat generated during 

sonication, thus preventing melting and recrystallization of NFs. 
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Figure 18: TEM images of P3HT NFs in m-xylene as centrifuged (a) and after 3 h (b) of 
sonication at 5 °C. 

Injecting higher amount of these seeds into solutions with a constant unimer (i.e. dissolved 

polymer) concentration increased the crystallization kinetics (as judged by UV-vis spectroscopy, 

Figure 19 and Figure 20). It was noticed that the container walls turned purple, which indicates that 

P3HT can adsorb or crystallize on the container walls. Given that the total concentration of P3HT 

c is decreasing over time the relation xf=cf/(cf + ca) was used to calculate the fraction of NFs in 

solution xf. Since the individual absorption coefficients of the pristine fibers and the dissolved 

polymer are known, the ca can be determined subtracting the contribution of cf (i.e., calculated from 

the absorbance at 602 nm) from the total absorbance of the solution. Interestingly, high amounts of 

seeds led saturation of the growth kinetics and to undesired aggregation, possibly because pre-

aggregated seeds promoted more aggregation. As determined by TEM (Figure 21), the seeds do 
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increase in length, indicating that seeded crystallization is to some degree successful. However, the 

resulting crystals still exhibit a broad dispersity in length, and in some cases, appear to be 

aggregated, indicating that further work is needed if seeded growth is to provide length control over 

P3HT nanostructures. 
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Figure 19: Seeded crystallization kinetics as characterized by UV-vis of unimers. incubated with 
different amount of seeds in solution for 6days: 8% (a), 14% (b), and 24% (c) out of the total 

P3HT in solution seeded crystallization 
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Figure 20: NF fraction as function of time. Unimers (a). incubated with different amount of seeds 
in solution for 6days: 8%, 14%, and 24% out of the total P3HT in solution 

 

Figure 21: TEM images of P3HT seeds initially (a). Different amount of seeds incubated with the 
same amount of unimers in solution for 6days: 8% (b), 14% (c), and 24% (d) seeds out of the 

total P3HT in solution.  

To improve seed stability and mitigate NF adsorption of the NFs on the walls of the vial, 

NFs and seeds were prepared from a block copolymer consisting of poly(3-hexyl thiophene) and 

poly(3-triethyleneglycol thiophene) (P3HT-P3TEGT, 1.85:1, Mn = 18 kg/mol). Presumably, the 

P3TEGT block remains at the edge of the NFs in a dissolved state, stabilizing the P3HT core.74 

Using a 4:1 mixture of chlorobenzene and methanol (CB:MeOH) P3HT-P3TEGT was 

crystallized into NFs by cooling to 2 °C. Sonication at 5 °C for 3 h these NFs were converted into 

seeds with negligible amount of aggregation (Figure 22).  
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Figure 22: P3HT-b-P3TEGT (1.85:1, Mn =18 kg/mol) NFs formed in a chlorobenze:methanol 
(4:1) solution at 1mg/mL before (a) and after (b) sonication for 3 h at 5 °C. 

2.5 Conclusions 

We have demonstrated a method for selective crystallization of P3HT NFs from graphene 

surfaces in solution. Surprisingly, the rate of crystal nucleation is found to be highly dependent on 

the underlying substrate, suggesting a potential route for further tailoring crystallization kinetics. 

Although we expect that the NFs grow out-of-plane due to face-on adsorption of P3HT chains on 
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�J�U�D�S�K�H�Q�H���I�R�O�O�R�Z�H�G���E�\���Œ-�Œ stacking, capillary forces are sufficient to cause collapse into a 

horizontally oriented NF film upon solvent removal. In situ measurements with AFM confirmed 

that the NFs grow out-of-plane in solution growth reaching heights of 20 nm in the time frame of 

the experiment. These findings should be relevant to other conjugated polymers showing similar 

interactions as P3HT with graphene, thereby providing a new method for the study of surface-

directed crystallization and novel pathways for fabricating organic electronic devices. The seeded 

crystallization of P3HT showed that seeds can be extended into longer NFs but this process is 

hindered by aggregation �D�Q�G���D�G�V�R�U�S�W�L�R�Q���R�Q�W�R���W�K�H���F�R�Q�W�D�L�Q�H�U�¶�V���Z�D�O�O���G�X�U�L�Q�J���F�U�\�V�W�D�O�O�L�]�D�W�L�R�Q�����3���+�7-

P3TEGT was shown to produce more uniform seeds and promises to mitigate the mentioned 

issues with the homopolymer. 
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CHAPTER 3 
 

FORMATION MECHANIS M OF P3HT NANOFIBERS CRYSTALLIZED FROM 

GRAPHENE 

3.1 Abstract 

Solution-based crystallization is a powerful route to tailor the hierarchical morphology of 

conjugated polymers and increase the performance of organic electronic devices. Poly(3-hexyl 

thiophene) (P3HT), a workhorse in the study of organic electronic devices, assembles into 

nanofibers (NFs), which are beneficial for the charge mobility of the resulting films. In this study, 

we investigate the influence of the physical properties of P3HT (e.g., regioregularity, molecular 

weight and concentration) on the hysteresis observed during the solution-based assembly of NFs. 

It was found, that this hysteresis (i.e., difference between the crystallization and melting 

temperatures) increases with molecular weight due to an increment in the lamellar size (i.e. NF 

width) as observed by transmission electron microscopy. From this hysteretic behavior, we 

demonstrate, with P3HT, a platform to characterize the crystallization on the surface of graphene 

in situ through high resolution atomic force microscopy (AFM). Surprisingly, AFM showed an 

interchain distance along the a crystal axis of 16.7 ± 0.7 Å, and 7.7 ± 0.2 Å for the c crystal axis, 

which suggest that the crystals on the surface of graphene are Form I. Although the NFs 

crystallize out-of-plane from graphene, capillary forces are sufficient to render them into an in-

plane orientation. Imbedding the wet NFs in an amorphous matrix of an indene-C60 bisadduct, an 

electron acceptor, during solvent evaporation partially preserves the face-on orientation. 

Similarly, poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) crystallizes 

into NFs from graphene with similar orientation angles with the HOPG crystallographic axes as 

for P3HT. For PBTTT, however, the observed interchain distance along the (100) dimension by 

in situ AFM was larger (26.4 ± 0.3 Å) than crystals formed in bulk (21.5 Å). This study provides 
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a better understanding about the crystallization and assembly of conjugated polymers suitable for 

organic electronics. 

3.2 Introduction  

Conjugated polymers are intriguing materials capable of crystallizing into nanostructures 

suitable to increase the performance of electronic devices.10,75 However, control over the 

hierarchical assembly of conjugated polymers in solution remains a challenge due to the wide 

variety of parameters that affect polymer assembly during film formation.76�±78 Since nucleation is 

typically stochastic,79 it is desired to introduce nucleating agents to better control the 

crystallization assembly of conjugated polymers.47 To achieve this objective, there has been a 

growing in the used of pre-existing nucleation sites such as 1,3:2,4-bis(3,4-

dimethylbenzylidene)sorbitol,80 seed crystals,49  electron acceptors,81 carbon nanotubes82 and 

graphene derivatives54,83 to drive growth of conjugated polymer crystals, with most work focusing 

on poly(3-hexyl thiophene) (P3HT). 

Amongst these nucleating agents, graphene derivatives are particularly interesting due to 

their tunable electronic properties and high conductivities, which have been exploited to improve 

the performance of photovoltaic cells, both in the form or additives and electrodes25,84 Graphene 

is known to induce a face-�R�Q���R�U�L�H�Q�W�D�W�L�R�Q�����Z�L�W�K���W�K�H���Œ���R�U�E�L�W�D�O���R�U�L�H�Q�W�H�G���Q�R�U�P�D�O���W�R���W�K�H���V�X�U�I�D�F�H���S�O�D�Q�H����

on P3HT chains, which allows better out-of-plane mobility.25,85 However, the films are fabricated 

through spin casting, which convolutes the assembly mechanism of P3HT/graphene composites 

and does not permit in situ characterization of the crystallization. Therefore, the crystallization 

mechanism remains unclear. To resolve this mechanism, several studies using scanning tunneling 

microscopy have found that when P3HT is crystallized from highly oriented pyrolytic graphite 

(HOPG) the distance between backbones along the hexyl chain direction is 1.4 nm.71,86�±88 This is 

significantly smaller to the typical 1.6 nm distance observed for P3HT films30 or crystallized by 
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self-seeding.89 Epitaxial crystallization of P3HT on HOPG has been invoked to explain this 

difference, yet the reason for the reduction in the interchain dimension remains unclear.  

It is challenging to isolate the P3HT crystallization on nucleating agents given that the 

polymer can spontaneously crystallize in free solution, adsorb and obscure the graphene surface,90 

thus it is crucial to prevent homogenous nucleation. Therefore, it is key to understand the 

hysteresis in the crystallization of P3HT to limit the crystallization on the nucleating agents and 

better understand the mechanism.48,83 The hysteresis in the crystallization of flexible polymers 

such as polyethylene (PE) has been extensively studied.91�±94 Interestingly, it was found that the 

hysteresis window increases in n-alkanes with higher molecular weight due to the creation of a 

metastable phase for longer chains, which nucleates before the most stable crystals.91,95 

Additionally, it was argued that the hysteresis window in PE increases with molecular weight and 

plateaus at the chain folding threshold due to incomplete crystallization.96 In contrast, the 

hysteresis in crystallization of conjugated polymers has received less attention. In one study, Oh 

and coworkers47 studied the effects of solvent in the hysteresis of P3HT crystallization and 

determined that the better the solvent is for P3HT the narrower the hysteresis. However, the 

influence of the physical properties of the polymer on the crystallization hysteresis has not been 

investigated.  

Here, we provide insight on the effects of molecular weight, regioregularity and 

concentration on the stability of supersaturated solutions of P3HT, to better explain the influence 

of graphene in the crystallization of P3HT. Using molecular weight as independent variable, our 

results demonstrate a dependence of lamellar thickness (NF width) to the hysteresis window. 

Additionally, the hysteresis window was optimized to characterize the crystallization of P3HT on 

HOPG in situ using high resolution AFM. From the interchain distances between backbones and 

hexyl chins indicate that the crystals are of Form I. Due to the possible compatibility of our 
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crystallization method with roll-to-roll processing, our findings contribute to better understand 

and perhaps improve film formation in continuous fabrication processes. 

3.3 Experimental procedures 

3.3.1 Synthesis of poly(3-hexyl thiophene) 

Poly(3-hexyl thiophene) (P3HT) was synthetized by Grignard metathesis polymerization 

(GRIM) as explain in Section 2.3.1. Samples 5 and 6 with controlled regioregularity (RR) were 

�S�U�H�S�D�U�H�G���E�\���%�X�P�M�R�R�Q���.�L�P�¶�V���J�U�R�X�S���D�W���.�R�U�H�D���$�G�Y�D�Q�F�H�G���,�Q�V�W�L�W�X�W�H���R�I���6�F�L�H�Q�F�H���D�Q�G���7�H�F�K�Q�R�O�R�J�\��

(KAIST).97 The key synthetic feature is that head-to-�K�H�D�G���F�R�X�S�O�H�G�����������¶-dihexyl-�������¶-bithiophene 

dimer were copolymerized during the Grignard methathesis (GRIM) polymerization of P3HT. As 

changing the feed ratio, RR of P3HT can be precisely changed while maintaining the controlled 

nature of GRIM polymerization technique. The remaining polymers were purchased from Rieke 

Metals (sample 4 and 7) and Sigma Aldrich (sample 8), and used as received. Each polymer was 

characterized by GPC (Figure 23) and NMR (Figure 24) to determine the listed molecular 

weights and RRs, respectively.  

Table 1. Physical properties of the P3HT used in this study are listed below. The molecular 
weights given in polystyrene equivalent were measured by GPC and the regioregularity was 

determined from NMR.  

 

 

Sample 
Mn 

(kg/mol) ��  
Regioregularity 

(%) 
1 6 1.29 94 
2 10 1.33 94 

3 12 1.29 96 

4 15 1.60 95 
5 17 1.70 81 
6 21 1.44 88 
7 22 1.9 96 
8 24 1.89 94 
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Figure 23: GPC traces obtained using tetrahydrofuran at room temperature (a) and tri-
chlorobenzene at 140 °C (b). The background signal was subtracted for better visualization of the 

traces.  

 

Figure 24: NMR spectra of P3HT with different regioregularity. 
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3.3.2 Crystallization experiments 

The melting and crystallization temperatures of P3HT solutions were determined in situ 

using a Hitachi U-3010 UV-vis spectrometer equipped with T2/Hitachi Quantum Northwest 

temperature controller. This controller controls the temperature with an accuracy of ± 0.3 °C. The 

solutions were dissolved at high temperature. and upon cooling to room temperature, transferred 

to a 1 cm path length quartz cuvette. Once, in the cuvette the solution was reheated to a preset 

temperature to erase any thermal history. While stirring at 400rpm, the sample was cooled at a 1 

°C/min rate, equilibrated for at least 10 min at the lowest temperature, and reheated at 1 °C/min, 

while monitoring the absorbance of the solution.  

The crystallization kinetics of P3HT (Mn = 12 kg/mol) were examined in situ using UV-

vis. The P3HT solution (0.5 mg/ml) was quenched from 80 °C to 2 °C (Tc of the polymer) and the 

absorbance was monitored across time. A relative crystalline fraction was obtained by converting 

the absorbance at 612 nm to the concentration of NFs. To study the effects of adding graphene in 

the crystallization kinetics of P3HT a graphene suspension was added to a metastable solution 

(0.5 mg/mL) of the polymer with a graphene loading of 0.001 mg/mL. Graphene (graphene 

nanopowder: 12 nm thick, Graphene Supermarket) were suspended by sonicating a 0.05 mg/mL 

suspension in m-xylene for 1 h. 

The crystallization of P3HT on the surface of highly oriented pyrolytic graphite (HOPG) 

was characterized using a Cypher ES AFM with an Arrow UHFAuD tip. Upon injection of a 0.5 

mg/mL metastable solution the tip was tuned to around a third (~40 kHz) of the resonance 

frequency (1400 KHz) of the tip using a target amplitude of 100mV and an amplitude set point of 

~50 mV. Although the tip curvature radius is around 10 nm, it is possible that the high drive 

frequency of the tip allows a sharper region to deliver the molecular resolution observed. 

The morphologies of the crystalline solutions were inspected by TEM. For this purpose, 0.2 mL 

of the solution was crystallized at the respective solution crystallization temperature (Tc) by 
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cooling at 1 °C/min and maintaining stirring at 400 rpm. Subsequently, the solution was rapidly 

transferred into a 20 mL vial equilibrated at Tc, corrected for the heat transfer delay from the 

sample stage and the solution, and crystallized for at least 1 h. After soaking a TEM Cu grid in 

the solution inside the vial, the solution excess was removed using a filter paper at Tc.  

To determine the morphology of the polymer on the surface of graphene flakes, 0.5 mg of 

graphene flakes were added to 1 mL of a P3HT metastable solution (0.5 mg/mL) and sonicated 

for 30 min. After heating the solution at 80 °C the solution was left to cool to room temperature 

and centrifuge at 10 krpm for 30 min to remove remaining dissolved P3HT in the supernatant. 

The precipitate was suspended in fresh solvent and drop casted in a TEM grid. TEM shows that 

NFs are formed on the surface of the graphene flakes Figure 25. The NF width was estimated by 

measuring 60 NFs except for the NFs crystallized on graphene with error bars representing the 

standard error on the average. 

 

Figure 25. P3HT crystallized on a graphene flake. 

3.3.3 Absorption coefficient of P3HT nanofibers 

Using a method previously described in our group83, the absorption coefficient of NFs in 

solution was determined to be 44 ± 3 mL cm-1 mg-1 (Figure 26 and Figure 27). Using Beer-

Lambert Law the absorbance at 612 nm, coming from the aggregated state of P3HT, can be 

converted into an approximation of the NF concentration.  
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Figure 26: UV-vis of P3HT crystallized for different at different period of times (a) and after 
filtration (b). 
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Figure 27: Calibration curves of dissolved (a) and crystallized P3HT in m-xylene (b). 

3.4 Results and discussion  

3.4.1 Hysteresis in the crystallization of P3HT  

To characterize P3HT crystallization in solution UV-vis is a powerful tool since it has 

been demonstrated that the crystallization and melting temperatures of P3HT can be characterized 

�X�V�L�Q�J���W�K�H���H�Y�R�O�X�W�L�R�Q���W�K�H���Y�L�E�U�R�Q�L�F���S�H�D�N�V���X�S�R�Q���W�K�H���Œ-stacking of the chains.83 As previously shown, 

the appearance of the vibronic peak at 612 nm is identified as the crystallization temperature (Tc), 

while its disappearance indicates the melting point (Tm) of the solution. As show in Figure 28a. it 

follows that P3HT has a similar hysteretic behavior as PE, where the hysteresis increases with 
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molecular weight and plateaus at high molecular weight.91,94 Interestingly, previous studies,46,98 

have seen that P3HT when crystallized into nanofibers (NFs) tends to fold at molecular weights 

higher than 10 kg/mol polystyrene equivalents. Our P3HT samples, crystallized at their respective 

Tc, showed a NF morphology as characterized by TEM in Figure 29. In this structure, the NF 

width represents the lamellar thickness, thus as previously showed the chain folding threshold can 

be determined from the point where the NFs width deviates from the contour length of the 

polymer. As seen in Figure 28, the NF width deviates from the contour length chain beyond Mn = 

12 kg/mol indicating chain folding. Our molecular weight threshold (Mn = 12 kg/mol) agrees with 

P3HT previous studies.46,98  

One key advantage of working with P3HT is that the number of defects in the crystallized 

�V�W�U�X�F�W�X�U�H�V���F�D�Q���E�H���L�Q�F�U�H�D�V�H�G���E�\���U�H�G�X�F�L�Q�J���W�K�H���S�R�O�\�P�H�U�¶�V���U�H�J�L�R�U�H�J�X�O�D�U�L�W�\�����5�5�������K�H�D�G-to-tail 

coupling).97 According to Meyer and coworkers96 the hysteresis window should increase with the 

number of defects. 
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Figure 28: Melting (Tm) and crystallization (Tc) temperatures with the corresponding hysteresis 
window (Tm - Tc) of highly regioregular P3HT(a). Correlation between the hysteresis window 
chain folding by comparing the fiber width against the polymer contour length as function of 
molecular weight (b). The chain contour length was determined from the corrected molecular 

weight by dividing the overestimated GPC molecular weight by 1.7. 71,99  
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Figure 29: TEM images of P3HT with different molecular weights measured in polystyrene 
equivalent: 6 kg/mol (a), 10 kg/mol (b), 12 kg/mol (c), 22 kg/mol (d), crystallized at their 

respective crystallization temperatures when cooled at 1 °C/min from 80°C. 

However, our results shown in Figure 30a do not exhibit a correlation between the hysteresis 

window and RR. The NF width was found to be 16-17 nm across the RR range of 88-95% 

(Figure 30a). Note that at RR = 81%, the polymer did not crystallize significantly to collect NFs 

for TEM imaging. Our results indicate that crystallization hysteresis and RR are uncorrelated. 

Also, Figure 30b demonstrates that the hysteresis decreases with concentration. This can be 

explained by a reduction in the nucleation barrier with increasing supersaturation. 
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Figure 30: Melting point and hysteresis window as a function of regioregularity (a) and 
concentration (b) of P3HT. 

3.4.2 Crystallization mechanism 

Rapid crystallization is important for the formation of the desired structures in a fast-paced 

production of electronic devices.5 The Avrami model is a suitable tool to provide better 

understandings of the kinetics and the formation mechanism of crystals.100,101 The model predicts 

the crystallinity fraction (�T) increment as function of time (�P) is given by: 

 �sF�T�:�P�; L �A�:�?�Þ�ç�Ù�; [3] 

Where k is the crystallization rate pre-factor and n is the Avrami exponent, which typically 

indicates the growth dimensionality, mechanism of nucleation and the rate determination process. 

It has been found that P3HT shows Avrami exponents of n = 0.58-1.26 in the melt, indicating 
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heterogeneous and one-dimensional crystallization mechanism.102 Yang and cowokers103 found 

�$�Y�U�D�P�L�¶�V���H�[�S�R�Q�H�Q�W�V���R�I����-4 for the non-isothermal crystallization of P3HT from graphene flakes. 

Unfortunately, it was concluded the Avrami model could not describe the non-isothermal 

crystallization of P3HT from reduced graphene oxide. Therefore, to better understand the 

influence of graphene on the crystallization kinetics of P3HT, metastable solutions of P3HT Mn = 

12 kg/mol were prepared at 0.5 mg/mL, and incubated at the crystallization temperature measured 

in the hysteresis experiments. The polymer crystallization kinetics were studied and compared to 

the kinetics upon addition of graphene flakes with a surface area of ~1.2 cm2 (comparable to the 

graphene surface area used in our previous work).83 As expected, P3HT crystallized from 

graphene into NFs of 15.0 ± 0.5 nm in width (Figure 25). Interestingly, Figure 31 illustrates that, 

within the period studied. the crystallization proceeds faster in the presence of graphene and even 

reaching higher crystalline fractions when compared to solutions of P3HT alone. The Avrami 

model (Figure 31b) was fitted to the data from pristine P3HT and graphene/P3HT composite 

crystallization resulting in n = 1.50 ± 0.01 and n = 1.42 ± 0.02, respectively. The increments in 

the crystallization rate, k upon addition of graphene, the reduction in n indicate that graphene is a 

nucleating agent for one-dimensional P3HT crystals. This agrees with previous studies on carbon 

nanotubes104 since they both serve as good nucleating agent for P3HT to crystallize into NFs. 
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Figure 31: Kinetics of crystallization of pristine P3HT at 0.5 mg/mL as characterized by UV-vis 
spectroscopy and upon addition of graphene flakes (a). Crystallization kinetics fitted to the 

Avrami model (b). 

Table 2: Avrami parameters summary. 

Graphene 
�O�R�D�G�L�Q�J�������J���P�/�� 

n k 
(×10-4 min-n) 

0 1.50 ± 0.01  2 
1 1.42 ± 0.02 13 

 

Given the influence of the processing parameters in the morphology evolution of conjugated 

polymers, there is great interest in characterizing the formation of thin films in situ.76 The 

hysteresis in the crystallization of P3HT permits the generation of metastable solutions suitable 

for template crystallization from graphene and for tuning the crystallization kinetics for in situ 

studies.83 Therefore, we have employed in situ AFM to characterize this transition and propose a 
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formation mechanism. A metastable solution was injected into a freshly cleaved HOPG surface, 

which prevented adsorption of preformed crystals on the surface and any defects coming from the 

conventional transferring process of graphene. Figure 32 shows that P3HT chains adsorbs into 

non-ordered domains, which include chain folded chains, and crystallize into NF nuclei. Note that 

the unresolved areas in these images result from the dynamic nature of the system, where the 

chains can rotate and move, as previously observed by scanning tunneling microscopy (STM).105  
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Figure 32: P3HT crystallizing on HOPG as characterized by AFM in situ and visualized using the 
height channel (a) and the amplitude channel (b). The segmented lines indicate the interchain 

distance (16 Å) in along the a axis. An amplitude profile from the rectangular area on (b) shows 
the steps on the NFs (c).  

The faster crystallization of P3HT with higher molecular weight (Mn = 22 kg/mol) reduces the 

resolution even further (Figure 33). In our previous study,83 we attributed the larger lateral 

dimensions of the NFs crystallized from HOPG (27.4 ± 0.4 nm) to convolution effects of the 10 
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nm radius of the tip with the original NF106 (16 ± 1 nm). However, our AFM images show P3HT 

chains on the surface of HOPG. Therefore, the NF nuclei are not convoluted by the tip, but a 

possible result of preferential fractionation to large molecular weight or the incorporation of 

multiple chains in the long lateral axes of the NF nuclei. Additionally, it is evident that the 

crystals have steps systematically ordered across the shorter dimension of the NF nuclei (Figure 

32). Based on the crystal dimensions previously observed by TEM89,107 and STM4,65 the distance 

between steps can be assigned to the (100) direction of a P3HT crystal. Indeed, the distance 

between crystals is 16.7 ± 0.7 Å in agreement with what has been found by electron diffraction 

for P3HT crystals of Form I.89,107 Remarkably, as seen in Figure 34 AFM also resolves the hexyl 

chains of a series of P3HT chains with repetitive distances of 7.7 ± 0.2 Å and 17.1 ± 0.9 Å 

between them, respectively. Consequently, the crystals are indeed of Form I because the 7.7 ± 0.2 

Å can be assigned to the c axes. STM studies on P3HT have been unable to measure structures 

taller than a bilayer due to the vanishing signal in the out-plane direction beyond a P3HT 

monolayer, thus the origin of the repetitive distance between backbones of 15 Å remains 

unclear.86,108,109 We propose that these domains of organized monolayers observed by ATM serve 

as a metaphase for P3HT to assemble into Form I crystals.  
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Figure 33: P3HT (Mn = 23 kg/mol) crystallizing on HOPG as characterized by AFM in situ and 
visualized using the height channel (a) and the amplitude channel (b). 
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Figure 34: Phase channel of in situ AFM showing P3HT chains on the surface of a nanofiber 
nucleus (a) with the phase contrast profile obtained from the rectangular area averaged between 

red lines (b) as illustrated on (a). 

It is widely accepted that flexible chains will always crystallize first in a chain-folded 

macro conformation.110 As seen in Figure 35, multiple AFM scans confirm that the disorganized 

chains can organize into domains of extended chains and nucleate a NF. The nucleation of a NF 

can occur within 30 s. Not surprisingly, the interchain distance of P3HT with a Mn = 22 kg/mL is 

16.3 ± 0.6 Å (Figure 33) in good agreement with the results found for the lower molecular weight 

(Figure 32). 
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Figure 35: In situ AFM illustrating P3HT nucleus forming on HOPG from an ordered monolayer 
domain (a) into a nanofiber nucleus (b).  

  



 

56 

 

3.4.3 Transition in the orientation of P3HT nanofibers  

Selective crystallization on nucleating sites can provide a practical route to achieve 

template crystallization of P3HT nanostructures with the desired orientation. The hysteresis in the 

crystallization of P3HT serves as a handle to prevent homogenous crystallization since the 

polymer solution has a higher melting temperature than its crystallization temperature47. Given 

the dispersity in molecular weight and variations in the degree of regioregularity per chain, 

different solubility degrees are attained from each polymer batch. It was determined, by visual 

inspection (i.e. no change in color of the solution), that crystallization at room temperature of 

highly regioregular (90 %) P3HT (Mn = 13 kg/mol polystyrene equivalent, ��  = 1.19 as obtained 

from gel permeation chromatography) was prevented if 10 %v/v of chlorobenzene (i.e. a good 

solvent for P3HT) is added to the solution at a 0.5 mg/mL concentration (90 %v/v m-xylene). To 

obtain template crystallization of P3HT and characterize the graphene films, silicon and indium 

tin oxide (ITO) were used as supporting substrates. Graphene was fabricated through chemical 

vapor deposition, which consisted of mostly bilayer graphene (BLG), as characterized by UV-vis 

and Raman spectroscopy (Figure 36). A thin layer (9 nm) of molybdenum trioxide (MoO3) was 

deposited on glass substrates half-coated with ITO. The MoO3 film served as a buffer layer for 

facilitating hole-extraction from P3HT onto graphene.  
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Figure 36: Raman spectroscopy spectrum of BLG deposited on glass substrate pre-coated with 
MoO3/ITO (a). UV-vis spectrum of BLG deposited on graphene (b). 
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Figure 37: AFM images of BLG as transferred on a silicon oxide substrate (a); MoO3 exposed 
surface (b) and BLG after 72 h of incubation in a P3HT solution (c). UV-vis absorbance of P3HT 
crystallized from BLG on MoO3 to different extends (d).The intermolecular interactions between 

P3HT and graphene induce the P3HT to orient face-on with respect to the substrates56. Previous 

studies have shown that the orientation of the molecules affects energy levels of the 

material111,112. In the case of P3HT it is expected that a change of chain orientation from face-on 

to edge-on would reduce the highest occupied molecular orbital (HOMO)112. In solution, P3HT 

NFs can grow to be ~1 µm in, but if they grow out-of-plane and longer than ~ 10 nm, then surface 

tension is sufficient to collapse them onto an in-plane orientation83. To understand this transition 

in orientation, ultraviolet photoelectron spectroscopy (UPS) and near edge x-ray absorption fine 

structure (NEXAFS) were employed. UPS allows access to the intrinsic electronic characteristics 

of the films studied, when compared to a metallic standard such as Au. The energy of the UPS 

beam was verified, using an Au standard, to have an energy of Ep = 94.76 eV calculated using the 

following relation: 

 �' �ã F �9�(�º�è L �Â�'�Þ [4] 

where the work function of Au is assumed to be WFAu = 5.1 eV, and the measured difference 

between the secondary electron cutoff (ESEC) and the midpoint of the valance band with the 

highest kinetic energy of Au is �û�(k = 89.66 eV. The UPS spectra are shown in Figure 38. As the 

P3HT film grows thicker on graphene, the HOMO of P3HT monotonically decreased from 5.1 eV 

to 4.8 eV, values which agree with previous measurements113. These values were determined 

using the following equation: 

 �' �ã F�:�' �é�Ô�ßF �' �Ì�¾�¼�; L �*�1�/�1  [5] 
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Figure 38: UPS spectra of P3HT crystallized from BLG on MoO3 at the secondary electron cutoff 
region (a) and their respective valance bands (b). Schematic representation of the energy levels of 

the different layers of the sample (c).where Eval is the onset of the valance bands. The shift in 

�Y�D�F�X�X�P���O�H�Y�H�O�V���R�I���W�K�H���G�L�I�I�H�U�H�Q�W���P�D�W�H�U�L�D�O�V���U�H�O�D�W�L�Y�H���W�R���$�X���L�V���W�K�H���L�Q�W�H�U�I�D�F�L�D�O���G�L�S�R�O�H���H�Q�H�U�J�\�����û�������Z�K�L�O�H��

the difference between EF and HOMO yields the hole-�H�[�W�U�D�F�W�L�R�Q���H�Q�H�U�J�\���E�D�U�U�L�H�U�����-h). 

Unfortunately, UPS does not provide information about the lowest unoccupied molecular orbital 

(LUMO). But from the onset of the UV-vis absorbance spectrum at lowest energy region the 

optical energy gap can be calculated, which if added to the HOMO results in the LUMO and 

allows the calculation of the electron-�L�Q�M�H�F�W�L�R�Q���H�Q�H�U�J�\���E�D�U�U�L�H�U�����-h). The calculated parameters are 

summarized in Table 3.  

Table 3: Electronic characteristics of P3HT films crystallized from BLG on MoO3. 

Time 
(h) 

EG optical 
(eV) 

�û 
(eV) 

�- h 
(eV) 

�- e 
(eV) 

HOMO 
(eV) 

LUMO  
(eV) 

�� ������ �������� �������� �������� ������ ������ 
���� ������ ������ �������� ������ ������ ������ 
���� ������ �������� �������� �������� ������ �� 
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Despite the possibility that secondary electrons can escape from below the P3HT film, the shape 

of the valance bands is very similar for all P3HT films, thus the contribution of the underlying 

substrate can be ignored. This implies that there is a transition in the chain orientation of P3HT 

from face-on to edge-on.  
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Figure 39: Spectra obtained from NEXAFS operated on partial electron yield mode of BLG on 
MoO3 (a); P3HT crystallized for 1 h (b), 24 h (c) and 72 h (d). Linear fittings of the 1�V���:���Œ����&� �&��

resonance intensity as a function of incident angle (e).NEXAFS is a powerful technique to 

determine the conformation of molecules in ultra-thin films (i.e. a monolayer) due to its high 

sensitivity for the direction of the transition dipole along the molecular orbitals114. The angle 

dependence of the intensity from the resonance around 285 eV, which is attributed to the 1�V���:���Œ���

C=C orbitals, is typically employed to determine molecular orientation115. Figure 39e shows 

NEXAFS spectra measured at four incident angles (�� = 30º, 45º, 54.7º and 90º) of P3HT 

crystallized to different for different extends (1 h, 24 h, 72 h) and the background of BLG on 

MoO3. The NEXAFS measurements were carried out with p-polarized X-rays at the Pohang 

Accelerator Laboratory (beamline BA07) under partial electron yield (PEY) mode with bias of 

900 V that yields a probing depth of ~10 nm. The figure of merit dichroic ratio (R) provides 

quantifying method for the orientation of molecules. From Figure 39 it is evident that the 

intensity of the 1�V���:���Œ����&� �&���U�H�V�R�Q�D�Q�F�H���L�V���S�U�R�S�R�U�W�L�R�Q�D�O���W�R���V�L�Q2��, where R is the proportional 

constant is. It is expected that in films with no preferential orientation will show R = 0, for a 

perfect face-on orientation R = -1, while R �§����������for edge-on114. Figure 39 shows a transition from 

a face-on orientation to an edge-on orientation, although the contribution of graphene to the 

change in orientation due to the overlapping of the resonances with P3HT remains a challenge. 

Despite this, the combination of the results of NEXAFS and UPS depicts a transition of a face-on 

orientation of P3HT to edge-on chains as the film grows thicker.  

Table 4: Dichroic ratio values for the P3HT films. 

Time 
(h) 

Dichroic 
ratio (R) 

�� ���������“�������� 
�� ���������“�������� 
���� ���������“�������� 
���� ���������“�������� 
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To preserve the face-on orientation of the P3HT nanostructures after 6 days of 

crystallization, the wet substrates were introduced into a highly-concentrated solution (20 

mg/mL) of indene C60 bisadduct (ICBA) in m-xylene. The ICBA matrix can potentially lock the 

nanostructure in place during solvent evaporation and complete the active layer for OPV devices. 

Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements of a pristine P3HT film 

crystallized from graphene revealed strong (h00) reflections and clear (010) reflection along the 

out-of-plane direction qz (I(010) z), as well as (h00) reflections and a clear (010) peak along the in-

plane direction qxy (I(010) xy), this is consistence with a combination of crystalline edge-on and 

face-on molecules as seen in Figure 40a. Surprisingly, Figure 41b shows that the P3HT 

nanostructure embedded in ICBA has a combination of both edge-on and face-on orientations. 

Additionally, a clear amorphous ring centered at q = 1.3 Å-1 characteristic of ICBA is observed. 

The peak at around q = 0.7 Å-1 can be attributed to the characteristic size of P3HT/ICBA 

structures produced during solvent evaporation. To better quantify the effects of the ICBA matrix 

on the P3HT orientation, a bilayer of P3HT (bottom) with ICBA (top) was fabricated as a control 

experiment. Although the analysis is complicated due to the presence of ICBA scattering, we can 

still estimate the level of orientation by comparing the relative strengths of the scattering at the 

P3HT peak locations, presented in Table 5. The ratio of the relative intensities of I(010) z and the 

(100) reflection (I(010) z), is higher for P3HT embedded in ICBA (I(010) z/I(100) z = 0.20) than for the 

bilayer sample (I(010) z/I(100) z = 0.06). The opposite is observed for the intensity ratios in-plane, 

where the bilayer ratio is higher (I(010) xy/I(100) xy = 0.63) than for the ICBA-embedded P3HT (I(010) 

xy/I(100) xy = 0.35). Despite the unknown ICBA contribution to the intensity ratios, these results are 

evidence that the ICBA matrix can preserve the face-on orientation during solvent evaporation.  
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Figure 40: 2D GIWAXS measurements of P3HT films crystallized for 6 days from graphene on 
Si as prepared (a) and embedded in a ICBA matrix during solvent evaporation (b) with their 

respective spectra along the out-of-plane (b, e) and the in-plane directions (c, f).

 

Figure 41: 2D GIWAXS measurements of P3HT films crystallized for 6 days from graphene on 
Si with a ICBM layer on top prepared with the spectra along the out-of-plane (b) and the in-plane 

directions (c).  
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Table 5: Intensity ratios, obtained from GIWAXS, for the specified reflections of P3HT 
crystallized from graphene.

Sample ICBA/P3HT  
bilayer 

ICBA embedded 
 P3HT 

I(010) z/I(100) z 0.06 0.20 
I(010) xy/I(100) xy 0.63 0.35 

3.4.4 Alternative materials for graphene templated crystallization  

To extend the method of templated crystallization of conjugated polymers from graphene 

surfaces beyond P3HT, the solution crystallization of poly[2,5-bis(3-tetradecylthiophen-2-

yl)thieno[3,2-b]thiophene] (PBTTT) was analyzed. Using a molecular weight of Mn = 28 kg/mol 

with ��  = 1.58 (as measured by GPC in polystyrene equivalent), a solution of the polymer was 

prepared by mixing it in orthodichlorobenze (ODCB) at 80 °C (0.05 mg/mL). The solution was 

brought to room temperature and transferred to a 1 mm cuvette in the UV-Vis spectrometer 

(Figure 42). UV-vis spectroscopy indicates that the shoulder at around 600 nm does not emerge 

above 7 °C as the solution is cooled down from 55 °C, which suggests the polymer is 

aggregating116. On the other hand, the absorbance persists at higher temperatures. This makes 

PBTTT a potential candidate for templated crystallization from graphene substrates. 



 

65 

 



 

66 

Figure 42: The hysteresis between crystallization and melting of PBTTT NFs. UV-vis spectra of 
0.05 mg/mL solution of PBTTT in ODCB during cooling and (a) heating (b), along with the 
temperature profile employed (c), and absorbance of aggregated PBTTT at 600 nm (d). The 

crystallization of PBTTT was characterized in situ using AFM (Figure 43). A 0.05 mg/mL was 

injected on a HOPG freshly cleaved substrate as previously described for P3HT. It was found that 

the lateral dimension of the PBTTT nuclei are 21 ± 1 nm and 8.2 ± 0.5 nm. Moreover, the 

orientation angle of the longest lateral dimension of the NF with respect of an arbitrary angle on 

the substrate is distributed into three sets of angles 60° apart from each other. This correspond to 

the crystallographic axes of HOPG. Consequently, PBTTT follows a similar out-of-plane 

crystallization as P3HT, where NFs are crystallizing out-of-plane from HOPG. 
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Figure 43: PBTTT crystallizing on HOPG as characterized by AFM in situ and visualized using 
the height channel (a) and the phase channel (b). In-plane orientation angle of the lateral long axis 
of the NF with respect of an arbitrary angle of the HOPG surface (c).The high-resolution images 

shown in Figure 44 demonstrate PBTTT adsorbed on HOPG and crystallizing into NFs. 

Interestingly, the chains assemble into NF nuclei and the AFM can remove them, leaving a 

monolayer behind (Figure 45). Surprisingly, the interchain distance in the (100) direction 

obtained by AFM (26.4 ± 0.3 Å) is larger than expected for PBTTT (21.5 Å)117 crystallized in the 

bulk. Contrary to P3HT, it was not possible to observe the steps on the surface of PBTTT 

crystals, thus the interchain distance was characterized from organized monolayer-domains as 

depicted in Figure 45. The larger interchain distance can be attributed to ordered metastable 

domains that will transform into the typical packing structure away from the HOPG surface. 

Moreover, PBTTT selectively crystallizes into NFs from graphene as seen by SEM (Figure 46). 

As illustrated in Figure 46b, (h00) reflections are observed by GIWAXS after 24 h of 

crystallization. Interestingly, the interchain distance was 21.5 Å, which suggests a transition of a 

metastable ordered phase on the surface of graphene into bulk crystallization. 
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Figure 44: High-resolution AFM characterization in situ of PBTTT NFs crystallizing on HOPG 
and visualized using the height channel (a) and the phase channel (b).

 

Figure 45: High-resolution AFM characterization in situ of PBTTT crystallizing on HOPG into 
organized domains visualized using the height channel (a) and the phase channel (b). 
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Figure 46: SEM image of PBTTT crystallized from graphene on ITO (a) in a 0.05 mg/mL 
metastable solution of ODCB for 24 h. GIWAXS out-of-plane cut of PBTTT crystallized from 

graphene on Si (b). The inset in (a) shows the film selectively crystallized on graphene. 

3.5 Conclusions 

The hysteresis in the crystallization of P3HT increases with molecular weight and 

plateaus upon reaching the chain folding threshold (Mn = 12 kg/mol), as confirmed by TEM and 

UV-vis spectroscopy. No correlation was observed between the hysteresis window and the 

regioregularity of the polymer. With the increase in the amount of crystalline P3HT, the reduction 

in the Avrami exponent, and the faster crystallization kinetics observed upon addition of graphene 

it was demonstrated that graphene serves as a good nucleating agent for one-dimensional 
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crystallization of P3HT. AFM results point to a formation of Form I P3HT crystals on HOPG. 

The NFs crystallize from a wetting layer capable of reorganizing into crystals with a face-on 

orientation. Moreover, PBTTT was shown to selectively crystallized on graphene. AFM shows 

that PBTTT is less interdigitated (26.4 ± 0.3 Å) in the domains organized on HOPG than when 

crystallized in the bulk (21.5 Å). Given that it was not possible to clearly identify regularly 

arranged chains in the PBTTT crystals, the larger interchain distance seen by AFM can be 

attributed to a metastable phase that can rearrange into more stable crystals.  
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CHAPTER 4 
 
SELECTIVE CRYSTALLIZATION OF P3HT NANOFIBERS FOR GRAPHENE -BASED 

ELECTRONICS  

4.1 Abstract  

Molecular templated growth of polymers is a promising route to high-performance 

organic electronic materials through precise patterning of the components during device 

fabrication. Using supersaturated solutions of poly(3-hexyl thiophene) (P3HT) in m-xylene, 

conditions were found to deliver fast and selective crystallization of nanofibers (NFs) from 

graphene surfaces. Electrode patterns printed by liquid-bridge mediated nanotransfer using a 

solution process based on graphene ink can induce crystallization of P3HT NFs. The rapid and 

selective crystallization of NFs connected graphene electrodes 10 µm apart in 5 min as verified 

by a functional organic field effect transistors and microscopy techniques. Further crystallization 

�L�Q�F�U�H�D�V�H�G���W�K�H���K�R�O�H���P�R�E�L�O�L�W�L�H�V���X�S���W�R������= 20 x 10-3 cm2 V-1 s-1, which is two orders of magnitude 

higher than comparable devices fabricated by spin casting of P3HT films on otherwise identical 

�H�O�H�F�W�U�R�G�H�V��������� �����������[������-3 cm2 V-1 s-1). Additionally, graphene was used in heterojunction solar 

cells as a buffer layer between ITO and PEDOT: PSS. Remarkably, devices fabricated by spin 

casting P3HT with methanofullerene phenyl-C61-butyric-acid-methyl-ester (PCBM) showed a 

higher power conversion efficiency (1.92%) than it was previously reported (0.68%). However, 

devices prepared by selectively crystallizing P3HT from graphene short circuited possibly due to 

preexisting holes in the graphene films. The solution-processable fabrication of electrodes and 

semiconductors is potentially scalable and amenable to roll-to-roll manufacturing. 

4.2 Introduction  

A key challenge for the fabrication of organic electronic devices is the precise control 

over the location of each feature to minimize inter-device interference and manufacturing 
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steps.118,119 Molecular templated growth (MTG) is a promising method to orient and control the 

morphology of organic semiconductors to produce high quality thin films and improve the 

performance of solar cells and .120 Graphene has spark increasing interest as electrode and 

template due to its extraordinary optical transparency, conductivity and mechanical 

strength.85,121,122 Previously, MTG for organic electronics has been mostly focused on small 

molecules120,123 due to their ability to form single crystals with good charge transport 

characteristics. For example Cho and coworkers demonstrated that vacuum using graphene as 

template for pentacene increases the power conversion efficiency of solar cells.121 Yet, this 

method required vacuum deposition of the active layer, which increases the fabrication costs and 

does not allow for in situ characterization. If the thin films are formed from solutions of small 

organic molecules it is challenging to identify suitable orthogonal solvents in subsequent 

fabrications steps.124 Polymers represent an attractive alternative because they possess excellent 

solution rheology properties to generate solution-based processing techniques over large 

surfaces.125  

Another aspect to consider in the fabrication of organic electronics is the hierarchical 

assembly/orientation of the structures in the active layer.126 Poly(3-hexyl thiophene) (P3HT) a 

major pillar in the development of polymer-based electronics assembles into nanofibers (NFs) 

�G�X�H���W�R���W�K�H���V�W�U�R�Q�J���Œ-�Œ���L�Q�W�H�U�D�F�W�L�R�Q�V���E�H�W�Z�H�H�Q���F�K�D�L�Q�V��127 �7�K�H���Œ-�Œ���V�W�D�F�N�L�Q�J���R�I���W�K�H���F�K�D�L�Q�V���D�O�O�R�Z�V���I�R�U��

high charge transport along the nanofiber direction.126,128,129 Also, it has been demonstrated that 

P3HT selectively crystallizes from graphene into NFs.83 �7�K�H���Œ-�Œ���L�Q�W�H�U�D�F�W�L�R�Q�V���G�U�L�Y�H���3���+�7���W�R���D�G�R�S�W��

a face-on orientation when in contact with graphene56 and highly oriented pyrolytic graphite 

(HOPG) as characterized by scanning tunneling microscopy (STM).71,86 Interestingly, the face-on 

orientation induced by graphene doubles the out-of-plane charge mobility of P3HT films.85 On 

the other hand, orienting P3HT edge-on can increase the in-plane charge motility by an order of 

magnitude. 20 Therefore, it is desirable to exercise hierarchical assembly of 1D structures with the 
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proper orientation with respect to the substrate (e.g. edge-on for transistors and face-on for solar 

cells). NFs oriented in-plane have been shown to have edge-on oriented chains.130 Interestingly, 

P3HT NFs are oriented in-plane when crystallized from graphene and removed from the 

solvent.83  

Generally, electrodes for organic electrodes including graphene are fabricated using 

vacuum deposition, thus increasing the cost and complicating device fabrication.131 It has been 

demonstrated that graphene can be deposited using solution phase processing while maintaining 

high conductivity.132 This was achieved using ethyl cellulose to disperse the flakes and post-

deposition annealing to reduce the film resistivity. This process has achieved a resolution of the 

�G�H�Y�L�F�H���I�H�D�W�X�U�H�V���R�I���������P���X�V�L�Q�J���V�F�U�H�H�Q���S�U�L�Q�W�L�Q�J��133 Subsequent patterning steps though, require 

precise alignment of the device features and patterning organic semiconductors remains a 

challenge due to the high sensitivity of these materials to the harsh lithography conditions (i.e. 

exposure to UV light, etchants and heat). To overcome this challenge, Wang et al122 have shown 

that selective crystallization of semiconducting molecules is a suitable approach for patterning 

electronic devices, and improve charge transport in the out-of-plane direction. In their method, 

phenyl/phenyl capped tetraaniline (TANI) were patterned in ~2 h through a crystallization-driven 

assembly into micron-sized crystals, using graphene as a template. Yet, faster crystallization 

routes are desired to meet roll-to-roll fabrication (i.e. ultimate processing technique for mass 

fabrication) translational speeds (over 1 m/min).134 To address this, our work takes advantage of 

the intermolecular interaction between P3HT and graphene to pattern NFs on graphene-based 

electrodes, and to simultaneously fabricate multiple OFETs within 5 �± 15 min with higher in-

plane mobility than spin casted equivalents. 
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4.3 Experimental procedure  

4.3.1 Materials  

Highly regioregularity (95 %) poly(3-hexylthiophene) (P3HT) and m-xylene were 

purchased from Rieke Metals and Alfa-Aesar, respectively, and used as received. If not specified 

the rest of the materials were obtained from Sigma Aldrich.The molecular weight of the polymer 

was characterized using gel permeation chromatography (GPC) in polystyrene standards. Highly 

oriented pyrolytic graphite (HPG) ZYB Quality was purchased from K-Tek Nanotechnology. The 

HOPG substrates were freshly exfoliated before each used.  

4.3.2 Film thickness growth 

The crystallization kinetics of P3HT on HOPG was studied using a Cypher ES atomic 

force microscopy (AFM) from Asylum Research. After peeling the off top layer of the HOPG 

substrate with an adhesive tape a fresh surface was exposed. To partially cover the HOPG 

surface, a series of circular sacrificial layers of poly(acrylic acid) (PAA) were drop casted on the 

top of the HOPG surface. This was achieved using a concentrated (50 mg/mL) solution in 

methanol. Once the film was dried at ambient conditions for at least 3 h, the HOPG substrates 

were immersed in the metastable solutions at different concentrations. Upon removing the 

substrates from solution and rinsing with fresh m-xylene the dried substrates were immersed in 

methanol to remove the PAA sacrificial layer. The thickness was then calculated from the step 

height difference between the HOPG bare surface and the P3HT film. For each AFM image 3 

thickness profiles at least1 ��m long were averaged over a 375 nm width individually. 

4.3.3 Graphene electrodes fabrication  

The electrodes were fabricated using graphene ink imprinted on Si wafers with a 

thermally grown 300 nm SiO2 layer (Si-Tech, Inc). Before imprinting the electrodes, the silicon 
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wafers were cleaned under 5 min of ultrasonication in a 50 %v/v Versa-Cl�H�D�Q�Œ���D�T�X�H�R�X�V��

solution, filtered water, acetone and isopropanol. After drying under a gentle flow of nitrogen, the 

substrates were exposed to UV-ozone for 10 min.  

Graphene ink was prepared using liquid-bridge mediated nanotransfer molding. For soft 

nanoimprint lithography, an SU8 master was developed in a cleanroom environment with 

electrode patterns. Polydimethylsiloxane (PDMS) (Sylgard 184) was mixed in a 1:10 elastomer to 

base ratio, poured over the SU8 master, and heated at 65 °C overnight until cured. 

The graphene ink was prepared using graphene flakes capped with ethyl cellulose and 

dispersed in an isopropanol (IPA), N-Methyl-2-pyrrolidone (NMP), and ethanol solvent mixture. 

The ink was drop casted at corner of a PDMS stamp and dragged across the surface of the 

patterned stamp, until the ink discontinuously de-wets from the surface, but filled the electrode 

patterns. The stamp filled with ink was dried for 10 min at 55 °C to remove residual solvent 

within the stamp. 

To print, a drop of ethanol was cast on the cleaned Si/SiO2 wafer, and the stamp with 

dried graphene ink was placed over the ethanol. The ethanol serves as a liquid bridge that causes 

the dried ink to print directly onto the Si/SiO2 wafer. The PDMS stamp can be removed, leaving 

behind cleanly imprinted graphene electrodes. The graphene ink is annealed at 250 °C for 30 min 

until conductive.  

�7�K�H���S�U�L�Q�W�H�G���J�U�D�S�K�H�Q�H���H�O�H�F�W�U�R�G�H�V���D�U�H���L�Q���W�K�H���V�K�D�S�H���R�I���W�Z�R���R�S�S�R�V�L�W�H���³�/�´���S�D�W�W�H�U�Q�V���W�K�D�W���D�U�H��

roughly 250 nm in height, 300 ��m in width and 165 ���P���L�Q���O�H�Q�J�W�K�����Z�L�W�K a surface roughness of 38 

± 2 nm as seen by AFM (Figure 47). The channel length b�H�W�Z�H�H�Q���W�Z�R���H�O�H�F�W�U�R�G�H�V���L�V�����������P�� 
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Figure 47: AFM of graphene electrodes. 

4.3.4 Graphene fabrication 

Graphene was fabricated through chemical vapor deposition (CVD). Methane was 

introduced (930 sccm) with hydrogen (330 sccm) into a quartz tube as reactor to catalyzed the 

formation of graphene on the surface of 3 Cu foils (2 cm × 3 cm) at 1,000 °C. Upon reaction for 

13 min, the system was cooled down by exposing the reactor to room temperature. At 400 °C the 

methane was turn off while keeping the hydrogen flow until the temperature reach 200 °C. The 

graphene was transfer to the desired substrate using conventional poly(methyl methacrylate)  

(PMMA) wet transfer as explained below. 

First, the graphene on one side of the foil was protected with a thick layer of PMMA 

(Mw = 350 kg/mol) purchased from Sigma Aldrich. This film was fabricated by spin casting (60 s 

at 2 krpm) a solution (0.5 g/mL) of the polymer in chlorobenzene. Baking the samples in an oven 

at 120 °C for 20 min removed solvent residues and annealed the PMMA. Subsequently, the foils 

were exposed to oxygen plasma to oxidize the unprotected side of graphene. The Cu was etched 

overnight in an aqueous solution of ammonium persulfate (20 mg/mL). Residual ions were 

removed by transferring the samples in a water bath for 30 min using a glass slide. The samples 

were transfered to the pre-cleaned substrates and dried overnight at 120 °C. The PMMA was 
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removed by incubating the samples in acetone bath for 1 h. A final annealing at 350 °C under H2 

flow (330 sccm) for 1 h was performed to remove PMMA residues.  

4.3.5 Transistor characterization 

The P3HT NF devices were characterized using a bottom-gate bottom-contact (BG-BC) 

transistor configuration as seen in Figure 48. BG-BC devices were made from Si/SiO2 substrates 

with graphene ink source/drain electrodes directly imprinted onto the substrate. The 

characterization was carried out using a Keithley 4200-SCS in direct and reverse bias conditions.  

 

Figure 48: Schematic illustrating the cross-section of a transistor with a bottom-gate bottom-
contact architecture used in this study. 

4.3.6 Selective crystallization 

For patterning P3HT on the graphene electrodes, it is important that the crystallization is 

selective to graphene and that the crystallization in the bulk of the solution is negligible. To 

confirm this, bare silicon wafers were exposed to the metastable solutions (2 mg/mL) for from 5 

min to 15 min. As evident in Figure 53 did not show any changes in the apparent number of 

nanofibers on its surface, in contrast to the abundant NFs on the graphene electrodes. This is 

evidence that P3HT crystallizes selectively on graphene. On the other hand, nucleation of NFs is 

observed on the graphene electrodes using in situ AFM (Figure 49). 
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Figure 49: P3HT crystallizing on graphene electrodes as characterized by AFM in situ and 
visualized using the amplitude channel (top) and the height channel (bottom). 

4.4 Results and discussion  

4.4.1 Selective crystallization of P3HT for field effect transistors 

Using the thermochroic properties of P3HT in solution and UV-vis spectroscopy, it was 

determined that P3HT shows a wide hysteresis between the crystallization (Tc) and melting 

temperatures (Tm) in solutions.47,83 We previously demonstrated that P3HT solutions can have a 

sizable driving force for crystallization and exist in a metastable state with no spontaneous 

nucleation due to a nucleation barrier.83 Subsequent addition of graphene-coated substrates 

induces selective crystallization on the graphene surface. Although graphene is a good nucleating 
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agent, the chosen crystallization conditions resulted in lethargic film formation kinetics, which 

required 5 days to generate a 90 nm thick film of P3HT. Therefore, to obtain faster crystallization 

on the surface of graphene for speeding up device fabrication, we increased the P3HT molecular 

weight and concentration. The kinetics of P3HT film formation was studied on HOPG substrates 

incubated at room temperature (22 °C) in a 20 mL vial containing ~1 mL of the metastable 

solution for the desired crystallization period. Afterwards, the substrates were cleaned with fresh 

solvent. Prior P3HT crystallization a poly(acrylic acid) PAA sacrificial layer was drop casted on 

the HOPG to produce a height step between the P3HT film and the HOPG. After removing the 

PAA layer with methanol, atomic force microscopy (AFM) was used to determine the P3HT film 

thickness. As shown in Figure 50a higher molecular weight P3HT (Mn = 22 kg/mol) achieves a 

film thickness of approximately 90 nm on HOPG in a time 3 orders of magnitude shorter than for 

relatively low molecular weight (Mn = 12 kg/mol) from our previous studies.83 This is due to the 

stronger crystallization driving force at higher molecular weight. As determined from UV-vis 

spectroscopy the Tc increases with molecular weight from Tc = 6 ± 1°C (Mn = 12 kg/mol) to Tc = 

22 ± 1°C (Mn = 22 kg/mol), when the solutions are cool from 80 °C at 1 °C/min. Similarly, the 

crystallization rate systematically increases with concentration. At 15 min a thickness of 83 ± 4 

nm was achieved with a concentration of 2 mg/mL, while it required 30 min for the 1 mg/mL 

solution to reach a similar value (82 ± 6 nm). Not surprisingly, at 1 h the 0.5 mg/mL solution 

formed a film 54 ± 1 nm, thus it was demonstrated that the 2 mg/mL concentration was optimal 

for selective and rapid formation of P3HT films. Higher concentrations than 2 mg/mL were not 

explored because the crystallization point of a 2 mg/mL solution is around room temperature (22 

± 1 °C). Therefore, further increments in concentration would induce nucleation in the bulk of the 

solution and the selective crystallization will be obscured by absorbed crystals on the substrate 

surface, as seen previously with pre-formed NFs in solution.130 
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Figure 50: Kinetics of P3HT crystallized on HOPG into films from solution at low molecular (Mn 
= 12 kg/mol) weight and high molecular weight (Mn = 22 kg/mol) (a). The effects of 

concentration on high molecular weight P3HT crystallized from HOPG (b). The reported 
thickness and standard error values were measured by AFM. Although suitable for studying the 

kinetics of crystallization of P3HT, HOPG is too bulky and difficult to pattern to be useful in 

electronic devices. One layer of HOPG (e.g. graphene) possesses high conductivity and flexibility 

to be used as an electrode.121 Typically, graphene is fabricated through chemical vapor deposition 

on Cu substrates. The combination of high temperatures, high vacuum, low throughput and 

complicated transferring process into substrates renders graphene into an expensive material to be 

used as an electrode.131,135 Liam and Hersam developed a potential solution to this challenge by 

suspending graphene flakes in organic solvents using ethyl-cellulose as dispersant.132 This 

colloidal graphene can be printed into conductive patterns to be used as electrodes. For our 

experiments, we used printed graphene electrodes fabricated through soft lithography from this 

graphene/cellulose ink, as developed by Naik et al. Once printed the graphene films became 

�F�R�Q�G�X�F�W�L�Q�J���E�\���D�Q�Q�H�D�O�L�Q�J���D�W�����������ƒ�&���I�R�U���������P�L�Q�����7�K�H���H�O�H�F�W�U�R�G�H�V���K�D�Y�H���D���F�K�D�Q�Q�H�O���Z�L�G�W�K���R�I�����������P���D�Q�G��

�D���O�H�Q�J�W�K���R�I�������������P���V�X�L�W�D�E�O�H���I�R�U���2�)�(�7�V���� 

The crystallization of P3HT on the graphene electrode surface was monitored in situ 

using AFM (Figure 51 and Figure 49). At 198 min of exposure to a 0.5 mg/mL P3HT solution the 

surface of graphene showed several features that can be identified as NF nuclei (Figure 51a). As 

seen in Figure 49 both amplitude and height channels show the same features, which discards the 

possibility that these features are created from an artifact during imaging. The low contrast 

observed in the images seen using the height channel is due to the relatively rough surface of the 

graphene electrodes (Rq = 38 ± 2 nm). From the AFM amplitude channel in Figure 51 it is 

possible to observed NF nucleating on the surface of the graphene electrodes within 2 min as 

indicated by the red rectangle. Evidently the crystallization on graphene electrodes is like the 

crystallization mechanism observed on HOPG (Figure 17). 
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Figure 51: In situ AFM showing the formation of nuclei of P3HT NFs on the surface of graphene 
electrodes at 198 min (a) and 200 min (b) during the exposure to the P3HT metastable 

solution.Using the optimized conditions for fast crystallization of P3HT NFs from HOPG, the 

graphene electrodes were exposed to a P3HT metastable solution (2 mg/mL) for: 5 min, 10 min, 

15 min at room temperature. Additionally, to ensure pre-crystallization in solution is 

insignificant, a control experiment was carried in parallel with clean SiO2 substrates. Optical 

microscopy (Figure 52) shows that there is minimal or no change in the color of the SiO2 

substrates (pink surfaces), indicating the deposition of P3HT (blue domains) on the SiO2 

substrates exposed from 5 min until 15 min is negligible. This observation was also qualitatively 

confirmed using AFM as the number density of NFs on the surface SiO2 did not appear to 

significantly change (Figure 53). Interestingly, the amount of P3HT crystallized on the graphene 

electrodes is evident at the early stages of crystallization as evidenced by the blue regions at 5 

min of crystallization. However, most of the channel is not connected as seen by the bare SiO2 

(pink) portions of the sample. Subsequently, at 10 min P3HT crystallizes and partially connects 

the electrodes. Within 15 min, the channel gap between electrodes is completely covered by 

P3HT NFs, demonstrating the rapid crystallization of P3HT on graphene.  
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Figure 52: Imprinted graphene electrodes on SiO2 wafers incubated in metastable (2 mg/mL) 
P3HT solutions for 5 min (a), 10 min (b) and 15 min (c), with their respective bare silicon wafers 

(d-f) exposed to the same conditions. 
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Figure 53: AFM of bare SiO2 substrates exposed to metastable P3HT solutions (2 mg/mL) for 5 
min (a), 10 min and (b) 15 min (c). 

SEM shows that P3HT crystallizes into NFs oriented in-plane on the surface of the 

graphene electrodes (Figure 54). We have previously observed that P3HT NFs adopted primarly 

edge-on orientation when grown from graphene surfaces, since capillary forces are sufficient to 
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flatten the flexible and high aspect-ratio fibers upon drying of solvent.83 Thus, the film is mostly 

composed of edge-on orientated P3HT chains. The graphene flakes with an average lateral 

dimension of 300 nm are visible as seen previously,132 while the dense film of P3HT is composed 

of NFs 17.4 ± 0.3 nm in width. Due to the high number density of NFs on the graphene surface it 

is not possible to determine the length of the NFs by SEM. However, it is evident that the P3HT 

NF film extends away from the electrodes into the channel as seen in Figure 52 and Figure 54. 

SEM also demonstrates that much of the channel is not covered by NFs for the spin casted sample 

because the darker regions identified as P3HT, leave abundant brighter regions, assigned to the 

wafer surface (Figure 55).  
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Figure 54: SEM showing the P3HT morphology on graphene electrodes when crystallized for 5 
min (a), 10 min (b), 15 min (c). The NF morphology is shown from the area depicted by the green 

rectangle on the right of (c). 

 

Interestingly, the electrodes incubated for 5 min, show a comparable NF film to the spin casted 

sample. The NF network spans from the graphene electrode into the channel as the crystallization 

proceeds. Although there are still gaps in the network, the NF crystallization helps creating a 

uniform film shown for both the 10 min and the 15 min samples. Despite an appreciable 

crystallization in the bulk of the solution (the solution turns from bright orange to light brown) at 

15 min, most of the crystallization still occurs on the graphene electrodes. 
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Figure 55: SEM showing the P3HT morphology in the channel of a set of graphene electrodes as 
spin casted from a m-xylene (2 mg/mL) solution. 

To characterize the crystallization kinetics, the film thickness of P3HT crystallized from 

the graphene electrodes (tgr), was measured by optical profilometry (Figure 56). The P3HT film 

thickness is 5-fold smaller than for the films crystallized on HOPG (tHOPG). A similar difference 

was observed in our previous work,83 and presumably reflects the more efficient nucleation of 

P3HT nanofibers on HOPG compared to graphene.  
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Figure 56: Formation kinetics of P3HT NFs crystallized from graphene flakes spin casted on 
glass (a) as characterized by UV-vis spectroscopy. Film thickness of P3HT as characterized by 

optical profilometry (b). 

�7�K�H���F�R�Q�W�U�L�E�X�W�L�R�Q���R�I���W�K�H���F�U�\�V�W�D�O�O�L�]�D�W�L�R�Q���W�L�P�H���W�R���W�K�H���I�L�O�P�¶�V���H�O�H�F�W�U�R�Q�L�F���S�U�R�S�H�U�W�L�H�V���Z�D�V��

determined using OFETs with a bottom-gate bottom-contact (BG-BC) configuration. The 

architecture of the device is illustrated in cross-section in Figure 48. A control sample was 

�I�D�E�U�L�F�D�W�H�G���E�\���V�S�L�Q���F�D�V�W�L�Q�J���W�K�H���P�H�W�D�V�W�D�E�O�H���V�R�O�X�W�L�R�Q�����D�I�W�H�U���S�D�V�V�L�Q�J���W�K�H���V�R�O�X�W�L�R�Q���W�K�U�R�X�J�K���D��������������m 

Teflon syringe filter), which will be considered as 0 min crystallization. The measurements were 

carried out under ambient conditions.  

Transfer curves for the devices were obtained by sweeping the gate voltage (VG), while 

monitoring the drain current (IDS). Figure 57 depicts the transfer characteristic of devices 

measured at different crystallization times with their typical hole transport in p-channel 
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semiconductor under negative gate voltages. The hole mobilities were calculated using the slope 

�R�I���¥�,D versus VG line in the saturation regime�����U�H�V�X�O�W�L�Q�J���L�Q���D���P�D�[�L�P�X�P���P�R�E�L�O�L�W�\�����������R�E�W�D�L�Q�H�G���I�R�U��

�W�K�H���G�H�Y�L�F�H�V���Z�L�W�K���W�K�H���O�R�Q�J�H�V�W���F�U�\�V�W�D�O�O�L�]�D�W�L�R�Q���W�L�P�H���R�I������� ���������[������-3 cm2 V-1 s-1 with a threshold 

voltage (Vth) of 3 V and an on/off ratio of 105�����,�Q���F�R�Q�W�U�D�V�W�����W�K�H���F�R�Q�W�U�R�O���V�D�P�S�O�H���\�L�H�O�G�H�G���D���Y�D�O�X�H���R�I������

= 0.9 x 10-3 cm2 V-1 s-1, comparable to literature reports for devices prepared by spin coated P3HT 

������� �������[������-3 cm2 V-1 s-1) from dichlorobenzene.136 Remarkably, the mobility increases with 

crystallization time as summarized in Table 6. Guo and coworkers130 prepared devices by 

�D�G�V�R�U�E�L�Q�J���D���P�R�Q�R�O�D�\�H�U���R�I���S�U�H�I�R�U�P�H�G���1�)�V���L�Q���F�K�O�R�U�R�I�R�U�P��������� �����������[������-3 cm2 V-1 s-1). Although the 

preparation of the active layer for this former study is significantly shorter (1 min) than for our 

devices with similar mobilities (10 min), the formation of the NFs takes a week and does not 

provide selective patterning of the active layer. As seen from the optical microscopy and SEM 

images, increments in the crystallization time allows for a higher number of NFs connecting the 

electrodes, thus the mobility improves.  
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Figure 57: Transfer characteristics of OFET of P3HT spin casted (a), and crystallized for different 
crystallization periods: 5 min (b), 10 min (c), 15 min (d) on graphene electrodes. A VDS = -100 V 
was applied to all devices with a bottom-gate and bottom-contact geometry on a SiO2/Si wafer. 

Table 6. OFET properties as a function of crystallization time. The values represent an average of 
ten devices. 

Crystallization 
time (min) 

Mobility (× 10-3 
cm2 V-1 s-1) 

Threshold 
voltage 

(V) 

ON/OFF 
ratio 

0 (spin casted) 0.9 ± 0.1 5 ± 4 > 103 
5 9 ± 5 5 ± 7 > 105 
10 12 ± 4 0 ± 10 > 105 
15 20 ± 3 3 ± 4 > 105 

 
The output characteristics were obtained for gate voltages from 40 V to -100 V in 

increments of -10 V and a drain voltage from 0 to -100 V. Figure 57 shows the output 

characteristics corresponding to the increasing crystallization time. Despite the non-negligible 

hysteresis in the OFETs as shown in Figure 59, the trend of increasing mobility is evident. This 
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hysteresis can be mainly attributed to oxygen doping coming from air and traps in the P3HT 

films. The reduction in the hysteresis with crystallization time can be explained by a reduction in 

the active layer openings as the P3HT network fills the OFET channel.  

 
Figure 58: OFET output characteristics of P3HT spin casted (a) and crystallized for different 

times in a supersaturated solution for 5 min (b), 10 min (c) and 15 min (d) on graphene 
electrodes. The gate voltage was varied from 40 V to -100 V in 10 V steps. 
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Figure 59: Hysteresis behavior in the devices prepared from P3HT spin casted (a) and P3HT 
crystallized for different times in a supersaturated solution for 5 min (a), 10 min (b) and 15 min 
(c) on graphene electrodes. A VDS = -100 V was applied to all devices with a bottom-gate and 

bottom-contact geometry on a SiO2/Si wafer. 

4.3.2 Graphene as an electrode for photovoltaic cells 

Graphene can function in a solar cell as hole transport layer (HTL)121 or electron 

acceptor.84 However, the main limiting factor for employing graphene as a HTL is its low WF 

(4.5 eV). The maximum power conversion efficiency (PCE) obtained for P3HT-based devices 

employing pristine graphene as anode is 0.68%.137 Alternatively, Wang and coworkers138 argued 

that the conductivity of monolayer graphene is too low (�����N���), thus by incorporating a multiple 

layers of graphene the conductivity was increased to a value similar to ITO (10�±���������sq�í����). 

Unfortunately, the 4-layer-graphene film is hydrophobic, which causes the buffer film composed 

of PEDOT:PSS (poly(3,4-ethylenedioxythiophene):polystyrene sulfonate) to be non-uniform. 
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This results in low PCE of 0.12% and 0.35% for pristine graphene with and without PEDOT:PSS 

buffer films, respectively. Consistently, both studies agreed that the main limiting factor for 

increasing the PCE of these devices is the deep HOMO of P3HT ~5.0 eV, which does not match 

�J�U�D�S�K�H�Q�H�¶�V���:�)���� 

It has been demonstrated that the highest occupied molecular orbital (HOMO) of P3HT 

�F�K�D�Q�J�H�V���Z�L�W�K���F�U�\�V�W�D�O�O�L�]�D�W�L�R�Q�����V�L�Q�F�H���Œ���V�W�D�F�N�L�Q�J���D�O�O�R�Z�V���I�R�U���Hasier extraction of electrons compared 

to the amorphous counterpart.113 Crystalline P3HT has a higher HOMO of 4.6 eV compared to 

amorphous P3HT (HOMO = 4.9 eV). Our results demonstrate that the HOMO of P3HT films 

decreases from 5.1 to 4.8 within 72 h of crystallization, which yields a final film thickness of ~20 

nm. Therefore, it is hypothesized that thicker P3HT crystallized from graphene can better match 

�J�U�D�S�K�H�Q�H�¶�V���:�)������ 

To fabricate photovoltaic devices, indium tin oxide (ITO) substrates were cleaned in 

successive sonication steps in 20 % Mucasol® aqueous solution, distilled water, acetone and 

isopropanol for 5 min each. The substrates were dried by blowing nitrogen. Finally, the substrates 

were exposed to UV-ozone for 10 min. Graphene was transferred using conventional PMMA 

transfer as described in Section 4.3.4. A thin film ~10 nm thick of PEDOT:PSS (poly(3,4-

ethylenedioxythiophene):polystyrene sulfonate) was spin casted at 3,500 rpm for 90 s on the ITO 

substrates and baked at 150 °C for 30 min in air. Solar cells were finished in a glove-box under 

nitrogen atmosphere using an active layer of P3HT (Mn = 28 kg/mol as measured by GPC in 

polystyrene equivalent, Ð = 1.9) and methanofullerene phenyl-C61-butyric-acid-methyl-ester 

(PCBM), obtained from Sigma Aldrich. A 20 mg/mL solution of 1:1w/w PCBM:P3HT was 

prepared by heating the solid mixture in o-dichlorobenzene to 80 °C with gentle stirring. After 

cooling to room temperature, the solution was filtered through a �����������P���S�R�O�\���W�H�W�U�D�I�O�X�R�U�R�H�W�K�\�O�H�Q�H����

membrane syringe filter. The solution was spin casted at 1000 rpm. The devices were finalized 
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with the vacuum deposition of the cathode composed of Ca 15 min and 100 nm of Al as described 

in Figure 60. The samples were annealed at 110 °C for 10 min under N2 atmosphere. 

Current�±voltage (I�±V) characteristics were measured in a N2 atmosphere using a Keithley 

2400 source-meter under simulated AM1.5G irradiation using a 300 W Xe lamp solar simulator 

(Newport 91160). The illuminated area (0.06 cm2) was defined by the aperture from the metal 

photomask used in all reported PCE measurements. The parameters of 9 photovoltaic devices 

were averaged and tabulated in Table 7. Surprisingly, the power conversion efficiency is higher 

than was previously reported (0.68%).137 This can be attributed to PMMA residues that were not 

removed in previous studies. Here, an annealing step at 350 °C under hydrogen for 1 h was 

carried to remove any PMMA residues, according to Cho and coworkers.135 However, 

crystallizing P3HT for 2 h (~50 nm) into NFs directly from graphene resulted in short circuited 

devices as shown in Figure 61. It is possible that the graphene has holes on its surface, thus the 

high selectivity of P3HT to crystallize from graphene leaves openings for the anode to connect 

the cathode and short circuit the device. 
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Figure 60: Schematic illustrating a typical OPV cell using a graphene based anode with a 
P3HT:PCBM (1:1) mixture as active layer (a) with its respective I-V curve (b).Table 7: Averaged 

open circuit voltage (Voc), short circuit current (Isc), fill factor and power conversion efficiency 
(PCE) of 9 photovoltaic devices.  

Voc (mV) Isc (mA/cm2) Fill factor PCE (%) 

489 ± 7 10.8 ± 0.3 37 ± 2 1.9 ± 0.2 

 

 

Figure 61: Schematic illustrating the architecture of an OPV cell based on a bilayer active film 
that uses graphene as a hole extraction layer to template for P3HT NFs. 

4.4 Conclusions  

It was found that the fastest selective crystallization of NFs from graphene was achieved 

using P3HT of relatively high molecular weight (Mn = 22 kg/mol) and increasing the 
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crystallization point of the solution to be around room temperature at a concentration of 2 mg/mL. 

P3HT was crystallized into NFs from graphene-based electrodes in a similar way as from HOPG. 

It was found that P3HT NFs grow sufficiently long to connect adjacent graphene electrodes. The 

mobility of OFETs increases with crystallization time up to 2 orders of magnitude higher than 

spin casted P3HT. Moreover, OPV devices with an efficiency of 1.9% were fabricated using 

MLG graphene as buffer layer in the anode. The increment in PCE can be possibly explained by 

the removal of PMMA residues on graphene with annealing.  
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SUMMARY AND OUTLOOK  

5.1 Crystallization of P3HT nanofibers from graphene surfaces 

A method for selective crystallization of P3HT NFs from graphene surfaces in solution 

was demonstrated. The rate of crystal nucleation is found to be highly dependent on the 

underlying substrate. Microscopy measurements confirmed that the NFs grow out-of-plane in 

solution growth but collapse into an in-plane orientation upon solvent removal, due presumably to 

capillary forces. Moreover, through seeded crystallization of P3HT short NFs can be extended. 

However, but this process is hindered by aggreg�D�W�L�R�Q���D�Q�G���D�G�V�R�U�S�W�L�R�Q���R�Q�W�R���W�K�H���F�R�Q�W�D�L�Q�H�U�¶�V���Z�D�O�O��

during crystallization. P3HT-P3TEGT was shown to produce more uniform seeds and promises 

to mitigate the mentioned issues with pristine P3HT. 

Motivated by a previous study that observed the influence of polarizability on the 

adsorption of small molecules onto graphene surfaces,68 it will be interesting to modify the 

polarizability of the graphene coated substrates using self-assembled monolayers (SAMs). Since 

�Œ-�Œ���D�Q�G���Y�D�Q���G�H�U���:�D�D�O�V���L�Q�W�H�U�D�F�W�L�R�Q�V���E�H�W�Z�H�H�Q���3���+�7���D�Q�G���J�U�D�S�K�H�Q�H���K�D�Y�H���E�H�H�Q���V�H�H�Q���W�R���S�O�D�\���D�Q��

important role in the P3HT configuration,56 a systematic study with a variety of SAMs is 

proposed to determine the importance of the van der Waals interactions. Using selective 

crystallization of P3HT on graphene substrates modified with SAMs will provide guidance on 

what are the most important intermolecular interactions to obtain fast crystallization with the 

precise orientation, without interference of preformed structures adsorbing in solution. We 

hypothesize that the stronger van der Waals interactions, due to the higher polarizability of the 

substrate, will yield a faster crystallization of P3HT on graphene. The length of the SAM will 

increase the polarizability of the surface. Therefore, going from silanized surface with hexyl to a 

tetradecyl chains will promote nucleation as the length of the alkyl chain increases. Similarly, 
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fluorinated chains with the same length will yield an increment in the nucleation kinetics. In a 

recent study the work function of gold (111) was demonstrated to not change significantly when 

increasing the chain length of hydrogenated aliphatic SAMs.139 The same conclusion is valid for 

fluorinated aliphatic SAMs with an even number of fluorinated carbons. Therefore, it will be 

possible to decouple the effects of van der Waals interactions from changes in charge transfer due 

to modifications from different work functions of graphene, since accordingly to a previous 

study140 the work function of the substrate increases with the addition of a perfluoroalkyl SAM. 

Results suggest that the crystallization and orientation effects of graphene on P3HT is 

�G�X�H���W�R���W�K�H���V�W�U�R�Q�J���Œ-�Œ���L�Q�W�H�U�D�F�W�L�R�Q�V�����W�K�X�V���W�K�L�V���P�Hthod should be reproducible to others conjugated 

polymers. Using P3HT as a proof of concept, it will be exciting to extend this investigation to the 

following higher performance materials, commercially available and crystalline: poly[2,5-bis(3-

tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) and poly[(5,6-difluoro-2,1,3-

benzothiadiazol-4,7-diyl)-alt-���������¶�¶�¶-di(2-octyldodecyl)-�������¶�����¶�����¶�¶�����¶�¶�����¶�¶�¶-quaterthiophen-�������¶�¶�¶-

diyl)] (PffBT4T-2OD).  

It is also important to show that conjugated polymers can be processed in aqueous 

solutions or greener solvents.141 Therefore, to provide crystallization conditions with more polar 

solvents than m-xylene, metastable solutions of P3HT-P3TEGT can be generated in a mixture of 

chlorobenzene and methanol. These metastable solutions will be employed to extend pre-formed 

seed and crystallize NFs on graphene. Finally, high resolution imaging of the P3TEGT-P3HT 

chains crystallizing on HOPG can elucidate the chain conformation on the crystals, through a 

systematic study of the ratio of the P3HT-P3TEGT blocks. 

5.2 Formation mechanism of P3HT nanofibers crystallized from graphene 

The hysteresis in the crystallization of P3HT increases with molecular weight and 

plateaus possibly due to the larger interfacial energy required to generate bigger nuclei. With the 
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increment in the amount crystalline P3HT, the reduction in the Avrami exponent and the faster 

crystallization kinetics upon addition of graphene it was demonstrated that graphene serves as a 

good nucleating agent for one-dimensional crystallization of P3HT. In situ AFM results point to a 

formation of Form I P3HT crystals on HOPG. The NFs crystallize from a wetting layer capable 

of reorganizing into crystals with a face-on orientation. P3HT films crystallized from graphene 

MoO3 are initially composed of face-on oriented structures but transition into edge-on as the film 

grows thicker. It was shown that the face-on conformation is partially preserved by embedding 

the P3HT structures in an ICBA matrix. Moreover, PBTTT was shown to selectively crystallized 

on graphene. And AFM suggests that PBTTT is less interdigitated (26.4 ± 0.3 Å) in the domains 

organized on HOPG than when crystallized in the bulk (21.5 Å), which can be attributed to a 

metastable phase.  

Despite that it is evident that the P3HT crystals are Form I, it will be of great addition to 

perform coarse grain simulations on this system. Through calculations of the lowest energy 

configuration of P3HT with respect of the crystallographic axes of HOPG, the epitaxial 

crystallization could be confirmed. Moreover, a systematic study of electron diffraction on the 

(100) reflection of P3HT crystallized from graphene flakes at different incident angles can 

provide further confirmation of epitaxial relation between the two materials. To illustrate the 

generalizability of this crystallization, this study could be repeated for highly crystalline polymers 

such PBTTT and poly[(5,6-difluoro- 2,1,3-benzothiadiazol-4,7-diyl)-alt-���������¶�¶�¶-di(2-

octyldodecyl)-�������¶�����¶�����¶�¶�����¶�¶�����¶�¶�¶-quaterthiophen- �������¶�¶�¶-diyl)] (PffBT4T-2OD). 

5.3 Selective crystallization of P3HT nanofibers for graphene-based electronics 

It was found that P3HT crystallizes into NFs from graphene-based electrodes in a similar 

way as from HOPG. P3HT NFs grow sufficiently long (~1 µm) to connect adjacent graphene 

electrodes. The mobility of OFETs increases with crystallization time up to 2 orders of magnitude 
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higher than spin casted P3HT. Moreover, MLG graphene was integrated in the anode of OPV cell 

yielding a PCE = 1.9%. 

To demonstrates the advantages of selective crystallization of NFs from graphene, future 

work can focus on fabricating flexible and transparent electronic devices. Given the mechanical 

strength of graphene-based electrodes, flexible transistors can be fabricated through selective 

crystallization of P3HT. Using an azide containing P3HT, it will be possible to generate 

mechanical and chemical resistant flexible platform for building complex circuits and/or sensors. 

Moreover, as shown previously other polymers such as PBTTT are suitable for selective 

crystallization of NFs on graphene electrodes, suggesting the generality of the method and route 

to delivered more efficient OFETs. The 10 nm spin casted graphene films have transmittance of 

69% at 550 nm, thus it is possible to generate highly transparent electrodes by minimizing the 

thickness of graphene electrodes while maintaining film homogeneity.  

The influence of the underlying substrate on the P3HT crystallization from graphene is of 

great interest as it can impact the performance of organic electronics. More specifically, the work 

function of the substrate can be optimized as an anode for OPV cells. Typically, developments in 

OPV devices choose substrates only for their ease of processing and work function (WF). 

Graphene can function in a OPV cell as hole transport layer (HTL)121 or active material.84 

Therefore, increasing the �D�P�R�X�Q�W���R�I���R�[�\�J�H�Q���P�R�L�H�W�L�H�V�����³�R�[�L�G�D�W�L�R�Q���O�H�Y�H�O�´�����L�Q���J�U�D�S�K�H�Q�H���Z�L�O�O���O�R�Z�H�U��

the injection barrier of holes from the polymer to the anode, due to the higher WF of graphene 

oxide142. Lock and coworkers143 have shown the ability of NEXAFS to detect the bonding types 

and functionality occurring on low Z-elements, thus it is possible to determine the oxidation level 

in graphene. 

From a previous study,112 �L�W���L�V���H�[�S�H�F�W�H�G���W�K�D�W���K�D�Y�L�Q�J���W�K�H���Œ���H�O�H�F�W�U�R�Q�V���H�[�S�R�V�H�G���W�R���W�K�H���V�X�U�I�D�F�H��

creates a higher electrostatic potential in a face-on orientation compared to the edge-on 

orientation. Consequently, a face-on orientation will yield a higher HOMO (increasing ionization 
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potential) than an edge-on orientation. The main limiting factor for employing graphene as a HEL 

is its low work function (4.5 eV). Therefore, the oxidation level of graphene will lower the 

injection barrier of holes from the polymer to the anode, due to the higher work function of 

reduced graphene oxide. Although UV-ozone will generate defects (e.g., vacancies, cracks and 

oxidized groups) on graphene and reduce polymer face-on orientation and crystallinity, we 

hypothesize that the impact will be dominated by an increment in hole transport due to the low 

barrier energy between graphene and the polymer. This work will permit polymer-based active 

layers to be deposited with morphological control, impacting the design rules for organic 

electronic devices. 
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