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We explore a prototypical two-dimensional model of the nonlinear Dirac type and examine its solitary wave
and vortex solutions. In addition to identifying the stationary states, we provide a systematic spectral stability
analysis, illustrating the potential of spinor solutions consisting of a soliton in one component and a vortex in
the other to be neutrally stable in a wide parametric interval of frequencies. Solutions of higher vorticity are
generically unstable and split into lower charge vortices in a way that preserves the total vorticity. These results
pave the way for a systematic stability and dynamics analysis of higher dimensional waveforms in a broad
class of nonlinear Dirac models and a comparison revealing nontrivial differences with respect to their better
understood non-relativistic analogue, the nonlinear Schrödinger equation.

Introduction. In the context of dispersive nonlinear wave
equations, admittedly the prototypical model that has attracted
a wide range of attention in optics, atomic physics, fluid me-
chanics, condensed matter and mathematical physics is the
nonlinear Schrödinger equation (NLS) [1–7]. By compari-
son, far less attention has been paid to its relativistic ana-
logue, the nonlinear Dirac equation (NLD) [8], despite its
presence for almost 80 years in the context of high-energy
physics [9–13]. This trend is slowly starting to change, ar-
guably, for three principal reasons. Firstly, significant steps
have been taken in the nonlinear analysis of stability of such
models [14–19], especially in the one-dimensional (1d) set-
ting. Secondly, computational advances have enabled a better
understanding of the associated solutions and their dynam-
ics [20–24]. Thirdly, and perhaps most importantly, NLD
starts emerging in physical systems which arise in a diverse set
of contexts of considerable interest. These contexts include,
in particular, bosonic evolution in honeycomb lattices [25, 26]
and a growing class of atomically thin 2d Dirac materials [27]
such as graphene, silicene, germanene and transition metal
dichalcogenides [28]. Recently, the physical aspects of non-
linear optics, such as the light propagation in honeycomb pho-
torefractive lattices (the so-called photonic graphene) [29, 30]
have prompted the consideration of intriguing dynamical fea-
tures such as conical diffraction in 2d honeycomb lattices [31].

These physical aspects have also led to a discussion of po-
tential 2d solutions of NLD in [25, 26]. However, a system-
atic and definitive characterization of the spectral stability and
nonlinear dynamical evolution of the prototypical coherent
structures in NLD models is still lacking, to the best of our
knowledge. Hence, the present work is dedicated to offering
analytical and numerical insights into these crucial physical
aspects of higher-dimensional nonlinear Dirac equations with
regard to the physical relevance and potential observability of
such waveforms. As our model of choice, in order to also
compare and contrast with the multitude of existing 1d results,
we will select the well-established Soler model [32] (known in
1d as the Gross–Neveu model [33]), which is a Dirac equation
with scalar self-interaction. Such self-interaction is based on
including into the Lagrangian density the power of the quan-
tity ψ̄ψ (which transforms as a scalar under the Lorentz trans-
formations):

LSoler = ψ̄ (iγµ∂µ −m)ψ +
g

2

(
ψ̄ψ

)2
, (1)

where m > 0, g ∈ R, ψ(x, t) ∈ CN , x ∈ Rn, and γµ,
0 ≤ µ ≤ n are Dirac γ-matrices. Above, we use the standard
notation ψ̄ = ψ∗γ0. The model is generalized in the spirit
of [22], by using (ψ̄ψ)k+1 with k ∈ N or even k > 0; we
only consider the standard cubic case k = 1 and the focusing
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nonlinearity g > 0; without loss of generality, it is enough to
consider g = 1. An alternative model is the massive Thirring
model with vector self-interaction [12], where the nonlinear
term in the Lagrangian is based on the scalar quantity JµJµ

built from the Lorentz vector Jµ = ψ̄γµψ which represents
the charge-current density. It is important to point out here
that in two spatial dimensions these two models coincide. In-
deed, using the Dirac matrices γ0 = σ3, γj = σ3σj , j = 1, 2,
and using the identity

(ψ∗ψ)2 = (ψ∗σ1ψ)2 + (ψ∗σ2ψ)2 + (ψ∗σ3ψ)2, ψ ∈ C2,

we compute that in 2d these two scalar quantities coincide:

JµJ
µ = (ψ∗ψ)2 − (ψ∗σ1ψ)2 − (ψ∗σ2ψ)2 = (ψ̄ψ)2.

Our results show that the NLD in 2d admits different solu-
tions involving a structure of vorticity S ∈ Z in the first spinor
component, with the other spinor component bearing a vortic-
ity S + 1. We identify such solutions for S = 0, 1, . . . . Our
numerical computation of the spectrum of the corresponding
linearization operator reveals that only the S = 0 solutions
can be spectrally stable, and that this stability takes place in
a rather wide interval of the frequency of the solitary waves.
On the contrary, we find that the states of higher vorticity are
generically unstable. Complementing the stability analysis re-
sults, our direct dynamical evolution studies show that the un-
stable higher vorticity solutions break up into lower vorticity
waveforms, yet conserving the total vorticity.

Theoretical Setup. We start from the prototypical 2d nonlin-
ear Dirac equation system in rectangular coordinates, derived
from the Lagrangian density (1) with k = 1 and m = g = 1:

i∂tψ1 = −(i∂x + ∂y)ψ2 + f(ψ1, ψ2)ψ1,

i∂tψ2 = −(i∂x − ∂y)ψ1 − f(ψ1, ψ2)ψ2, (2)

where ψ1, ψ2 are the components of the spinor ψ ∈ C2 and
the nonlinearity is given by f(ψ1, ψ2) = 1− (|ψ1|2 − |ψ2|2).
We simplify our analysis by seeking solutions in the setting of
polar coordinates, where Eq. (2) takes the form

i∂tψ1 = −e−iθ
(
i∂r +

∂θ
r

)
ψ2 + f(ψ1, ψ2)ψ1,

i∂tψ2 = −eiθ
(
i∂r −

∂θ
r

)
ψ1 − f(ψ1, ψ2)ψ2. (3)

We are interested in stationary solutions of the form ψ(~r, t) =
exp(−iΛt)φ(~r) with

φ(~r) =

(
v(r)eiSθ

i u(r)ei(S+1)θ

)
, (4)

where S ∈ Z can be cast as the vorticity of the first spinor
component, while the vorticity associated with the second
spinor component is S + 1. Once stationary solutions have
been identified, to explore the stability of such solutions, we
introduce a perturbation in a fashion similar to [34]:

ψ(~r, t) = e−iΛt [φ(~r) + δξ(~r, t)] , (5)

FIG. 1: Radial profiles of the spinor components for (left) S = 0
solitons and (right) S = 1 vortices for different values of Λ.

with ξ(~r, t) being

ξ(~r, t) =

( [
a1(r)eiqθeiωt + b1(r)e−iqθe−iω

∗t
]

eiSθ

i
[
a2(r)eiqθeiωt + b2(r)e−iqθe−iω

∗t
]

ei(S+1)θ

)
and q ∈ Z. Thus, stability can be determined by
solving to O(δ) the eigenvalue problem of the form
ωq(a1, a2, b

∗
1, b

∗
2)T = Lq(a1, a2, b

∗
1, b

∗
2)T ; further details of

the stationary equations and the full form of the stability prob-
lem are presented in [35]. Notice that the angular decompo-
sition of the spectrum necessitates the solution of the relevant
spectral problem for each q and then the superposition of these
partial spectra to construct the full spectrum. Lastly, when the
solutions are found to be spectrally unstable, we resort to dy-
namical simulations of Eqs. (2) in order to explore the out-
come of the unstable evolution.

Numerical results. We have analyzed the existence and sta-
bility of solitary waves (S = 0, with its first component radi-
ally symmetric and the second component having vorticity 1)
and vortex solutions (S = 1, with its components having vor-
tices of order one and two, respectively). Both solitary waves
and vortex solutions exist in the frequency interval Λ ∈ (0, 1);
we recall that without loss of generality we fixed m = 1.
An intriguing feature of the relevant waveforms is that both
the radial profile of the solitary waves and that of the vortices
possess a maximum that shifts from r = 0 to a larger r when
Λ approaches zero (see Fig. 1), in a way reminiscent of the
corresponding 1d solitary wave structures [22]. Here the rel-
evant state will feature a stationary bright intensity ring. In
order to obtain such coherent structures, we have made use of
fixed point algorithms for solving Eq. (3) as discussed also in
the Supplementary Material, implementing a Chebyshev col-
location method for the partial derivatives. We have modified
the method proposed in [36] to take into account the angular
structure of the spinor components.

The most interesting results concern the stability of soli-
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tons and vortices. Figure 2 shows the dependence of the real
and imaginary parts of the eigenfrequencies with respect to
the stationary solution frequency Λ. The bottom panels of the
figure show examples of the spectral plane of unstable solu-
tions. From the spectral dependencies we can deduce several
features of the 2d NLD equation: (1) The 2d NLS equation is
charge-critical, and the zero eigenfrequency is degenerate: it
has higher algebraic multiplicity. In the NLD case, however,
this degeneracy is resolved: in the S = 0 case, two eigen-
frequencies with q = 0 start at the origin when Λ = 1 and
move out of the origin for Λ . 1. (2) The U(1) symme-
try and the translation symmetry of the model result in zero
eigenfrequencies with q = 0 and |q| = 1, respectively (in
both S = 0 and S = 1 cases). (3) as in the 1d NLD equation,
there is also the eigenfrequency ω = 2Λ which is associated
with the SU(1, 1) symmetry of the model [37]. This eigen-
frequency corresponds to q = −(2S + 1), i.e., to a highly
excited linearization eigenstate. (4) Contrary to the 1d case,
where the solitary waves corresponding to any Λ < 1 are sta-
ble, the S = 0 soliton is unstable for Λ < 0.121 because
of the emergence of nonzero imaginary part eigenfrequencies
via a Hamiltonian Hopf bifurcation in the |q| = 2 spectrum at
Λ = 0.121. Another Hopf bifurcation occurs corresponding
to |q| = 3 (at Λ = 0.0885), then yet another one correspond-
ing to |q| = 4. For the sake of clarity, we only plot the real part
of the spectra for |q| ≤ 2 and their imaginary part for |q| ≤ 4.
Another relevant observation concerns the fact that the S = 0
solution is unstable only for sufficiently low Λ in NLD, while
it does not share the instability of solitary waves in its (mass
critical) NLS limit as Λ → 1. This is presumably related to
the lifting of the corresponding degeneracy, although this is a
feature worthy of further investigation. (5) S = 1 vortices are
unstable for every Λ, because of the presence in the spectrum
of quadruplets of complex eigenfrequencies. These quadru-
plets appear and disappear for all values of q, via direct and
inverse Hopf bifurcations. (6) The spectrum for S = 2 vortex
is quite similar to that of S = 1; for this reason, we do not
analyze it further.

In order to analyze the result of instabilities (for Λ ≤ 0.121
in the case of S = 0 and for different Λ’s for S = 1), we
have probed the dynamics of unstable solutions directly. To
this effect, we have used a Fourier collocation scheme, in or-
der to perform the relevant computations efficiently. This, in
turn, involves a conversion of the solution to rectangular coor-
dinates. Prototypical examples of unstable S = 0 solitons and
S = 1 vortices are shown in Figs. 3 and 4. As it can be ob-
served, the S = 0 solitary waves spontaneously amplify per-
turbations breaking the radial symmetry in their density and,
as a result, become elliptical and rotate around the center of
the circular density of the original soliton in line with the ex-
pected amplification of the q = 2 unstable eigenmode. On the
other hand, the S = 1 vortices split into three smaller ones.
Let us mention that in the latter case, the first spinor compo-
nent splits into solitons without vorticity whereas the second
component splits into three solitary waves. This preserves the
total vorticity across the two components, as is also shown in

FIG. 2: Dependence of the (left) real and (right) imaginary part of
the eigenfrequencies with respect to Λ. Top (respectively, middle)
panels correspond to S = 0 solitons (S = 1 vortices). For the sake
of clarity, we only included the values |q| ≤ 2 for the real part and
|q| ≤ 4 for the imaginary part. In the former case, the real part of
the eigenfrequencies for q = 0, q = ±1 and q = ±2 are represented
by, respectively, blue, red and black lines. The bottom panels show
the spectral planes of the S = 0 soliton with Λ = 0.12 (left) and the
S = 1 vortex with Λ = 0.60 (right).

the top panel of Fig. 4. Along a similar vein, the instability of
an S = 2 state in the first component (coupled with S+1 = 3
in the second one) eventually leads to the emergence of five
(0, 1) pairs, again preserving the total vorticity.

Conclusions and Future Challenges. In this work, we
have provided a unique glimpse into the potential of nonlin-
ear Dirac equations to support solitary waves and vortices in
higher dimensional settings. We have illustrated that proto-
typical solitary waves of vorticity S = 0 in one spinor com-
ponent and S = 1 in the other are, in fact, spectrally stable
within a large parametric interval, suggesting their experi-
mental plausibility for observation in physical settings emerg-
ing in atomic [25, 26] and optical physics [29, 30] as well
as in condensed matter physics, e.g. in Dirac materials [27].
We also highlighted the significant difference thereof from
the non-relativistic limit of the focusing NLS equation, where
such solutions are generically unstable. When the relevant
solutions were found to be unstable, their detailed dynamical
evolution suggested their breathing (quasi-periodic) oscilla-
tion for the S = 0 case, and their splitting into lower charge
configurations for the case of S = 1 and S = 2.

It is both of interest and relevance to extend the present con-
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FIG. 3: Snapshots showing the evolution of the density of an unstable
S = 0 soliton with Λ = 0.12. In order to accelerate the simulation,
a perturbation in the direction of the unstable eigenmode with q = 2
has been added to the stationary soliton as initial condition. The
soliton which initially had a circular shape becomes elliptical and
rotates around the center of the original soliton.

FIG. 4: Isosurfaces for the density of an S = 1 (top) and S = 2
(bottom) vortex with Λ = 0.6. In order to accelerate the simulation,
a random perturbation has been added. The initial vortex splits into
2S + 1 splinters which move in different directions.

siderations to a wide range of additional physically relevant
settings. From a mathematical physics perspective, it will be
of interest to examine whether spectral properties of such so-
lutions can be captured analytically and their potentially un-
stable eigendirections identified. It would also be useful to
extend present considerations to the 3d setting and examine
whether at least solitary wave structures of S = 0 can be sta-
ble there. This is especially timely given that the 3d analogue
of photonic graphene has been experimentally realized very

recently [38]. The wide parametric stability interval of the
2d NLD solitary wave solutions renders the latter model far
more promising, in that regard, in comparison to the corre-
sponding NLS case. On the other hand, it would also be of
interest to explore models associated with different nonlinear-
ities, including the case of honeycomb lattices in atomic and
optical media discussed previously, or, e.g., those stemming
from wave resonances in low-contrast photonic crystals [39].
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