
�����������������������	�
���������
���������������
������������ ���� ���	�
�������� ��������������������������

�������� �������	�� �
���������
������������

�� ���������
�� ���������
�����������������������
��

������ ��������� ���!�"���!� �#�#���$��

�� ���%���&�����
���
������ � ��� �!��������� � �������'��� �'����

������������������������ �������	���'�"�"���
�&���������
�&�����������"� �����!���������(�#�$�(�"���)���!�(

http://dx.doi.org/10.7275/15233091
https://hdl.handle.net/20.500.14394/18054

TOOLS FOR TUTORING THEORETICAL COMPUTER
SCIENCE TOPICS

A Dissertation Presented

by

MARK MCCARTIN-LIM

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial ful�llment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2019

College of Information and Computer Sciences

c
 Copyright by Mark McCartin-Lim 2019

All Rights Reserved

TOOLS FOR TUTORING THEORETICAL COMPUTER
SCIENCE TOPICS

A Dissertation Presented

by

MARK MCCARTIN-LIM

Approved as to style and content by:

Andrew McGregor, Co-chair

Beverly Woolf, Co-chair

David Mix Barrington, Member

Siman Wong, Member

James Allan, Department Chair
College of Information and Computer Sciences

DEDICATION

To the students who faithfully came to my o�ce hours, whose struggles and

perseverance inspired this dissertation.

To my good friend Lucas, who provided much needed moral support during the

hardest times, and who gave me the courage to choose this dissertation topic.

To my parents, who patiently waited for me to �nish my Ph.D., and supported

me, often �nancially, during that time.

To Marina, who convinced me to keep going when I was almost about to quit.

ACKNOWLEDGMENTS

I acknowledge my long and challenging journey to produce this dissertation re-

quired assistance and encouragement from many people. I want to thank them.

My sincere thanks goes to my co-advisors Beverly Woolf and Andrew McGregor

for their guidance, help, and forbearance with my journey. Professor McGregor was

my advisor when I started my Ph.D. program in 2009 working on research projects

under his supervision. When I decided to do my own research on intelligent tutoring

systems in 2012, Professor McGregor was willing to remain a co-advisor to me even

though his experience with intelligent tutoring systems was limited. He always found

time from his busy schedule, even during his sabbatical leave, to help me when I

needed it. He generously gave his vast knowledge, wisdom, and guidance to enable

me to complete my journey. My interest in intelligent tutoring systems developed

with my attendance of Professor Woolf's course on the subject. Her course inspired

me to create the computerized tutoring system that is in my dissertation. Professor

Woolf became my co-advisor in 2012. She used her expertise to help me develop

the cumbersome protocol required by the IRB (Institutional Review Board) for the

experimental testing of my tutoring system. Professor Woolf also advised me how to

deal with the many time consuming issues imposed by the IRB. My journey could

not be completed without her help and guidance.

I greatly appreciate the participation of Professors David Barrington, Robert Moll,

and Simon Wong, in addition to Andrew McGregor and Beverly Woolf, as members

of my review committee. Professor Barrington pointed me to the work of Gries and

Schneider which I referenced in my dissertation. Professor Moll loaned me a book

he co-authored which I cited in my dissertation. Professor Moll is no longer on the

v

committee because he has retired. The guidance provided by the committee has

facilitated my journey.

I thank Professors Barrington, McGregor, and Krishnamurthy for providing the

opportunities and assistance for me to conduct my experimental testing in conjunction

with portions of the courses they taught. The experimental testing is a critical element

of my dissertation.

I am grateful to Alistair Sinclair for motivating me to start my journey. Professor

Sinclair took me under his wing when I was a visiting undergraduate student at the

University of California, Berkeley in 2005. Professor Sinclair gave me one on one

mentoring sessions every week for more than a year. He exposed me to the joys of

making discoveries through research, and convinced me to pursue a Ph.D. degree in

computer science.

I am also grateful to many colleagues, friends, family members, and my parents for

their advice and encouraging messages. They gave me the morale boosting sustenance

I needed to complete my long and challenging journey.

vi

ABSTRACT

TOOLS FOR TUTORING THEORETICAL COMPUTER
SCIENCE TOPICS

SEPTEMBER 2019

MARK MCCARTIN-LIM

B.S., UNIVERSITY OF CALIFORNIA, SANTA BARBARA

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McGregor and Professor Beverly Woolf

This thesis introducesComplexity Tutor , a tutoring system to assist in learn-

ing abstract proof-based topics, which has been speci�cally targeted towards the pop-

ulation of computer science students studying theoretical computer science. Existing

literature has shown tremendous educational bene�ts produced by active learning

techniques, student-centered pedagogy, gami�cation and intelligent tutoring systems.

However, previously, there had been almost no research on adapting these ideas to the

domain of theoretical computer science. As a population, computer science students

receive immediate feedback from compilers and debuggers, but receive no similar level

of guidance for theoretical coursework. One hypothesis of this thesis is that immediate

feedback while working on theoretical problems would be particularly well-received

by students, and this hypothesis has been supported by the feedback of students who

used the system.

vii

This thesis makes several contributions to the �eld. It provides assistance for

teaching proof construction in theoretical computer science. A second contribution is

a framework that can be readily adapted to many other domains with abstract math-

ematical content. Exercises can be constructed in natural language and instructors

with limited programming knowledge can quickly develop new subject material for

Complexity Tutor . A third contribution is a platform for writing algorithms in

Python code that has been integrated into this framework, for constructive proofs in

computer science. A fourth contribution is development of an interactive environment

that uses a novel graphical puzzle-like platform and gami�cation ideas to teach proof

concepts. The learning curve for students is reduced, in comparison to other systems

that use a formal language or complex interface.

A multi-semester evaluation of 101 computer science students usingComplexity

Tutor was conducted. An additional 98 students participated in the study as part

of control groups.Complexity Tutor was used to help students learn the topics of

NP-completeness in algorithms classes and prepositional logic proofs in discrete math

classes. Since this is the �rst signi�cant study of using a computerized tutoring system

in theoretical computer science, results from the study not only provide evidence to

support the suitability of using tutoring systems in theoretical computer science, but

also provide insights for future research directions.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT .vii

LIST OF TABLES . xv

LIST OF FIGURES .xvi

CHAPTER

1. INTRODUCTION . 1

1.1 Challenges in teaching theoretical topics . 3

1.1.1 Student-centered pedagogy versus traditional lecture
formats . 3

1.1.2 Abstract concepts disconnected from other computer science
courses . 6

1.2 Insights on meta-skills of students who successfully learn theoretical
computer science concepts . 7

1.2.1 Acquiring and applying factual knowledge . 7
1.2.2 Translating informal intuition into formal reasoning 8
1.2.3 Understanding notation and semantics . 9
1.2.4 Applying analogy / proof schema . 11
1.2.5 Generating examples / inductive reasoning 11

1.3 Components ofComplexity Tutor . 14
1.4 Potential advantages ofComplexity Tutor . 15

2. RELATED WORK USING COMPUTERS TO AID IN
TEACHING THEOREM PROVING . 17

2.1 Pedagogical issues with automated proof veri�ers . 17

ix

2.1.1 Formal logical systems . 18
2.1.2 Di�erences between proofs constructed from formal logical

systems and informal narrative proofs . 20
2.1.3 Can informal narrative proofs be substituted by those

constructed from a formal logical system? 21

2.1.3.1 Assertion level reasoning . 23

2.1.4 Consideration of proof granularity . 25

2.2 A brief introduction to automated theorem proving 27

2.2.1 Resolution-based theorem provers . 29
2.2.2 Peter B. Andrews' theory of matings . 32
2.2.3 More references on automated theorem proving 34

2.3 Theories of how humans naturally reason . 34
2.4 Survey of systems and guiding principles . 37

2.4.1 EXCHECK and early work from Patrick Suppes' group 38
2.4.2 The EPGY Theorem Proving Environment 40
2.4.3 Cognitive tutors for geometry theorem proving 42

2.4.3.1 ACT theories of cognition . 43
2.4.3.2 Anderson's �rst tutor for geometry theorem

proving . 45
2.4.3.3 A New Geometry Learning Enviornment

(ANGLE) . 47

2.4.4 Automated Proof Search (AProS) . 49
2.4.5 TheDialog project and
 mega-Tutor . 51
2.4.6 Deep Thought . 55
2.4.7 Gries and Schneider's formal logical system for computer

science . 57

3. ARCHITECTURE AND SYSTEM DESIGN CHOICES 60

3.1 Theorem Proving Environment . 60

3.1.1 Proof Space . 60
3.1.2 Assumptions Box . 62
3.1.3 Assertions Box . 62
3.1.4 Demonstration of solving a simple proof problem 63

3.1.4.1 Choosing assumptions and assertions 64
3.1.4.2 Justifying assertions . 64

x

3.1.4.3 Completing the proof . 66

3.1.5 Comparison to standard proof writing exercises 67

3.1.5.1 Proofs as graphs . 68

3.1.6 Requirements for domain knowledge representation 72
3.1.7 New features added to the Theorem Proving Environment

after preliminary experimental testing . 73

3.1.7.1 Visual hint mechanism for coarse-grained
inferences . 73

3.1.7.2 Search Box for �nding assertions . 78

3.2 Algorithm Environment . 82

3.2.1 Using the Algorithm Environment to tutor NP-completeness
reductions . 83

3.2.2 Using Levin reductions rather than Karp or Cook
reductions . 88

3.2.2.1 Technical motivation for using Levin reductions 92

3.2.3 How the Algorithm Environment works under the hood 94

3.2.3.1 Limitations of the black-box testing framework and
alternatives . 97

3.3 Authoring new problems . 98
3.4 Developing a complete intelligent tutoring system 101

4. DESIGN OF EXPERIMENTS . 104

4.1 General study procedures . 104

4.1.1 Soliciting volunteers . 104
4.1.2 Logistics of the experiments . 107
4.1.3 Procedures for the experimental group . 109
4.1.4 Procedures for the control group . 111
4.1.5 Evaluation of submissions and follow-up . 112

4.2 NP-completeness tutoring experiments . 113

4.2.1 Fall 2016 . 115
4.2.2 Spring 2018 . 117

4.3 Prepositional logic proof tutoring experiments . 121

xi

4.3.1 Spring 2017 . 123
4.3.2 Fall 2017 . 125

4.4 Limitations of the study . 128

5. EXPERIMENTAL RESULTS AND ANALYSIS 131

5.1 Evaluation of the Theorem Proving Environment 131

5.1.1 Theories to explain di�erences between the results for the
logic and NP-completeness experiments 132

5.1.2 For the NP-completeness experiments, did the Theorem
Proving Environment correct students'
misconceptions? . 138

5.1.3 Analysis of the relationship between performance on the
practice problems and exam improvement in the logic
experiments . 146

5.1.3.1 Second analysis with Goodman and Kruskal's
 154
5.1.3.2 Analysis of Fall 2017 results . 155

5.2 Evaluation of the Algorithm Environment . 158

5.2.1 Evaluation of interactions with the Algorithm Environment in
the Fall 2016 experiment . 160

5.2.1.1 Did programming ability or prior familiarity with
Python a�ect the results? . 160

5.2.1.2 Were there any programming errors not identi�ed by
the Algorithm Environment? 165

5.2.1.3 Summary of �ndings about substituting Python
programming for writing pseudocode. 168

5.2.1.4 Why the Algorithm Environment did not help
students successfully produce NP-completeness
reductions in Fall 2016 . 168

5.2.2 Sca�olding of hints for the BIN-PACKING Reduction
Problem . 175

5.2.3 Improvement in Spring 2018 results . 178

5.3 Feedback aboutComplexity Tutor . 180

5.3.1 Would the questionnaire responses re
ect the sentiment of
students who did not participate in the study? 181

5.3.2 What students liked aboutComplexity Tutor 183
5.3.3 Constructive criticism from students . 185

xii

5.3.4 Was the hint-line feature bene�cial to students or not? 187

5.4 Conclusion of study results . 189

6. FUTURE WORK . 192

6.1 Correcting student misconceptions . 194

6.1.1 Delayed Feedback Mode . 194

6.1.1.1 Minimal Feedback . 195
6.1.1.2 Graphical Error Report . 196

6.1.2 Debug Mode . 197
6.1.3 Find-the-Bug Mode. 197
6.1.4 Freestyle Mode . 197

6.2 Developing a graphical interface that can represent a wide range of
proof strategies . 198

6.2.1 Interface challenges with using subproof boxes in the Proof
Space . 199

6.2.2 Alternative possible subproof representations 202

6.2.2.1 Labeling assertions to denote the subproof they
belong to . 202

6.2.2.2 Using a separate Proof Space for each subproof 202

6.2.3 How proof strategies would be applied in the Theorem
Proving Environment . 204

6.3 Other general interface issues. 205
6.4 Inductive Example Construction Aid . 206
6.5 Hypothesis about problem description types . 207
6.6 Using machine learning to develop a student model 209
6.7 Automation of problem generation . 212
6.8 Going beyond Levin reductions . 213

APPENDICES

A. MATERIALS USED TO PRESENT AND DIRECT
EMPIRICAL STUDY . 215

B. NP-COMPLETENESS PROBLEMS USED IN COMPLEXITY
TUTOR EXPERIMENTS . 240

xiii

C. LOGIC PROBLEMS USED IN COMPLEXITY TUTOR
EXPERIMENTS . 243

D. EXAMS QUESTIONS USED IN EMPIRICAL STUDY 246
E. POSTTEST QUIZZES . 253

BIBLIOGRAPHY . 258

xiv

LIST OF TABLES

Table Page

4.1 Participation in study. 105

5.1 Summary statistics for the prepositional logic problems 133

5.2 Summary statistics for the conceptual NP-completeness problems 134

5.3 Results of Spring 2018 posttest quiz, questions 1{4 139

5.4 Results of Spring 2018 posttest quiz, question 5 . 140

5.5 Pearson correlations between individual practice problems and exam
improvement in Spring 2017. 153

5.6 Summary statistics for the NP-completeness reduction problems 159

5.7 Did familiarity with Python a�ect a subject's willingness to attempt
using the Algorithm Environment? . 163

5.8 Did you �nd the Complexity Tutor tutoring system helpful in
your learning how to construct proofs? . 180

5.9 Do you think the Complexity Tutor tutoring system trains you to
be meticulous (careful about not skipping or overlooking obvious
or evident assertions) when you construct proofs? 181

5.10 Do you think theComplexity Tutor tutoring system helps you to
develop the skills needed to construct proofs when you use the
traditional pen and paper method for proof construction? 181

5.11 Do you want theComplexity Tutor tutoring system to be
available in other courses with proof construction? 182

5.12 Would you recommend theComplexity Tutor tutoring system to
others learning proof construction? . 182

xv

LIST OF FIGURES

Figure Page

1.1 Two
owcharts comparing how computer science students may learn
from their programming assignments and theory assignments. 5

1.2 An example NP-completeness problem, where students are asked to
reduce the language PARTITION to the language
KNAPSACK. 12

2.1 Wason selection task with abstract theme, from [45]. 35

2.2 Wason selection task with familiar social theme, from [45]. 36

2.3 Euclidean geometry proof in the EPGY Theorem Proving
Environment . 41

2.4 Screenshot of Anderson's �rst geometry tutor, from his book [9] 46

2.5 Screenshot of proof tutoring environment in ActiveMath, from
Marvin Schiller's Ph.D. thesis [136]. 55

2.6 Screenshot of Deep Thought, from the Game2Learn Lab
website [21]. 56

3.1 Screenshot of completed Pizza Proof Problem in the Theorem
Proving Environment. The Assumptions Box is on the top left,
the Assertions Box is on the bottom left, and the Proof Space is
on the right. 61

3.2 Status indicators used in the Theorem Proving Environment 62

3.3 Moving assumptions and assertions into the Proof Space,
assumptions are indicated by complete dots and assertions are
indicated by partial dots. 65

3.4 Connecting the dots, validated assertions become complete dots,
toggling text and relocating dots. 66

xvi

3.5 Screenshot of a student producing a low-grained proof sketch in the
Theorem Proving Environment, to show that 0/1-PROG is
NP-Hard. 74

3.6 Hint-lines help to re�ne a proof sketch into a �ner-grained proof. 75

(a) Initial proof sketch . 75

(b) First step of re�nement . 75

(c) Second step of re�nement . 75

(d) Third step of re�nement . 75

(e) Forth step of re�nement . 75

(f) Fifth step of re�nement . 75

3.7 Screenshot of a symbolic formula being entered in the Search Box.
Assertions in the Assertions Box are ordered by their relevance to
what has been typed. 79

3.8 Screenshot of partially completed NP-completeness proof in the
Theorem Proving Environment. The problem asks students to
prove that BIN-PACKING is NP-complete. Assertions \8" and
\9" remain unjusti�ed. 84

3.9 Screenshot of the Algorithms Environment. Students are to write
Python code forReduce Partition to BinPacking and
Cert Partition to BinPacking , to construct a reduction
from PARTITION to BIN-PACKING. 86

3.10 An incorrect reduction. The student is given feedback about
Reduce Partition to BinPacking producing incorrect
output. 87

3.11 A correct reduction from PARTITION to BIN-PACKING. 88

3.12 Screenshot of completed NP-completeness proof in the Theorem
Proving Environment. Assertions \8" and \9" are now
justi�ed. 89

4.1 Proof graph of Murder Mystery Problem inComplexity
Tutor . 122

xvii

5.1 Boxplot of exam improvement by group from Spring 2017. The
variance for the control group was 47.5 and the variance for the
experimental group was 34.4. 147

5.2 Normal Q-Q Plot of exam improvement scores from Spring 2017. 148

5.3 Normal Q-Q Plot of extra credit scores from Spring 2017. 149

5.4 Scatterplot of all subjects from Spring 2017. Overall, there was no
statistically signi�cant correlation between extra credit earned in
the study and exam improvement,r (66) = :07, p = :566. 150

5.5 Scatterplot of experimental subjects from Spring 2017. For the
experimental group, there was a mild positive correlation between
extra credit earned in the study and exam improvement,
r (30) = :28, p = :120. 151

5.6 Scatterplot of control subjects from Spring 2017. For the control
group, there was a very weak negative correlation between extra
credit earned in the study and exam improvement that is not
statistically signi�cant, r (34) = � :13, p = :440. 152

5.7 Scatterplot of control subjects from Fall 2017. For the control group,
there was a weak negative correlation between extra credit earned
in the study and exam improvement that is not statistically
signi�cant, r (20) = � :25, p = :266. 156

5.8 Scatterplot of experimental subjects from Fall 2017. For the
experimental group, there was no statistically signi�cant
correlation between extra credit earned in the study and exam
improvement, with the null hypothesis having a high probability
of being true, r (18) = :04, p = :880. 157

5.9 Survey results on familiarity with Python amongst Fall 2016 subjects
from the experimental group. 162

5.10 How long did it take for a programming error to be corrected once
identi�ed by the Algorithm Environment? . 166

5.11 Error message in the Algorithm Environment indicating that a
reduction for the BIN-PACKING Reduction Problem fails to pass
the test case[4,4] . 172

6.1 Fitch-style diagram. 199

xviii

6.2 Graphical version of a Fitch-style diagram. Boxes indicate subproofs
with their own scope. The dot with the disjunction symbol is used
to indicate a split between the casesx 2 B and x 2 C. 200

6.3 Alternative graphical representation of subproofs. The dots for each
proof statement are labeled according to the subproof they belong
to. In this example, there are three subproofs. Statements that
belong to the outer subproof get `A' labels. Statements that
belong to the two inner subproofs get `B' and `C' labels
respectively. The dot `10' is outside all the subproofs. 203

xix

CHAPTER 1

INTRODUCTION

Limited mathematical pro�ciency is a barrier for many computer science students

to learning core topics such as automata, algorithms, computability and computa-

tional complexity. These topics form the theoretical foundation of the �eld. Some

computer science educators worry that their curriculum has become \math phobic"

over time, removing much of the mathematical and theoretical content that students

struggle with instead of encouraging students to understand and appreciate the math-

ematical foundations of computer science [158]. This phenomenon may be particularly

pronounced in the United States|an international study of 500,000 software develop-

ers found that while American developers are stronger than their Chinese counterparts

in programming skills, they lag, comparatively, in general math skills [156].

However, it is noticed that computer science students elsewhere have di�culty

with theoretical concepts as well. In Finland, at the University of Joensuu, it was

reported that over the course of several years of teaching a theory of computation

course, only at most a third of the students who registered for the course ever passed

it, and many had to repeat the course several times before they could pass it [70].

This dissertation focuses on addressing a particular Achilles' heel hindering learn-

ing outcomes in theoretical computer science courses|proofs. While proofs are the

lingua franca for mathematical and theoretical computer science, many students|

even those in upper-year courses|�nd it di�cult to discern and produce rigorous

proofs. Likewise, computer science instructors lament the di�culty of teaching proof

construction [65,97].

1

But even though computer science students may feel that proofs are alien to them,

the author of this dissertation surmises that proof construction and programming

depend on similar cognitive abilities. After all, proofs and programs share a lot in

common. Both involve applying strict rules in a sequence to reach a desired outcome.

Both use modular techniques to organize their structure|proofs use lemmas and

theorems, while programs use functions and classes. Even proof tactics often have

analogies in programming. For instance, it has been argued that proof by induction

and recursion are two sides of the same coin [3].

Why then are so few computer science students able to transfer their skill in

programming to proof construction? The author surmises that pedagogical challenges

in teaching theoretical computer science topics are the main reason that students

struggle with learning those topics, and with learning proof construction in particular.

His investigation of those challenges has led to the development ofComplexity

Tutor , a computerized tutoring system.

Complexity Tutor gets its name from the author's endeavor to make NP-

completeness and intractability, cornerstone concepts from computational complexity

theory, more accessible to undergraduates. In the preface to a popular theoretical

computer science textbook [75], it is noted that even at Stanford University|widely

regarded as having one of the top Computer Science departments in the world|many

of their incoming graduate students have a poor understanding of NP-completeness.

There are two components toComplexity Tutor . The �rst is the Theorem

Proving Environment, which by itself is versatile enough to aid in teaching many

topics involving mathematical proofs, not just those in computer science. For in-

stance, it could be used for set theory, point-set topology, abstract algebra and real

analysis|these subjects are not the focus of this dissertation but the author has ex-

plicitly designed Complexity Tutor so that it would be easy for an instructor to

adapt it to that purpose.

2

The second component is more speci�c to the proofs one encounters in theoretical

computer science, which tend to beconstructive proofs that present algorithms as

part of the proof. This is the Algorithm Environment, which is used to help students

produce reductions for NP-complete problems. In the NP-completeness proofs one

is likely to encounter in an undergraduate course, not only is thereduction itself

algorithmic but the justi�cation of the reduction is implicitly algorithmic as well.

1.1 Challenges in teaching theoretical topics

Here are two pedagogical issues to consider, which may explain the di�culty

computer science students have learning theoretical material.

1.1.1 Student-centered pedagogy versus traditional lecture formats

Various student-centered teaching methodologies|sometimes referred to asactive

learning|have become a popular replacement for the traditional lecture format of

teaching. These methodologies are supported by a theory calledconstructivism, which

presupposes that learning occurs when learners actively construct knowledge rather

than passively receive information [80]. Ideas from this school of thought can be

traced back to Socrates, and were cemented by educational research done by John

Dewey and Jean Piaget in the early 20th century. Examples of speci�c methodologies

that follow this trend include inquiry-based learningand problem-based learning.

In the �eld of mathematics, the Moore method [81] refers to a speci�c way of

teaching where the instructor proves nothing for the student, and students must

learn the course material by proving everything on their own. It is named after the

mathematician Robert Lee Moore, who used it to teach topology to his doctoral stu-

dents, and became famous in the mathematical community with his teaching style

producing 50 Ph.D. students and 3,739 doctoral descendants to date [119].Inquiry-

based learningmethods used in mathematics are often referred to asmodi�ed Moore

3

methods, which share the central premise of Moore's teaching philosophy|that stu-

dents be in the driver's seat as much as possible when they are learning mathematical

theorems, actively discovering and developing the proofs of those theorems on their

own. A multi-institutional study found that inquiry-based learningcourses had better

outcomes over lecture-based courses when teaching undergraduate mathematics [94].

However, it is di�cult to scale Moore's methodand inquiry-based learningmethods

to courses with large student enrollment, where time constraints make it unfeasible for

every student to frequently present and receive feedback on proof problems they have

attempted on their own. Typically, in such courses, lecture-based teaching becomes

the primary method of instruction, and most important proofs that the instructor

expects the student to understand are presented verbatim rather than having the

student discover them on their own, as Moore would have done. Students may practice

problem solving in their homework, but the feedback they receive is not likely to be

timely nor extensive, and they are not given the opportunity to make more than a

single attempt on any given problem. Thus, the student's ability to succeed in such

a course critically hinges on their ability to rote learn from lectures and textbooks.

This is a limitation that holds true for most courses in mathematics and theoretical

computer science.

However, in many non-theoretical computer science courses, the situation is dif-

ferent. While those courses may still follow the traditional lecture format, it is often

possible for self-directed learners to learn the material without even paying atten-

tion to the lectures or textbooks, simply by doing the homework and projects. The

student's direct interaction with their computer naturally facilitates an inquiry-based

learning model, as they learn from compiler errors and from debugging the output of

the programs they write. Computer science students who are accustomed to this way

of learning may feel particularly disenchanted in their theory courses|the problem

sets in a theory course may require no more time and patience than the programming

4

How CS students learn from
their theory assignments

How CS students learn from
their programming

assignments

Write code

Does it compile?

Does it test correctly?

Submit for grade

Receive grade and feedback

YES

YES

NO

NO

Write proof

Submit for grade

Receive grade and feedback

Figure 1.1: Two
owcharts comparing how computer science students may learn from
their programming assignments and theory assignments.

projects in their other courses, but they often don't know if the time they spent on

a problem set is going to pay o� until after it has been graded since they get no

feedback while working on it. Figure 1.1 illustrates this dichotomy.

One of the main bene�ts Complexity Tutor will provide computer science

students is that it gives immediate feedback to students while they are constructing

proofs, just as they would expect when they are programming. This reduces the

dependency of students learning from lectures and textbooks, and permits student-

driven teaching methods even when course enrollment is large.

At the University of Joensuu, educators experimented with using aproblem-based

learning format to teach standard computing theory topics ranging from �nite au-

tomata to computability theory, in place of the standard lecture format they had

previously been using, and the results were dramatic. The drop-out rate for the

problem-based learningversion of the course was only 7% and 90% of the students

5

passed, compared to 50% dropping out and only a third passing when the course was

taught in the traditional lecture format. Furthermore, enrollment was three times

larger than in previous years where the course had only been o�ered in the tradi-

tional lecture format [70].

1.1.2 Abstract concepts disconnected from other computer science

courses

An explanation given for why computer science students struggle more in their

theoretical courses is that they �nd the material too abstract, and not closely related

to what they are learning in other courses [164]. One approach to making abstract

concepts likeautomataand formal languagesmore concrete is to introduce the student

to simulation applets where they can directly interact with di�erent kinds of automata

like �nite automata , push-down automata, Turing Machines, as well as explore parse

trees generated byformal languages[164].

Another approach is to change the curriculum to recast the concepts of theoretical

computer science in term of programming concepts that students would be familiar

with, rather than the esoteric automata models that were originally used when the

theoretical concepts were introduced. The textbookA Programming Approach to

Computability, written by Kfoury, Moll and Arbib [86], takes this approach. It re-

places all references of Turing Machines with meta-programs written in a language

similar to Pascal. A bene�t of this approach is that students will see that a seemingly

foreign idea like that of a \universal Turing Machine" is in fact not conceptually dif-

ferent than the compilers they are already familiar with. Their book covers all the

major results from computability theory using programming language concepts.

Neil Jones'Computability and Complexity: From a Programming Perspective[82]

also takes this approach. Jones uses subsets of Pascal and LISP like programming

6

languages as basic models to teach computability theory. He then uses those same

models to explain modern results in computational complexity.

Complexity Tutor is inspired by this idea, using a programming model of com-

putation to train students in ideas of computational complexity like NP-completeness,

but extends the concreteness further by giving students a real programming language

to write their reductions in (Python) and evaluating them with a real compiler.

1.2 Insights on meta-skills of students who successfully learn

theoretical computer science concepts

Based on the author's experience as a teaching assistant, the author conjectures

that there are certain meta-skills that largely de�ne a student's chance of success in

theoretical computer science courses. These meta-skills are listed below.

1.2.1 Acquiring and applying factual knowledge

Given the problem, \Is the set of Real Numbers in P?", the answer can be derived

just by applying a short chain of facts, \P is a subclass of the set of computable

languages" and \computable languages are a subclass of countable sets" and \Real

Numbers are not countable". Therefore, \Real Numbers are not in P". This problem

would be considered easy by most instructors if given on an exam{it follows directly

from facts and de�nitions given in the course. However, if a student forgot or never

acquired one of the facts that they were taught early in the course, such as that

computable languages are countable, they may get stuck on this problem and think

that it is much harder to answer than it was intended to be. As a teaching assistant,

the author discovered that students did not always retain knowledge they had learned

earlier in the course, which would indeed cause them di�culty on these kinds of

problems.

7

An interesting observation to make about the kinds of facts that one needs to

acquire in the course of studying the theory of computation and complexity theory is

that many of the facts are of the formsX is a subclass of Y or x is a member of X .

This kind of information can be modeled with a Venn Diagram. In a review session,

an exercise the author gave to students was to have them draw the relationships

between all the computability and complexity classes they had learned about as a

Venn Diagram. Students mentioned that this was very helpful as it helped them

synthesize and obtain a big picture of all the knowledge they had previously been

taught.

1.2.2 Translating informal intuition into formal reasoning

One of the biggest challenges in teaching advanced theoretical computer science

courses is that many of the proofs the instructor gives students would be too long if

written out formally with every single little detail. For instance, using formal logic

to prove the existence of Universal Turing Machines requires writing up the exact

description for the construction of a UTM, and then proving that every component

of that constructions works the way it is supposed to. Such a laborious proof can be

found in [33], where it takes up an entire chapter, as well as in Turing's original paper

on the subject [159].

In a typical theory of computation course, with a large number of topics to cover,

there is not enough time to cover such detailed proofs. Also, since those details are

repetitive and not very insightful, they would not engage most students. Instead,

what instructors want to do is impart a high-level understanding of the proof--to give

an informal argument or condensed proof that contains enough information that the

students would be able to reproduce the full proof on their own if they wanted to.

As one can imagine, that task is somewhat di�cult when the class being taught

is very diverse. Some students will require more details than others to reach a level

8

where they fully understand how a proof works. Also, some students will have a dif-

ferent intuition than the instructor does, so they may not understand the instructor's

argument for that reason.

Another reason why an instructor would expect students to appeal to informal

intuition in this course, is speci�cally because the instructor knows the students do

not have a strong background in abstract mathematics.

The author recalls an instance where an instructor thought that students would

�nd the abstract de�nitions in the textbook meaningless, and thus speci�cally chose to

instead explain everything much more informally without ever referencing a de�nition.

Unfortunately, this had the e�ect of confusing the students even more, because as

far as they were concerned, what they were learning in the lectures was completely

disconnected from the textbook.

The author found that the students often attempted to write their proofs in the

same informal rhetoric used in the lectures, and ended up making a lot of logical

fallacies that led to completely incorrect proofs. Math education researchers believe

that confusion over the subtle di�erences between the rules of everyday discourse and

those of logical discourse is often what causes students to make these errors [50].

The situation is likely to be even worse for non-native speakers of the language

the class is being taught in, since they are likely to struggle with nuances of particular

idioms that a native speaker would be more comfortable with.

1.2.3 Understanding notation and semantics

Many times, students do not even understand what a problem is asking them to

do because they do not understand the notation being used in the problem. A student

might be given the following problem on a homework assignment or exam:

9

Is f (P; Q; k) j there are fewer thank natural numbers for which: P(x),

Q(x) both halt and the output of P is at least twice the output of Qg

decidable? Is it recognizable?

But many of the students will not have a good enough grasp of this so-calledset

builder notation to know the di�erence between the above problem and this one:

For �xed natural number k, is f (P; Q) j there are fewer thank natural

numbers for which: P(x), Q(x) both halt and the output of P is at least

twice the output of Qg decidable? Is it recognizable?

The important di�erence is that in the second problem,k is interpreted to be

some constant for every element in the language. In the �rst problem, it is not.

Additionally, the author has observed that students have trouble di�erentiating

the semantic types used in theoretical computer science{languages(sets), classes of

languages(collections of sets),strings (elements in languages),alphabets, functions,

algorithms and Turing Machines.

So for instance, a student might mistakenly state that a given algorithm belongs

to the class NP, which makes no sense.

However, the same students may have a good understanding of the semantic types

used in programming languages, like Java|such as the di�erence betweenprimitive

data structures, objects, classes, functions and literals. They also probably recognize

the di�erence between passing-by-value and passing-by-reference. These semantic

concepts do not seem simpler than the ones used in the \language of mathematics".

A key di�erence is that while computer science students have been given ample

opportunity to learn Java by writing code in it, they have not had much opportunity

to write in the \language of mathematics", i.e., naive set theory. Furthermore, they do

not have a compiler that interacts with them and tells them whenever they are making

10

even a slight mistake. The interaction the student has with their Java compiler is a

form of dialogue, and this is very important for mastering any new language.

1.2.4 Applying analogy / proof schema

Once one has evaluated a lot of problems in a theoretical computer science course,

patterns begin to emerge. The solutions to these problems, which are usually in the

form of proofs, look very similar. Presumably, this is by design, because the goal

of an introductory course is to make the students comfortable with some important

abstract concepts and to learn some key theorems, not to test their ingenuity at

coming up with brilliant proofs.

An example would be the standard \diagonalization argument" used to prove that

a language is not computable.

One could imagine a database of \proof templates" given to students in a theory of

computation course. There would be three steps required for a student to successfully

apply a proof template to solving a problem.

First, they must correctly identify which proof template corresponds to the proof

problem they are trying to solve. Second, they must apply the proof template to the

speci�c problem, which generally means substituting variables speci�c to the problem

into the template. Depending upon the proof template being used and the di�culty

of the problem, this may in fact be enough to solve the problem.

If not, the �nal step is to add the missing details of the proof that are not contained

in the template. In some problems, the template will only give the student a very

rough outline of what needs to be done in the proof, and the student will have to add

the rest. In other problems, the template practically is the solution itself.

1.2.5 Generating examples / inductive reasoning

Many of the problems encountered in theory of computation courses require the

student to prove something about one or more formal languages. The author has

11

Show that PARTITION � p KNAPSACK. In other words, show that if
KNAPSACK has a polynomial time algorithm, so does PARTITION.

KNAPSACK PARTITION

Instance: (U; w; v; B; K) where U
is a �nite set of objects, and for each
object u in U, w(u) is the weight of
the object and v(u) is the value of
the object, and whereB and K are
both natural numbers.

Instance: A set X of positive in-
tegers.

Question: Is there a subsetU0 �
U such that
X

u2 U0

v(u) � K and
X

u2 U0

w(u) � B

Question: Can you partition X
into disjoint sets X 1 and X 2 such
that: X

x2 X 1

x =
X

y2 X 2

y

Figure 1.2: An example NP-completeness problem, where students are asked to reduce
the language PARTITION to the language KNAPSACK.

found that a particular strategy, which is most e�ective when the solution does not

immediately jump out, is to start by generating speci�c concrete examples from the

language in consideration. Often times, it will be easier to reason about the speci�c

concrete examples than the abstract language as a whole.

Another reason students should be in the habit of generating examples is that it is

the only way they can really convince themselves that they understand the problem.

If they cannot generate a concrete example for a given problem, it probably means

that they still do not understand the problem well enough.

Consider the problem in Figure 1.2 to see how generating examples can help

students �nd the solution.

Assuming one understands the general framework for reductions, a natural way

one might try to �nd the solution to this problem is to �rst try to come up with a

12

speci�c positive instance of PARTITION and then try to translate that into a speci�c

positive instance of KNAPSACK.

So, a student might considerX = f 1; 2; 2; 3g, which is a positive instance of

PARTITION, because if we partition it into X 1 = f 1; 3g and X 2 = f 2; 2g then
P

x2 X 1
x =

P
y2 X 2

y = 4.

Next, in thinking about how to translate this into an instance of KNAPSACK, the

student conjectures that it's possible the instance variableX in PARTITION maps

to one of the �ve instance variables in KNAPSACK (U, w, v, B , K). From those

variables, it would seem thatU might be the best candidate, because unlike the other

variables, bothX and U are set variables.

However,X and U correspond to di�erent types of sets|one is a set of objects

and the other is a set of positive integers. An integer cannot directly be mapped to

an object, but each integer inX could correspond to a property of each object inU.

As it so happens, KNAPSACK speci�es that each object inU has two properties,

weight and value, corresponding to the function variablesw and u.

Out of these two possibilities, assume that the student hypothesizes thatw(U)

maps to X . In other words, in the speci�c example the student is considering,

f 1; 2; 2; 3g would correspond to the weights of objects inU.

Next, the student looks at theU0 mentioned in the constraints of KNAPSACK.

Based on the hypothesis thatw(U) maps to X , the student can deduce thatw(U0)

must map to some subset ofX . Which subset? There are only two subsets ofX

mentioned in the description of PARTITION, X 1 and X 2. Both are equally good

candidate hypotheses.

Assume the student hypothesizes thatw(U0) maps to X 1. This implies that
P

u2 U0 w(u) =
P

x2 X 1
x = 4, from the example the student has chosen. Since one

of the constraints of KNAPSACK is that
P

u2 U0 w(u) � B , it follows that B � 4. So

the student hypothesizes thatB = 4.

13

Now, there are only two remaining variables of the KNAPSACK instance that

are still unspeci�ed| v and K . And there is only one constraint that has to be

satis�ed for these two variables to create a positive instance of KNAPSACK, which

is
P

u2 U0 v(u) � K . So far, the student's strategy has been to try to map unspeci�ed

variables to variables they have previously speci�ed. If the student continues with

this strategy, they will realize that if they set v = w and K = B, then the constraint
P

u2 U0 v(u) � K is satis�ed.

Hence, the student now has a complete mapping from a positive instance of PAR-

TITION to a positive instance of KNAPSACK. Generalizing, the hypothesized reduc-

tion de�nes U as a set ofjX j objects with w(U) and v(U) both mapping to X , and

with B = K =
P

x 2 X x
2 . The student can now check di�erent positive and negative

instances of PARTITION to see if the hypothesized reduction creates corresponding

positive and negative instances of KNAPSACK.

The process used to develop this hypothesis may seem arbitrary, since a lot of

good guesses had to made to get the right examples that would lead us to a good

hypothesis for the reduction. In general, one will probably have to make a number

of guesses before they get the right examples. So this whole process could be called

\guess and check".

But if enough possibilities are considered, one should eventually �nd the right

examples. In fact, this \guess and check" methodology is similar to how a computer

algorithm would most likely solve this problem|checking as many examples as pos-

sible by brute force. One can only hope that the student will have better intuition

than a computer does and thus not need to make as many guesses. It is hoped that

the student's intuition will also get better over time by following this process.

1.3 Components of Complexity Tutor

Complexity Tutor has two components, described in detail in Chapter 3.

14

First, there is the Theorem Proving Environment, where students can construct

proofs that are similar to the narrative proofs used in their classes. Proofs in the

Theorem Proving Environment can be expressed in natural language, and there is

no special syntax to learn. In this regard,Complexity Tutor 's Theorem Proving

Environment is pedagogically more
exible than other tutoring systems that have

been developed for theorem proving.

Second, since many proofs in computer science are constructive in nature and have

an algorithmic component, there is the Algorithm Environment. Currently, this is

being used for the construction of NP-completeness reductions.

1.4 Potential advantages of Complexity Tutor

The Theorem Proving Environment presents a novel way to learn to construct

proofs, whereby students generate proofs by connecting assertions together in a

puzzle-like game. The system can provide the following advantages to students and

instructors:

� The puzzle-like game structure should increase engagement. Puzzles

have a rich history of being used to teach mathematics [108], and more recently

Puzzle-Based Learning has been adopted in computer science and engineering

pedagogy [53]. Digital game-based learning has also been shown to e�ectively

motivate learners in numerous �elds [129].

� Students are encouraged to be precise and meticulous. Complexity

Tutor constrains students to only construct rigorous proofs. That way, stu-

dents are guided away from the common pitfalls that frequently plague informal

student proofs such as semantic ambiguity, insu�cient detail, gaps in justi�ca-

tion, and logical inconsistency.

15

� Immediate feedback is provided to the student. Traditional homework

practice is non-ideal because it does not provide timely feedback for students to

rectify learning de�ciencies. It may be weeks before students get their corrected

homework back, and some students may �nd themselves pushed to the next

topic in the course before they have mastered the previous topic.

� Homework can be graded automatically. When Complexity Tutor

is used to replace some or all of the traditional written homework, it reduces

the amount of resources needed for manually grading student work. This could

be a major bene�t for teaching very large courses such asmassive open online

courses(MOOCs).

� It is easy to adapt Complexity Tutor to a wide variety of contexts.

Instructors can easily adapt it to any topic that involves proof instruction.

The simplicity of the interface makes it equally suitable for introducing logic

problems to K-12 students or teaching highly abstract mathematics to college

students.

16

CHAPTER 2

RELATED WORK USING COMPUTERS TO AID IN
TEACHING THEOREM PROVING

This chapter surveys other software systems that have been used pedagogically

in proof-based courses, mostly outside of computer science. Many of these systems

could be consideredintelligent tutoring systems, speci�cally designed to help students

improve their understanding of course material. In other cases, the systems were

designed primarily to help the instructors, such as by automating grading.

However, all the systems we will consider in this chapter share one thing in

common|on the backend, they all use a rule-based automated proof veri�er to model

expert domain knowledge. As such, the pedagogical utility of each of these systems

is limited by what its associated proof veri�er can accomplish.

Uniquely, Complexity Tutor does not have this limitation, since it models

expert domain knowledge in a very di�erent way, not requiring an automated proof

veri�er for a given domain, but instead requiring problem-speci�c hypergraph struc-

tures to be pre-constructed. Complexity Tutor 's domain knowledge model is

explained in Section 3.1.6.

This chapter begins by introducing some of the issues that must be taken into

consideration when using automated proof veri�ers in an educational setting.

2.1 Pedagogical issues with automated proof veri�ers

Arti�cial intelligence pioneer John McCarthy once wrote,

17

\Checking mathematical proofs is potentially one of the most interesting

and useful applications of automatic computers." [102]

Paul Abrahams, one of McCarthy's Ph.D. students, developed Proofchecker, one

of the �rst automated proof veri�cation tools. His dissertation [1] explains that he

originally sought to develop a system that could verify ordinary textbook proofs but

later realized that was too ambitious of a goal. Thus, Proofchecker was limited to

only being able to verify proofs constructed in a formal logical system, where the

proof is written in a precise technical language and each step of the proof follows

from a limited set of rules.

Since then, numerous tools for automatically verifying and generating proofs

have been developed, such as Coq [29], Mizar [113], and Isabelle [118]. But like

Proofchecker, they are also all limited to verifying proofs constructed in formal logi-

cal systems.

2.1.1 Formal logical systems

Formal logical systems were originally developed by logicians for formalizing logic

and mathematics. A formal logical system is de�ned by the following four compo-

nents:

1. A �nite set of symbols.

2. A language, which is a set offormulas. Each formula is a string constructed

from the symbols. Typically, the languagewill be generated syntactically from

a grammar, such as a context-free grammar.

3. A set ofaxioms, which is a subset of formulas in the language. The set ofaxioms

may be in�nite, but in such case will typically be generated syntactically from

a �nite set of axiom schemata, which are also described by grammars.

18

4. A �nite set of inference rules. Each inference rule maps a sequence of one or

more premise formulas from the language to a singleconclusion formula from

the language. Formally, eachinference rule r would be a function of form

r : P1 � : : : � Pk ! L whereL is the language, andP1; : : : ; Pk are subsets ofL.

Typically, r can be implemented with a simple deterministic algorithm.

A proof produced from this formal logical system is a �nite sequence ofproof

steps, corresponding to a sequence ofjusti�ed assertion formula sets,A1 : : : An .

A1 is the set of assumption formulas, which contain the axioms and any other

formulas that are to be assumed for the proof. For every 1< i � n, A i = A i � 1 + f � g

where � is a conclusion of one of the inference rules, using some subset ofA i � 1 as

premises. In the special case ofAn , we say that � is the goal of the proof.

Notice that two di�erent formal logical systems can de�ne the samelogic. This

occurs when both systems share the same language, and every set of assumptions in

the shared language prove the exact same set of goals. For instance,�rst-order logic

can be de�ned either by aHilbert-style system(many axioms but only one inference

rule) or a natural deduction system(many inference rules but no axioms).

It is also worth pointing out the close connection between formal logical systems

and term rewriting systems[19]. Assuming that all the inference rules in a formal

logical system are Turing computable functions, each of those inference rules can be

composed of term rewriting rules, since term rewriting systems are Turing complete.

Many logics are de�ned by formal logical systems that directly correspond to term

rewriting systems, and special attention is paid to such systems by computer sci-

entists, since there are results from the theory of term rewriting that are useful to

automated theorem proving. For instance, the Knuth-Bendix procedure [20] can be

used to prove equality results using a term rewriting system.

19

2.1.2 Di�erences between proofs constructed from formal logical systems

and informal narrative proofs

Traditionally, mathematicians have used narrative to communicate proofs, whether

by delivering a live talk with the aid of a blackboard, or by writing the narrative in

a publication or textbook. As such, they also train their students to present proofs

in narrative form.

There are two signi�cant di�erences between the narrative proofs that are pre-

sented by mathematicians and their students in ordinary informal mathematical dis-

course, and the proofs constructed from formal logical systems:

1. The narrative proofs use natural language rather than a formal language to

express assertions. Statements expressed in a natural language may be under-

speci�ed or ambiguous in terms of their precise meaning, unlike those produced

from a formal language.

2. Inferences made in an ordinary narrative proof do not have to directly map to

the limited set of inference rules found in any formal system. Since narrative

proofs are intended speci�cally for the purpose of communicating proofs between

humans, the inferences in a narrative proof will be considered valid if the human

audience of the narrative agrees that the inference is correct.

In other words, both of these di�erences imply that narrative proofs lack a formal

structure, and without that structure, intelligence must be used to �ll in the gaps.

Human intelligence is required to make a good judgment about whether a narrative

proof should be considered correct or not. The ability to parse and discern the

correctness of arbitrary narrative proofs is clearly anAI-complete problem[140], since

in the general case, it is as hard as any other open-ended natural language problem.

Note that the problem of recognizing speci�c types of narrative proofs, such as

those that you would likely �nd published in a textbook, might be more tractable.

20

Textbook proofs are written to be as clear and unambiguous to the reader as possible,

and generally use very consistent language conventions. Even though Paul Abrahams

did not succeed at developing a program to recognize textbook proofs, more recent

work on this problem has yielded a small amount of progress. For instance, Donald

Simon's Nthchecker [144] system was able to parse some proofs from a number the-

ory textbook. Also, Claus Werner Zinn wrote a dissertation [173] on a theoretical

framework for parsing the kind of narrative proofs one would �nd in a textbook.

However, the narrative proofs that students tend to write for class assignments

are often not nearly as clearly written as textbook proofs. A student's narrative proof

may be ambiguous, imprecise and at times even use terminology incorrectly. It then

becomes a judgment call for the person evaluating the student's proof to determine

if the student understood a correct proof but explained it inadequately, or if they

did not even understand a correct proof at all. The author of this dissertation has

himself many times struggled with this discernment when grading student proofs, and

a machine is likely to have an even harder time at this task.

2.1.3 Can informal narrative proofs be substituted by those constructed

from a formal logical system?

In principle, all informal proofs should map to proofs constructed from a single

formal logical system, such as a system that uses either the Zermelo-Fraenkel set

theory axioms or the von Neumann-Bernays-G•odel set theory axioms [150].

Why then don't mathematicians regularly construct their proofs in formal logical

systems, since this would make automated veri�cation easier?

There are two possible reasons to consider. First, while there may be a mapping

from informal proofs to proofs in formal logical systems, the mapping is usually a

very cumbersome one, where each assertion in the informal proof may map to a

long sequence of formal proof steps. Second, a narrative proof can be used to add

21

commentary, explaining the intuition behind the proof, whereas a proof from a formal

logical system cannot.

There are additional pedagogical considerations that must be taken into account

when deciding whether it is appropriate to use informal narrative proofs or formal

logical systems in teaching a proof-based course. Consider that a proof starts out

as a cognitive construction|there is some abstract representation of it in the mind.

That abstract representation is then translated into some medium that can be com-

municated. In the case of informal proofs, the medium is a narrative.

When a student is learning proofs, they are developing two skills simultaneously|

both the skill of cognitively constructing the proof and the skill of communicating it

in a given medium. The �rst skill is of primary importance, so it is desirable that the

medium of the �nal communicated output align closely with the intended abstract

representation in the mind, so as to avoid extraneous cognitive load.

Therefore, the chief pedagogical advantage of using narrative as a medium for

proof communication is that its
exibility permits it to express proof ideas as con-

ceived by the mind, with little overhead. Note though that narrative is not necessarily

the only medium with this advantage or even the best one|a graphical medium may

be even more likely to align with the cognitive construction of proofs than narrative

will, as argued in Section 3.1.5.1. Note also that despite the lack of
exibility in

formal logical systems, there is no reason to preclude the possibility of developing a

formal logical system that aligns closely with how proofs are conceived in the mind.

In fact, for the domain of geometry, the cognitive model developed for Koedinger's

ANGLE tutoring system (Section 2.4.3.3) can be thought of as a formal logical system

that aligns with how geometry experts conceive of proofs.

Even without a cognitive model, pedagogical arguments can be made favoring

formal logical systems over standard textbook narratives in particular domains, as

David Gries and Fred Schneider do for their formal logical system (Section 2.4.7).

22

2.1.3.1 Assertion level reasoning

It is worth brie
y mentioning one particularly interesting area of research on

formal logical systems that looks at the construction of proofs that are structurally

similar at an inference level to proofs one would �nd in a textbook, although not

necessarily as close to student proofs. Xiaorong Huang observed [76] that there are

three levels of verbal justi�cation for inferences used in textbook proofs:

Logic level | justi�cation is a simple logic rule from a natural deduction calculus.

Assertion level | justi�cation involves applying an axiom, de�nition or theorem.

Proof level | justi�cation is by analogy to something earlier in the proof.

Huang discovered that the assertion level justi�cations were the most common in

the textbook proofs he studied, far outnumbering the times that textbook authors

had to resort to explaining a proof step with either a lower-level justi�cation from

logic or a \proof level" justi�cation. He developed a system called PROVERB, which

could take a proof in a formal natural deduction system and shorten it to a proof

that only usesassertion level inferences[76].

This work inspired other researchers to develop formal logical systems that sim-

ulate assertion level reasoning. Serge Autexier'scontextual reasoning(CoRe) calcu-

lus [16] is an example of such a system. These assertion level reasoning systems can

be thought of as \meta systems" because they have the following two properties:

1. There is not a �xed set of inference rules, as one would �nd in a classical

formal logical system such as natural deduction. Instead, inference rules are

automatically generated from de�nitions, theorems or axioms. A logical formula

representing a de�nition, theorem or axiom is transformed using an underlying

logical calculus into new inference rules.

23

2. The assertion level system is de�ned on top of a lower-level formal logical system,

and the assertion level inference rules subsume several levels of inference rules in

the lower-level system that are chained together. The application of the newly

formed inference rules to a lower-level formal logical system has been referred

to as superdeduction[35]. In the speci�c case where natural deduction is used

as the lower-level system, the termsupernatural deduction[166] was coined.

More recently, atomic metadeduction[17] was introduced by Serge Autexier

and Dominik Dietrich.

For instance, assume that composition of binary relations has been de�ned by the

following higher-order logic formula:

8R; S; x; y : (x; y) 2 R � S () 9 z : (x; z) 2 R ^ (z; y) 2 S

In Autexier's CoRe calculus, this formula could generate two new inference rule

schemata, corresponding to (x; y) 2 R � S ` (x; z) 2 R; (z; y) 2 S and its inverse,

(x; z) 2 R; (z; y) 2 S ` (x; y) 2 R � S. The application of these schemata is far

looser than in a classical formal logical system|in the �rst schema, the precondition

(x; y) 2 R � S would be matched against all subformula in a given premise formula,

not just the premise itself. Such
exibility has been referred to asdeep inference[68].

In CoRe, it is accomplished throughhigher-order uni�cation [136].

Autexier based CoRe calculus on the \expansion proofs" that were originally used

in TPS, Peter B. Andrews' theorem proving system for higher-order logic, mentioned

in Section 2.2.2. CoRe calculus was implemented in the
megaCoRe proof planning

system developed at Saarland University in Germany, and which has been used in

intelligent tutoring research projects at that institution, described in Section 2.4.5.

24

2.1.4 Consideration of proof granularity

Consider the following two hypothetical narrative proofs that might come up in a

class teaching NP-completeness, where a student is trying to prove that a language

X is NP-hard, on the assumption that SAT� p X :

Proof 1. Since SAT is NP-hard, every languageL 2 NP is polynomial-time reducible

to SAT. Since SAT is polynomial-time reducible toX , every languageL 2 NP

must also be polynomial-time reducible toX . Therefore,X is NP-hard.

Proof 2. SAT is NP-hard and polynomial-time reducible toX . Therefore, X is

NP-hard.

Both proofs use the same argument structure. However, Proof 1 provides more

details for that argument than Proof 2. These two proofs have di�erent levels of

granularity |a notion of the level of detail in describing something. Proof 2 is thought

of as acoarse-grainedversion of Proof 1, because it abstracts away certain details

from Proof 1 while maintaining the same argument structure.

Is one proof preferable to the other? This largely depends upon context. When an

instructor is teaching NP-completeness for the �rst time, they may want to go over

proofs with the level of granularity of Proof 1, to ensure that students understand

how the argument follows directly from de�nitions. Later, to avoid getting drowned

in detail, they may abbreviate to the coarse-grained Proof 2, once they believe that

their students have the ability to internally map Proof 2 to Proof 1. Similarly, when a

student communicates proofs back to the instructor, it must be decided what level of

granularity the instructor will accept from the student. The instructor should accept

a coarse-grained proof only when they are reasonably con�dent that the student

understands how to transform it to a �ner-grained proof.

Knowledge representation theorists have produced abstract frameworks for ana-

lyzing granularity [73, 85] that are applicable beyond the domain of proofs. Jerry

25

Hobbs' granularity framework [73] has previously been applied to intelligent tutoring

systems research by Jim Greer and Jordan McCalla, who used it in the development

of a LISP tutor [62]. They suggested two pedagogical reasons for caring about granu-

larity. First, the granularity level at which a topic is presented will in
uence success in

understanding it|tutoring success depends in part on choosing the right granularity

level for a student. Second, recognition of coarse-grained problem solving strategies

leads to a tutor providing more helpful advice to a student, when it is not possible to

precisely trace a student's thinking at a �ne-grained level.

Note that the approach that Greer and McCalla take to di�erentiating granular-

ity requires a very explicit ontological mapping of the domain. However, a looser

characterization of granularity for the domain of proofs shall su�ce to illustrate the

challenges to automatically recognizing proofs of di�erent granularity levels.

Assume for a moment that Proof 1 could be closely represented in some formal

logical system, for instance a system that uses assertion level reasoning (Section

2.1.3.1). Then Proof 2 can be conceptualized as omitting or combining some of the

proof steps from the formal analogue of Proof 1. In general, a proof in a formal logical

system is implicitly the �nest-grained representation of itself, and any coarse-grained

abstraction of that proof will be produced by omitting or combining proof steps.

In the context of a formal logical system, the task of automatically recognizing

these coarse-grained proofs is di�cult. One approach is to use an automated theorem

prover to attempt to verify coarse-level assertions. This is the approach chosen by

the EPGY Theorem Proving Environment (Section 2.4.2), but such an approach is

limited by the capabilities of automated theorem provers. Another approach is to

explicitly model coarse-grained proofs. This is in essence equivalent to developing a

new formal logical system that captures the coarse-grained inferences at a particular

level of granularity, which is what ANGLE (Section 2.4.3.3) does for the domain of

geometry. However, this approach is in
exible and extremely cumbersome to scale,

26

because one would need to produce a formal logical system that rigidly de�nes each

distinct level of granularity.

For more observations about proof granularity, including an analysis of granularity

in student proofs, the reader is referred to Marvin Schiller's Ph.D. dissertation on the

topic [136].

2.2 A brief introduction to automated theorem proving

While all automated proof veri�ers can verify the correctness of proofs constructed

in a formal logical system,automated theorem provershave the additional capability

of being able to fully construct some proofs from scratch.

Automated theorem proving was mentioned in Section 2.1.4 as a potential way

to address the proof granularity problem, and one might assume additional bene-

�ts to using automated theorem provers in the design of a proof tutoring system.

For instance, hypothetically, an automated theorem prover might provide a student

guidance about the next step they should take in a proof when they get stuck, like

a chess engine recommending the next move that should be made. An intelligent

tutoring system could then use the automated theorem prover to supply the student

with suggestions of proof tactics and strategies they should consider in any given

situation|this was the main goal behind the AProS project (Section 2.4.4).

Unfortunately, most advances in the �eld of automated reasoning with computers

have made use of proof techniques that are foreign to humans. In fact, the formal

logical systems used by computers usually di�er signi�cantly from those used by

humans, even when proving theorems in the same logic. This inhibits the pedagogical

utility of most automated theorem provers.

To understand the reason for this dichotomy between human proofs and computer

proofs, consider the concrete case of �rst-order logic, an area where much progress in

automated theorem proving has been accomplished.

27

How does one go about computationally searching for a proof in �rst-order logic?

The naive strategy would be to indiscriminately apply all possible inference rules to all

possible assumptions to produce all valid sequences of proof steps until a valid proof

is found. Early researchers in automated theorem proving referred to this strategy

as the \British Museum algorithm" [116] and knew it to be hopelessly ine�cient for

formal logical systems that humans commonly use, like natural deduction. Here are

some observations to make about why this is the case:

1. The process may never terminate. It will terminate if a proof by some luck

happens to be found. However, if there is no proof to be found, the process will

continue inde�nitely.

2. With a large number of inference rules to choose from, the combinatorial ex-

plosion of the search tree is humongous even at short depths. This means that

practically, it will be impossible to �nd proofs with more than a few steps.

3. Some inference rules are increasing the size of formulas, and as formulas increase

in size and number, the combinatorial explosion of ways to apply the inference

rules to them gets worse.

4. It is possible to create cycles, where a sequence of inference rules applied to a

set of formulas results in the identity function, returning you the formulas you

started with. In order to make the search productive, you need to have a way

of preventing this.

5. Many formulas that can be produced in �rst-order logic are semantically equiv-

alent to each other. For any given formula, there are an in�nite number of

logically equivalent formulas. Applying the inference rules mindlessly is guar-

anteed to produce some formulas that are syntactically di�erent from existing

formulas that have been produced, but still semantically equivalent, thus mak-

28

ing the search even less productive.Normalization is one strategy for mitigating

this problem.

From the perspective of theoretical computer science, the situation is even less op-

timistic. It is possible to encode Turing computations in �rst-order logic, and thereby

show that �rst-order logic is undecidableby reduction from the halting problem [32].

Even proving statements in propositional calculus inNP-hard, by reduction from the

Cook's satis�ability problem [59].

Why then do humans succeed at theorem proving? Humans develop an intuition

that helps them decide heuristically how to navigate the proof search tree. Repli-

cating that intuition is a challenging arti�cial intelligence problem, so researchers in

automated reasoning have instead focused on designing formal logical systems that

play to a computer's strengths.

In comparison to humans, machines are innately poor at strategizing but much

better at brute-force search. Therefore, it makes sense to design formal logical systems

where simple search strategies that can easily be mechanized are more likely to lead

to a proof.

2.2.1 Resolution-based theorem provers

In the early 1960's, John Alan Robinson made a breakthrough in automated the-

orem proving in �rst-order logic, using a method referred to asresolution [134]. This

method was developed from earlier insights by Jacques Herbrand [71]. It produces

indirect proofs using the proof by contradiction strategy applied to a formal logical

system that primarily uses a single inference rule, theresolution inference rule, to

do heavy lifting. Resolution-based theorem provers (e.g., Otter [170], Prover9 [104],

Vampire [131]) are one of the main triumphs of automated theorem proving|they

have been demonstrated to be very successful in theorem proving competitions [153]

and have even solved numerous open problems in mathematics [170].

29

To use resolution, all the assumption formulas and the negation of the goal formula

must �rst be put in a speci�c normal form. The normalization process is as follows:

1. Put the formula in prenex-normal form: All quanti�ers are moved to the front

of the formula. For example,8x9y((9z(x _ : z)) _ ((8z(z _ : x)) ! y)) becomes

8x8y9z19z2((x _ : z1) _ ((z2 _ : x) ! y)).

2. Put the matrix (quanti�er-free part) of the formula in conjunctive-normal form:

The matrix becomes a conjunction of several clauses. Note that this process

often greatly expands the length of the formula. For example,8x8y9z19z2((x _

: z1)_ ((z2_: x) ! y)) becomes8x8y9z19z2((x_: z1_: z2_ y)^ (x_: z1_ x_ y)).

3. Skolemizethe formula to remove existential quanti�ers: For every existentially

quanti�ed variable, introduce a Skolem function, which is simply a new predicate

in terms of the universally quanti�ed variables that are within the scope of the

existential quanti�er (appear earlier in the formula). If there are no universally-

quanti�ed variables within the scope of an existentially quanti�ed variable, then

its Skolem function is a constant. Then replace every existentially quanti�ed

variable appearing in the formula with a term consisting of its Skolem function

applied to the universally quanti�ed variables within its scope. The existential

quanti�ers are no longer needed, so remove them from the formula. For example,

8x8y9z19z2((x _: z1 _: z2 _ y) ^ (x _: z1 _ x _ y)) becomes8x8y((x _: f 1(x; y) _

: f 2(x; y) _ y) ^ (x _ : z1 _ x _ y)).

4. The formula now only has universal quanti�ers. Drop the quanti�er pre�x

entirely, leaving only the matrix. The formula can be thought of as a set of

clauses. Furthermore, each clause can be thought of as the set of literals it

contains. For example,8x8y((x _ : f 1(x; y) _ : f 2(x; y) _ y) ^ (x _ : z1 _ x _ y))

becomesff x; : f 1(x; y); : f 2(x; y); yg; f x; : z1; ygg.

30

Through this process, each formula produces multiple clauses. So, after convert-

ing all the formulas, a lot of clauses are produced. The combined set of all those

clauses can be thought of as being the assumptions used by resolution. The resolu-

tion inference rule takes as input two individual clausesCi and Cj and produces a new

clauseCk . To describe this inference rule, �rst de�ne a function of these two clauses,

M (Ci ; Cj) = f l i 2 Ci j 9l j 2 Cj such that l j is the negation ofl i g+ f l j 2 Cj j 9l i 2 Ci

such that l i is the negation ofl j g. Then the new clause produced by resolution would

be Ck = Ci [Cj � M (Ci ; Ck).

Using terminology invented by Peter B. Andrews [11], the literals that belong to

M (Ci ; Cj) are said to bemated, which means that a literal is paired with its negation.

On the other hand, literals that are duplicated inCi and Cj are said to bemerged.

Resolution removes all mated literals and one copy of each merged literal from a

pair of clauses, and produces a new clause from the remaining literals. The resolution

inference rule can be viewed as a generalization ofmodus ponens. Whenever resolution

produces an empty clause, a logical contradiction has been found.

Since the goal of resolution is to produce contradictions, thereby showing a goal

to be true by proving its negation false, one wants to apply resolution in such a way

to cancel out as many literals as possible, by mating and merging them. One other

inference rule is permitted to help with this goal, which issubstitution. Free variables

in a clause can be substituted with other terms. For every pair of clausesCi and Cj ,

the strategy then is to �nd substitutions for Ci and substitutions for Cj such that

when resolution is applied to the resulting clauses, the number of mated and merged

literals that get cancelled out is maximized. The process of �nding these substitutions

is referred to asuni�cation , and e�cient algorithms exist to perform the task [100].

Proofs produced with resolution tend to be signi�cantly longer than their natural

deduction counter-parts [26, 31]. Thus, resolution will never be considered a better

way for humans to do proofs, since it is tedious and requires extensive iteration. With

31

proper intuition, humans can produce short proofs in natural deduction much more

quickly than they would by following an algorithm that uses resolution. However, as

a search process to be used by machines, resolution is ideal since it has signi�cantly

less combinatorial blow-up than the aforementioned \British museum algorithm" on

natural deduction.

2.2.2 Peter B. Andrews' theory of matings

Peter B. Andrews developed a structural characterization of when resolution

proofs exist that is useful since it permits one to determine if such a proof exists

without doing a full search for it [11]. Similar insights were also independently dis-

covered by Wolfgang Bibel [30].

The characterization is based on the observation that the entire process of res-

olution is essentially trying to �nd mates for literals. In a deduction produced by

the system of resolution, each assumption clause may be used as a premise for the

resolution rule (prior to substitutions) multiple times. Hence, there are multiple oc-

currences of each given assumption clause in the deduction, which can be indexed as

unique entities. For a given resolution deduction, letS be the set of clause occur-

rences that appear in the deduction, and letL(S) be the set of literal occurrences

that appear in those clauses. Anabstract mating M is de�ned to be a symmetric

binary relation over L(T) where for any two literal occurrencesl i and l j , the relation

M (l i ; l j) holds if some substitutions will makel i the complement ofl j .

For a given abstract matingM , a mating cycle is de�ned as an even length se-

quence of literal occurrences fromL(T), l1; : : : ; ln , where the following conditions

hold:

1. l1 and ln are distinct literal occurrences belonging to the same clause occurrence.

2. If i is an even number between 1 andn, then M(l i , l i +1) holds.

32

3. If i is an odd number between 1 andn, then l i and l i +1 are distinct literal

occurrences belonging to the same clause occurrence.

Two distinct literal occurrences are said to bemerged by a mating cycle if they

share a common mate in the mating cycle. I.e., if there are three distinct literal

occurrencel i , i j and lk belonging to the mating cycle whereM (l i ; lk) and M (l j ; lk)

both hold, then the mating cyclecontains a merge.

Andrews' characterization is that for a resolution deduction to be a proof (i.e.,

for it to lead to a contradiction), there must exist an abstract matingM where every

literal occurrence inL(S) has a mate, and where every mating cycle produced byM

contains a merge. The abstract matings meeting these conditions are referred to as

acceptable matings. Andrews proved that a set of clauses in �rst-order logic will have

a model if and only if there is no acceptable mating of a non-empty �nite set of clause

occurrences from that set of clauses [11].

There is a particular interest of this mating theory to tutoring. Not only does

Andrews' characterization potentially lead to a more e�cient search process than

resolution itself, but Andrews later realized it could be used to guide the search

process for natural deduction proofs. One could �rst �nd an acceptable mating and

then use that as a plan for �nding a natural deduction proof [12]. This resulted in the

�rst version of an automated theorem prover called TPS. The mating method was

later extended to higher-order logic by two of Andrews' students, Dale Miller [109]

and Frank Pfenning [125], resulting in a generalization of matings referred to as

\expansion proofs" and one of the �rst successful automated theorem provers for

Church's simple type theory [13].

Unfortunately, Andrews and his students never completely capitalized on these

methods, with respect to how they might be used for proof tutoring. This is odd

considering that Andrews did develop ETPS [13], an educational platform that shares

the same code base as his theorem prover. However, ETPS speci�cally disables the

33

powerful theorem proving functionality, and there is no attempt to use automated

theorem proving to give the student intelligent guidance in proof construction.

2.2.3 More references on automated theorem proving

A brief background on automated theorem proving has been covered here to show

why most of these techniques are not easy to adapt to proof tutoring. Readers who

would like to learn more about resolution-based theorem proving are recommended

to read Larry Wos' gentle introduction to the subject [170], which discusses his jour-

ney in developing the theorem prover Otter. A two-volumeHandbook of Automated

Reasoning[133] is also available, which explains most of the state-of-the-art research

in the �eld.

2.3 Theories of how humans naturally reason

Humans obviously have some innate reasoning capabilities, but cognitive psychol-

ogists debate the mechanism that provides those capabilities. On one side of the

debate, Lance Rips and Martin Braine have proposed theories [34, 132] that explain

the performance of human reasoning as a general application and chaining of ab-

stract rules, i.e., they suggest that there is a formal logical system underlying human

reasoning independent of context.

However, a psychological experiment known as theWason selection task[167]

would seemingly poke holes in those theories. The general setup for the experiment

is that subjects are given a reasoning problem involving four cards on a table along

with a description of what the four cards represent. There are di�erent versions

of the experiment, each with a di�erent semantic interpretation of what the cards

represent. In all versions, subjects can only see the side of the cards facing them

and are tasked with determining which cards need to be
ipped over to verify a

logical assertion about the cards. Furthermore, each version of the experiment uses

34

a logically equivalent assertion. Consequently, all versions of the experiment can in

principle be solved using the exact same logical inference rules.

Surprisingly, performance on the Wason selection task varies considerably depend-

ing on the context given in the reasoning problem. When given an abstract version of

the problem (Figure 2.1), less than 25% of subjects from a college student population

could correctly solve it. However, approximately 75% of subjects from the same pop-

ulation could correctly solve the problem when it was themed with a social situation

(Figure 2.2) they were likely to be familiar with [45].

Part of your new clerical job at the local high school is to make sure that
student documents have been processed correctly. Your job is to make sure
the documents conform to the following alphanumeric rule:

\If a person has a `D' rating, then his documents must be marked code `3'."

You suspect the secretary you replaced did not categorize the students' doc-
uments correctly. The cards below have information about the documents
of four people who are enrolled at this high school. Each card represents
one person. One side of a card tells a person's letter rating and the other
side of the card tells that person's number code.

Indicate only those card(s) you de�nitely need to turn over to see if
the documents of any of these people violate this rule.

D F 3 7

Figure 2.1: Wason selection task with abstract theme, from [45].

These experiments suggest that the cognitive mechanism for reasoning is somehow

context dependent. Various theories have been proposed to account for this. Richard

Griggs and James Cox were proponents of amemory-cueing hypothesis[67, 98] to

35

In its crackdown against drunk drivers, Massachusetts law enforcement o�-
cials are revoking liquor licenses left and right. You are a bouncer in a Boston
bar, and you'll lose your job unless you enforce the following law:

\If a person is drinking beer, then he must be over 20 years old."

The cards below have information about four people sitting at a table
in your bar. Each card represents one person. One side of a card tells
what a person is drinking and the other side of the card tells that person's age.

Indicate only those card(s) you de�nitely need to turn over to see if
any of these people are breaking this law.

drinking
beer

drinking
coke

25 years old 16 years old

Figure 2.2: Wason selection task with familiar social theme, from [45].

account for performance discrepancies on the Wason selection task|they suggested

that reasoning proceeds by recalling speci�c instances of past reasoning events that

are directly related to the context of the situation, and that those instances are used

to determine appropriate conclusions. Patricia Cheng and Keith Holyoak proposed a

broader theory involving pragmatic reasoning schemas[40], whereby people develop

schemasbased on past experiences and adapt those schemas to new reasoning sit-

uations. A schema may align with a context-dependent formal logical system. For

instance, experience with the United States drinking culture may lead to a schema

that e�ectively reasons about problems like the one in Figure 2.2, but that schema

can easily be adapted to other contexts involving granting permission and legal obli-

gation [40].

Finally, Phillip Johnson-Laird's mental models[78] theory is quite popular and

was used to model reasoning in Allen Newell's cognitive architecture, Soar [126]. This

36

theory presupposes that humans have domain-independent comprehension procedures

to construct concrete models of di�erent scenarios, and that they use those models

to produce deductions. These mental models are analogous to the �nite models that

logicians use for studying semantics and are in direct contrast to the syntactic proofs

produced by formal logical systems. The mental models theory has been used to

successfully predict systematic reasoning errors that humans make [79].

Note that while all these theories attempt to explain how novice reasoning works,

they say little about the cognitive skills one must develop to have expertise in theorem

proving. For instance, even if human reasoning were to follow from mental models

rather than adhere to a formal logical system, that does not mean it is pointless to

teach formal logical systems to students. In fact, one could argue the opposite|that a

student's lack of skill with deduction using logical inference rules justi�es teaching it.

However, having a correct theory of native reasoning would be very useful for building

an accuratestudent modelfor an intelligent tutoring system, to predict how students

will struggle and to develop pedagogical strategies to mitigate their misconceptions.

For instance, one conjecture is that many students use their native reasoning

when writing informal proof narratives, even if they have previously been taught to

reason using a formal logical system. If informal narrative is to continue to be used

as the preferred medium for students to communicate their proofs, then students

may need a better bridge between structured proofs from formal logic and informal

narrative proofs, to ensure they successfully transfer skill from the former to the

latter. Complexity Tutor might be that bridge.

2.4 Survey of systems and guiding principles

In this section, several systems are surveyed that help students construct proofs

in formal logical systems. The systems chosen for this survey are notable for their

historical importance and also because they are exemplars of di�erent design method-

37

ologies that have been applied to proof tutoring. These various methodologies include

controlled natural language (EXCHECK), cognitive modeling (GPT and ANGLE),

proof search (AProS), assertion level reasoning (
mega-Tutor), and machine learn-

ing (Deep Thought). Additionally, a formal logical system developed by David Gries

and Fred Schneider is covered, given its relevance to computer science.

2.4.1 EXCHECK and early work from Patrick Suppes' group

Patrick Suppes' research group at the Stanford University Institute for Mathe-

matical Studies in the Social Sciences was an early pioneer in Computer Assisted

Instruction (CAI) systems. Much of the initial focus from this group revolved around

developing systems that could aid students in learning to write logical proofs.

Their earliest system from 1963 was developed to teach rules of logic to elementary

school students. In an example [151] of how this system worked, students are asked

to prove that \Jack and Bill are not the same height" from the following numbered

assumptions:

1. If Jack is taller than Bob, then Sally is shorter than Mavis.

2. Sally is not shorter than Mavis.

3. If Jack and Bill are the same height, then Jack is taller than Bob.

The student could then type the commandDC 1.2 at the terminal, which would

apply the modus tollendo tollensinference rule to assumptions 1 and 2, to produce a

new assertion (assigned number 4):

4. Jack is not taller than Bob.

The student could then type the commandDC 3.4 to apply the same inference

rule to assumption 3 and the new assertion, producing the desired result:

5. Jack and Bill are not the same height.

38

Suppes' group then developed EXCHECK, a more ambitious system, which would

interactively verify proofs that students wrote. During the 1970's, EXCHECK was

used to teach numerous proof-based courses at Stanford University, including ele-

mentary logic (predicate calculus), axiomatic set theory, proof theory and probability

theory [105, 152]. EXCHECK was also a very modular system, and it was later

adapted to teaching topics unrelated to mathematical proofs, such as teaching the

Armenian language [105].

In verifying proofs, EXCHECK made use of both an internal theorem prover and

the computer algebra system, REDUCE [105].

EXCHECK was notable for its extensive language capabilities, which allowed stu-

dents to type assertions for their proofs using both symbolic expressions and natural

language statements [148]. For instance, EXCHECK would recognize the following:

For all x,y

if x is a set and y is a set then

For all z,

z is in x if and only if z is in y

EXCHECK also gave students the
exibility to type either a mathematical ex-

pression likef x : x neq x g = 0 or its natural language equivalent:

The set of all x such that x is not equal to x is empty .

The back-end was acontext-free languageparser with 700 grammar rules [147] and

corresponding macro templates to transform parse outputs to an internal representa-

tion, similar to the way modern compilers work. The proofs that students could write

using this context-free language would resemble proofs they might �nd in a textbook.

However, note that even with the 700 grammar rules, EXCHECK is not able

to recognize all natural language statements that might be written in a proof. For

39

instance, it is observed [148] that the system would not be able to recognize the

sentence, \Two sets are equal just in case they have the same elements." Students are

thus con�ned to a controlled natural language, a strict subset of a natural language

with unambiguous semantic interpretations. Students might struggle to learn the

precise rules of this language, which would potentially cause extraneous cognitive

load when they are constructing proofs.

Furthermore, considerable e�ort may be required to adapt a system like EX-

CHECK to new course topics, which would require adding new grammar rules to the

parser, even though philosophy professors and graduate students who are not profes-

sional programmers were able to successfully author content for the system [148].

2.4.2 The EPGY Theorem Proving Environment

The Education Program for Gifted Youth (EPGY) was a program o�ered by Stan-

ford University until 2013, when it was spun-o� as a start-up that ended up getting

purchased by McGraw-Hill and later abandoned [106]. EPGY provided college-level

computer-based distance learning courses to gifted K-12 students. The research be-

hind EPGY was a continuation of the earlier work conducted by Patrick Suppes'

group. Some of the courses o�ered by EPGY were proof-based and made use of the

EPGY Theorem Proving Environment [107]. This included courses in linear algebra,

Euclidean geometry and logic.

In the EPGY Theorem Proving Environment, students use a graphical interface to

construct Fitch-style diagrams of their proofs, as shown in Figure 2.3. Students can

search from a library of existing de�nitions, axioms and theorems that they might

want to use in their proof. To create individual assertions in the proof, students

use the EPGY Derivation System [130]. Students can also apply di�erent proof

strategies, including conditional proof, biconditional proof, proof by contradiction,

and proof by induction. For instance, the conditional proof strategy allows students

40

Figure 2.3: Euclidean geometry proof in the EPGY Theorem Proving Environment

to introduce a sub-proof (i.e., a lemma), having its own separate assumptionA and

goal G. Completing this sub-proof justi�es a new assertion of the formA ! G.

One of the main potential advantages of the EPGY Theorem Proving Environment

is that it is one of the only systems that attempts to verify the correctness of coarse-

grained proofs that skip extraneous proof steps students would be likely to omit. The

intent is to produce an experience for the students that is similar to how they would

normally construct proofs on paper.

The system attempts to accomplish this using a theorem prover, Otter [170], on

the backend to do inference resolution [107], but in a rather ad-hoc way. Otter is run

with a �xed timer of 5 seconds, to see if it can prove a given step in the student's

41

proof from the previous steps. If Otter is not able to prove the inference in the

allocated amount of time, the EPGY system assumes that the student's inference is

either incorrect or the student has not supplied enough steps in their proof.

The reason for placing the time limit on the theorem prover is that otherwise

it might accept a proof inference that is too coarse-grained, i.e., that the student is

making too big of a leap of logic. Nevertheless, using a timer is a very ad-hoc heuristic

for measuring granularity. Otter tries to prove inferences very di�erently from how

a human would prove them, as explained in Section 2.2. This is compounded by the

fact that Otter can only prove assertions in �rst-order logic, and the student proofs

are expressed natively in a multi-sorted logic, so assertions must be translated from

the multi-sorted logic to the �rst-order logic before Otter can deal with them [107].

The reason for using a multi-sorted logic is to be able to di�erentiate the types of

variables. For instance, in a linear algebra course, you might have some variables that

represent matrices, others representing scalars, etc.

Ultimately, when the system fails to verify a student's inference, it does not know

why it failed. Maybe the inference wasn't correct. Maybe the granularity was too

coarse. Maybe Otter just failed when it shouldn't, since no automated theorem prover

is foolproof. And when the system succeeds, it may know that the student's inference

is correct, but the system still has no sense of whether the student understands why

the inference is correct or not.

2.4.3 Cognitive tutors for geometry theorem proving

Cognitive tutors are intelligent tutoring systems that are designed from principles

of cognitive learning theories. John Anderson, a cognitive psychology researcher at

Carnegie Mellon University, pioneered the development of cognitive tutors based on a

series of cognitive theories he developed. The �rst of these theories was the Adaptive

Control of Thought (ACT) theory [7], which was followed by subsequent re�nements|

42

the ACT* theory [8] and the ACT-R theory [9]. The tutoring systems based on these

theories were very successful and led Anderson's research group to create a company

called Carnegie Learning, which sold a high school math curriculum based around

the tutoring systems that they developed for algebra and geometry. Hundreds of

thousands of students have been exposed to this curriculum. In 2007, about 10%

of high school math classes in the United States had used the Carnegie Learning

curriculum [169].

Cognitive learning theories presuppose that the mind learns and processes infor-

mation in accordance with a speci�ccognitive architecture|Allen Newell developed

this concept from his background in computer architecture [24]. Thus, research in

cognitive psychology notably shares many of the same principles that guide research

in arti�cial intelligence, with the distinction that the latter does not attempt to ac-

curately model the human mind.

2.4.3.1 ACT theories of cognition

ACT cognitive architectures are framed in terms of modularproduction rules.

Each production rule consists of acondition as well as anaction that can be performed

if that condition is met. To illustrate, consider the following production rule that was

presented [9] for the task of geometry theorem proving:

IF there exists Triangle ABC and Triangle DEF

and Edge AB is congruent to Edge DE

and Edge BC is congruent to Edge EF

and Edge AC is congruent to Edge DF

THEN conclude Triangle ABD is congruent to Triangle DEF

In this rule, the condition checks for the existence of two triangles and whether

their edges are congruent. The action is to determine that the two triangles are con-

gruent. The rule can be thought of as taking certain knowledge as input and producing

43

certain knowledge as output. Anderson refers to the input and output of a produc-

tion rule as declarative knowledge|loosely speaking, this is knowledge that people

can describe. In addition to declarative knowledge, there is alsoprocedural knowledge,

which is the kind of knowledge you may infer that someone knows by watching their

behavior. Production rules themselves are de�ned to represent procedural knowledge.

In his book [9], Anderson gives several justi�cations for theoretically di�erentiating

declarative knowledge from procedural knowledge. One example he gives is of a typist

who cannot explain the keyboard layout|they retain the procedural knowledge of

how to type but do not retain the declarative knowledge needed to describe where

the keys are located in relation to each other.

The claim made by Anderson is that complex cognitive skills are rendered by

following a sequence of production rules. The algorithm for producing this sequence

has three phases to it that run in a loop until a desired goal is reached. The �rst

phase ispattern matching, where each production rule is matched against available

declarative knowledge to determine if its conditions are met. The next phase iscon
ict

resolution, where one of the production rules that has its conditions met is chosen.

In the ACT-R architecture, a computational cost is determined for each rule in terms

of memory access and other criteria, and the rule with the least cost is chosen [9]. In

the �nal phase, one of the production rules is triggered, and its action results in new

declarative knowledge being produced.

ACT cognitive architectures are not the only systems that use production rules.

The idea of production systems can be traced back to Emil Post's work on term

rewriting [127], and other production systems have been used in cognitive theories

including PSG [114], OPS [56] and Soar [91, 115]. Unlike the ACT theories, these

other theories assume that procedural knowledge is the only kind of knowledge that

is permanent.

44

Notice that production systems can also be thought of as formal logical systems,

which were de�ned in Section 2.1.1. The production rules are analogous to inference

rules, and the declarative knowledge can be encoded in the proof steps and assumption

formulas. This implies that it's easy to construct an automated veri�er for any

theorem proving task that can be cognitively modeled in ACT-R.

Skeptics might wonder if a symbolic production rule architecture is in fact an

accurate representation of the mind, given that physical evidence of the brain suggests

it functions more like an analogue neural network. Anderson addresses this skepticism

by pointing out that the production rules of ACT-R might in fact be implemented at

a lower-level with a neural network, and he likens ACT-R to be similar to a high-level

programming language for the mind, explaining that the theory is well-supported by

psychological evidence regardless of lower-level implementation details [9].

2.4.3.2 Anderson's �rst tutor for geometry theorem proving

One of the early cognitive tutors that Anderson's research group developed was for

teaching geometry proofs [9]. Expert domain knowledge was modeled with production

rules that encoded valid inferences in the domain of geometry.

Figure 2.4 shows the interface of this tutoring system, which is using a graphical

structure to represent geometry proofs rather than the two-column format typically

taught in high school geometry classes. Anderson's motivation for using a graphical

proof representation was based on John Brown's principle of \reifying the problem

space" [37,41], i.e., making the abstract features of geometry problem solving concrete.

Thus, the graphical structure gives an explicit representation of the logical relation

between premises and conclusions, as well as the search process by which one hunts

for proofs. Students reported that they preferred this graphical proof format to the

normal two-column format [9].

45

Figure 2.4: Screenshot of Anderson's �rst geometry tutor, from his book [9]

With respect to this dissertation, the graphical proof structure is notable because

Complexity Tutor uses a similar structure to represent proofs, as explained in

Section 3.1.5.1. Note that there are some signi�cant di�erences. In Figure 2.4, the

direction of the arrow denotes a special meaning. If the arrow is pointed upwards, then

it representsforward-chaining from premises to conclusions. If the arrow is pointed

downwards, then it represents the reverse|backward-chainingfrom conclusions to

premises, i.e., �nding sub-goals that will prove a goal. Premises are always displayed

at the bottom of the proof and goals at the top of the proof, to keep these arrow

orientations consistent.

In comparison, Complexity Tutor does not explicitly distinguish backward-

chaining from forward-chaining in its interface. While students who useComplexity

Tutor can implicitly use either forward-chaining or backward-chaining as a strategy,

the arrows always lead from premises to conclusions.

46

It is possible that students who used Anderson's system may have been confused by

how the interface distinguished backward-chaining from forward-chaining. Anderson

reported that during his initial evaluation of the system in the 1985-1986 academic

year, almost all students except those with IQ scores over 130 had great di�culty

successfully applying the backward-chaining strategy. The following year, he removed

backward-chaining as a feature from the system entirely [9]. Interestingly, other

researchers [135] found no evidence that students struggle with backward-chaining in

general, so Anderson's interface may be to blame.

2.4.3.3 A New Geometry Learning Enviornment (ANGLE)

ANGLE was a cognitive tutor developed by Kenneth Koedinger for his Ph.D.,

which was intended to be an improved version of Anderson's earlier geometry tutor.

Koedinger used a di�erent set of production rules in his expert model|his key insight

was that when geometry experts are constructing a geometry proof, they cognitively

develop proof sketches that are abstractions of concrete problem solutions. His Ph.D.

dissertation [88] de�ned what he refers to as the Diagram Con�guration Model to

represent these proof sketches, where diagram con�guration schemata are used to

generate a proof plan for a given problem at an abstract level.

Borrowing terminology from Allen Newell and Herbert Simon [117], Koedinger

explains in his dissertation that a givenproblem domain may have multiple pos-

sible problem spaces. For the domain of geometry theorem proving, theexecution

spacerefers to the search space of all possible geometry proofs that can be generated

from the given assumptions for a problem. Koedinger points out that this execution

space has a huge combinatorial blow-up when searching for proofs|in one instance,

applying only three levels of geometry inference rules led to 100,000 possibilities.

Anderson's original geometry tutor searched for solutions inside this execution space

47

and used heuristics that were psychologically motivated by ACT* theory to guide the

search.

However, there may be a separateabstract problem solving spacewhich is di�erent

from the execution space and where the actual planning of the proof occurs. This

space would have signi�cantly less combinatorial blow-up, and it is presumed that

a geometry expert gets pro�cient in constructing geometry proofs by learning to

navigate this abstract problem solving space. The evidence to support the existence of

such a space for geometry problem solving comes from the observation that geometry

experts skip steps when articulating how they solve a problem [88]. From prior

research [52], it was known that an expert's verbalizations are likely to accurately

re
ect their working memory states. Therefore, this is evidence that the geometry

expert is working in a problem space that allows them to skip steps in the execution

space when planning the proof.

When steps from the execution space are skipped in the plan of a proof, those

omitted steps can fall into two categories|safe abstractionsand risky abstractions. A

safe abstraction is an omitted step that provides details that will always be irrelevant

to �nding a correct proof. For instance, Koedinger found that it was always safe to

omit details that distinguish between a congruence statement and an equality operator

statement [88]. A risky abstraction, on the other hand, abstracts away details that

when ignored are sometimes critical to arriving at a correct solution [117].

In addition to skipping steps, it has been found that expert problem solvers often

collapse multiple consecutive steps into a single step [10, 93]. These combined steps

are referred to asmacro-operators[90], and Koedinger noticed that geometry experts

follow a regular pattern in the macro-operators they use [88].

Koedinger was able to codify safe abstractions, risky abstractions and macro-

operators by having experts verbalize their thinking process while solving geometry

problems. From this research, Koedinger reconstructed production rules for the ab-

48

stract problem solving space of the geometry experts, which in turn led to the Diagram

Con�guration Model that ANGLE uses to tutor students. Hints given to students

using ANGLE encouraged them to �rst search for a coarse-grained proof plan with

the help of diagram con�guration schemata and then re�ne the proofs to calculus

level [88].

Empirical research was inconclusive about whether ANGLE was an improvement

over Anderson's earlier geometry tutor. Both systems provided signi�cant learning

gains for the students but there was no statistically signi�cant di�erence between

students using ANGLE versus the older system [88].

2.4.4 Automated Proof Search (AProS)

Wilfried Sieg, a philosophy professor at Carnegie Mellon University, has a research

group that has been active developing a tutoring system since 1985, to help students

learn to construct proofs in formal logic [141]. The �rst incarnation of this work

was referred to as the Carnegie Mellon Proof Tutor, and it later evolved into the

Automated Proof Search (AProS) project, when Sieg began to investigate adding

automated proof search capabilities to his system. Sieg sought to model not just how

proofs are veri�ed but also how they are produced, in order to provide more intelligent

strategic guidance to students using his system.

Tutoring systems that only utilize a proof veri�er for a formal logical system

lack the insight necessary to provide hints or guidance about the process one should

follow to obtain a proof. However, in general, it is not easy to a�ectively model or

automate how humans discover proofs. Recall from Section 2.2 that most machine-

oriented automated theorem proving techniques, such as resolution, search for proofs

in a very di�erent way than a human would. As such, even when an automated

theorem prover is able to verify the correctness of an assertion, it generally provides

49

no strategic guidance that would help a student learning proof construction �gure

out how to construct a proof of the assertion on their own.

On the other hand, the AProS system searches for proofs in a more human-oriented

way. The formal logical system AProS uses, referred to as anintercalation calculus,

has natural deduction rules that have been restricted in how they can be applied, in

order to improve e�ciency of the search process [142]. Natural deduction has two

kinds of inference rules, referred to asintroduction rules and elimination rules. When

searching for a proof, inferences can be made in either the forward direction, leading

from assumptions, or in the backward direction by applying inverse inference rules

to goals. However, intercalation calculi are restricted so that only elimination rules

can be applied in the forward direction, whereas only inverted introduction rules can

be applied in the backward direction [142]. This leads to proofs that adhere to a

normalization property for natural deduction that Dag Prawitz discovered [128].

Additionally, AProS has the following heuristic ordering ofproof tactics it follows

in searching the intercalation calculus proof space for a proof [124]:

1. Extraction { Given a premise and a goal that is a subformula of the premise,

recursively apply all elimination rules to the premise until the goal formula is

reached.

2. Inversion { Apply one introduction rule backwards to a goal formula. Does

not apply to atomic formulas.

3. Cases { Apply disjunction elimination to a disjunction that is strictly positively

embedded in a premise, i.e., proof by cases.

4. Refutation { Apply negation elimination for a selected goal formula, i.e., proof

by contradiction.

Later work added rules and heuristics for set theory inferences to AProS, which

can prove Godel's incompleteness theorems and that
p

2 is not rational [143].

50

Douglas Perkins, one of Sieg's students, integrated AProS into a tutoring system

for an online \Logic and Proofs" course o�ered through Carnegie Mellon's Open

Learning Initiative [124]. The course covers both propositional and �rst-order logic,

and is intended for novices without experience in formal logic. At Carnegie Mellon,

it is o�ered as an elective requiring no prerequisites. In this course, students have

exercises where they construct proofs in the Carnegie Proof Lab, an environment that

allows them to construct Fitch-style diagrams1 of natural deduction proofs.

When students are stumped about how to proceed with their proof, the tutoring

system encourages them to consider using the four tactics mentioned above. Thus,

students are being taught the same strategy that is being used to automate the proof

search. However, students are not required to follow the AProS search strategy, and

can apply any valid inference rule from natural deduction [124].

Perkins implemented the following three modes of tutoring [124]. In the �rst mode,

students are not given any strategic guidance but the tutor gives them hints about

what tactics can be applied in a given situation. The second mode is a \walkthrough"

mode, where AProS constructs a proof for the problem a student is trying to solve,

and then provides step-by-step guidance from beginning to end for constructing the

proof. The third mode is the most interesting, because it dynamically generates a hint

for a student who has produced a partial proof. To do so, the student's partial proof

must �rst be put in Prawitz's normalized form and culled of inference rule applications

that would interfere with the AProS search procedure. Then, AProS completes the

proof and a recommendation is made to the student for how to proceed.

2.4.5 The Dialog project and
 mega-Tutor

Dialog was a project undertaken by researchers at Saarland University, which

had the goal of producing a mathematical proof tutoring system that could converse

1Stanis law Ja�skowski's convention [77] of putting boxes around subproofs is used.

51

with students entirely in natural language [28]. Given the ambitious scope of the

project, the research was exploratory in nature and the goal of producing a full

tutoring system with natural language capabilities was never actually realized.

Nevertheless, the research stands out as one of the only attempts to build a tutor-

ing system that could analyze informal proof arguments, not just those constructed in

formal logical systems. In that sense, its ambitions are closer to this dissertation than

any other work that has been cited so far. However, theDialog researchers were

looking for a way to map informal narrative arguments to a formal logical system,

whereas this dissertation introduces a novel way to tutor theorem proving without a

formal logical system. Thus, their approach was very di�erent.

A main contributions produced by the Dialog project were results from two

Wizard-of-Oz experiments|participants in these experiments believed that they were

interacting with a fully automated tutoring system, when in fact there was a human

expert in the background controlling the responses that the system produced. As

reported by Marvin Schiller, one of the researchers involved, the motivation for con-

ducting Wizard-of-Oz experiments was to collect empirical data on natural language

proof tutoring that would inform future development of the system [136].

The �rst experiment involved 24 student subjects using the fake tutoring system.

Data from this experiment produced a corpus of German dialogues about naive set

theory proofs [28]. The subjects were asked to think aloud while working and they

were video recorded [136]. Even though the domain of interaction had been limited to

naive set theory proofs, the researchers were surprised to discover an \overwhelming

list of key phenomena raising interesting and novel research challenges" [28] that

resulted from the experiment. This motivated the second experiment.

The second experiment, described in Schiller's thesis [136], involved 37 students

subjects who worked on proof problems involving binary relations. On the backend,

52

those 37 subjects were split between four experts who were tasked with evaluating

each proof step that subjects produced according to the following criteria:

Correctness | the expert could label the proof step as either \correct", \partially

correct" or \incorrect".

Granularity | the expert could label the granularity of the proof step as either

\appropriate", \too coarse-grained" or \too detailed".

Relevance | the expert could label the relevance of the proof step as either \rele-

vant", \irrelevant" or \limited relevance".

In conjunction with the Wizard-of-Oz experiments,
mega-Tutor was developed

by Dominik Dietrich as a prototype tool for automatically diagnosing the correctness

of proof steps in student proofs [47,136]. This tool uses the
megaCoRe proof planning

system to validate the correctness of an assertion in a proof, in the same way that the

EPGY Theorem Proving Environment used Otter to validate assertions. However,

there's a very important distinction between Otter and
 megaCoRe. Whereas Otter

uses resolution (Section 2.2) to attempt to prove �rst order deductions,
megaCoRe

uses assertion level reasoning (Section 2.1.3.1) inferences, which are closer in granu-

larity to the assertions that students would make in their proofs.

A sample of student proof attempts from 17 tutorial dialogues produced in the

second Wizard-of-Oz experiment were transcribed from natural language into proof

steps in a formal language that could be evaluated by
mega-Tutor. This resulted

in 147 proof steps. Then,
mega-Tutor ran a depth-limited breadth-�rst searchover

the CoRe proof space to attempt to reconstruct a CoRe proof tree for each proof

step that students produced. A depth limit of 4 on the breadth-�rst search proved

su�cient for correctly classifying 141 or the 147 proof steps that students made [27].

It should be noted that while this result is very promising,
megaCoRe is likely

a less robust automated theorem prover than the ones mentioned in Section 2.2.

53

Schiller notes that unlike most well-known theorem provers,
megaCoRe has never

been entered in the CADE Automatic Theorem Proving System Competition [136].

Schiller used the proof trees constructed by
mega-Tutor and the granularity

labels assigned by experts in the second Wizard-of-Oz experiment to build a machine

learning classi�er for proof granularity [136]. Thus, correctness and granularity could

now be assessed for some proofs.

This prototype proof assessment functionality from
mega-Tutor and Schiller's

granularity classi�er was incorporated into ActiveMath, an existing web-based learn-

ing platform developed at Saarland University. A screenshot of a proof problem in

ActiveMath is shown in Figure 2.5.

For each proof step, students are given multiple choice options to choose one of

four assertion types, and a formula input �eld where they can type a symbolic formula

representing the assertion. The four options for assertions types do the following [136]:

The \Let..." option allows students to create a new de�nition.

The \Then..." option allows students to create an inference.

The \It holds..." option allows students to introduce a lemma.

The \It's to be shown that..." option allows students to demonstrate a subgoal,

i.e., backwards inference from goals.

Students can click the \Hint" button in Figure 2.5 to receive a hint for the proof

step they are working on. According to Schiller's Ph.D. thesis, the hints that students

receive are generated by
mega-Tutor using its \proof search/strategy mechanism"

[136]. While this is rather vague in detail, it likely attempts to complete the student's

proof as AProS does. A later paper by Serge Autexier, Dominik Dietrich and Marvin

Schiller explains their ideas for using proof strategies to adaptively provide hints [18].

As can be seen in Figure 2.5, di�erent levels of hints are provided ranging from \Try

to work backward from the goal" to a speci�c bottom-out hint telling the student

exactly what to do.

54

Figure 2.5: Screenshot of proof tutoring environment in ActiveMath, from Marvin
Schiller's Ph.D. thesis [136].

2.4.6 Deep Thought

Deep Thought is an intelligent tutoring system, developed by the Game2Learn Lab

at North Carolina State University, for teaching formal proofs to computer science

55

Figure 2.6: Screenshot of Deep Thought, from the Game2Learn Lab website [21].

students in their discrete math classes. Figure 2.6 shows a screenshot of the interface

of Deep Thought, which uses both a traditional column format and graphical format

for representing proofs.

What is most notable about Deep Thought compared to the other systems men-

tioned in this survey is that it uses a data-driven approach to tutoring proofs. The

earliest version of Deep Thought was not an intelligent tutoring system, but merely

a web-based interface for students to work on logic problems. Data from the student

interactions with the earliest version was recorded, and that data was used to a

develop aBayesian knowledge-tracing modelto be used with future versions [112].

This model was used to choose problems for students to work on that would have the

right di�culty level based on their performance.

Later, Ti�any Barnes and John Stamper used machine learning on many semesters

of previous data to automatically generate hints for students [22]. They used that

data to develop aMarkov decision process (MDP)for each problem, representing all

56

paths students have taken in trying to solve it|each state represents a partial proof

construction a student produced, and each transition is a possible action a student

has taken. Di�erent reward functions were used in the MDP based on the pro�le

of the student. For instance, a \least error-prone" reward would be used for at-risk

students. Based on this reward, a desirable state for the student to go to would be

chosen using the MDP. For that state, there were di�erent levels of hints to be given:

Goal-setting hint | indicate a goal statement to derive.

Rule hint | tell the student what rule to apply next.

Pointing hint | indicate the assertions where the rule can be used.

Bottom-out hint | tell the student both the rule and the assertions to combine.

If a student landed in a state that was not part of the MDP, then the hint button

would be disabled. At that point, the tutoring system was not able to provide strategic

help, since it does not have proof search capabilities like AProS.

2.4.7 Gries and Schneider's formal logical system for computer science

Most of the work mentioned thus far concerns the teaching of proof topics outside

of theoretical computer science, such as formal logic and geometry|topics where the

usage of formal logical systems is prevalent. The formal logical system developed

by David Gries and Fred Schneider [64, 65], on the other hand, is uniquely relevant

in relation to the goals of this dissertation, because its design was pedagogically

motivated for teaching an entire course in discrete mathematics, the foundation on

which theoretical computer science is built.

Their system is a predicate calculus that gives prominence to equivalence relations

over the implication relations used in classical formal logical systems. It is based on

earlier research developingequational logics, such as the work of Edsger Dijkstra and

57

Carel Scholten [48]. These logics have been developed by computer scientists for the

formal analysis of computer programs [63]. The formalization of an equational logic,

in terms of soundness and completeness, is shown in this paper [66].

In a technical report [65], Gries and Schneider suggest that their system should

be intuitive to college students since it builds o� of students' pre-existing familiarity

with algebraic equation manipulation, which is taught in grade school. They also

argue that their system produces proofs that are simpler and more straight-forward

than the narrative proofs found in many textbooks. As an example, they give the

following proof, using their equational logic, of the set theory propositionA[(B \ C) =

(A [B) \ (A [C), i.e., that union distributes over intersection:

v 2 A [(B \ C)

= v 2 A _ v 2 B \ C (by De�nition of [)

= v 2 A _ (v 2 B ^ v 2 C) (by De�nition of \)

= (v 2 A _ v 2 B) ^ (v 2 A _ v 2 C) (by Distributivity of _ over ^)

= (v 2 A [B) ^ (v 2 A [C) (by De�nition of [, applied twice)

= v 2 (A [B) \ (A [C) (by De�nition of \)

Then by the axiom of Extensionality from their logic, it follows that A [(B \ C) =

(A [B) \ (A [C).

In contrast, standard textbook proofs [72, 95] for the same proposition require

proving two separate cases|A [(B \ C) � (A [B) \ (A [C) and (A [B) \ (A [C) �

A [(B \ C). The equational logic removes the need to prove these cases separately.

Furthermore, Gries and Schneider argue that textbook narrative proofs are lengthened

with unnecessary prose that obscures the proof strategies a student should learn|

strategies that are made explicit with their formal logical system.

58

Gries and Schneider developed a textbook [64] for teaching discrete mathematics|

the topics of set theory, graph theory, number theory, combinatorics, and the analysis

of programs with Hoare formalizations, are all developed in this textbook, using their

formal logical system. Using this textbook, Cornell University's Computer Science

Department o�ered a discrete mathematics course that taught proofs using the sys-

tem. Of the 70 students who took this course during the Spring 1993 semester at

Cornell, 65 wrote \overwhelmingly positive" comments about it [65].

More recently, Wolfram Kahl, who also teaches courses using Gries and Schnei-

der's formal logical system, developed an automated proof veri�er for it called Cal-

cCheck [83]. Kahl's reason for creating CalcCheck was to give students immediate

feedback on the proofs they construct, which is also a central motivation for the

development ofComplexity Tutor . However, one potential advantage ofCom-

plexity Tutor over the approach of using Gries and Schneider's formal logical

system with an automated proof veri�er like CalcCheck, is thatComplexity Tu-

tor does not require instructors to radically change how they teach their courses.

Whether or not using a formal logical system like Gries and Schneider's is a superior

way to teach theoretical computer science topics than using narrative proofs, it is

certainly not the norm. Complexity Tutor was designed to be useful to students

even when instructors are not willing to change the way they present the material

they are teaching.

59

CHAPTER 3

ARCHITECTURE AND SYSTEM DESIGN CHOICES

Complexity Tutor currently has two modules|the Theorem Proving Environ-

ment and the Algorithm Environment. This chapter introduces both of these modules

and explains the motivation of their design.

3.1 Theorem Proving Environment

The Theorem Proving Environment recasts the task of theorem proving as a kind

of puzzle, which can be solved using a simple drag-and-drop interface. A collection

of assumptions and assertions are given as \puzzle pieces" to be used to construct a

proof. An assumption is a statement considered valid without need of further sub-

stantiation, such as an axiom. An assertion is a statement that needs substantiation

before it can be considered valid. Assertions may be validated from assumptions and

other assertions.

The interface (Figure 3.1) consists of a Proof Space, an Assumption Box and an

Assertions Box. Interactions with the interface can be performed entirely with a

computer mouse or similar pointing device. Alternatively, the interactions could be

adapted in a straight-forward manner to a touch screen interface like a tablet.

3.1.1 Proof Space

The Proof Space is a canvas �lled with statements (assumptions and assertions)

and arrows connecting them to each other. Next to each statement is a status indi-

cator, represented by a dot. There are three possible statuses for each statement|

60

Figure 3.1: Screenshot of completed Pizza Proof Problem in the Theorem Proving
Environment. The Assumptions Box is on the top left, the Assertions Box is on the
bottom left, and the Proof Space is on the right.

justi�ed, unjusti�ed and erroneous|indicated respectively by a complete dot, incom-

plete dot or hashed dot, as illustrated in Figure 3.2. The justi�ed status indicates that

a statement has already been proven or that it does not need to be proven because

it is an assumption. The unjusti�ed status indicates that a statement may or may

not be provable but has not yet been proven. The erroneous status indicates that a

statement is known to be incorrect or nonsensical. Each dot is also labeled with a

number, which is a unique identi�er for its associated statement.

An arrow pointing from a given statementA to a given statementB indicates

that statement A is being used to partially or fully justify statement B .

The visual arrangement of the Proof Space can be altered by dragging statements

to di�erent locations in the Proof Space. If a statement is dragged past the right

or bottom borders of the Proof Space, then scroll bars will automatically appear,

allowing the Proof Space to be scrolled.

61

Figure 3.2: Status indicators used in the Theorem Proving Environment

3.1.2 Assumptions Box

The Assumptions Box contains a list of assumptions that the Theorem Proving

Environment will allow to be used for the current proof problem that is being working

on. This would include assumptions that pertain to the speci�c problem, and may

also include assumptions derived from facts that have been previously taught, i.e.,

de�nitions, theorems and lemmas from the course textbook, or even claims that have

been proven in previous exercises.

Assumptions chosen from the Assumption Box can be dragged onto the Proof

Space, where they will immediately receive a justi�ed status indicator.

3.1.3 Assertions Box

The Assertions Box contains a list of assertions that the Theorem Proving En-

vironment will allow to be used for the current proof problem that is being worked

on. One of the assertions corresponds to the goal of the problem, i.e., the statement

that needs to be proved to solve the problem. Of the remaining assertions, some may

be useful in the endeavor of proving the goal assertion, once justi�ed. Others can be

justi�ed, but won't be useful for proving the goal assertion. Finally, there are some

assertions that cannot be justi�ed.

62

Assertions chosen from the Assertions Box can be dragged onto the Proof Space,

where they will immediately receive either an unjusti�ed status indicator or an erro-

neous status indicator.

For a given problem, there may be a very large pool of possible assertions that can

be used|potentially hundreds. The Theorem Proving Environment can be con�gured

so that initially, the Assertions Box only reveals a limited selection of these possible

assertions. As progress is made by the student over time, more assertions get unlocked

and added to the Assertions Box|i.e., using speci�c assumptions and assertions in the

Proof Space triggers the unlocking of other assertions. The purpose of this feature is

to keep students from being overwhelmed with having to consider too many assertions

at once.

3.1.4 Demonstration of solving a simple proof problem

To illustrate how a student would use the Theorem Proving Environment, consider

the following problem:

\Emily and Catherine each have their own pizza. Using the given assump-

tions, prove that Emily is not lactose intolerant."

These are the assumptions for the problem:

1. "Either Catherine's pizza or Emily's pizza, or both, has pepperoni, but Cather-

ine's pizza does not have cheese."

2. "Any pizza that has pepperoni also has cheese."

3. "If someone is lactose intolerant, then their pizza does not have cheese."

Figure 3.1 is a screenshot of the completed proof for this problem in the Theorem

Proving Environment.

63

3.1.4.1 Choosing assumptions and assertions

After studying the three assumptions and the assertions, in Figure 3.3, suppose

the student decides to drag the assumption \Either Catherine's pizza or Emily's pizza,

or both, has pepperoni, but Catherine's pizza does not have cheese." into the Proof

Space. Notice that when this assumption is moved into the Proof Space, the text of

the assumption appears with a dot \1" adjacent to the text. Also notice the text of

the assumption is displayed in bold print to distinguish it from assertions which are

displayed in regular print.

The student then determines what should follow this assumption. The student

peruses the list of assertions, in Figure 3.3, decides the assertions \Either Catherine's

pizza or Emily's pizza, or both, has pepperoni." and \Catherine's pizza does not

have cheese." could follow the assumption in the Proof Space, and drags these two

assertions into the Proof Space. The text of the two assertions appear with partial

dots \2" and \3", indicating that the associated assertions need substantiation to be

justi�ed. When these assertions are justi�ed, the partial dots will change to complete

dots.

3.1.4.2 Justifying assertions

To see if the belief that the two assertions follow the assumption was correct, the

student left clicks dot \1" (assumption) followed by a left click of partial dot \2"

(assertion). An arrow will appear to connect the dots with the arrow pointing at dot

\2" as shown in Figure 3.4. Also notice that the partial dot \2" has changed to a

complete dot \2" indicating the assertion was justi�ed by the connection with dot

\1". The student repeats this process to connect dots \1" and \3". As shown in

Figure 3.4, an arrow connects the two dots and the partial dot \3" is changed to a

complete dot indicating the assertion associated with dot \3" was substantiated and

justi�ed by the connection.

64

Figure 3.3: Moving assumptions and assertions into the Proof Space, assumptions
are indicated by complete dots and assertions are indicated by partial dots.

Notice in Figure 3.4 that dots \2" and \3" have moved from their original locations

shown in Figure 3.3. The Theorem Proving Environment permits the student to drag

the dots to di�erent locations in the Proof Space to arrange the proof spatially in the

way that makes the most sense to him/her.

Also notice the text associated with dot \3" is not shown in Figure 3.4. The

Theorem Proving Environment allows the student to make the text associated with a

dot disappear and reappear by double clicking the dot. This feature allows the student

to hide the text of dots they are not considering at the moment. This can reduce

cognitive load and promote better focus and e�ciency for the student to solve the

part of the problem they are currently working on [38]. Additionally, when students

hover their mouse pointer over any dot, it will intermittently display the associated

assertion, if it has been hidden.

65

Figure 3.4: Connecting the dots, validated assertions become complete dots, toggling
text and relocating dots.

3.1.4.3 Completing the proof

The student continues selecting assertions and assumptions, moving them into

the Proof Space, and connecting them until the proof is completed. The proof is

completed when the goal assertion \Emily is not lactose intolerant" is justi�ed (its

partial dot has been converted into a complete dot) and all assertions leading to

the goal assertion have also been justi�ed. Notice that Figure 3.1 shows the goal

assertion dot \4" and all of the other dots connected to it are complete dots. Dot

\13" remains unjusti�ed, but that is because that assertion was never needed for the

proof. Complexity Tutor will also display a message on the computer screen that

the proof has been successfully completed.

Notice the remaining assertions in the Assertions Box even after the proof is

completed in Figure 3.1. These assertions aredistractors, unnecessary to complete

the proof. Some of the distractors are valid assertions that can actually be justi�ed in

66

the proof space, but will lead down paths that do not connect with the goal. Others

are \bugs" that get denoted with hashed dots when dragged into the proof space.

The latter could be used by instructors to correct common misunderstandings that

students might have.

3.1.5 Comparison to standard proof writing exercises

Typically, in a theoretical computer science or math course, students are assigned

problems where the task is to write a proof from scratch. This task has notable

di�erences from the proof construction puzzle task presented by the Theorem Proving

Environment, demonstrated in Section 3.1.4. A key di�erence is that unlike normal

proof writing, the Theorem Proving Environment presents students with a list of

possible assertions to be used in constructing the proof.

However, providing the student with pre-formed assertions useful to the proof

should reduce extraneous cognitive load. Cognitive load theory researchers recom-

mend substituting worked examples and completion problems in place of conventional

problem solving tasks. A completion problem is one where a partial solution is pro-

vided to the student with missing pieces that the student must determine. The

recommendation is based on the theory that the reduced extraneous cognitive load

of worked examples and completion problems leads to more e�ective learning than

having the student do the equivalent conventional problem solving task [155]. Sup-

port for this theory has been found by education researchers in a number of di�erent

subjects, including algebra [43, 154], geometry [121, 139], statistics [120], and pro-

gramming [157,160,161].

Computer science education researchers have looked at Parsons Problems [122]

as an example of a type of completion problem that could be used to reduce the

cognitive load of learning programming [51]. Parsons Problems are puzzles, where

students are given blocks of code that they need to rearrange to create a program

67

with desired functionality. This is analogous to a proof puzzle, where the students

would be given assertions that they need to rearrange to form a proof. A study found

a strong correlation between the ability to solve Parsons Problems and the ability to

correctly write code from scratch, and concluded that these tasks likely require the

same skills [46]. The authors of that study in fact suggested that learning to write

mathematical proofs might bene�t from an approach similar to Parsons Problems.

3.1.5.1 Proofs as graphs

Proofs constructed in the Theorem Proving Environment are not expressed in the

narrative structure that is the norm for mathematical discourse. Rather, they are

expressed visually as inference graphs, which explicitly show the implication relations

between di�erent assertions. Yet, there are reasons to believe that it is pedagogically

superior to train students to construct proofs graphically.

When an expert is constructing a proof, cognitively it is �rst represented as a

graph of inferences, and then subsequently that graph is mapped onto a narrative

argument. For students who are learning to construct and understand proofs, this

additional step also adds a layer of extraneous cognitive load.

Furthermore, when a student is only taught to write proofs in the
ow of a nar-

rative, they are more likely to view proof construction as a linear process, where by

a series of deductive rules are applied in sequence starting from the assumptions. In

comparison, the Theorem Proving Environment encourages students to think non-

linearly about proofs, and move away from thinking that the steps of a proof need to

be produced in the order they appear in narrative. With this interface, it is just as

easy for a student to work forward from the initial assumptions in their proof as it

is to work backward from the goals. Bi-directional search is a proof strategy which

alternates between working forward from assumptions and backward from goals|it

68

has been proposed as a cognitive model for how skilled geometry students produce

proofs [6].

The student can even start out by trying to prove a lemma that might at �rst

seem unrelated to the initial assumptions and goals, but for which the student thinks

it might be helpful later. If the student gets stuck at any point in the part of the

proof they're working on, they can switch to working on another part of the proof.

This means that the student is less likely to give up out of frustration. The freedom of

exploration encouraged by the Theorem Proving Environment may also lend itself to

the advantages witnessed in thegoal-free e�ect, a principle from cognitive load theory

that demonstrates learners are more e�ective when they are deriving knowledge from

a problem without concern for attaining a particular goal [155].

Others have seen the bene�t of representing proofs as inference graphs. Two

intelligent tutoring systems for geometry proofs described in Section 2.4.3, GPT [5]

and ANGLE [89], use an interface similar to the Theorem Proving Environment to

construct proof graphs. The Deep Thought [112] system described in Section 2.4.6

also uses a graphical representation of proofs.

In a study of geometry students in Taiwan, students used a geometry software

called MR Geo, where they could interact with multiple representations of geometry

proofs, including both a formal proof representation similar to the two-column format

often taught in high school, and a graphical representation where the proofs were

visualized as trees. The students in the study were divided into three groups based

on a pre-test|high-achievement, medium-achievement and low-achievement. The

study found that while the high-achievement and medium-achievement groups found

equal comfort with proof tree representation and the formal proof representation, the

low-achievement group strongly preferred the proof tree over the formal proof [168].

This is evidence that the students who struggle the most are also most likely to bene�t

from a proof construction framework that expresses proofs graphically.

69

Cong-Cong Xing, a computer science educator at Nicholls State University in

Louisiana, used a similar graphical proof format to teach set theory in a discrete

math course [171]. Prior to the introduction of graphical proofs in his course, his

experience was that his students failed to understand narrative set theory proofs, due

to the fact that his students had limited mathematical ability and limited background

with English. After the introduction of the graphical format, he reported that he got a

lot of positive feedback from students and that learning outcomes were improved [171].

Finally, there is also a technical motivation for the design choice of using graphs

to represent proofs in the Theorem Proving Environment. Representing proofs as

graphs makes the inferences in the proof very explicit, not only to the learner but

also to the computer that is tutoring the learner. A signi�cant problem with using

narrative discourse structure to represent proofs is that natural languages permit a

lot of ambiguities. A single sentence in English can correspond to many di�erent

valid syntactic parse trees, each with completely di�erent semantic interpretations.

On top of that, when you look at larger pieces of discourse such as a narrative proof,

anaphora resolution becomes a real challenge. Anaphora resolution is the problem

of matching references of discourse elements with the earlier discourse elements they

refer to. For instance, if the student uses the pronoun \it" in a proof, it might be

very ambiguous what \it" refers to.

Writing a proof that is unambiguous is di�cult when there are many things in

the proof that may need to be referenced { the analogy to anaphora resolution would

be having a programming language with only a �xed number of local variables you

can refer to at any time. Exclusively using the pronouns of English or any other

natural language to describe anything su�ciently complex in an unambiguous way is

not much di�erent than writing a complex computer program in assembly language

that only uses a limited number of hardware registers, and swapping back and forth

between those registers to access everything you need to reference.

70

Anaphora resolution has turned out to be a very di�cult problem for compu-

tational linguists to address [110], and so the state-of-the-art in natural language

processing (NLP) is still far from being able to fully process even technical discourse

like mathematical proofs [173], where a well-trained writer will try to avoid ambigui-

ties. Of course, students tend to not have much experience in mathematical writing,

and as a teaching assistant, the author of this dissertation found that their proofs

often have so many anaphora ambiguities that even when being read by a human

who has complete contextual knowledge of what they are trying to argue, it can at

times still be hard to discern what they are trying to say. It is therefore fruitless to

even think about using NLP to have a computer process student discourse of proofs,

because NLP cannot be expected to ever be better than human understanding of

natural language, and often students write proofs that are di�cult even for a human

domain expert to understand.

One alternative to natural language that was brie
y considered forComplexity

Tutor was having students specify their proofs in acontrolled natural language

(see [58,101,123,137,138,172] for examples). A controlled natural language is a subset

of a natural language (such as English), where every sentence you can construct

has one unique and unambiguous semantic interpretation. However, this idea was

rejected, not only because the learning curve of students learning such a language

might be rather steep, but because of the technical challenges in developing such a

language.

It is the belief of the author that while the Theorem Proving Environment has

students constructing proofs in a format that is very di�erent from how they will

see those same proofs presented in their textbooks and lectures, this does not hinder

either the pedagogical goal of helping a student produce and comprehend proofs, or

the goal of helping them understand the course material. Instead, it should actually

bene�t those pedagogical goals, since it removes the writing barrier.

71

3.1.6 Requirements for domain knowledge representation

For each given problem, the domain knowledge used by the Theorem Proving

Environment to help the student with their proof can be formally represented as a

directed hypergraph.

The vertices of this hypergraph represent all possible assertions and assumptions

that can ever be used in proofs that can be constructed in the Theorem Proving

Environment for the given problem. One vertex will be thegoal vertex, corresponding

to the assertion that must be proved for the student to have completed the problem.

Some assertions are labeled as being erroneous. An erroneous assertion may infer

non-erroneous assertions, but it may not be inferred by non-erroneous assertions.

The hyperarcsof the hypergraph represent inference relations. Suppose there are

assumptions and assertions represented by verticesA, B , C, D, E, and F . The

domain expert might want to represent that the assertion corresponding toA can

be justi�ed by the assumptions and assertions corresponding toB, C, and D, and

additionally this same assertion can alternatively be justi�ed by assumptions and

assertions corresponding toD,E, and F . This would be represented by two distinct

hyperarcs, f Ag ! f B; C; D g and f Ag ! f D; E; F g. In general, a single hyper-

arc represents that a given assertion can be justi�ed by a set of assumptions and

assertions.

It should be noted that the current implementation of the Theorem Proving En-

vironment uses a more restricted representation of knowledge. This restricted rep-

resentation does not permit there to be more than one way to justify any assertion.

So for instance, iff Ag ! f B; C; D g was a hyperarc, then there would be no other

hyperarcs that also containf Ag as thesource vertex. This restricted representation

can also be modeled by a simpledirected graph, where if the assertion corresponding

to A can be justi�ed by the assumptions and assertions corresponding toB, C, and

D, then the graph contains arcsA ! B , A ! C and A ! D.

72

3.1.7 New features added to the Theorem Proving Environment after

preliminary experimental testing

Two new major features were added to improve the Theorem Proving Environment

after preliminary experiments evaluatingComplexity Tutor had been conducted

during the Fall 2016 and Spring 2017 semesters. This section describes both of these

features, which were designed to increase the pedagogical utility ofComplexity

Tutor and to decrease extraneous cognitive load for its users.

3.1.7.1 Visual hint mechanism for coarse-grained inferences

Recall the notion ofproof granularity discussed in Section 2.1.4. While it's easy

for the domain expert or whoever authors problems forComplexity Tutor to

choose the level of proof granularity that will be required for a given problem, the

granularity level must still be �xed, and currently the Theorem Proving Environment

rigidly requires all students to construct proofs at that �xed level of granularity.

Future work will look at adapting proof granularity expectations to the needs of

individual students, by learning a student model based on a student's prior perfor-

mance (Section 6.6). However, in the mean time, a mechanism has been designed to

help students when they attempt coarse-grained inferences in the Theorem Proving

Environment.

Early versions ofComplexity Tutor that were tested gave no feedback when a

student attempted to produce a coarse-grained inference. This is not ideal. Consider

that the absence of feedback is in itself a form of feedback. The student is being told

that the inference is not acceptable, because no arrow is produced, but they don't

know whether the inference is not acceptable because it is completely incorrect or

because it has the wrong level of granularity. The student may get confused and

assume that their inference is completely invalid, when in actuality it is just too

coarse-grained.

73

Figure 3.5: Screenshot of a student producing a low-grained proof sketch in the
Theorem Proving Environment, to show that 0/1-PROG is NP-Hard.

In comparison, with hand-written proofs, the student gets no immediate feedback

about any statement in their proof, and it is later the responsibility of a human grader

to decide if individual proof steps have an acceptable level of granularity. Generally,

if a given proof step is only slightly more coarse-grained than desired, the grader

may still give full credit for it, and they may give partial credit for other proof steps

that are signi�cantly too coarse-grained. In the latter case, the human grader will

likely also give some feedback to the student to indicate that the inference is too

coarse-grained.

Figure 3.5 illustrates the new mechanism in the Theorem Proving Environment

for giving feedback for coarse-grained inferences. The student attempts to show that

the statements \3SAT is NP-Complete" and \3SAT � p 0/1-PROG" imply the state-

74

ment \0/1-PROG is NP-Hard". They do so by clicking dot \3" and then dot \1",

and likewise clicking dot \2" and then dot \1". However, instead of normal arrows

being produced,hint-lines are produced, which indicate this to be a coarse-grained

inference. The hint-lines are visually represented as arrows with dashed lines.

Notice that in Figure 3.5, the hint-line between dots \3" and \1" is slightly more

faded than the hint-line between dots \2" and \1". The rule for creating a hint-line

is that there must be a path of chained inferences leading from one statement to

another, however the paths between \3" and \1" and between \2" and \1" are of

di�erent lengths. The longer the path is, the more faded and transparent the hint-

line becomes. When the path becomes too long, the hint-line becomes invisible, and

beyond that it is non-existent. Thus, hint-lines visually indicate the existence of a

coarse-grained inference as well as the level of its granularity.

(a) Initial proof sketch (b) First step of re�nement (c) Second step of re�nement

(d) Third step of re�nement (e) Forth step of re�nement (f) Fifth step of re�nement

Figure 3.6: Hint-lines help to re�ne a proof sketch into a �ner-grained proof.

Furthermore, the hint-lines used in Figure 3.5 idiomatically form a proof sketch.

Students can now start with a proof sketch like in Figure 3.5, and re�ne it in the

75

Theorem Proving Environment into a �ne-grained proof, which is illustrated in Figure

3.6. This process may improve a student's intuition for theorem proving, by showing

them how to start with a general idea for a proof and re�ne it into a detailed proof.

In this process, hint-lines are automatically updated in the Proof Space as new

connections are made. Figure 3.6a shows the initial proof sketch with a hint-line

leading from \3SAT is NP-Complete" to \0/1-PROG is NP-Hard", and a hint-line

also leading from \3SAT� p 0/1-PROG" to \0/1-PROG is NP-Hard". In Figure 3.6b,

the student uses the de�nition of NP-Completeness to infer the assertion \3SAT is

NP-Hard" from \3SAT is NP-Complete". The hint-line that was previously leading

from \3SAT is NP-Complete" to \0/1-PROG is NP-Hard" is replaced by a brighter

hint-line leading from \3SAT is NP-Hard" to \0/1-PROG is NP-Hard". This is

because \3SAT is NP-Hard" is the next step on the path from \3SAT is NP-Complete"

to \0/1-PROG is NP-Hard". Next, in Figure 3.6c, the student realizes that they

should expand the de�nition of NP-Hardness. So they have shown that \3SAT is

NP-Complete" implies \3SAT is NP-Hard", and they have shown that this in turn

implies \For every languageL 2 NP, L � p 3SAT". The hint-line now leads from that

last assertion in this chain of inferences to \0/1-PROG is NP-Hard". Similarly, in

Figure 3.6d, the assertion \For every languageL 2 NP, L � p 0/1-PROG" is added to

the chain of inferences, and the hint-line is then updated to lead from this assertion

to \0/1-PROG is NP-Hard". Note that \For every language L 2 NP, L � p 0/1-

PROG" directly implies \0/1-PROG is NP-Hard", however the student still needs

to show that they know this by directly clicking on the two assertions to produce a

connection, which they do in Figure 3.6e. But this then updates the hint-line that

stemmed from \3SAT � p 0/1-PROG", so that it now leads to \For every language

L 2 NP, L � p 0/1-PROG". In Figure 3.6f, the student removes this �nal hint-line

by making the connection from \3SAT � p 0/1-PROG" to \For every language L 2

NP, L � p 0/1-PROG".

76

What would happen if the student made these inferences in a di�erent order

than shown in Figure 3.6? Suppose that after producing the initial proof sketch, the

student then connected \3SAT is NP-Hard" to its de�nition, \For every language

L 2 NP, L � p 3SAT". That latter action would not update the hint-lines, since it's

not clear that the student realizes that this inference they just made has anything to

do with re�ning the coarse-grained proof that \0/1-PROG is NP-Hard" follows from

\3-SAT is NP-Complete". However, if the next action that the student made was to

connect \3-SAT is NP-Complete" to \3-SAT is NP-Hard", then the hint-line would

get updated, resulting in what is shown in Figure 3.6c.

Before describing the actual procedure that updates the hint-lines, it is important

to point out that for any two statements A and B, there could in theory be multiple

paths from A to B in a given proof, since proofs can be directed acyclic graphs. So in

some cases, it will be ambiguous which path a given hint-line should correspond to.

In the current implementation of hint-lines, each hint-line corresponds to a speci�c

path at the time it is generated, and that speci�c path is chosen to be a shortest path

when there are multiple possibilities. So, assume that a given hint-line from statement

A1 to statement An corresponds to a path of statementsA1; A2; : : : ; An� 1; An .

Then the procedure to update that hint-line is as follows. Letj be the maximal

value such that 1� j < n and for every edge in the pathA1; : : : ; Aj , an arrow has

been produced in the Proof Space. Letk be the minimal value such that 1< j � n

and for every edge in the pathAk ; : : : ; An , an arrow has been produced in the Proof

Space. Ifj � k then remove the hint-line entirely, since it would no longer be needed.

Otherwise, replace the hint-line by one from statementA j to statement Ak with

corresponding pathA j ; : : : ; Ak .

What if the path that was initially chosen for a given hint-line does not correspond

to the coarse-grained inference the student had in mind? This could potentially lead

to some confusion, although it is doubtful whether this hypothetical scenario would

77

even occur. In fact, the notion of what an inference is implies that it should be

conceptually unique in a proof, regardless of its level of granularity. Therefore, one

could argue that in most circumstances, a coarse-grained inference from statementA

to statement B should only be considered if there is a unique path fromA to B. In

the rare circumstances where that is not the case, the shortest path heuristic should

usually pick the coarse-grained inference that is most appropriate.

Finally, it should be mentioned that there is a limit placed upon the number of

hint-lines that will be displayed simultaneously in the Theorem Proving Environment.

Currently, this limit is set to be 10 hint-lines. Once that limit has been reached, no

new hint-lines will be produced until the student removes some of the existing hint-

lines by re�ning their proof through the process shown in Figure 3.6.

3.1.7.2 Search Box for �nding assertions

While listing all possible assertions was argued in Section 3.1.5 to be a bene-

�t for students learning to construct proofs, since it removes the cognitive load of

students having to �gure out how to correctly express the assertions needed for a

proof, extraneous cognitive load also increases as the list of possible assertions grows

in size. When the Assertions Box has close to a hundred possible assertions in it,

sifting through those assertions to �nd the ones that are relevant to the proof step

being worked on is like searching for a needle in a haystack. Indeed, students using

the Theorem Proving Environment were frequently observed scrolling back and forth

through the Assertions Box multiple times before selecting assertions.

Search is a natural solution for mitigating this problem, which users should al-

ready be acquainted with since search engines like Google are ubiquitous in society.

Consequently, a simple search engine feature was integrated with the existing Asser-

tions Box interface. The user is now presented with a Search Box underneath the

Assertions Box|as soon as the user begins typing only a few characters into the

78

Figure 3.7: Screenshot of a symbolic formula being entered in the Search Box. As-
sertions in the Assertions Box are ordered by their relevance to what has been typed.

Search Box, the assertions in the Assertions Box are dynamically reordered on the

y in terms of their relevance to what the user is typing at that moment. Later, the

user can choose to reorder the Assertions Box alphabetically for manual perusing.

The users can also type mathematical symbols not found on their keyboard into

the Search Box using simple key sequences, which are referenced in a tooltip that is

displayed to the user when they hover the mouse pointer over the Search Box. Figure

3.7 shows this.

Under the hood of the Search Box is asearch algorithm, which takes the search

query that the user types and produces an orderedranking of the assertions. There are

di�erent popular strategies for designing search algorithms, but the search algorithm

that was ultimately chosen was designed with the following considerations:

79

1. Users should be able to express assertions in their own words, as they would if

they were writing a proof with pen and paper, and the corresponding assertion

in the Assertions Box (if one exists) should be highly ranked. For instance, if

the user were to type \Emily or Catherine has a pizza with pepperoni" as their

query, then the assertion \Either Catherine's pizza or Emily's pizza, or both,

has pepperoni" should be highly ranked.

2. The search algorithm should produce good search results if a user types frag-

ments of an assertion as a query, rather than a full assertion. For instance,

the user may want to �nd all assertions that reference the entity \Emily" or

all assertions that refer to someone being \lactose intolerant". Thus, the user

is not required to express complete assertions to make use of the search box.

Also, if a user stumbles upon an assertion in the Assertions Box at some point,

and later realizes it might be useful, they can quickly �nd it without needing

to fully recall what the assertion precisely stated.

3. The search algorithm should be reasonably resilient to spelling and typographi-

cal errors. If the user types \cathrine" then assertions that contain \Catherine"

should be highly ranked.

4. The user may type symbolic expressions or formulas as part of their query, and

the search algorithm should return useful results even if the symbolic expression

that the user typed does not exactly appear in any of the assertions in the

Assertions Box.

5. It would be nice if the search algorithm is able to return the assertion that the

user is looking for before they have even �nished typing their query.

While the �rst consideration might seem to imply the user's query would need

to be semantically parsed in order to �nd the semantically equivalent assertion in

80

the Assertions Box, that is actually not going to be necessary most of the time.

Notice that assertions that are semantically similar tend to share syntactically similar

words. The assertion \Emily or Catherine has a pizza with pepperoni" shares 6 stem

words in common with the semantically similar assertion \Either Catherine's pizza

or Emily's pizza, or both, has pepperoni". Furthermore, there are not likely to be

many assertions in the Assertions Box that use those 6 stem words.

Therefore, abag-of-words model, which ranks assertions according to how many

stem words are matched with the query, would su�ce for addressing the �rst two con-

siderations. However, such a model would not address the remaining considerations.

To address all �ve considerations, acharacter-level n-gram modelwas used instead

to create a character-level measure of string similarity between query strings and the

assertions in the Assertions Box. Speci�cally, strings are modeled in terms of their

character bigramsand character unigrams. A character bigram is a pair of characters

appearing in sequence in a string, and a character unigram is simply a single character

appearing in a string. Intuitively, two strings x and y can be thought of as similar,

if most bigrams and unigrams inx map to corresponding bigrams and unigrams iny

and vice-versa.

This can be formalized by representing each string as amultiset containing its

character bigrams and character unigrams. For instance, the string \pepperoni pizza"

would be represented by the multisetf `pe', `ep', `pp', `pe', `er ', `ro ', `on', `ni ',

ì ', ` p', `pi ', `iz ', `zz ', `za ', `p', `e', `p', `p', `e', `r ', `o', `n', `i ', ` ', `p', `i ', `z ',

`z ', `a'g. Notice the multiplicities, such as the bigram p̀e' occurring twice and the

unigram p̀' occurring four times.

Then, for any two strings x and y, with corresponding multisetsX and Y, the

cardinality of X \ Y gives a measure of how similarx and y are. Using the following

formula, this similarity measure can be normalized so that any two strings have a

similarity score that ranges from 0 to 1:

81

similarity(x; y) =
2jX \ Y j
jX + Yj

=
2jX \ Y j

(2jxj � 1) + (2 jyj � 1)
=

jX \ Y j
jxj + jyj � 1

Given a query string q, the search algorithm computes similarity(q; a) for every

assertion stringa, and ranks them according to their scores.

3.2 Algorithm Environment

A distinguishing characteristic of many proofs in theoretical computer science is

that they often reference algorithms. When a student is asked to construct such a

proof, they will implicitly also have to construct an algorithm, and the correctness of

the proof will depend on the correctness of the algorithm.

In normal pen-and-paper proofs, students will describe these algorithms using

pseudocode. The Algorithm Environment simulates this process by having students

write actual Python code in place of pseudocode, which can be computationally in-

terpreted and evaluated for correctness. In principle, this could be done with any

programming language but Python was chosen for its succinctness and its similar-

ity to pseudocode. Guido van Rossum, the creator of the language, considers its

resemblance to \executable pseudocode" to be one of its main strengths [162].

Here are two justi�cations for having students write algorithms in a real program-

ming language like Python rather than pseudocode:

1. Actual code is always concrete and unambiguous in its interpretation. Good

pseudocode should also be unambiguous, however students do not always write

good pseudocode. Often times, the pseudocode that students write is ambigu-

ous in its speci�cation, and it may omit details that the student thinks are

unimportant to the correctness of the algorithm but actually are important.

Forcing a student to actually write code for an algorithm that a computer can

understand forces them to show they fully understand all the details of the

algorithm.

82

2. A computer can interpret a student's algorithms when it is written with real

code, permitting an intelligent tutoring system to give feedback and guidance to

the student about the algorithm. In contrast, pseudocode is only ever intended

for human consumption. A programming language like Python has many of the

same expressive bene�ts of pseudocode, but also has the added bene�t of being

machine interpretable.

3.2.1 Using the Algorithm Environment to tutor NP-completeness re-

ductions

Complexity Tutor was originally designed to help students understand NP-

completeness, a topic that computer science students frequently struggle with.

There are two common ways that students struggle with this topic. First, they may

have conceptual misunderstandings about the topic. For instance, the author's study

for this dissertation found a number of students who appeared to not understand

that \NP" and \NP-complete" are di�erent concepts|the Theorem Proving Envi-

ronment should help correct these misunderstanding while students are constructing

their proofs. Second, even if students correctly understand the concepts, they may

struggle to produce a correctNP-completeness reduction, which is a type of algorithm.

The Algorithm Environment is designed to help students with this latter problem.

The Algorithm Environment integrates directly with the Theorem Proving En-

vironment. To illustrate, consider the problem presented to students in Figure 3.8,

which de�nes two formal languages, PARTITION and BIN-PACKING. The prob-

lem asks students to prove that BIN-PACKING is NP-Complete, given that BIN-

PACKING is in NP and that PARTITION is NP-Complete.

Figure 3.8 shows a partially constructed proof in the Theorem Proving Environ-

ment for this problem. Two assertions in the proof remain unjusti�ed:

83

Figure 3.8: Screenshot of partially completed NP-completeness proof in the Theorem
Proving Environment. The problem asks students to prove that BIN-PACKING is
NP-complete. Assertions \8" and \9" remain unjusti�ed.

� Assertion 8: \c is a certi�cate that set X 2 PARTITION () Cert

Partition to BinPacking(c) is a certi�cate that Reduce Partition

to BinPacking(X) 2 BIN-PACKING"

� Assertion 9: \Reduce Partition to BinPacking() runs in polynomial

time"

Neither of these assertions can be justi�ed by the remaining assumptions or as-

sertions given in the Theorem Proving Environment. The assertions refer to two

Python functions, Reduce Partition to BinPacking and Cert Partition

to BinPacking , which students will need to write code for. The two assertions

together can be thought of as specifying requirements for the code that the student

84

will write. Once the student has �nished writing code that meets these requirements,

both assertions will be considered justi�ed.

The �rst assertion speci�es that the student must construct a correct reduction

from PARTITION to BIN-PACKING. Reduce Partition to BinPacking must

convert instances of PARTITION to instances of BIN-PACKING.Cert Partition

to BinPacking must convert certi�cates of PARTITION to certi�cates of BIN-

PACKING. When a student has written correct code for both of these functions,

they have constructed what is known as aLevin reduction (see Section 3.2.2).

The second assertion speci�es thatReduce Partition to BinPacking must

have polynomial running-time.

To write code forReduce Partition to BinPacking andCert Partition

to BinPacking , students will select the \Algorithms" tab, which reveals the Algo-

rithm Environment (Figure 3.9). Here, students will write Python code using a simple

Python editor that provides syntax highlighting, line numbering, automatic inden-

tation, and parenthesis matching. Initially, students are given function stubs for

Reduce Partition to BinPacking and Cert Partition to BinPacking ,

along with comments that explain the input and output conditions for these func-

tions.

There is also a status indicator in Figure 3.9, which shows a question mark to

indicate that the code in the editor has not yet been veri�ed. After students write

some code in the editor, they can click the \Check Algorithms" button to have the

Algorithm Environment analyze their code.

While the code is being analyzed, students will not be able to modify it in the

editor. The Algorithm Environment will �rst check to make sure that the code is

valid Python code, just as a normal Python interpreter would. It will then perform

additional checks on the code, to determine if the code represents a correct reduction

85

Figure 3.9: Screenshot of the Algorithms Environment. Students are to write
Python code for Reduce Partition to BinPacking and Cert Partition
to BinPacking , to construct a reduction from PARTITION to BIN-PACKING.

from PARTITION to BIN-PACKING. Refer to Section 3.2.3 for technical details on

how this works.

If the Algorithms Environment determines that the code does not represent a

correct reduction, then the status indicator changes to display a \no symbol" and

feedback is given to the student under \Errors", as shown in Figure 3.10. In this

particular example, the feedback tells the student that their reduction cannot be cor-

rect because their code forReduce Partition to BinPacking does not meet

the speci�ed output conditions. The student is also given a speci�c input for PAR-

TITION where the reduction fails. This serves as a hint to the student about how

they should proceed to debug their algorithm.

86

Figure 3.10: An incorrect reduction. The student is given feedback aboutReduce
Partition to BinPacking producing incorrect output.

In general, the feedback given to students range from noti�cations of syntax errors

to explanations of why their reductions are incorrect. After receiving the feedback,

students can attempt to �x their code in the editor and click the \Check Algorithms"

button again. Then, if the Algorithms Environment determines that the code now

represents a correct reduction from PARTITION to BIN-PACKING, the status in-

dicator changes to display a check mark, as shown in Figure 3.11. Finally, when

students click the \Proof" tab to return to the Theorem Proving Environment, they

will see that the two previously unjusti�ed assertions are now justi�ed, and the proof

is complete. This is shown in Figure 3.12.

87

Figure 3.11: A correct reduction from PARTITION to BIN-PACKING.

3.2.2 Using Levin reductions rather than Karp or Cook reductions

The notion of NP-completeness was introduced in Stephen Cook's 1971 seminal

paper [42], and then expanded on a year later by Richard Karp, who showed that 21

classic combinatorial problems were NP-complete [84]. Independently of Cook and

Karp, Leonid Levin also discovered the concept of NP-completeness around the same

time, while working in the Soviet Union [96].

Interestingly, these three progenitors used di�erent types of reductions in their

original formulations of the concept of NP-completeness. As such, complexity theo-

rists have named the three types of reductions after them.

Given X and Y as languages in NP, consider the following de�nitions.

88

Figure 3.12: Screenshot of completed NP-completeness proof in the Theorem Proving
Environment. Assertions \8" and \9" are now justi�ed.

Cook reduction

X is Cook-reducible in polynomial time to Y if there is a polynomial time

algorithm that can decideX using an oracle for decidingY.

Karp reduction

X is Karp-reducible in polynomial time to Y if there is a polynomial time

algorithm that computes a functionf such that x is in X if and only if f (x) is

in Y.

Levin reduction

X is Levin-reducible in polynomial time to Y if:

89

1. there is a polynomial time algorithm that computes a functionf such that

x is in X if and only if f (x) is in Y.

2. there is a polynomial time algorithm that computes a functiong such that

c is a certi�cate that x is in X if and only if g(c) is a certi�cate that f (x)

is in Y.1

Notice that if X is Levin-reducible to Y, then X is Karp-reducible to Y, which

in turn implies that X is Cook-reducibleto Y. Hence, Cook reductions are the most

general notion of a reduction, while Levin reductions are the most restrictive.

However, Karp reductions have the most prevalent usage in complexity theory

literature. They are preferred over Cook reductions for their closure properties|the

popular complexity theory separation conjecture, NP6= co-NP, does not make sense

under Cook reductions.

Karp reductions are also most commonly taught to students studying the subject

of NP-completeness for the �rst time, usually without reference to the other kinds

of reductions. Two popular undergraduate textbooks that teach NP-completeness

[44,146] make no reference to the alternative reduction types.

In comparison, Levin reductions seem to be far less popularized than either Karp

reductions or Cook reductions. Even a comprehensive graduate-level textbook on

computational complexity [15] makes only two scant references to Levin reductions.

So why use Levin reductions rather than Karp reductions? Sanjeev Arora wrote

a paper [14], which discusses Levin reductions in some detail. He states the following

proposition:

1Certi�cates are formally de�ned in terms of veri�er algorithms. Thus, the de�nition of Levin-
reducible implicitly assumes that �xed veri�ers have been chosen forX and Y . However, for most
NP-complete languages, intuitively obviouscerti�cates exist that can be described without explicit
reference to a correspondingveri�er

90

All known NP-completeness reductions are either Levin reductions or eas-

ily modi�ed to be Levin reductions.

This proposition is backed by the fact if you look through the literature of NP-

Completeness results, the proofs of correctness for the Karp reductions usually im-

plicitly contain a certi�cate reduction as justi�cation. In other words, they are Levin

reductions in disguise!

In the paper, Arora mentions that Alexander Razborov conjectures that this is

because all of these reductions are provable in Samuel Buss's proof theory,S1
2. If

a Karp reduction is provable inS1
2 then there is a witnessing theorem that proves

the existence of a corresponding Levin reduction. Arora furthermore mentions that

one way to break a Karp reduction away from being Levin is to use a cryptographic

one-way permutation function to break the Levinness, but he knows of \no useful

reduction that is not Levin".

So that should be a strong motivation for why it is acceptable to teach Levin

reductions in place of Karp reductions (which are not even as general as the less-

restricted Cook reductions), besides the fact that the student would be expected to

be able to justify the correctness of their Karp reduction anyway.

In a handwritten assignment, the student would write that justi�cation about

the correctness of the reduction in the body of their proof. On the other hand,

Complexity Tutor takes the view that the certi�cate part of a Levin reduction

encapsulates the bulk of that justi�cation and therefore can substitute for it.

Pedagogically, the author of this dissertation also thinks it is a good idea to distin-

guish language-to-language Karp reductions from certi�cate-to-certi�cate reductions

as explicitly as possible, since he has noticed a common confusion among students

when they are writing reductions is that they confuse instances of a language with

certi�cates for those instances. Thus, teaching Levin reductions may help in this

regard.

91

Furthermore, the structure of Levin reductions lends an obvious way to sca�old

the di�culty of problems given to students. Instead of expecting students to give both

the language reduction and the certi�cate reduction at the same time, we can break

this up into separate problems. Sometimes, the student could be given a certi�cate

reduction and asked to �nd a matching language reduction. Other times a student

could be given the language reduction and ask them to provide the corresponding

certi�cate reduction. In either case, the student is provided with a strong hint to the

other reduction, which doesn't exist with Karp reductions.

3.2.2.1 Technical motivation for using Levin reductions

A signi�cant reason for choosing to have students write code for Levin reductions

in the Algorithm Environment stems from the requirement that the reductions need

to be automatically veri�ed. There is no known tractable way to automatically verify

the correctness of Karp reductions or Cook reductions, even heuristically.

Consider the idea of using a set of test cases to heuristically verify the correctness

of an algorithm. This is common practice in both industry and academia. And this

is easy if you can uniquely determine the output that the algorithm should produce

for any arbitrary input. For instance, if you are trying to verify the correctness of

a sorting algorithm, then given (8; 5; 2; 4; 2) as input, you know the output should

always be (2; 2; 4; 5; 8). For any given input to a sorting algorithm, there is only one

possible correct output.

However, this is not a true for Karp reductions. For any given input to a Karp

reduction algorithm, there are an in�nite number of valid outputs that could be

produced. Suppose you have a potential Karp reduction from NP-complete language

X to NP-complete languageY. If you give an instance ofX as input, then valid

outputs could be any instance ofY. But to decide if the output belongs to Y is

92

intractable, since Y is NP-complete. Therefore, there's no easy way to verify if a

Karp reduction is correct for even a single test case.

Verifying Cook reductions is no easier, since Cook reductions assume the avail-

ability of an e�cient oracle for an NP-complete problem, and no such oracle can

be implemented. Hence, it is not clear even how to computationally run a Cook

reduction algorithm.

Now, consider a Levin reduction from an NP-complete languageX to an NP-

complete languageY. As speci�ed by the de�nition, the Levin reduction is supposed

to give a function f to transform instances ofX to instances ofY, and a function

g to transform certi�cates for X to certi�cates for Y. SinceY is in NP, there must

also be a polynomial time veri�er function v where v(y; c) = 1 if and only if c is a

certi�cate that y 2 Y.

Consider a test case (x1; c1), where x1 2 X and c1 is a certi�cate that x1 2 X . If

v(f (x1); g(c1)) = 1, then f (x1) 2 Y and g(c1) is a certi�cate that f (x1) 2 Y. Hence,

according to the conditions for Levin reductions, bothf (x1) and g(c1) give correct

outputs.

On the other hand, consider a test case (x2; c2), where x2 =2 X and c2 is not a

certi�cate that x2 2 X . If v(f (x2); g(c2)) 6= 1, then g(c2) is not a certi�cate that

f (x2) 2 Y. In this case, g(c2) would give correct output according to the second

condition for Levin reductions. The output for f (x2) may or may not be correct.

Nevertheless, it is clear that for any test case (x; c), computing v(f (x); g(c)) de-

termines whetherf and g satisfy the second condition for Levin reductions. Also,

v(f (x); g(c)) can be computed e�ciently, assuming that both f and g have e�cient

algorithms. It seems unlikely to produce anf and g that would satisfy the second con-

dition for Levin reductions, but not the �rst condition, so this should be an e�ective

way to verify Levin reductions.

93

3.2.3 How the Algorithm Environment works under the hood

The Algorithm Environment uses hidden test cases to automatically evaluate

whether the functionality of a student's algorithm is correct. This method of evalua-

tion is often referred to asblack-box testing, since the algorithm is treated as a \black

box" and is evaluated based on its behavior rather than its internal structure.

Similar automated evaluation methods have long been used in non-theoretical

computer science courses to grade programming assignments, with one of the earliest

examples of an automated grader being documented in 1960 [74]. The reader may

refer to [49] for an overview of the history of automated evaluation of programming

assignments.

Programming competitions, such as the ACM International Collegiate Program-

ming Contest, also use black-box testing to automatically provide feedback to con-

testants [57], as do programming challenge websites like TopCoder and HackerRank.

In particular, these competitions and the challenge websites use black-box testing to

evaluate one's ability to design and implement correct algorithms. This is a very sim-

ilar intent to that of the Algorithm Environment's usage of black-box testing, which

also seeks to evaluate the ability to design correct algorithms.

A contribution of this dissertation is the development of a novel way to use black-

box testing to automatically evaluate the correctness of NP-completeness reductions.

Suppose a student is tasked with showing that NP-complete languageX reduces

to NP-complete languageY in polynomial time. In the Algorithm Environment, the

student must implement two Python functions that represent a Levin reduction. The

�rst, Reduce X to Y, is required to convert instances ofX to instances ofY. The

second,Cert X to Y, is required to convert certi�cates of X to certi�cates of Y.

Both functions need to run in polynomial time.

94

To automatically evaluate the correctness of the student's code, a problem spe-

ci�c evaluation module is needed, which contains Python implementations of two

polynomial time veri�er functions, Verify X and Verify Y, where:

� Verify X(x, c) is true () c is a certi�cate that veri�es that x 2 X .

� Verify Y(y, c) is true () c is a certi�cate that veri�es that y 2 Y.

The problem speci�c evaluation module also contains a set of test cases. Each

test case is of form (x; c) and is classi�ed as being either positive or negative. If the

test case is positive thenx 2 X and c is a certi�cate that x 2 X . If the test case is

negative thenx =2 X and c is an arbitrary valid input for Cert X to Y.

The Algorithm Environment will use the following process to evaluate the stu-

dent's code. This process terminates as soon as the code is determined to be incorrect

or if all test cases have been exhausted:

1. A Python interpreter is instantiated in a new system process, along with the

student's Python code and the problem speci�c evaluation module. Running

the Python interpreter in a separate process fromComplexity Tutor gives

reasonable assurance that the student's code will not be able to crashCom-

plexity Tutor when it is run in the interpreter.

2. The Python interpreter checks the student's code to make sure it is syntactically

valid. If it is not syntactically valid, then the code is marked as incorrect and

feedback of the syntax error is returned to the student along with the line

number where the syntax error occurred.

3. For each test case (x; c) in the problem speci�c evaluation module, the Python

expressionVerify Y(Reduce X to Y(x),Cert X to Y(c)) == Verify

X(x, c) is evaluated. If this expression evaluates totrue then the test case

passes, as justi�ed by Section 3.2.2.1. If this expression evaluates tofalse then

95

the code is marked as incorrect, and the student is given feedback notifying them

that the reduction is not correct. Notice that the evaluation of this expression

may also trigger runtime exceptions, ifReduce X to Y or Cert X to Y are

not properly de�ned in the student's code or if the student's code contains

bugs. For instance, a common bug that triggers an exception is if the student

references a variable before assigning a value to it. As soon as an exception is

triggered, the code gets marked as incorrect and feedback of the exception along

with the line number of the code that triggered it is returned to the student.

4. If all test cases have passed, then the student's code is marked as correct.

Finally, a timer is placed on the whole evaluation process, and if the timer runs

out, then the code is automatically marked as incorrect. This is necessary for three

reasons.

First, the student may have accidentally introduced an in�nite loop into their

code, which will prevent the evaluation process from ever terminating. Since the

halting problem is undecidable[146], there is no way to pre-emptively identify this

scenario|the best that can be done is to give the evaluation process a reasonable

time limit to �nish and give up if this reasonable time limit is exceeded.

Second, the student will only have so much patience to wait for their code to be

evaluated. If the evaluation takes too long, thenComplexity Tutor is not ful�ll-

ing its promise to give the student \immediate feedback". Furthermore, while there

may be some pedagogical value to giving students feedback on the correctness of slow

algorithms, it is unlikely that many students would deliberately implement an ine�-

cient algorithm. More than likely, the ine�ciency of the algorithm was unintentional,

often the result of a bug. In that case, the student would want to be noti�ed as soon

as possible that their algorithm is ine�cient.

Third, the timer provides a way to assess ifReduce X to Y and Cert X to Y

are likely to both run in polynomial time, one of the conditions required for the NP-

96

completeness reduction to be correct. Some of the test cases are designed to generate

inputs to Reduce X to Y and Cert X to Y that are large enough in size that if

the functions are implemented with non-polynomial time algorithms, then the timer

should run out before the functions have terminated.

This main downside of this approach to testing if an algorithm runs in polyno-

mial time is that there can easily be false negatives, i.e., ine�cient polynomial time

algorithms that trip up the timer. However, this should not be much of a problem

for evaluating NP-completeness reductions, because usually the most obvious cor-

rect reductions are very e�cient polynomial time algorithms, often running in linear

time. So it seems unlikely that students would naturally stumble upon ine�cient

polynomial time reductions before considering the e�cient ones.

3.2.3.1 Limitations of the black-box testing framework and alternatives

Black-box testing is not a foolproof method of automatically evaluating the cor-

rectness of algorithms. In general, it is possible to engineer incorrect algorithms that

with high probability will pass all the hidden test cases.

A simple example is mentioned in [57]. Consider the task of determining if two

strings are identical. An incorrect algorithm that still works most of the time would

be to hash both strings and compare the hash values. For any two random strings,

with very high probability, if they have the same hash value then the strings will be

identical.

Thus, black-box testing may not be suitable for algorithmic problems where it is

easier to come up with an algorithm that gives the correct answer with very high

probability than an algorithm that always gives the correct answer.

However, the widespread use of black-box testing in programming competitions

gives some faith that it is still a suitable evaluation method for a large number of

undergraduate-level algorithms problems. After all, if there was a competitive advan-

97

tage to trying to engineer algorithms that trick the evaluator, then this tactic would

be common in programming competitions.

Furthermore, in a pedagogical setting where a student is trying to learn rather

than win a competition, it is even less likely that a student would accidentally engineer

an algorithm that tricks the evaluator.

The bigger issue with the practicality of using black-box testing as a tool for tutor-

ing theoretical computer science topics is �guring out how to assess the running time

of an algorithm. The crude method of e�ciency determination that the Algorithm

Environment currently uses to evaluate NP-completeness reductions, may be su�-

cient when trying to distinguish between a very e�cient polynomial time algorithm

and a non-polynomial time algorithm, but it would not be suitable for an algorithms

course where �ner-grained asymptotic running time analysis is desired.

The average-case running time of an algorithm could be empirically estimated by

sampling the execution time for many di�erent sizes of random input to get a set of

points that can be �t to a curve.

However, this still does not give the worst-case running time, which is usually the

main consideration in theoretical computer science. An area of research that might

hold some promise isautomated complexity analysis, which has developed analytical

tools for determining worst-case asymptotic bounds on the running time of certain

classes of algorithms. See [4,25,36,55,61,99,145] for examples of this research.

3.3 Authoring new problems

Complexity Tutor was designed so that domain experts could easily create

new problems programmatically by writing simple Python scripts to interact with

the underlying engine. The following example code demonstrates how to create a

new problem for the well-known syllogism,\All men are mortal. Socrates is a man.

Therefore, Socrates is mortal."

98

from CCTutorEngine import *

ProblemDescription.Text = "Prove Socrates is mortal."

ax1 = ProofItem("All men are mortal.")

ax1.isAssumption = True

ax1.show()

ax2 = ProofItem("Socrates is a man.")

ax2.isAssumption = True

ax2.show()

goal = ProofItem("Socrates is mortal.")

goal.Requirements.Add(ax1)

goal.Requirements.Add(ax2)

goal.show()

The �rst line tells Python to import the classes used byComplexity Tutor .

In the second line,ProblemDescription refers to an internal object represent-

ing a description of the problem to be presented to the student. A problem author

can either supply a simple text description directly, using theText property (as

illustrated above), or they can use a word processor to create aRich Text For-

mat (RTF) �le and supply that as the description with the LoadFile method of

ProblemDescription . The latter permits the author to have more precise control

over formatting of the problem description, to include variations in font, text color

and highlighting, and to include embedded �gures.

Assumptions and assertions are both internally represented in the Theorem Prov-

ing Environment as ProofItem objects. In the example above,ax1 and ax2 are

ProofItem variables de�ned to represent the assumptions \Socrates is a man" and

99

\Socrates is mortal". The isAssumption property is set to True for both to

indicate that they are assumptions rather than assertions.

The goal variable, which is also aProofItem object, always represents the

unique assertion that a student must prove to complete the problem. In this case, it

is the assertion \Socrates is mortal".

Every assertionProofItem object has aRequirements object, which is a list

of other ProofItem objects (assumptions and assertions) that the student should

use to justify the assertion. In the example, theAdd method has been used to add

the assumptions corresponding toax1 and ax2 to the Requirements object of the

goal .

The show method tells the Theorem Proving Environment to display the as-

sumption or assertion corresponding to aProofItem object immediately when the

student starts working on the problem. By default, assumptions and assertions are

not immediately revealed. As explained in Section 3.1.3, assertions can be unlocked

as the student progresses. EveryProofItem object has anOpensUp object to

implement this functionality. An OpensUp object is a list of ProofItem objects,

representing assumptions and assertions that will be unlocked by a given assertion.

If the line goal.show() were replaced byax1.OpensUp.Add(goal) in the

above example, then \Socrates is mortal" would not be revealed in the Assertions

Box until the student had moved \All men are mortal" to the Proof Space.

ProofItem objects also have anisWrong property, which when set toTrue

indicates an erroneous assertion. For instance, the author might add the erroneous

assertion, \Socrates is dead", which cannot be inferred from any of the given assump-

tions.

Constructing problems that make use of the Algorithms Environment is also done

with Python. See the Appendix for examples.

100

When a problem is ready to be released to students, the author converts the

Python source code toComplexity Tutor 's encrypted �le format, Complexity

Tutor Problem (CTP) , which prevents students from using the source code to

reverse engineer a solution to the problem.

3.4 Developing a complete intelligent tutoring system

The author's vision for Complexity Tutor is that it will one day become an

intelligent tutoring system that adapts to individual student needs when learning

theoretical computer science topics. The work of this dissertation represents progress

towards that vision. Chapter 6 will give a roadmap for future work.

The following describes the protocol of interaction betweenComplexity Tutor

and the student user whenComplexity Tutor is used as an intelligent tutoring

system:

1. A problem is selected for the user. This could either be a problem from a �xed

set chosen by the instructor (similar to a traditional homework assignment) or

it could be a problem that is adaptively chosen based upon the likelihood that

the student will be able to solve it, and whether it will increase their pro�ciency

in some area. The latter involves using machine learning to build an elaborate

student model(Section 6.6).

2. If the problem requires the student to construct a proof, the Theorem Proving

Environment is loaded (Section 3.1). If the problem also requires the student

to specify an algorithm as part of their proof, then the Algorithm Environment

is loaded (Section 3.2).

3. The individual problem can be customized in several di�erent ways, to permit

sca�olding and to help a student with a speci�c task. First, the assumptions

given in the Assumptions Box (Section 3.1.2) can be varied to alter the subgoals

101

that need to be completed. For instance, if a student is asked to prove that a

language is NP-Complete, one version of the problem might allow them to

assume the language is in NP, if it is desired for them to focus on the subgoal

of doing the reduction rather than the subgoal of showing that the language is

veri�able. Second, the number of assertions given in the Assertions Box (Section

3.1.3) can be adjusted. The more possible assertions that are given, the more

exibility students have in things they can attempt in their proof. However,

increasing the number of assertions also makes the problem more challenging,

since it increases the proof search space. Third, the student can be initially given

a partial proof in the Proof Space, showing them the general outline of the proof

or what proof schema (Section 1.2.4) to use. Similarly, partial code can be given

to the student in the Algorithm Environment. Finally, the granularity (Section

2.1.4) of inferences that the student is allowed to make can be adjusted. All of

these parameters for problem customization can be either manually tweaked by

the instructor, or automatically tailored to a particular student by learning a

student model (Section 6.6).

4. The student completes their proof in the Theorem Proving Environment, while

in the background, the tutor tracks errors that are made and updates the student

model accordingly (Section 6.6). A proof step (inference) is prohibited if it is

logically unsound or deemed too coarse. The proof is veri�ed according to the

problem's hypergraph (Section 3.1.6) with any required algorithmic reductions

being veri�ed with test cases (Section 3.2.3).

5. When the student has developed a complete proof without errors, they may

move on to the next problem. If they are unable to �nish a correct proof, they

are also allowed to pass on to a new problem, but the student model stores the

102

fact that they could not solve this problem and gives it to them again later after

they have had more practice (Section 6.6).

103

CHAPTER 4

DESIGN OF EXPERIMENTS

A multi-semester study was conducted to evaluate the e�cacy ofComplexity

Tutor . This study was designed to adhere to the strict guidelines of the Institutional

Review Board at the University of Massachusetts Amherst. Participation in the study

was completely voluntary, and extensive e�ort was taken to protect the privacy of

those who participated.

Complexity Tutor was evaluated in two di�erent undergraduate computer

science classes. During the Fall 2016 and Spring 2018 semesters,Complexity Tu-

tor was evaluated in an algorithms class, for tutoring students in the topic of NP-

completeness. During the Spring 2017 and Fall 2017 semesters,Complexity Tutor

was evaluated in a discrete math class, for tutoring students in �rst-order preposi-

tional logic proofs.

Table 4.1 shows a break-down of how many students volunteered each semester to

participate in the study, how many of those volunteers actually completed the exper-

iments of the study, and how many were ultimately included for research analysis.

4.1 General study procedures

The same general protocol was followed each semester, which is detailed here.

4.1.1 Soliciting volunteers

A brief announcement, informing students of the study, would be made at the

beginning of a class lecture. During the announcement, each student in the lecture

104

Table 4.1: Participation in study.

a It is possible that some of the same students may have participated during multiple semesters.
Since the sets of participants for each semester are not known to be disjoint, the totals may not
accurately re
ect the exact number of people who participated.

b In Fall 2016, some subjects were permitted to join the study after experiments had already
begun, and are not counted among the initial volunteers.

c Some subjects were excluded from analysis due to missing or corrupted data.

105

would also be provided with two copies of an informed consent form. The announce-

ment and consent form provided general details about the study and information

about the rights of participants and non-participants in the study. The students were

instructed to read the consent form and to keep one copy of the form for reference. If

they decided they wanted to participate in the study, they were to return the second

copy of the consent form by a speci�ed deadline, signed and providing their name

and email address.

A script for the announcement and the text of the consent form are provided in

Appendix A. To reduce the chance of biasing potential volunteers, students were not

told what kind of problems would be given in the experiments or even the exact na-

ture of the software that would be used. For instance, the consent form merely stated

that the study's purpose was to evaluate \a novel computerized self-tutoring system

that will provide immediate feedback for students to rectify learning problems, and

will assist students to learn theoretical topics at their personal pace of learning."

Additionally, the form suggested that a potential bene�t of the study was that par-

ticipants might gain more exposure and practice with learning material relevant to

their course, but it did not say what that speci�c material would be.

Students would also be informed that if they participated, then their instructor

would give them up to 5 extra credit points that would go toward their �nal exam

grade. In all semesters except Fall 2016, the policy for rewarding extra credit was

that any student who participated would receive a minimum of 3 extra credit points,

and the remaining 2 points would be awarded based on individual performance in the

study. In Fall 2016, the �rst semester of the study, every student who participated

received 5 extra credit points regardless of their performance in the study. This led

to some subjects that semester not putting much e�ort into their participation, so

the policy was changed for subsequent semesters.

106

The instructor would also o�er an alternative extra credit assignment for students

who did not want to participate in the study, so that no student would feel compelled

to participate just to earn the extra credit.

Once the deadline for returning the consent forms had passed, the subjects who

had volunteered at that point were evenly split into two groups. One group was

the Experimental group, which usedComplexity Tutor to solve a set of practice

problems related to a particular topic taught in the course. The other group was a

control group, which was given the same practice problems to solve but without the

assistance ofComplexity Tutor . The control group was asked to write or type

their solutions to the problems similar to how they would do for a normal homework

assignment.

Subjects could drop out of the study at any time, for any reason, and did not

need to inform anyone to do so. As such, despite subjects initially being evenly split

between experimental and control groups, the two groups would generally end up

being slightly unequal in size since not everyone who was initially chosen for a given

group would end up completing the experiments. Nevertheless, this didn't seem to

a�ect the distribution of the two groups very much.

4.1.2 Logistics of the experiments

For logistical convenience, the experiments were designed so that subjects who

participated could do so completely remotely. On the start date of an experiment,

each subject would receive an email with detailed instructions to follow to complete

the experiment. The experimental and control groups received di�erent emails. In

the emails, subjects were given deadlines to complete speci�c tasks. Examples of

these emails are found in Appendix A. Subjects could also communicate with the

principal investigator by email if any questions came up during the study.

107

Extreme care was taken to ensure that all data associated with subjects in the

study was anonymized, in order to protect privacy. This was accomplished by giving

every subject a random identi�er, referred to as a Participant ID. Subjects were

instructed to go to a website that would automatically generate a random Participant

ID for them. They were instructed that it was very important to write this Participant

ID down, since it would be the only way to keep track of them during the study, or for

them to receive extra credit. The study was designed so that not even the principal

investigator would be able to link the research data with the names of actual students

who participated.

For instance, when subjects submitted data from the experiments, they did so by

anonymously uploading it to a server with only their Participant ID attached. At

the end of the semester, a list of Participant IDs and the extra credit each earned

would be sent to the course instructor. Subjects who wanted to receive this extra

credit would then need to reveal their Participant ID to the instructor only. Thus, the

instructor would potentially know who in their class had participated in the study

and how much extra credit they had earned in doing so but would have no direct

access to the research data. However, if a subject decided for some reason that they

did not want to claim the extra credit, for instance if they decided to drop out after

submitting data, then their data would be completely anonymous to everyone.

In some semesters, data was collected on how subjects performed on actual class

exams. This data was provided by the instructors, who could link the exam data to

the subjects' Participant IDs after they had claimed the extra credit.

A small number of subjects were confused by the anonymization process. Some

lost their Participant ID despite being instructed multiple times to write it down and

maintain it. One subject even had the false impression that they could go to the

original website that generated the Participant ID to retrieve it. Fortunately, if a

108

subject had forgotten their Participant ID but not yet submitted any data, this could

easily be recti�ed by the subject acquiring a new Participant ID.

More problematic would be if a subject accidentally uploaded their data without

a Participant ID. To discourage this scenario, subjects were requested to put their

Participant ID in two places. First, subjects were instructed to put their Participant

ID in the �le names of data they submitted. Then when they actually uploaded the

�les, the upload form again asked them to supply their Participant ID in the upload

form itself. The instructions in the email also emphasized many times the impor-

tance of the Participant ID. Nevertheless, there still ended up being some data that

was uploaded without an associated Participant ID. In most cases, the subject later

realized that they had forgotten to include their Participant ID in the upload, and

sent a second upload that included the Participant ID. It was possible to determine

when this happened by comparing �le checksums of submissions.

4.1.3 Procedures for the experimental group

Subjects in the experimental group used their own personal computers to run

Complexity Tutor . They were �rst instructed to verify that their computer would

meet the minimum requirements needed to runComplexity Tutor |they needed

the Windows operating system and a screen resolution of at least 1024� 768.

Complexity Tutor would run on any version of Windows that supports the

.NET Framework. This is most versions of Windows, and the oldest version of Win-

dows that was tested and con�rmed to work with the software is Windows 2000.

However, for versions of Windows older than Windows 8, subjects would need to

download and install a newer version of the .NET Framework, which they could freely

obtain from Microsoft. In most cases, for modern versions of Windows,Complexity

Tutor runs out of the box without any special installation procedure.

109

Subjects who did not have Windows on their computer could either borrow a

Windows laptop from the university, or they could obtain the Windows operating

system freely to run on their own computer via Microsoft Imagine, a program that

provides free copies of Microsoft software to computer science students. Some subjects

may not have bothered to jump through these extra hoops and decided to drop out of

the study instead. However, there is no indication that participation in the study was

signi�cantly a�ected by subjects not having a Windows computer readily available.

One subject, upon learning that the study required Windows, asked if they could

be switched to the control group but this was forbidden, since it would have potentially

skewed the data for the control group. Anyone in the study who decided they wanted

to stop participating because of the system requirements had the option of requesting

the alternative extra credit assignment instead.

The screen resolution was required to be a minimum of 1024� 768, because the

Complexity Tutor interface would not �t on a lower resolution screen. According

to W3Schools, a website that tracks screen resolutions of its visitors, only 1% of

visitors in January 2014 had screen resolutions less than 1024� 768 and 93% of

visitors had a screen with greater resolution than that [165]. Thus, 1024� 768

is a very conservative resolution to target. The W3Schools website shows a slight

increase in the number of visitors with low screen resolutions in recent years, but this

is undoubtedly attributed to visitors who are using mobile devices. Many subjects

in the study actually complained about the limited amount of screen space used by

Complexity Tutor and requested the ability to increase the size of the interface.

While such a feature would be easy to implement, it was purposely excluded, to

prevent subjects with large monitors and high screen resolutions from having an

unfair advantage over everyone else in the study.

Subjects were asked to watch online tutorials, showing them how to solve sample

problems inComplexity Tutor . After watching the tutorials, they could practice

110

with the same problems shown in the tutorials inComplexity Tutor , if they

wanted to.

Next, subjects were given a set of problems to attempt to solve usingComplexity

Tutor . While the software was running on the subjects' computers, the subjects'

interactions with the interface were automatically recorded in video �les. Subjects

did not have to complete the problems in a single sitting, and often made multiple

attempts at the same problem, which were recorded as separate video �les every time

Complexity Tutor was restarted.

When subjects had completed the problems or given up, they were instructed to

construct a ZIP �le containing all the video �les that had been collected. This ZIP �le

was renamed to include the subject's Participant ID and then uploaded anonymously

to a secure �le storage facility provided by Box. The webpage that subjects used to

upload their �les was password protected with a password only available to those who

participated in the study.

After uploading their data, subjects were requested to �ll out an online question-

naire to give qualitative feedback about their experience usingComplexity Tutor .

4.1.4 Procedures for the control group

The control group was given the same problems to work on as the experimental

group, but without the aid of Complexity Tutor . Subjects in the control group

were instructed to treat the problem set as they would a normal homework assign-

ment. Subjects were also asked to note approximately how much time they spent on

each problem.

They were then to create a PDF from their solutions, either by scanning their

hand written copy or typing it up. The PDF would be uploaded as their data for

the experiment, using the same upload procedures used for the experimental group.

111

Subjects were advised not to write their name or any other identi�able information,

besides their Participant ID on the submissions.

The control group's submissions were manually graded|scores and feedback were

assigned for every problem, as would be done if it were a normal homework as-

signment. Dispostable, an anonymous email drop service, was used to deliver the

scores and feedback. Subjects could login to the Dispostable email account using just

their Participant ID and were advised to check it every few days after the submission

deadline until they had received the feedback, since Dispostable automatically deletes

messages over time. The subjects could also send reply email messages from the Dis-

postable account, to ask questions about the feedback. Thus, the process of how

students normally receive feedback on their homework assignments was simulated as

closely as possible, while maintaining the anonymity of the study participants.

4.1.5 Evaluation of submissions and follow-up

In all semesters other than Fall 2016, it was necessary to grade the submissions

to assign extra credit for participation in the study. Each problem given to students

in the experiment was worth the same amount, regardless of its perceived di�culty.

Since there was only a maximum of 5 extra credit points allowed, and subjects received

3 points just for completing the experiment, each successfully completed problem was

worth at most 2=k points, wherek is the number of problems given.

The control group received the grades that had previously been given to them

in feedback. The experimental group was graded based on what was observed in

the videos, with variable scores assigned for incomplete proofs based on how many

connections were missing in the Proof Environment.

In some semesters, subjects were also asked to complete a follow-up quiz at the

end of the experiment. It was hoped that these quizzes could serve as a posttest for

the experiment.

112

4.2 NP-completeness tutoring experiments

Experiments usingComplexity Tutor to help students learn the topic of NP-

completeness took place in an algorithms course during the Fall 2016 and Spring 2018

semesters. During the Fall 2016 semester, there were two instructors who co-taught

the course. Only one of the instructors from the Fall 2016 semester was involved in

teaching the course during the Spring 2018 semester. Nevertheless, it is presumed

that that presentation of material was similar during both semesters, especially since

the same textbook [87] was used both semesters.

In both semesters, NP-completeness was not covered by the instructor until near

the very end of the course, and the experiment was started after the instructor had

given lectures on the topic. Unfortunately, this meant that students participating in

the study had to do so while under the pressure of other important responsibilities,

such as �nal exams and end-of-semester projects.

The method of splitting study volunteers into the experimental and control groups

di�ered between the two semesters. During the Fall 2016 semester, one of the instruc-

tors split the volunteers into matched groups based on prior performance in the course.

During the Spring 2018 semester, volunteers were assigned to experimental or con-

trol at random with equal probability. The reason for the change in procedure was

because it was realized that NP-completeness was a very di�erent topic than earlier

topics in the course, and so prior performance in the course may not be so relevant.

Furthermore, there would likely be confounding variables that would more directly

a�ect a student's ease at learning NP-completeness, such as what they had learned

in other classes. As such, purely random assignment was the best way to deal with

confounding variables. It was also logistically simpler.

As noted earlier in this chapter, the policy for rewarding extra credit for participa-

tion also di�ered between the two semesters. During the Fall 2016 semester, students

would receive 5 points of extra credit on their �nal exam, so long as they were deemed

113

to have fully completed the experiment. During the Spring 2018 semester, students

who completed the experiment received 3-5 points of extra credit on their �nal exam,

based on their performance in the study. The change in incentive structure may have

a�ected the results of the experiments, as subjects during the Spring 2018 semester

may have put more e�ort into their participation. This is a variable to consider in

analysis.

Subjects were given three problems to work on during the Fall 2016 semester.

The �rst problem was a purely conceptual problem that could be solved entirely in

the Theorem Proving Environment (Section 3.1) using de�nitions from the theory of

NP-completeness. The other two problems required the student to complete an NP-

Completeness reduction using the Algorithm Environment (Section 3.2), in addition

to laying out the structure of a general NP-completeness proof in the Theorem Proving

Environment.

During the Spring 2018, the same problems as Fall 2016 were given, but three

additional conceptual problems were added. Thus, during Spring 2018, there were

four conceptual problems that could be solved in the Theorem Proving Environment

without requiring a reduction in the Algorithm Environment. Analysis of results from

Fall 2016 had indicated that there was a huge di�erence in performance in favor of

the experimental group over the control group on the one purely conceptual problem

given that semester, and so it was desired to get more data on that phenomenon.

Refer to Appendix B to see the problems given.

Every subject during both semesters was asked to watch a 20-minute \Crash

Course in Python" training video. The purpose of this was two-fold. First, the video

was designed to provide subjects in the experimental group with the basic knowledge

of Python needed to use the Algorithm Environment to do the reduction problem.

Second, the video was used as a litmus test to judge student familiarity with Python,

since that could be a variable a�ecting performance in the study. Subjects were

114

given a multiple-choice survey question to respond to after watching the video, which

assessed how familiar they were with the concepts taught in the video.

An important di�erence between the experimental and control groups was that

the experimental group was required to do Levin reductions for the two reduction

problems, whereas the control group was neither required nor expected to do Levin

reductions. Unfortunately, Levin reductions were never taught to students in the

class, and even worse the students' textbook muddled the distinction between Cook

and Karp reductions. Since the Algorithm Environment requires Levin reductions

for technical reasons, subjects in the experimental Group were asked to watch a

short tutorial video, which introduced the concept of a Levin reduction and showed

how to do one in the Algorithm Environment. Of the two reduction problems, the

0/1-PROG Reduction Problem gave subjects in the experimental group the certi�cate

part of a Levin-reduction as a hint. The other reduction problem, the BIN-PACKING

Reduction Problem required students in the experimental group to produce both parts

of a Levin reduction.

More speci�c details of the two semesters are listed below.

4.2.1 Fall 2016

The initial announcement of the study was made to the class on November 3

and the experiment o�cially began a month later, on December 6. Initially, only 55

students volunteered, of which 28 were put in the experimental group and 27 were

put in the control group. From these initial groups, 20 of the volunteers placed in

the experimental group completed the experiment, and 19 volunteers placed in the

control group completed the experiment. However, some additional students were

allowed to join the study late, after the initial deadline to volunteer had long passed

and the experiment had already begun. There were 6 students who joined the study

after December 12, of which 3 were placed into the experimental group and 3 were

115

placed in the control group based on the normal matching criteria. These 6 subjects

received `L' su�xes on their Participant ID to indicate that they had joined the study

late. There were an additional 3 students who joined the study even later, and these

3 subjects were all placed in the experimental group and were given `W' su�xes on

their Participant ID to indicate that they both joined the study late and that they

had been added without respect to the normal matching criteria. In total, there ended

up being 25 subjects in the experimental group and 22 subjects in the control group.

The reason for permitting students to join the study late was because it was feared

that the initially low turn-out would not give enough data to draw statistically valid

conclusions. The reason that some students wanted to join the study late is unknown.

One possibility is that they were unaware of the study until other classmates told them

about it|maybe they had been absent on the day that the initial announcement was

made. Another possibility is that their perspective on the value of participating in

the study changed by the time the experiment began.

Due to the fact that subjects joined the study at di�erent times, and also due to

the fact that the experiment was started near the end of the semester, subjects were

not given a concrete deadline of when they were expected to complete the experiment.

It was hoped that this
exibility would encourage more to complete the experiment,

but in retrospect it probably also encouraged subjects to procrastinate. Subjects who

completed the experiment by December 28 were also still eligible for the extra credit

bounty, even though this was after the semester had o�cially ended. The �nal exam

for the class took place on December 19. In the experimental group, only 8 subjects

completed their participation before the day of the �nal exam. In the control group,

only 9 subjects completed their participation before the day of the �nal exam.

Thus, while it was initially hoped that parts of the �nal exam could be used as

a posttest for subjects participating in the study, not enough subjects completed the

experiment before taking the exam to draw statistically valid conclusions. Exam

116

scores for one question related to NP-completeness were initially looked at, but that

question was deemed to not be particularly relevant to the study|40% of the points

on that question were testing a student's conceptual understanding of vertex covers

and dominating sets, 40% of the points were assigned to proving a speci�c reduction

correct, and only 20% of the points involved completing an NP-completeness proof.

In other words, 80% of the points from that question were assigned for completing

tasks that the experiment would not have likely prepared subjects for.

4.2.2 Spring 2018

A newer version ofComplexity Tutor with the additional features mentioned

in Section 3.1.7 was used for this semester. The BIN-PACKING Reduction Problem

was also modi�ed so that subjects in the experimental group would receive sca�olded

hints rather than the very limited feedback given during the Fall 2016 semester. This

is explained in Section 5.2.2. The 0/1-PROG Reduction Problem was not modi�ed.

Also, three new conceptual problems were given, as mentioned above.

There was also a slight deviation from the normal protocol for the control group

this semester. The control group did not receive feedback on their submissions like

in the experiments from the other semesters.

The initial announcement of the study was made to the class on February 26

and the experiment o�cially began almost two months later, on April 19. There

were 67 volunteers, of which 34 were put in the experimental group and 33 were put

in the control group. From these initial groups, 24 of the volunteers placed in the

experimental group completed the experiment, and 18 volunteers placed in the control

group completed the experiment. There was also one additional volunteer from the

experimental group not counted because the data they submitted was for problems

117

from the prepositional logic experiment instead of the NP-completeness experiment.1

Notice that there was a slightly higher drop-out rate from the control group than the

experimental group during this semester. Unlike Fall 2016, students were not allowed

to join the study late after the experiment had commenced.

During this semester, the experiment was divided into three distinct phases. Di-

rections for the �rst phase were emailed on April 19. This phase consisted of prelim-

inary preparations for the experiment|subjects acquiring their Participant ID and

watching the tutorial videos (if they were in the experimental group). Directions for

the second phase were emailed a few days later on April 23. The second phase was

where the subjects were actually given the problems to work on. Subjects were given

a deadline of May 1 to complete this second phase and submit their data. The third

phase involved subjects taking a short follow-up quiz. Directions for this third phase

were emailed on May 2. The directions also explicitly stated that the quiz should

not be looked at until the second phase had been completed, since some subjects

completed the second phase past the May 1 deadline.

The reason for explicitly breaking the experiment into these three phases was

because it was hoped that it would encourage subjects to pace themselves through the

experiment, and to carefully read and follow the directions. There had been numerous

problems with subjects not correctly following directions in previous semesters, when

the directions for the whole experiment had been sent in a single email. There was

no equivalent of the third phase in the Fall 2016 experiment. In that semester, it had

been hoped that questions from the �nal exam could be used as a posttest for the

experiment, but there were no suitable questions on that �nal exam. For the Spring

1It is not known whether this was accidental or intentional. The prepositional logic experiments
were done during alternate semesters from the NP-completeness experiments. It is therefore likely
that this particular subject had been enrolled in the discrete math class in a previous semester and
volunteered for the study then as well.

118

2018 semester, the choice was made to give subjects a quiz that would hopefully serve

as a better posttest for measuring what students had learned during the experiment.

The posttest quiz is found in Appendix E. Designing it was a challenge. On

one hand, the quiz needed to properly assess what subjects had learned about NP-

completeness, based on what they could have possibly learned from the six problems

given in the experiment. On the other hand, the quiz needed to be designed so that it

could be completed quickly, since it was deemed that subjects would not have much

time available. So while ideally, subjects would have been given an hour long test,

the quiz was designed to be completed in 10-30 minutes. Note also that subjects were

given the quiz on May 2, which was two days before their �nal exam in the algorithms

class on May 4.

There were �ve problems on the quiz. Four of the problems did not require subjects

to construct a proof but rather to evaluate the correctness of a potential proof. It is not

known how well this type of problem correlates with the proof construction problems

given during the experiment, but it was chosen because reading a potential proof

and looking for its
aws should take considerably less time than constructing a proof

from scratch. The �fth problem was a proof construction problem similar to the ones

given for practice in the experiment. In fact, this �fth problem was nearly identical

to Conceptual Problem 1 (Appendix B), requiring the same argument structure.

One constraint of the quiz was that for logistical reasons, it could not be proc-

tored. Subjects were responsible for administering the quiz themselves at their own

convenience. As such, it was explicitly stated on the quiz that while it had to be

submitted to receive extra credit for participation in the study, the quiz would have

no impact on how much extra credit was received or for any other part of their grade

in the course. This was to remove any incentive that subjects might have of cheating.

But the downside of not giving a direct incentive for doing well on the quiz is that

subjects might put little e�ort into it. This was another reason that the quiz was

119

designed so that it could be completed quickly, since subjects would be more tempted

to not spend the full amount of time on a long quiz, knowing it would not impact

their grade at all.

A potential indirect incentive that subjects might have perceived for putting e�ort

into the quiz is that it could help them prepare for their �nal exam. However, the

majority of subjects submitted their quiz after they had already taken their �nal

exam. Only 18 subjects submitted the quiz prior to the day of the �nal exam, of

which 11 were from the experimental group and 7 were from the control group. Of

the remaining subjects, 18 submitted the quiz the day after the �nal exam, on May

5. A reminder email was sent on May 7 to remind the remaining subjects to submit

their quiz, and almost everyone submitted their quiz after that reminder. There was

only one subject, who was from the experiment group, who never submitted the quiz.

The fact that almost everyone submitted the quiz stands in stark contrast to the

experiment that was done in the Fall 2017 discrete mathematics class. In that other

experiment, it was also attempted to use a quiz as a posttest but 82% of subjects did

not even submit it. What might explain the di�erence in outcome? Subjects in Spring

2018 were continuously reminded that there were three phases of the experiment that

needed to be completed, and so they were likely anticipating this third phase of the

experiment. In comparison, the Fall 2017 experiment was not explicitly broken up

into phases. Subjects in Fall 2017 were told in the beginning that they would be

asked to complete a follow-up quiz, but they were not given as many reminders.

Timing may be another factor. For the Spring 2018 experiment, the quiz was

delivered to subjects the day after the deadline for submitting their data for the

practice problems. However, Fall 2017 subjects had to wait two weeks from the

initial deadline for submitting data before they were given the quiz. The main reason

for this delay was grading and giving feedback to the control group subjects. Since

feedback was not given to control subjects in Spring 2018, this delay was not necessary

120

and the third phase of the experiment could commence as soon as subjects completed

the second phase.

4.3 Prepositional logic proof tutoring experiments

Experiments usingComplexity Tutor to help students learn prepositional logic

proofs took place in a discrete math course during the Spring 2017 and Fall 2017

semesters. During both semesters, the same instructor taught the course, so there

was presumably consistency in how the course material was presented.

In both semesters, prepositional logic proofs were taught to students fairly early

in the course, and students were evaluated on their knowledge of this topic during

the �rst midterm exam, before the experiment started. Volunteers were split into

two matched groups, experimental and control, based on performance on relevant

problems from this �rst midterm exam.

Notice that the timeframe of intervention di�ers signi�cantly between the NP-

completeness experiments and the prepositional logic experiments. In the case of

NP-completeness, subjects had barely been exposed to a new concept and had little

time to practice working on problems involving the concept or get feedback on their

understanding of the concept. However, in the case of prepositional logic, subjects

had a signi�cant amount of time to practice homework problems, seek clari�cations

from their instructor, prepare for an exam that assessed their understanding of the

topic, and seek additional clari�cations after the exam|all before the experiment

began.

During both semesters, subjects were given the same three problems to work on

in the experiment. The Pizza Problem, deemed to be the easiest, was a simple logic

problem where all assumptions and assertions were given to subjects in plain English.

The Muddy Dog Problem was also given in plain English, but was deemed to be harder

than the Pizza Problem, since there were signi�cantly more proof steps involved.

121

Figure 4.1: Proof graph of Murder Mystery Problem inComplexity Tutor .

The Murder Mystery Problem was deemed to be the hardest, and used a mixture of

symbolic logic and English to describe the problem's assumptions, requiring subjects

to translate between them. It also had a fairly involved proof with the most proof

122

steps and a large number of assumptions to deal with. Figure 4.1 shows the solution to

this problem in Complexity Tutor . All three problems are given in Appendix C.

An important point to make is that the author was careful to design all three problems

to require the same level of granularity (Section 2.1.4) for solutions inComplexity

Tutor , so it is fair to compare di�culty based on the number of proof steps required.

Exam data was also collected from the instructor for the subjects in the study.

Scores on speci�c questions on the midterm and �nal exam were analyzed. These

speci�c questions can be found in Appendix D. The intent was to use the relevant

questions from the midterm exams as pretests, and the relevant questions from the

�nal exams as posttests. Performance improvement between the midterm and �nal

was also analyzed.

More speci�c details of the two semesters are listed below.

4.3.1 Spring 2017

In this semester, two separate announcements were made informing the class about

the study. The �rst announcement was made on March 1. But at that time, the

informed consent forms were not ready for distribution since the Institutional Review

Board was still in the process of approving changes to the protocol to permit extra

credit to be based on performance in the study. Thus, a second announcement was

made on April 3, which is when the consent forms were given to students.

After the announcements, there were 115 students who volunteered for the study,

more than in any other semester. It is possible that the additional announcement led

to more students being aware of the study. It would have also given students more

time to think about whether they wanted to participate. The 115 volunteers were

split into matched groups of experimental and control, based on a composite of their

scores on Questions 1{3 from their �rst midterm exam.

123

The experiment commenced on April 21 and subjects were given a deadline of

May 3 to complete it. For each subject who completed the experiment, their scores

on two midterm exam questions and two parts of a �nal exam question were collected

for analysis. These exam questions are in Appendix D.

For the midterm, the scores of Question 1 and Question 3 were collected. Question

1 asked students to translate several symbolic logic assertions to and from English.

Question 3 asked students to construct a proof using the statements from Question 1.

It is presumed that the score for Question 3 would be more relevant to the study than

Question 1, since Question 3 unlike Question 1 involves proof construction. However,

since Question 3 depends on Question 1, and since Question 1 might still be somewhat

useful, both scores were collected. The scores for Question 2 were also obtained but

not used in analysis, since that problem permitted students to give a truth table as

an answer rather than a normal proof.

For the �nal, Question 2 was looked at, which essentially combined two types of

questions from the midterm. The �rst part of Question 2 was a translation prob-

lem like Question 1 from the midterm. The second part of Question 2 was a proof

construction problem similar to Question 3 from the midterm. Thankfully, it was

possible to obtain the individual subscores for Question 2, to separate the translation

problem from the proof construction problem.

Of the initial volunteers, 38 from the experimental group and 39 from the con-

trol group completed the experiment. However, two subjects from the experimental

group were excluded from analysis in the study, because the data they submitted was

thought to be corrupted. An additional four subjects from the experimental group

and three from the control group were also excluded because their exam scores could

not be obtained|these subjects may not have claimed extra credit for their partici-

pation, because the instructor did not have a record of them. Thus, the �nal total of

124

subjects who were analyzed in the study was 32 in the experimental group and 36 in

the control group.

4.3.2 Fall 2017

A newer version ofComplexity Tutor with the additional features mentioned

in Section 3.1.7 was used for this semester. One of the primary motivations for the

Fall 2017 experiment was to evaluate if these new features were useful to students,

and to look at how students used them. The problem �les given to subjects in the

experimental group were also slightly modi�ed from the versions used in Spring 2017.

The versions of the Muddy Dog Problem and Murder Mystery Problem used in

Spring 2017 did not show all the available assertions initially. Instead, many assertions

were triggered to be unlocked when certain progress was made in the Proof Space. One

reason for this was to not overwhelm students by showing them too many assertions

at once. However, with the new search feature, it was hypothesized that this would

help students �nd the assertions they were looking for even if there were many in the

Assertions Box. It was also hypothesized that the unlocking of assertions might be

confusing to some students.

The versions of the Muddy Dog Problem and Murder Mystery Problem used

in Fall 2017 displayed all available assertions initially without requiring any to be

unlocked. The Pizza Problem was not modi�ed, because this problem never required

any assertions to be unlocked, since it does not even use many assertions.

The initial announcement for the study was made in mid-September, although the

exact date was not recorded. There were only 84 students who volunteered for the

study, signi�cantly less than the previous semester. It is unknown why there were so

many fewer volunteers than Spring 2017. Perhaps the early announcement had an

adverse e�ect, or perhaps it was simply the multiple announcements in Spring 2017

that caused that semester to have a higher than usual turnout of volunteers. The 84

125

volunteers were split into matched groups of experimental and control, based on their

score for Question 2 from the �rst midterm exam.

Originally, students were told that the experiment would begin on October 20,

but the start date had to be delayed. On October 30, subjects who had volunteered

to participate were noti�ed by email that the experiment would begin on November

9, after their second midterm, so they did not need to worry about studying for the

second midterm and doing the experiment at the same time.

The experiment was o�cially started on November 9, and subjects were given an

initial deadline of November 30 to complete it. Notice that this was more time than

given in the Spring 2017 semester, but the reason for giving a more generous deadline

was that it was hoped it would decrease the drop-out rate, since there was a smaller

pool of volunteers to begin with. Unfortunately, giving more time ended up having

the opposite e�ect, as not many submissions were received by the initial November

30 deadline. On December 1, subjects were surveyed to ask if they would like an

extension for completing the experiment. Many responded that they would like the

extension, so an extension was granted until December 9. The fact that so many

subjects needed an extension, despite being initially given a more generous deadline

than the Spring 2017 subjects were given, is evidence that giving more generous

deadlines actually increases the chances of procrastination.

For each subject who completed the experiment, their scores on Question 2 from

the midterm exam and Question 1 from the �nal exam were collected for analysis.

These exam questions are in Appendix D. Question 2 on the midterm asked for three

proof constructions, although students were permitted to substitute truth tables for

proofs when only propositional logic was required. Question 1 on the �nal had two

parts, a logic translation part and a proof construction part, similar to the Spring

2017 semester.

126

Unfortunately, unlike in Spring 2017, it was not possible to obtain the individual

subscores for the proof construction part separated from the logic translation part.

Of the initial volunteers, 20 from the experimental group and 23 from the control

group completed the experiment. There was one anonymous experimental group

submission that is not counted because the submission did not have a Participant

ID. One of the subjects from the control group was also later excluded from analysis

because their exam scores could not be obtained. Thus, the �nal total of subjects who

were analyzed in the study was 20 in the experimental group and 22 in the control

group. Note that two subjects in the experiment group made no attempt on Murder

Mystery Problem, so technically they did not complete the study correctly since

the directions speci�cally said that subjects should attempt to solve all problems.

However, these two subjects are still included in the analysis.

There was also an additional quiz that was given to subjects this semester as

a follow-up to the experiment. Initial analysis from the Spring 2017 semester had

indicated that performance on the exam questions analyzed did not correlate with

performance on the problems subjects worked on for the experiment, so it was spec-

ulated that the exam problems may not even be a suitable posttest for the study.

Thus, a separate quiz that might be a better posttest for the study was developed.

See Appendix E. Due to logistical constraints, the quiz could not be proctored. Sub-

jects were responsible for administering the quiz themselves at their own convenience,

and were told that the quiz should take less than 30 minutes to complete, although

they could spend as much time as they want. They were also instructed to complete

the quiz in a single sitting.

Unfortunately, very few quiz submissions were received. A total of 4 quizzes were

received from the experimental group, and a total of 4 quizzes were received from

the control group|a grand total of 8 submissions. Of the 8 submissions, everyone

essentially got the single question on the quiz correct and scored 95% or higher, so

127

there is almost nothing that can be inferred from the quiz submissions. It is not known

why there were so few submissions. The quiz was sent to subjects on December 16,

two weeks after the initial deadline for completing the experiment, and less than a

week after the extended deadline. The main reason for the brief delay was the time it

took to give feedback to the control group on their submissions from the experiment.

A reminder email about the quiz was sent on December 26, but unfortunately that

did not signi�cantly help.

4.4 Limitations of the study

There were a number of limitations in how this study was designed that compro-

mised some of the research objectives, but were necessary to meet the requirements of

the Institutional Review Board and the instructors who graciously allowed the study

to take place in their classes. One of the biggest limitations is that there was no

control over how instructors presented material. For instance, the instructors who

taught NP-completeness did not speci�cally cover anything about Levin reductions.

Performance on that part of the study would presumably look di�erent if students

had received more exposure to Levin reductions.

The fact that subjects had to speci�cally opt-in to participating in the study

rather than opt-out meant that large percentages of students either did not volunteer

for the study or later dropped out, which in some semesters led to getting less data

than was desirable. There would also likely be some bias in who chose to participate

and stay in the study. As mentioned in Chapter 5, it would be nice to also have a

third comparison group that did not do any practice problems but took the same

pretests and posttests, but that would require a higher participation rate to a�ord

splitting subjects into three groups.

The fact that the experiments were framed as being optional extra credit activities

for external research rather than an integral part of the classroom learning also likely

128

a�ected the results of this study. It cannot be guaranteed that subjects treated the

practice problems in the same way they would treat a bona �de class assignment,

even though they were instructed to do so. When there was a con
ict between what

they were to be learning from participating in the experiments and what they thought

they already understood from o�cial classroom activities such as instructors' lectures,

presumably they might discount the new information learned in the experiment, being

less trusting of its relevance to the class, since it came from an outside source.

The pretest and posttest conditions were not ideal either. The problem with

using actual exam questions from the discrete math course as pretests and posttests

for the prepositional logic experiments is that those exams also assessed material that

was not part of the study. Even though only scores from the questions relevant to

prepositional logic proving were used, the other questions could still have a�ected

performance on those questions.

Consider that not all students will do the questions on the exam in the same order,

and on a timed exam that makes a big di�erence. One test taking strategy is to do

the easiest questions �rst, and another strategy is to do the hardest questions �rst.

A student who feels more con�dent in their abilities may be more inclined to choose

the latter strategy, but sometimes that con�dence is overestimated. The author can

recall numerous occasions where he ran out of time to �nish an easy question because

he spent too much time on a hard question.

In the case of the posttest quiz given to subjects in the NP-completeness experi-

ments, that was not an issue. However, that quiz was not proctored, because there

was no logistically feasible way to ensure that all subjects doing the experiment would

be available at the same time for a quiz proctored outside of class. Since the quiz

was not proctored, there was the additional measure of telling subjects that the quiz

would not a�ect their grade, to discourage cheating. However, this likely also led to

subjects not putting their best e�ort into the quiz.

129

Time was another limiting factor in the study. The protocol approved for the

study capped the expected amount of time that participants would be required to

spend on research activities to 15 hours. Realistically, even expecting subjects to

spend that much time was barely reasonable since they were only receiving a small

amount of extra credit as a reward for their participation.

None of these concerns should take away from the importance of this study taking

place. When a new pedagogical method is introduced in an educational �eld where it

has never been tested before, there will understandably be some caution to testing it

on actual students, which will limit the scope in which it can be evaluated in initial

studies.

Research progress must therefore be gradual. As will be shown in Chapter 5, not

all research questions are answered conclusively based on the results. Some �ndings

are speculative and some results are inconclusive, which is to be expected, given the

parameters of the study. However, it is the hope of the author that the evidence

presented will still be enough to support future studies that evaluate the e�cacy of

Complexity Tutor more in-depth without the limitations of this study.

In the future, the author would like to evaluateComplexity Tutor when it is

used as an integral part of classroom learning, as was done with many of the systems

described in Chapter 2.

130

CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

This chapter presents what was learned from the study described in Chapter 4.

The results are divided into three sections.

In Section 5.1, the Theorem Proving Environment is evaluated, looking at how

subjects in the experimental groups performed on problems that only involved using

the Theorem Proving Environment. The results are signi�cantly di�erent for the

topics of NP-completeness and prepositional logic, and it is conjectured that this is

explained by subjects' prior conceptual understanding of the material. Some �ndings

from this section were originally presented in a SIGCSE conference publication [103].

Next, Section 5.2 looks at how subjects performed in the experiments where they

used the Algorithm Environment to do NP-completeness reductions. Initial results

for the Fall 2016 semester were disappointing, since no subjects from that semester

were able to solve either of the reduction problems (Appendix B) using the Algorithm

Environment. However, there was remarkable improvement in Spring 2018, which is

likely due in part to extra sca�olding of hints for one problem.

Finally, Section 5.3 presents the feedback that subjects in the study gave about

Complexity Tutor , which was largely positive|a strong majority of them would

recommend the system to peers who are also learning proof construction.

5.1 Evaluation of the Theorem Proving Environment

The video recordings submitted by subjects in the experimental groups were an-

alyzed to determine if they encountered di�culties in using the Theorem Proving

131

Environment, and if they were able to solve the proof problems with the tutoring

system. No signi�cant di�culties in �guring out how to use the Theorem Proving

Environment were observed in the videos. However, a number of subjects mentioned

on their questionnaire that they would have liked more screen space for their proof.

Summary statistics are presented in Tables 5.2 and 5.1, comparing performance

of the experimental groups and control groups for the prepositional logic problems

and for the NP-completeness problems. As can be seen from these tables, for most of

the problems given in the study solely involving the Theorem Proving Environment,

subjects in the experimental groups were able to successfully construct proofs using

the system.

5.1.1 Theories to explain di�erences between the results for the logic and

NP-completeness experiments

Notice the stark contrast between Tables 5.1 and 5.2. For the logic problems given

to subjects in the discrete math classes, the statistics are very similar for both the

experimental and control groups. However, for the conceptual problems on the theory

of NP-completeness given to the subjects in the algorithms classes, the experimental

group performed signi�cantly better than the control group.

What explains why the statistics are so similar for the experimental and con-

trol groups in the prepositional logic experiments, and yet so far apart for the NP-

completeness experiments? To even attempt to answer that question, a theory is

needed to ascertain what will predict a student's ability to produce a correct proof

for a given proof problem. The author suggests that there are two variables that come

into play in the normal setting that the control group experienced (i.e., without the

intervention of Complexity Tutor):

1. Conceptual misunderstandings of the student may lead them to make incorrect

inferences, thus producing an incorrect proof. In the nomenclature used by

132

Table 5.1: Summary statistics for the prepositional logic problems. TheMade At-
tempt row indicates the percentage of subjects who attempted each problem. For the
experimental group, a subject was only considered to have attempted a problem if
they made at least one connection in the Theorem Proving Environment. TheMean
and Median rows indicate average scores over the entire sample, where subjects who
did not attempt a problem were factored into the average with a 0% score. ThePer-
fect row indicates the percentage of subjects who got a perfect score amongst those
who attempted the problem.

133

Table 5.2: Summary statistics for the conceptual NP-completeness problems. The
Made Attempt row indicates the percentage of subjects who attempted each prob-
lem. For the experimental group, a subject was only considered to have attempted a
problem if they made at least one connection in the Theorem Proving Environment.
The Mean and Median rows indicate average scores over the entire sample, where
subjects who did not attempt a problem were factored into the average with a 0%
score. ThePerfect row indicates the percentage of subjects who got a perfect score
amongst those who attempted the problem.

134

intelligent tutoring system researchers, these misconceptions that students may

have are often referred to as \bugs" [169].

2. There is an innate complexity to the solutions of proof problems, which will be

informally referred to as \proof complexity".1 As the complexity of the proof

that must be constructed to solve a given proof problem increases, the likelihood

that a student of a given ability level will succeed decreases and the chances

that they will make mistakes due to the burdens of cognitive load increases.

For the NP-completeness experiments, there is strong evidence that most students

in the control group lacked the prerequisite conceptual understanding of the material

to succeed. Thus, the �rst variable mentioned above was likely mainly responsible

for predicting the performance of students in the control group. For instance, a very

common misconception identi�ed in subjects from the control group is that subjects

would con
ate the concepts of NP and NP-Complete. For Conceptual Problem 1,

many subjects tried to argue that PATH was NP-Complete because it can be veri�ed

in polynomial time. This indicates that PATH is in NP but not that it is NP-

Complete.

On the other hand, there were no similar patterns of conceptual misunderstandings

that were identi�ed among the subjects in the prepositional logic experiments. If sub-

jects had signi�cant conceptual misunderstandings, they most likely would not have

done well even on the Pizza Problem, and almost everyone did well on that problem.

Consider that subjects had signi�cant opportunities to correct any misconceptions

they might have had before the experiments even began, since the experiments were

started after the subjects had already taken a midterm exam on the material covered.

1There is also a formal notion ofproof complexity studied by theoreticians, such as used in this
paper [26] on the proof complexity of resolution proofs. That is not what is being referred to here,
although there may be some overlap between the informal pedagogical notions discussed here and
the formal notion.

135

Thus, the author conjectures that the second \proof complexity" variable above

was the main determining factor for how subjects statistically performed on the prepo-

sitional logic problems given in the experiments. Note that there are a number of

di�erent ways one might consider measuring this \proof complexity" variable. It

could be measured simply by the total number of proof steps in the proof, or it could

be measured by how far away the furthest assumption from the goal in the proof

graph is, or it could be measured by the branching factor of the proof graph. It could

even be measured in terms of the complexity of assertions used in the proof, which

itself might be measured in terms of parse trees from the grammar rules expressing

those assertions.

By any of these measures, you can produce an ordering on a set of proof problems,

according to the complexity of the simplest proof that will solve the problem. The

three logic problems from the study have the same ordering of complexity using �rst-

order logic inferences under all the measures mentioned above|the proof required

for the Pizza Problem is simplest in complexity, the proof required for the Muddy

Dog Problem is more complex than the Pizza Problem, and the proof required for

the Murder Mystery Problem is most complex of all.

As would be expected, the performance of subjects in the study on those prob-

lems decreases in that order as well, as shown in Table 5.1. So assuming that a

\proof complexity" variable explains the performance of the control group subjects

in the prepositional logic experiments, it is interesting that the experimental groups

performed very similar to the control, despite the fact they were constructing their

proofs in the Theorem Proving Environment rather than with pen and paper. This

can be considered a feature rather than a
aw of the Theorem Proving Environment,

if it were to mean that students solving the proof puzzles provided by the Theorem

Proving Environment are receiving the same intellectual bene�t as they would receive

doing the proofs with pen and paper.

136

After all, one of the main reasons that students are assigned to practice construct-

ing proofs in the �rst place is because it is believed that proper practice will improve

one's ability to solve proof problems that require complex solutions, in the same way

that physical exercise can improve one's physical strength and endurance. Otherwise,

if there were no bene�t to practice, why do it?

Even if practicing proof construction in the Theorem Proving Environment only

provided the exact same bene�ts for students without misconceptions as practicing

proofs on paper and having them graded by an instructor, the Theorem Proving

Environment still has the advantage of not requiring all that grading work to be

done. Students can receive more practice than they would otherwise, because the

amount of practice they can do is not bandwidth limited by the amount of papers

their instructor can grade.

Of course, the study would have needed to be designed di�erently to best evaluate

this. There would need to be two comparison groups instead of just one control,

so subjects would need to be split into three groups. One group would use the

Theorem Proving Environment to do practice problems, another group would do the

same problems with pen and paper, and the �nal group would not do the practice

problems at all. Such an experimental design could be used to measure whether there

are comparable bene�ts to practicing proof construction in the Theorem Proving

Environment as there are to practicing the normal way. The study would also likely

need to run longer to be able to measure the bene�ts of practice over time.

At this point, it is merely a conjecture that practice in the Theorem Proving

Environment provides similar or better bene�ts to traditional proof practice when

students have no signi�cant conceptual di�culties. There are, however, already two

pieces of evidence from this study that support the conjecture:

1. If two activities provide similar intellectual challenge, one would expect to see

similar performance statistics on those activities, which is what is observed in

137

Table 5.1, with the descriptive statistics being similar for both the experimental

and control groups on all three logic problems.

2. A positive association was found between subjects successfully constructing

proofs in the Theorem Proving Environment and improving their exam scores

in the Spring 2017 experiment. The details of the analysis determining this

association are in Section 5.1.3. Interestingly, the association was absent from

the control group, suggesting that using the Theorem Proving Environment

to practice proof construction may in itself provide bene�t for some students

that traditional proof construction practice will not, even when the traditional

proof construction practice is done correctly. However, more data is needed to

establish statistical rigor for the association that was found in the experimental

group, and also one must be hesitant in assuming that the association is a causal

relationship, until other possibilities can be ruled out.

5.1.2 For the NP-completeness experiments, did the Theorem Proving

Environment correct students' misconceptions?

At �rst sight, Table 5.2 would appear to be very good news for the Theorem

Proving Environment. The experimental group performed tremendously better than

the control group on all four conceptual problems related to NP-completeness. As

explained in the previous section, it is believed that the subjects in the control group

had signi�cant conceptual misunderstandings leading them to make incorrect infer-

ences and ultimately perform very poorly on these problems.

On the other hand, it is believed that subjects in the experimental group per-

formed much better on the same problems, because the Theorem Proving Environ-

ment prevented the subjects from making incorrect inferences and because the proofs

that subjects had to construct had low \complexity" (in the sense described in the

138

Table 5.3: Results of Spring 2018 posttest quiz, questions 1{4. The \Partially Cor-
rect" row indicates that a subject correctly identi�ed some
aws in a proof, but did
not identify all of the
aws and/or did not give good justi�cations for the
aws they
did identify. Other rows are self-explanatory.

previous section). But does this mean that the experimental group also had better

learning outcomes?

After the Fall 2016 experiment revealed that experimental subjects performed

much better than control subjects on Conceptual Problem 1, it was hypothesized

that by showing subjects how to make correct inferences in their proofs, the Theorem

Proving Environment was correcting their conceptual misunderstandings.

Unfortunately, the posttest quiz given in Spring 2018 would appear to disprove

this hypothesis, at least under the conditions of the study. The results of this posttest

quiz are shown in Tables 5.3 and 5.4, and the questions that were given on the quiz

are in Appendix E.

Before delving into theories of why the experimental group did not perform well on

the posttest quiz, it is important to remind the reader that the quiz was administered

under conditions that were less than ideal, and which might have caused the results to

139

Table 5.4: Results of Spring 2018 posttest quiz, question 5. The \Correct" row in-
dicates that the subject's proof was reasonably well-written and had no observable

aws. The \Conceptually Incorrect" row indicates that the subject's proof demon-
strated that the subject had a major conceptual misunderstanding. The \Undeter-
mined/Other" column is all subjects who did not �t the other categories, including
subject 94521523, who said they did not have time to �nish the quiz.

140

be worse than they would be in an ideal setting. The quiz was given to subjects when

they were preparing for �nal exams, which presumably distracted their focus from the

quiz. To entice subjects to take the quiz, they were told that it could be completed

in very little time. Unfortunately, this probably resulted in subjects rushing through

the quiz, not giving it an appropriate amount of time, and not even carefully reading

the quiz questions. This is evidenced by the fact that some subjects' responses to

questions on the quiz completely ignore what was written in the question prompts.

Furthermore, subject 35917331, who was one of the only two subjects from the

experimental group to get all the practice problems correct (including the reduction

problems mentioned in Section 5.2.3), never even submitted the quiz. And subject

94521523, who was the other subject from the experimental group that got all practice

problems correct, did not �nish the quiz and wrote this for the last question:

\The promised 30 minutes have elapsed, so I give up now because that's

all the time I budgeted; I have a meeting soon (and am supposed to do

this only in one sitting)"

That subject, unlike most others, did well on the �rst four questions, so there is

a good chance they would have done well on the whole quiz if they had allotted time

correctly.

The �rst four questions on the quiz asked the subjects to analyze four di�erent

proposed proofs and point out
aws if any existed, or to state that a proof was correct

if there were no
aws. The proof contained in the second question was the only one

that was correct. The reason why subjects did substantially better on this question

than the others, was because they had a very noticeable bias towards marking the

proofs as correct whether they were or not. All of the remaining proofs in �rst, third

and fourth questions had major conceptual
aws such as the \bug" of considering NP

and NP-Complete to be the same class.

141

Note that performance on these �rst four questions could particularly be adversely

a�ected if a subject had been rushing through the quiz or was sleep deprived, since

either of those conditions could prevent them from spotting
aws that they would

otherwise recognize.

However, the results for the �fth question, shown in Table 5.4, give the strongest

evidence that practice with the Theorem Proving Environment sadly failed to correct

misconceptions about NP-completeness. This �fth question is nearly identical to

Conceptual Question 1 in the experiment. The only di�erence is that the language

PRIMES is substituted for PATH in the problem description, but a subject from the

experimental group could literally take the proof they had constructed in the Theorem

Proving Environment for Conceptual Problem 1, substitute the word PRIMES for

PATH, and have a perfectly correct proof!

But obviously, all the subjects who got this quiz question incorrect did not do

that. There are three possible reasons to consider:

1. Subjects might have managed to construct the proof for Conceptual Problem

1 in the Theorem Proving Environment, but had so little understanding of it

that they would not be able to recognize when a very similar problem could be

proven with the same argument.

2. Subjects understood how to construct the proof expected for Conceptual Prob-

lem 1 while they were working on it, but they later lost this knowledge because

it was not reinforced in any way.

3. Regardless of whether the subjects understood and retained knowledge of the

proof they constructed for Conceptual Problem 1, they never learned that other

\buggy" proofs they had in mind for that problem were in fact incorrect.

142

It is unknown whether the �rst or second possibility is true, but the evidence from

�fth quiz question suggests that the third possibility is de�nitely true. The best that

can be hoped for is that only the third possibility is true.

What was the most common \bug" that subjects displayed in their attempted

proofs of this �fth quiz question? The question asks subjects to assume that P=NP, a

proposition that most knowledgeable computer scientists would consider to be absurd

but that is still not known to be false with absolute certainty. From this absurd

assumption, the subject is asked to prove something that would never be true without

the absurd assumption, i.e., that PRIMES is NP-Complete. However, what many

subjects attempted to do was to give a polynomial time reduction from a known

NP-Complete problem to PRIMES that does not depend on P and NP being equal.

The \bug" then is that the subject assumes that whenever they are asked to

prove a language NP-Complete, they must do so with a general reduction that works

irrespective of the assumptions they are given. The reasons subjects had this \bug" is

likely because the instructor never taught them an example where the correctness of

a reduction hinged on a problem-speci�c assumption. Incidentally, Kurt VanLehn's

Repair Theory [163] predicts this very outcome|that \bugs" are introduced when

there is a bias in the examples students are taught. Furthermore, the subjects in

the study lacked the conceptual understanding to realize that if PRIMES was in P,

as stated in the problem, it would be hopeless for them to try to produce a general

reduction from PRIMES to an NP-Complete problem.

Notably, not a single subject even complained about being asked to prove a

polynomial-time language to be NP-Complete, so they even lacked a rule telling

them that this is generally not a good idea to try.

Sadly, it seems evident that many students in this class did not understand why

they were studying NP-Completeness in the �rst place.

143

Another observation to make is that all subjects in the experimental group wrote

coarse-grained proofs for the �fth quiz question, despite the practice problems given

to them in the Theorem Proving Environment training them to do �ne-grained proofs.

This also made assessment of the subjects' proofs more di�cult, because in a number

of cases, the subjects' proofs did not give enough information to portray what they

understood.

To illustrate this dilemma, consider the proofs of subjects 33853006 and 78099281.

Here is subject 33853006's proof:

\We know that for a problem to be NP-Complete, it needs to de�nitely

be in NP. Therefore, NP-Complete is a subset of NP. Then, since we are

given the assumption that P=NP, that means that NP-Complete is ALSO

a subset of P. This means that all NP-Complete problems are solvable

in polynomial time, so NP-Complete = P, and since PRIMES is in P,

PRIMES is NP-Complete as well."

This proof is at a level of granularity where you can tell there is an incorrect

inference, i.e., \This means that all NP-Complete problems are solvable in polynomial

time, so NP-Complete = P". For the inference to be correct, they should have instead

written, \This means that all NP-Complete problems are solvable in polynomial time,

so NP-Complete� P". They have actually not shown anywhere in their proof that P

is contained in NP-Complete. Even though the proof is not correct for this reason, this

mistake may not be conceptual in nature or a mistake they would make consistently,

but rather a careless oversight on their part. The rest of the logic in the proof holds

together. So this subject's proof was classi�ed in Table 5.4 as \Other/Undetermined"

because while not correct it does not demonstrate that the subject has a major

conceptual misunderstanding.

On the other hand, subject 78099281 wrote for their proof:

144

\If P=NP then every problem in NP can be solved in polynomial time,

including those problems in NP-Complete (which are a subset of NP).

Thus P=NP=NP-Complete. Since PRIMES is in P, by this equality it is

also in NP and NP-Complete."

The line \Thus P=NP=NP-Complete" is such a coarse-grained proof step that

one cannot determine if the subject would have made the same mistake as subject

33853006 if forced to explain that step at a �ner granularity or not. Note that the

inference is still incorrect, because the empty language (;) and its complement (� �)

belong to NP but would never be considered NP-Complete under Karp reductions.

In general, subjects were given the bene�t of doubt if there was no evidence of an

incorrect inference, and so coarser-grained proofs were often classi�ed as \Correct".

Keep in mind that if the quizzes were to be classi�ed by the granularity expectations

used for the problems given in the Theorem Proving Environment, they would all be

considered incorrect.

So one should consider the percentage in the \Correct" row of Table 5.4 to be

an upper-bound on the percentage of subjects who actually had a completely correct

understanding of the proof, and the percentage in the \Conceptually Incorrect" row

to be a lower-bound on the percentage of subjects who had conceptual misunder-

standings.

Regardless, the results from the posttest quiz do not paint a
attering picture of

the Theorem Proving Environment's current ability to correct misconceptions. That

said, it is possible that if the subjects had more time to practice more problems in

the Theorem Proving Environment, and if it had been more of an integral part of

their learning experience, the outcomes might have been more positive. One must

consider that the subjects may have given more weight to the misconceptions they

had learned from their instructor's teaching than whatComplexity Tutor tried

to teach them, becauseComplexity Tutor was never o�cially part of the class.

145

5.1.3 Analysis of the relationship between performance on the practice

problems and exam improvement in the logic experiments

In the prepositional logic experiments, scores from relevant exam questions were

analyzed to determine what e�ect the experiment had on student exam performance.

It was observed that some subjects who did very well on the relevant exam questions

put little e�ort into the practice problems given in the experiments|most likely,

they did not feel they really needed the extra credit provided by the study. Thus,

only comparing scores from the �nal exam to how subjects performed on the practice

problems would be misleading, because some subjects received very low scores for the

practice problems simply because they did not give much e�ort to their participation

in the experiment.

As such, it is more meaningful to look at the improvement of subjects between

their midterm and �nal exams, and whether that is explained by the experiment or

not. An exam improvement score was calculated for Spring 2017 as the di�erence

between the scores of Question 2b from the �nal exam and Question 3 from the

midterm exam of that semester. Both of these questions are relevant to the study

since they required subjects to produce a similar kind of prepositional logic proof.

Note that this improvement score can be positive or negative. It is positive if the

subject's �nal score was higher than their midterm, and it is negative if the subject's

�nal score was lower than their midterm.

The �rst observation to make, from Figure 5.1, is that overall, the experimental

group did not have better exam improvement than the control group. However, the

variance in improvement is greater for the control group than the experimental group.

These observations are not very surprising, because there are many variables outside

of the study that could in
uence exam improvement. One would not expect that

performance on three practice problems alone would determine exam improvement,

since there are many other ways that subjects may have tried to prepare for the

146

Figure 5.1: Boxplot of exam improvement by group from Spring 2017. The variance
for the control group was 47.5 and the variance for the experimental group was 34.4.

�nal exam that are not part of the study. Obviously, there is a large combination

of di�erent variables that could contribute to exam improvement. For the control

group, it may be that variables not controlled by the experiment were greater factors

in determining exam improvement, thus explaining the higher variance in the exam

improvement score for that group.

A Pearson's product-moment correlation was run to assess the relationship be-

tween subjects' combined performance on the three practice problems from the study

(via extra credit scores) and their exam improvement scores. Note that the extra

credit score is a continuous variable that considers fractional point values. Prelimi-

nary analyses showed that the exam improvement scores were normally distributed

but the extra credit scores were slightly skewed, as assessed by visual inspection

of Normal Q-Q Plots (Figures 5.2 and 5.3). E�orts to transform the data did not

147

Figure 5.2: Normal Q-Q Plot of exam improvement scores from Spring 2017.

signi�cantly improve the normal �t of the extra credit scores, so the data was left un-

transformed. Note that this raises the possibility that the statistical signi�cance tests

for Pearson's correlation will be invalid, since bivariate normality is a precondition

for those tests. To compensate, an additional analysis was done in Section 5.1.3.1.

As shown in Figure 5.4, when considering all subjects from Spring 2017, there

was no statistically signi�cant correlation between their performance on the practice

problems and their exam improvement. Amongst the subjects who got perfect scores

on all three practice problems, there are subjects who had very positive exam im-

provement and subjects who did much worse on the �nal exam than the midterm

exam. This indicates that the practice problems overall did not have a signi�cant

e�ect on exam improvement.

However, when you compare the experimental group (Figure 5.5) and the control

group (Figure 5.6), di�erences do become evident. For the control group, there is

148

Figure 5.3: Normal Q-Q Plot of extra credit scores from Spring 2017.

still no statistically signi�cant correlation between performance on the practice prob-

lems and exam improvement. However, for the experimental group, there is a mild

positive correlation between these variables. This suggests that practice with proof

construction in Complexity Tutor may have been more bene�cial than practicing

the problems with pen and paper.

It can be inferred that for subjects in the control group, the additional practice was

not likely bene�cial, since doing well on the practice problems did not correlate with

improved exam performance. However, there may have been something bene�cial

in the way subjects constructed proofs in the Theorem Proving Environment that

led those who used it to have improved exam performance. Perhaps, it was the fact

that the Theorem Proving Environment forced subjects to construct proofs with �ne

granularity, not skipping logical inferences. Or perhaps, it was the fact that proofs

were presented in a graphical layout that might have helped.

149

Figure 5.4: Scatterplot of all subjects from Spring 2017. Overall, there was no sta-
tistically signi�cant correlation between extra credit earned in the study and exam
improvement, r (66) = :07, p = :566.

150

Figure 5.5: Scatterplot of experimental subjects from Spring 2017. For the experi-
mental group, there was a mild positive correlation between extra credit earned in
the study and exam improvement,r (30) = :28, p = :120.

151

Figure 5.6: Scatterplot of control subjects from Spring 2017. For the control group,
there was a very weak negative correlation between extra credit earned in the study
and exam improvement that is not statistically signi�cant, r (34) = � :13, p = :440.

152

Table 5.5: Pearson correlations between individual practice problems and exam im-
provement in Spring 2017.

* = statistically signi�cant at p < :05 level.

Further analysis was performed to determine if there was a relationship between

performance on speci�c practice problems and the exam improvement score. Table

5.5 reveals that there was a statistically signi�cant, moderate positive correlation

for the experimental group between performance on the Muddy Dog Problem and

exam improvement scores,r (30) = :37, p = :036, with performance on the Muddy

Dog Problem explaining 14% of the variation in exam improvement scores for the

experimental group. This single problem not only had the strongest correlation for

the experimental group, but also the only statistically signi�cant correlation in the

entire analysis. This was not even close to true for the control group either.

Why would there be so much stronger correlation for the Muddy Dog Problem

than any of the other problems? One interesting thing to note is Question 3 from the

midterm exam, Question 2b from the �nal exam, and the Muddy Dog Problem are

all problems involving dogs, so perhaps there is athematic e�ect similar to what was

witnessed in theWason selection task(Section 2.3) that explains the performance

di�erences.

153

Another possibility is that the proof required for the Muddy Dog Problem more

closely matched the \complexity" of the proofs required for the exam questions. Note

that the Muddy Dog Problem was originally created by the instructor who taught

the course and who also created the exam questions. The Murder Mystery Problem,

which had the lowest correlation with exam improvement, was signi�cantly harder

for subjects to solve than the other problems and required the most complex proof.

A hypothesis then is that perhaps, in terms of exam performance, students bene�t

the most from practicing problems which are close to the same di�culty as exam

questions. Practicing problems much more di�cult than the exam questions may be

signi�cantly less bene�cial to exam performance, even if one is able to solve those

harder problems.

It is important to remember that correlation is not causation. There could be

an unknown third independent variable that predicts both the performance in the

study and performance on the exam. For instance, maybe some of the subjects

practiced some additional problems on their own that were not part of the study, and

that additional practice led them to be both more successful at completing proofs

in Complexity Tutor and getting a high score on the relevant exam questions.

However, that would not explain why there is no correlation seen in the control group.

As such, the hypothesis that practice withComplexity Tutor improved exam

performance �ts what is observed with the data better, even though that hypothesis

is still not conclusively proven.

5.1.3.1 Second analysis with Goodman and Kruskal's

Pearson's correlation can only determine the strength of linear correlations, and

the skew in the Spring 2017 extra credit scores adds some uncertainty to the reliability

of its statistical interpretation. Furthermore, Pearson's correlation is very sensitive

154

to outliers, and there are a number of subjects in Figures 5.5, 5.6 and 5.4 who might

be outliers|particularly the ones with very low exam improvement scores.

As such, Goodman and Kruskal's
 was also used as a secondary measure to

determine the association between extra credit scores and exam improvement scores.

Without assuming a linear relationship exists, Goodman and Kruskal's
 is good for

assessing any monotonic relationship, which it calculates the strength of by tabulating

concordant and discordant pairs of points in the data.

The results showed a weak, positive association between extra credit scores and

exam improvement for the experimental group (^
 = :193, p = :214). There was

also a weak, negative association between extra credit scores and exam improvement

for the control group (
̂ = � :105, p = :481). Neither association was statistically

signi�cant, although the one for the control group had a very high probability of the

null hypothesis being true.

For the Muddy Dog Problem, the results showed a moderate, positive association

between performance on that problem and exam improvement for the experimental

group, which was almost statistically signi�cant (
̂ = :305, p = :087). There was

also a weak, negative association between performance on the Muddy Dog Problem

and exam improvement for the control group, which was not statistically signi�cant

(
̂ = :189,p = :269).

In conclusion, a larger sample of data is necessary to con�rm the statistical sig-

ni�cance of the apparent positive association between practicing proof problems with

Complexity Tutor and exam improvement.

5.1.3.2 Analysis of Fall 2017 results

For Fall 2017, there were unfortunately no statistically signi�cant correlations to

be found amongst either the experimental group or the control group, when a similar

155

Figure 5.7: Scatterplot of control subjects from Fall 2017. For the control group,
there was a weak negative correlation between extra credit earned in the study and
exam improvement that is not statistically signi�cant, r (20) = � :25, p = :266.

exam improvement score was compared to extra credit earned in the study. Refer to

Figures 5.7 and 5.8.

Several factors must be considered before inferences can be drawn about why

results di�ered for this semester from those of Spring 2017. First, the sample sizes

were much smaller with only 20 subjects in the experimental group and 22 subjects

in the control group.

Second, the questions used to calculate the exam improvement score for Fall 2017

give it a di�erent and messier interpretation than for Spring 2017. For Spring 2017,

each of the two questions used to calculate exam improvement only required the

construction of exactly one prepositional logic proof. For Fall 2017, each question

taken from the exam was actually multiple di�erent questions combined together,

and unfortunately a breakdown of subscores of each of these di�erent question parts

156

Figure 5.8: Scatterplot of experimental subjects from Fall 2017. For the experimental
group, there was no statistically signi�cant correlation between extra credit earned in
the study and exam improvement, with the null hypothesis having a high probability
of being true, r (18) = :04, p = :880.

157

was not available. Question 2 from the midterm exam required the construction

of three di�erent proofs, although the �rst proof could be substituted with a truth

table. Question 1 from the �nal exam gave 10 out of 30 points for solving a translation

problem, and the remainder of points for constructing two di�erent proofs. Question

2 from the midterm exam was subtracted from Question 1 from the �nal exam to

calculate the exam improvement score for Fall 2017.

Finally, a new version of Complexity Tutor with the features described in

Section 3.1.7 was used for the �rst time in the Fall 2017 experiment. One hypothesis

that must be considered is that one of the new features, most likely the hint line

feature, might have been detrimental to helping students improve their ability at

proof construction. Some subjects made comments to that e�ect, as explained in

Section 5.3.4.

5.2 Evaluation of the Algorithm Environment

Table 5.6 presents summary statistics for how subjects in the study performed

on the NP-completeness reduction problems using the Algorithm Environment. As

can be seen, subjects in the experimental group had more trouble completing these

problems than they did the conceptual problems only involving the Theorem Proving

Environment, especially in Fall 2016. Of course, the control group did not do too well

on the reduction problems either in that semester.

Overall poor performance for all subjects in the study in Fall 2016 may partially

be explained by the fact that the incentive structure used for that semester rewarded

all subjects the same amount of extra credit for their participation regardless of how

much e�ort they put into the practice problems. However, the fact that none of

the subjects in the experimental group were able to successfully produce a correct

reduction in the Algorithm Environment that semester was disheartening.

158

Table 5.6: Summary statistics for the NP-completeness reduction problems. The
Made Attempt row indicates the percentage of subjects who attempted each prob-
lem. For the experimental group, a subject was only considered to have attempted a
problem if they made at least one connection in the Theorem Proving Environment
or wrote some code in the Algorithm Environment. TheMean and Median rows
indicate average scores over the entire sample, where subjects who did not attempt a
problem were factored into the average with a 0% score. ThePerfect row indicates
the percentage of subjects who got a perfect score amongst those who attempted the
problem.

159

Hence, an extensive analysis of the videos of Fall 2016 subjects working on the

reduction problems in the Algorithm Environment was performed, in order to pinpoint

what may have caused hardship. The conclusions of that analysis follow.

5.2.1 Evaluation of interactions with the Algorithm Environment in the

Fall 2016 experiment

There were 25 subjects in the experimental group in the Fall 2016 semester. Of

these 25 subjects, 15 attempted to write Python code in the Algorithm Environment

for the BIN-PACKING Reduction Problem. An additional 4 subjects looked at the

Algorithm Environment but did not attempt to write code. And 6 subjects did not

even bother to click the \Algorithms" tab in Complexity Tutor to look at the

Algorithm Environment.

For the 0/1-PROG Reduction Problem, the results were even more lackluster.

Only 5 subjects wrote code for 0/1-PROG Reduction Problem, and 9 subjects did not

bother to even click the \Algorithms" tab. Of these 9 subjects, none had attempted

to write code for the 0/1-PROG Reduction Problem either.

In all cases, no one managed to produce a correctLevin reduction in the Algorithm

Environment. Since very few attempts were made to write code for the 0/1-PROG

Reduction Problem, the focus for analysis was on looking at how subjects interacted

with the Algorithm Environment when working on the BIN-PACKING Reduction

Problem. Figure 3.9 from Chapter 3 gives a screenshot of how this problem is pre-

sented to subjects in the Algorithm Environment.

5.2.1.1 Did programming ability or prior familiarity with Python a�ect

the results?

One hypothesis might be that the Algorithm Environment's requirement that

subjects write Python code rather than pseudocode would explain why subjects in

160

the study were not able to use the Algorithm Environment to produce a correct

reduction. As will be shown, this hypothesis is most likely not correct.

At the beginning of the experiment, subjects were instructed to watch a 20 minute

\Crash Course in Python" tutorial video. This video briskly covered all the ba-

sics of the Python programming language that subjects would need to do the NP-

completeness reductions in the Algorithm Environment.

The purpose of the video was two-fold. First, it was to give subjects the knowl-

edge of Python needed to use the Algorithm Environment, since a large number of

computer science students at the University of Massachusetts Amherst have never

used Python before. Second, the video was used to benchmark subject familiarity

with Python, to help determine if that was a variable a�ecting performance.

At the end of the experiment, subjects were given this survey question:

Which of the following best describes your reaction to the

Crash Course in Basic Python tutorial video?

A. I've never programmed in Python before, and the tutorial was con-

fusing.

B. I've never programmed in Python before, but the tutorial was easy

to understand.

C. I already had some Python programming experience, but the tutorial

taught me new stu�.

D. I am a Python ninja, and there was nothing for me to learn from

that tutorial video.

One subject did not respond at all to the survey. Of the remaining 24 subjects,

the results of the survey are shown in Figure 5.9.

Interestingly, the subjects who had never used Python before but who found the

tutorial easy to understand were the ones most likely to attempt to write Python

161

Figure 5.9: Survey results on familiarity with Python amongst Fall 2016 subjects
from the experimental group.

162

Table 5.7: Did familiarity with Python a�ect a subject's willingness to attempt using
the Algorithm Environment?

code in the Algorithm Environment, as shown in Table 5.7. This could perhaps be

because these subjects were excited to have learned a new programming language and

were eager to test out what they had learned.

The following is a list of all the programming errors2 that were collectively made

by the 15 subjects who attempted to write Python code for the BIN-PACKING

Reduction Problem:

� Typographical errors in variable names or keywords

� Failure to close a matching parenthesis

� Referencing the wrong variable

2Errors that were deemed to be likely attributable to conceptual misunderstandings of the reduc-
tion problem are not counted in this list, even if they caused the Python interpreter to generate a
runtime error. For instance, subject 43679835 received an \int is not iterable" error message because
they were treating output variable Y as an integer in their code. This indicates that they most likely
did not understand the problem constraints, requiring Y to be a list datatype.

163

� Using incorrect syntax to index into a list

� Omitting the colon after a for / if statement

� Writing \ for each " instead of \ for "

� Terminating a line with a semicolon

� Typing `n' instead of /̀ ' for division

� Attempting to index into a list with no elements

� Applying float() to a list rather than to elements in a list (i.e.,float([x])

vs [float(x)])

� Applying list() to a non-iterable element

� Attempting to use incorrect idiom to append elements to a list (e.g.,List =

List + element)

Each of these errors were made by at most two subjects, so none of the errors were

particularly more common than the others. Notice that the �rst three errors listed

above are general mistakes that any programmer could make, where as the remaining

errors may speci�cally be caused by lack of comfort with the Python programming

language.

Nevertheless, subjects made relatively few programming errors and wrote mostly

correct Python code. Overall, each subject made an average of1.13 programming

errors . The average number of programming errors made by the 8 subjects who had

never programmed in Python before was only slightly higher|1.38 programming

errors .

164

Furthermore, subjects were in most cases able to correct their errors very quickly,

once the error was identi�ed by the Algorithm Environment.3 Often, subjects demon-

strated the ability to correct simple syntactical programming errors within a matter

of seconds. The pie chart in Figure 5.10 breaks down programming errors by how

quickly they were resolved.

5.2.1.2 Were there any programming errors not identi�ed by the Algo-

rithm Environment?

All the errors mentioned in the previous section were obvious programming errors

because they are either not valid Python or they triggered a runtime exception.

Sometimes, however, there may be less obvious programming errors. It is possible

for someone to write fully valid Python code, but still intend the code to behave

di�erently than how it actually does. This would still be considered a programming

error, rather than a conceptual or algorithmic error, if understanding the program-

ming language better would prevent the mistake from being made.

Such programming errors would not be identi�ed by the Algorithm Environment

directly, although the Algorithm Environment would indicate that the algorithm is

not correct since it fails test cases. Without being able to read the mind of the

programmer and knowing their intent, it is impossible to have absolute certainty of

thesehidden programming errors, but a few likely ones have been found that are not

counted in the previous section.

3Note that when a programming error is said to be \identi�ed by the Algorithm Environment",
this means that the error directly triggers an error message indicating either asyntax error, semantic
error , or runtime error has occurred in Python. As with most compiler error messages, the speci�c
contents of the error message may be oblique and not always a correct characterization of the mistake
that the programmer has made. Therefore, it is indeed impressive that subjects could quickly �gure
out the programming errors that produced these error messages. Note also that the speci�c version
of Complexity Tutor used in Fall 2016 had a bug where the line numbers it speci�ed for where
errors occurred was o� by 1, but this did not appear to hinder subjects much from quickly identifying
their programming errors.

165

Figure 5.10: How long did it take for a programming error to be corrected once
identi�ed by the Algorithm Environment?

166

Consider subjects 197190801L and 13013435. These two subjects got far closer

to producing a correct NP-completeness reduction than anyone else did for the BIN-

PACKING Reduction Problem during the Fall 2016 semester. Both 197190801L and

13013435 had a nearly correctKarp reduction, even though theircerti�cate reductions

were not quite correct. However, one additional
aw in their code was that their

reductions used integer arithmetic to do division, which would lead to serious rounding

errors. This was not likely their intention, especially since they later converted the

result of the integer division to a
oating-point number. Most likely, they intended

oating-point division, and either forgot or did not know that Python would assume

integer division when both operands are integers.

Here is another example. Subjects 40470021 and 61907491, who had never pro-

grammed in Python before, both produced what appear to be very similar hidden

programming errors. Since they were similar, the code that subject 40470021 pro-

duced will be used to illustrate:

1 def Reduce_Partition_to_BinPacking(X):

2 Y=list (X)

3 K=0

4 for x in X:

5 K=K+x

6 x=float (x/K)

7 return (Y,K)

On Line 6, the variable x̀ ' is reassigned to a new value and then promptly dis-

carded before the next iteration of the loop. Thus, Line 6 in e�ect does nothing, so

that is not likely what was intended. Presumably, subject 40470021 intended Line 6

to modify the list of elements in X̀' and did not realize that since those elements are

immutable, a reassignment of thex̀ ' variable will never change them.

167

While hidden programming errors in the Algorithm Environment are a potential

trap that students who write pseudocode on paper and have it graded by a human

would not need to worry about, this phenomenon thankfully did not occur often.

There were no other hidden programming errors identi�ed beyond those of the four

subjects mentioned above.

5.2.1.3 Summary of �ndings about substituting Python programming for

writing pseudocode

It can be concluded from the analysis of programming errors of the subjects from

Fall 2016 that requiring students to write executable Python code was not a con-

siderable burden over writing pseudocode. Despite most subjects in the study not

having background with Python, they were able to produce nearly
awless Python

code. Simple programming errors that did occur were usually quickly corrected, once

they were brought to the subject's attention. Hidden programming errors could po-

tentially be a complication to overcome, but they did not seem to occur very often

in the Fall 2016 study. Interestingly, the students who knew the least about Python

were the most willing to engage in this experiment.

5.2.1.4 Why the Algorithm Environment did not help students success-

fully produce NP-completeness reductions in Fall 2016

If the requirement of programming was not the reason that Fall 2016 subjects

struggled to successfully produce a correct reduction in the Algorithm Environment

for the BIN-PACKING Reduction Problem, then what was?

There are two considerations. First, subjects in the experimental group were

expected to produce Levin reductions, which they had not been previously taught

about in their class, and for which they had only learned about from a short tutorial

video. From watching subjects' interactions with the Algorithm Environment, it was

168

very clear that they were struggling the most with �guring out what the certi�cate

reduction was supposed to be.

Also, the control group was not expected to produce Levin reductions, so the

comparison between the two groups is not so fair. The four subjects from the con-

trol group who received a perfect score for the problem produced Karp reductions.

There were also two subjects in the experimental group who produced conceptually

correct Karp reductions, but are not counted in Table 5.6 amongst the \Perfect" row

since they were expected to produce a correct Levin reduction and failed to do so.

However, those two subjects received scores of 99.9% and 99.8% when partial credit

was manually assigned, so statistically the averages of the experimental and control

groups should still be comparable.

The second consideration is that the Algorithm Environment seemingly did not

give su�cient guidance to help subjects overcome their confusion about the problem

or Levin reductions in general. It is worth noting that there were two subjects, 786W

and 55187920, who did not even seek guidance from the Algorithm Environment

because neither of these subjects bothered to click the \Check Algorithms" button

even once. Subject 786W attempted to write some code for the Karp reduction but

did not write anything for the certi�cate reduction. Subject 55187920 did not even

get that far|they gave up while they were in the middle of typing code for the Karp

reduction.

So not counting these two subjects, in actuality there were only 13 subjects in

Fall 2016 who attempted to use the Algorithm Environment to help them.

To describe the
ow of interaction for these subjects, consider that when they �rst

started working on this problem, they were presented with the following code4:

4The comments in this code have been slightly reformatted to �t neatly on this page. See Figure
3.9 from Chapter 3 for a screenshot of exactly what subjects are presented with for this problem.

169

1 def Reduce_Partition_to_BinPacking(X):

2 ## HINT: If you have an integer value x, use

3 ## float(x) to convert it to a float.

4

5 # Input: X - list of positive integers,

6 # e.g. X={1,2,3}

7 # Output: (Y,K) - Y is a list of floats,

8 # K is positive integer

9 def Reduce_Partition_to_BinPacking(X):

10

11 return (Y,K)

12

13 # Input: Certificate c = (part1,part2) where

14 # part1 and part2 are two lists of

15 # positive integers with equal sum

16 # e.g. c = ([0.2,0.6],[0.4,0.4])

17 # Output: Certificate c2 is a list of list

18 # (aka bins) of floats where each

19 # list sums to no more than 1

20 # e.g. c2 = [[0.2,07],

21 # [0.1,0.4,0.2,03],...,[0.9,0.004]]

22 def Cert_Partition_to_BinPacking(c):

23

24 return c2

The starting code contains two empty function signatures and comments that

attempt to explain the input and output conditions for the two required functions.

When attempting to run this starting code in a Python interpreter, one would receive

170

errors because the output variables for both functions have not yet been de�ned. In

fact, three subjects did try clicking the \Check Algorithms" button before writing

any of their own code, just to see what would happen. This resulted in an error,

explaining to them that the variable Ỳ' on Line 11 is unde�ned, sinceỲ' is the �rst

unde�ned variable referenced in the code.

Whether subjects had received that error or not, all of them that wrote code would

start with the Reduce Partition to BinPacking function before approaching

the more intimidating Cert Partition to BinPacking function they had never

learned about in their class. All but one of the 13 subjects would then click the

\Check Algorithms" button before writing any code for the Cert Partition to

BinPacking function.

If the Python interpreter did not get stuck on any programming errors that the

subject had generated while writing code forReduce Partition to BinPacking ,

it would at that point complain that the output variable ` c2 ' on Line 24 of Cert

Partition to BinPacking was still unde�ned. So subjects would receive an error

message redirecting their attention toCert Partition to BinPacking even if

their algorithm for Reduce Partition to BinPacking was still incredibly
awed.

In fact, 8 of the 13 subjects were given this error message aboutCert Partition

to BinPacking , even though the Karp reduction in Reduce Partition to

BinPacking remained conceptually incorrect. Presumably they might have at that

point had the false hope that their Karp reduction was correct because the Algorithm

Environment had given no complaints about it yet.

The certi�cate reduction was understandably more daunting than the Karp re-

duction, since subjects had little exposure to Levin reductions, but one would expect

it would be even more daunting if the subject was trying to think of the certi�cate

reduction without having a good grasp of the Karp reduction in mind. Thus, it is not

surprising that three subjects gave up while trying to �gure out what code to write

171

Figure 5.11: Error message in the Algorithm Environment indicating that a reduction
for the BIN-PACKING Reduction Problem fails to pass the test case[4,4] .

for Cert Partition to BinPacking without even reaching the point where they

would be noti�ed that that the code they had written for Reduce Partition to

BinPacking was also incorrect.

Of the subjects who persevered through their uncertainties, and managed to write

valid Python code for both the Reduce Partition to BinPacking and Cert

Partition to BinPacking functions, they would eventually be greeted with an

error message like the one in Figure 5.11.

While this error message is more feedback than subjects in the control group

would receive while working on the reduction problems, since they receive no im-

mediate feedback, it is still a rather vague error message. The message says that

there is something wrong with the reduction but it does not indicate whether there is

a problem with Reduce Partition to BinPacking or Cert Partition to

BinPacking or both. In almost every case, both functions were incorrect. The only

hint given in the error message is a test case that the reduction failed on.

172

Four of the subjects gave up the �rst time they received an error message like the

one in Figure 5.11. An important observation to make is that these four subjects had

never programmed in Python before this experiment, according to their responses to

the survey on Python familiarity. So even though they made very few programming

errors, lack of con�dence in their Python programming ability may have resulted in

them giving up sooner than they would have if they were more con�dent.

In fact, subject 95873118, who was one of those four, typed a comment on the

screen at the beginning of their video mentioning that they do not know Python. This

subject went on to produce nearly
awless Python code, clearly underestimating their

own abilities.

Consider that the error message in Figure 5.11 does not even specify what has

been outputted by the code that the test case failed on. So the subject does not know

if the reduction failed the test case because the algorithm was incorrect or because

their code is not doing what they intended it to do. Subjects who are new to Python

might understandably fear the latter.

In comparison, the two subjects who purported to be \Python ninjas" on the

Python familiarity survey, did not give up immediately the �rst time they received

the error message in Figure 5.11, but instead persevered despite receiving this same

vague error message multiple times in row. In fact, subject 13013435 received the

error message from Figure 5.11 a total of six times before �nally throwing in the

towel!

So what kind of errors were subjects making in their reductions that would trigger

this frustrating message? Surprisingly, in many instances, subjects' reductions were

so far from correct that they did not even �t the problem constraints, which had been

speci�ed in both the problem description and the comments of the code.

There are two possible reasons this may have occurred:

173

1. The subject did not understand the problem constraints, in spite of the descrip-

tions given.

2. The subject understood the problem constraints but did not realize that their

code was violating those constraints.

It is not possible to distinguish between these two possibilities with absolute cer-

tainty just by watching the subjects' interactions. However, in many cases it seems

likely that if subjects understood the problem correctly, they would not have written

the code that they did, because it should seem very obvious that the code would

violate the problem constraints.

For instance, consider the code that subject 82638476, who purported to be a

\Python ninja", had written for Reduce Partition to BinPacking before giv-

ing up:

1 def Reduce_Partition_to_BinPacking(X):

2 Y=[]

3 for x in X:

4 Y.append([float (x)])

5 K = len (Y)

6 return (Y,K)

This code clearly does not meet the problem constraints given in the problem

description, which state that Y should be a set of real numbers, where each number

is in the range [0; 1). Real numbers are representing by
oating-point values in the

Algorithm Environment. In Line 4, the subject seems to recognize that they should

generate a
oating-point value, but they fail to ensure that it is in the range [0; 1).

How is that possible when the problem constraints also specify thatX should be a

list of positive integers. Furthermore, they put each
oating-point number in its own

174

list, and return a list of lists rather than a list of
oating-point numbers. While

the latter may be a simple bug that they did not intend, it seems unlikely that this

\Python ninja" would assume that the Y value they were creating with this code was

in the range [0; 1). More likely, they were oblivious to this even being a problem

requirement.

After recognizing that these kinds of mistakes were frequently being made by the

Fall 2016 subjects, it was hypothesized that subjects might be more likely to succeed

at producing a correct reduction in the Algorithm Environment if they were given

basic advice about how their solutions failed seemingly obvious problem constraints

before they ever received an error messages like the one in Figure 5.11.

5.2.2 Sca�olding of hints for the BIN-PACKING Reduction Problem

Based on observations made from the Fall 2016 experiment, the evaluation engine

used to give feedback to students for their solutions to the BIN-PACKING Reduction

Problem was modi�ed to provide additional layers of sca�olding.

Refer to the description of the BIN-PACKING Reduction Problem in Appendix B

and the screenshot shown in Figure 3.9 in Chapter 3. The process that the modi�ed

evaluation engine uses to evaluate students' solutions for this problem is now as

follows:

1. The Reduce Partition to BinPacking function is run on a sample input.

At this point, the Python interpreter will catch runtime errors such as if any

variables are referenced without being de�ned. If runtime errors occur, stop

and report them. Otherwise, continue.

2. Check if the output produced by Step 1 is a tuple (Y; K) of two elements. If not,

stop and report that the output of Reduce Partition to BinPacking is

not in the right format because it is supposed to be a tuple of two elements, and

175

display the incorrect output and the sample input that produced it. Otherwise,

continue.

3. Check if the �rst element of the output of Step 1, problem variableY, is a

Python list. If not, stop and report that the output of Reduce Partition

to BinPacking is not in the right format because the �rst element of the

output is not a list, and display the incorrect output and the sample input that

produced it. Otherwise, continue.

4. Check each element inY from the output of Step 1 to verify that they are all

oating-point numbers in the range [0; 1). For the �rst element that is not a

oating-point or not in the range [0; 1), stop and report that the output is not

in the correct format because it contains elements that are either not
oating-

point or not in the range [0; 1), and display the incorrect output and the sample

input that produced it. Otherwise, continue.

5. Now, it is time to evaluateCert Partition to BinPacking . Run it on a

sample input. The Python interpreter will catch runtime errors such as if any

variables are referenced without being de�ned. If runtime errors occur, stop

and report them. Otherwise, continue.

6. Check to make sure that the certi�cate output c produced by Step 5 is a

Python list. If not, stop and report that the output of Cert Partition

to BinPacking is not in the right format because the output is not a list,

and display the incorrect output and the sample input that produced it. Oth-

erwise, continue.

7. Check to make sure that each element of the certi�cate outputc produced

by Step 5 is itself also a list. If not, stop and report that the output ofCert

Partition to BinPacking is not in the right format because it is supposed

176

to be a list of lists but contains non-list elements, and display the incorrect

output and the sample input that produced it. Otherwise, continue.

8. Check to make sure that each sub-list of the output of Step 5 is a list of
oating-

point numbers. If not, report that the output is not in the right format because

it is supposed to be a \a list of lists, where each sublist represents a `bin' of

oating point values", and display the incorrect output and the sample input

that produced it. Otherwise, continue.

9. Finally, use a set of test cases to verify the complete Levin reduction, as de-

scribed in Section 3.2.3. If a test case fails, stop and report it5 along with the spe-

ci�c output that the student's code produced for both theReduce Partition

to BinPacking and Cert Partition to BinPacking functions.

The evaluation engine used in Fall 2016 jumped immediately to Step 9, and did

not have the previous steps. Furthermore, it did not report the output of the students'

code on the failed test cases. This left it up to students to trace their own algorithms,

but students who were not con�dent in their knowledge of Python may have been

intimidated by this prospect.

The general principle of the hint sca�olding is to report ways in which students'

solutions violate basic problem constraints, starting with the violations that are most

likely to be high-level misunderstandings of the problem structure before reporting

violations of speci�c details that the student may have missed in the problem descrip-

tion, or that may have been caused inadvertently by a bug. Also, violations in the

constraints of Reduce Partition to BinPacking are reported before any ad-

vice is given aboutCert Partition to BinPacking . This would be especially

5Some test cases are withheld from being reported to prevent the student from writing code that
is only tailored to speci�c test cases. However, it is not likely that a student would exhaust the list of
reportable test cases before producing a correct reduction. In the unlikely event that this happens,
the student receives a generic message just informing them that their reduction is incorrect.

177

important for subjects in the study, who likely had no exposure to Levin reductions

prior to their participation. They should focus on understanding what is required of

them for Reduce Partition to BinPacking , which they are likely to be more

familiar with since it is a normal Karp reduction, before worrying about the foreign

Cert Partition to BinPacking .

In Fall 2016, subjects were inadvertently encouraged byComplexity Tutor to

focus on errors inCert Partition to BinPacking when they still had major

conceptual misunderstandings aboutReduce Partition to BinPacking . With

the new sca�olding, that is no longer as likely to happen.

5.2.3 Improvement in Spring 2018 results

For the Spring 2018 experiment, the hint sca�olding mentioned in Section 5.2.2

was used with the BIN-PACKING Reduction Problem. On the other hand, subjects

were given the same version of the 0/1-PROG Reduction Problem that had been

used in Fall 2016, with its limited feedback, so that it could be used as a baseline for

comparison.

Table 5.6 shows signi�cant improvements in the Spring 2018 experimental group's

performance on the BIN-PACKING Reduction Problem over the Fall 2016 experi-

mental group. There were 9 out of 24 subjects from the experimental group who

successfully completed this reduction problem in Spring 2018 compared to 0 out of

25 in Fall 2016.

The experimental group in Spring 2018 also did favorably in comparison to the

control group on this problem, where only 2 subjects received full credit for the

problem. There were an additional 6 subjects in the control group who got partial

credit of 70% on the BIN-PACKING Reduction Problem and also one who got 80%|

those subjects were close to having a correct reduction. The remaining subjects in

the control group were not even close to a correct solution.

178

Of course, the fact that the subjects in the experimental group had to do Levin

reductions, but still out-performed the control group, is impressive.

Subjects in the experimental group still did relatively poorly on the 0/1-PROG

Reduction Problem, as would be expected given that it had not been updated like the

BIN-PACKING Reduction Problem to have sca�olded hints. However, even there,

improved outcomes were noticeable in comparison to Fall 2016. Two subjects from

the experimental group, 35917331 and 94521523, actually successfully completed the

0/1-PROG Reduction Problem. Subject 35917331 was able to complete this problem

in two hours, and for subject 94521523, it took only one hour. Those two subjects

also received perfect scores for all the practice problems given in the experiment.

It is conceivable that after these two subjects had successfully completed the

BIN-PACKING Reduction Problem that their con�dence and understanding of Levin

reductions had increased to the point where the 0/1-PROG Reduction Problem was

easier to conquer. It is also possible that they just happened to be exceptionally

brilliant.

However, it is also worth noting that 7 of the 9 subjects who successfully com-

pleted the BIN-PACKING Reduction Problem also attempted the 0/1-PROG Reduc-

tion Problem, and all but one of those 7 subjects got reasonably close to a correct

solution. This is why the averages for the experimental group were higher than the

control group for the 0/1-PROG Reduction Problem. Only two subjects in the con-

trol group received a score above 50% on the 0/1-PROG Reduction Problem|one

got the problem perfectly correct, and the other received a partial credit score of 70%.

Everyone else in the control group did poorly on this problem.

Hence, all this would seem to indicate that the change in hint sca�olding for the

BIN-PACKING Reduction Problem may have resulted in improved performance for

the experimental group over Fall 2016.

179

Table 5.8: Did you �nd the Complexity Tutor tutoring system helpful in your
learning how to construct proofs?

Fall 2016 Spring 2017 Fall 2017 Spring 2018 Total
Responses 25 39 19 24 107
Yes 64% 36% 42% 50% 47%
Undecided 20% 23% 32% 42% 28%
No 16% 41% 26% 8% 25%

There are of course other variables that should be considered. Could a change

in student population between those taking the algorithms course in Fall 2016 and

those taking it in Spring 2018 explain the improvements made by the experimental

group? Possibly, but not too likely, since the control group's performance was very

similar between the two semesters.

A more likely scenario is that changing the extra credit incentive may have en-

couraged Spring 2018 subjects to put more e�ort into their participation. However,

that alone probably does not explain the substantial jump in the number of subjects

who could successfully complete the BIN-PACKING Reduction Problem. During the

analysis of the Fall 2016 experiment, it became clear that many subjects analyzed

did invest substantial time in attempting to use the Algorithm Environment to do

the BIN-PACKING Reduction Problem but the feedback they were receiving was not

helping them overcome their misunderstandings.

5.3 Feedback about Complexity Tutor

Tables 5.8, 5.9, 5.10, 5.11 and 5.12 show that a majority of subjects who used

Complexity Tutor had favorable opinions of it, based on the results of the ques-

tionnaire that subjects were given.

Interestingly, for many of the questions, the most decisively favorable responses

come from the semesters where the NP-completeness experiments were done, Fall

2016 and Spring 2018.

180

Table 5.9: Do you think the Complexity Tutor tutoring system trains you to be
meticulous (careful about not skipping or overlooking obvious or evident assertions)
when you construct proofs?

Fall 2016 Spring 2017 Fall 2017 Spring 2018 Total
Responses 25 39 19 24 107
Yes 56% 54% 47% 71% 57%
Undecided 24% 13% 11% 13% 15%
No 20% 33% 42% 17% 28%

Table 5.10: Do you think the Complexity Tutor tutoring system helps you to
develop the skills needed to construct proofs when you use the traditional pen and
paper method for proof construction?

Fall 2016 Spring 2017 Fall 2017 Spring 2018 Total
Responses 25 39 19 24 107
Yes 52% 44% 58% 63% 52%
Undecided 24% 18% 21% 17% 20%
No 24% 38% 21% 21% 28%

When asked if they would recommendComplexity Tutor to others learning

proof construction, 83% of the subjects from Spring 2018 said they would, in spite of

the fact that Section 5.1.2 gives strong evidence that the system did not correct their

misconceptions about NP-completeness.

5.3.1 Would the questionnaire responses re
ect the sentiment of students

who did not participate in the study?

Someone playing devil's advocate might ask if the percentage of positive responses

to Complexity Tutor might be in
ated because a signi�cant number of students

who had less than favorable views ofComplexity Tutor dropped out of the study?

While this cannot be completely disproven, there is reason to believe it is not the

case. Table 4.1 from Chapter 4 shows that the drop out rate was nearly identical for

both the experimental and control groups in every semester of the study, except for

Spring 2018 where there was a slightly higher drop out rate in the control group.

181

Table 5.11: Do you want theComplexity Tutor tutoring system to be available
in other courses with proof construction?

Fall 2016 Spring 2017 Fall 2017 Spring 2018 Total
Responses 25 39 19 24 107
Yes 60% 68% 42% 63% 60%
Undecided 20% 8% 37% 38% 23%
No 20% 24% 21% 0% 17%

Table 5.12: Would you recommend theComplexity Tutor tutoring system to
others learning proof construction?

Fall 2016 Spring 2017 Fall 2017 Spring 2018 Total
Responses 25 39 19 24 107
Yes 74% 65% 70% 83% 72%
Undecided 0% 0% 0% 0% 0%
No 26% 35% 30% 17% 28%

But if dissatisfaction with Complexity Tutor had hypothetically led a large

number of students to drop out from the study, then one would expect to see a higher

drop out rate in the experimental group than in the control group.

Why? Well assume that there hypothetically was a large population of students

who would drop out from the study because they did not likeComplexity Tutor .

However, it is reasonable to also assume that the variable that determines if someone

would drop out from the study because they did not likeComplexity Tutor and

the variable that determines if someone would drop out from the control group are

independent from each other, so that would imply there must also be sizable popu-

lation that would not drop out from the control group, but would drop out from the

experimental group because they do not likeComplexity Tutor . That population

should with equal probability end up in either the experimental or control group. But

since they only a�ect the experimental group, the drop out rate from the experimen-

tal group should be higher than for the control group, assuming there is no variable

that exclusively a�ects the control group in equal proportion.

182

5.3.2 What students liked about Complexity Tutor

Many subjects from the study expressed enjoyment about usingComplexity

Tutor |it was as Subject 92176666 (Spring 2017) expressed, a \fun way to learn".

Subject 48215832 (Spring 2017) wrote:

\It is way more interesting than traditional homework."

Subject 34821464 (Spring 2018) wrote:

\It was a fun practice over the dry material. I enjoyed it."

Subject 40739006 (Spring 2017) found the practice problems di�cult but still

enjoyable. \It is painful and fun," they wrote, explaining in another comment that

the problems took a long time to complete inComplexity Tutor .

Subject 33853006 (Spring 2018) felt thatComplexity Tutor helped them im-

prove their understanding of NP-completeness, a topic they struggled with. \It seems

really cool, and it helped me learn a hard topic I was confused about," they wrote

and added in another comment:

\It is impossible to complete the proof without thinking about every single

last detail, which really helped me learn about NP-problems in general,

as I had a really hard time understanding them before."

Subject 332756656L (Fall 2016) wrote:

\I think if I had more practice using this application, it would be bene�cial

to my proof construction skills."

Subject 77839300 (Spring 2018) had this perspective:

\I think that Complexity Tutor does give extra aid to students looking

to see a di�erent perspective for the problems they are working on in class

or if they just want help."

183

Subject 83619768 (Spring 2017) wrote:

\It will incredibly help students get past the initial exposure e�ect."

Subjects also gave positive comments about the graphical format. One subject,

37435222 (Spring 2017) compared it favorably to narrative proofs:

\I enjoyed how it was all mapped out and not just sentences."

Many expressed appreciation for being able to visualize proofs inComplexity

Tutor , like subject 68671124 (Fall 2016), who wrote:

\It was helpful to visualize the proof in a tree-like form."

Subject 94521523 (Spring 2018) had this comment:

\Thinking of proofs as graphs of assertions is very powerful and instruc-

tive."

Of course, not everyone was a fan of the graphical format. Subject 28824303

(Spring 2017) wrote:

\I think the software is great, but I didn't feel that visualizing my proof

steps as a tree helped me a lot. The leaf nodes of the (what I have most

recently derived) tree are much more important to the proof."

However, that subject then explained what that they did like was the non-linearity

of proof construction inComplexity Tutor :

\One thing that is useful is being able to do the forward backward proof

method. It was very straightforward to do backward proofs. Another

thing that I thought was useful was being able to solve the problem in

chunks. E.g., I could solve two di�erent parts of a problem then use the

`backward' proof method to link the two parts together."

184

Subject 786W (Fall 2016) felt similarly:

\It does break problems into subproblems which are easier to tackle."

Subject 95873118 (Fall 2016) liked that they were given the assertions they needed

to use, instead of having to write them:

\Having the pieces already helps to understand what parts are required

whereas with a pen and paper you are on your own."

Many subjects also commented on how the platform forced them to be meticulous,

such as subject 37351646 (Spring 2017) who wrote:

\It was good at making me remember the smaller steps. You aren't al-

lowed to jump, you really have to justify everything."

5.3.3 Constructive criticism from students

The vast majority of criticism from subjects in the study was concerning issues

they had with the interface|mainly, not having enough screen space or not having

a good way to manage visual clutter.

Subject 88507453 (Fall 2017) wrote:

\Using Complexity Tutor was very interesting and useful. It was a

little bit painful trying to cramp everything in such a small space. Also,

not being able to remove the currently useless `circles' from the screen

was kind of inconvenient since it was unnecessarily taking up the already

limited space."

Subject 93699577 (Fall 2017) wrote:

\I think it is a good system overall, but I think the proof window (where

you drag and drop all the assertions and stu�) can quickly get graphically

185

cluttered, and it can get tedious to manage the window with all the di�er-

ent texts and arrows in it. If it were somehow easier to organize/navigate

in this proof box, then I think that would be a big improvement for the

usability of Complexity Tutor ."

Subject 44735408 (Fall 2017) suggested adding a zoom feature:

\With larger proofs, scrolling became tiresome and perhaps adding a zoom

feature rather than page scrolling would be very helpful."

Subject 32914951 (Spring 2017) had many thoughts about the interface:

\I know I'm probably stating the obvious but there needs to be an option

to remove assertions/premises from the proof space to avoid clutter. In

addition I would suggest giving each assertion and/or premise its own

text box or text bubble to further distinguish each one. There should be

an option to label a statement as the conclusion. Like in photo editing

software, there should be a select tool for selecting multiple statements and

moving them. The proof space should scale with the width of the monitor

when the window is maximized. It's rather awkward when everything is

left justi�ed.

To some I would recommend it, particularly visual learners. The interface

needs some tweaking to be useful, however, there was not enough freedom

of choice on the part of the user. The advantage to the software is to

lay out all the possibilities for the user to teach them which to choose

and train how to read the notations. Need more space to read, should

expand to full screen view and have boxes manually sizable by the user

to help them view what they need to see with clarity. Good idea, with

improvement could help many people in many disciplines."

186

A number of subjects also commented that they would like the ability to save

their progress, such as Subject 40470021 (Fall 2016):

\Saved progress would be great. And an easier way to undo actions."

Subject 32375112 (Spring 2018) wondered if the assertions being pre-written

reduced their retention of what they learned:

\The system is interesting but it's hard for me to say how much I retained

really about the actual logic behind proving things since so many of the

statements are largely pre-formulated|it was often more of just symbolic

manipulation than actually understanding things like certi�er functions."

Subject 16832623 (Fall 2016), when asked if the system helped them be meticulous,

responded:

\Yes, although it involved many extra steps to the proof that we did not

cover in class which led to confusion."

5.3.4 Was the hint-line feature bene�cial to students or not?

After the experiments from Fall 2016 and Spring 2017 had been completed, it

was observed that some subjects wrote that they wishedComplexity Tutor had

provided more hints, when they got stuck.

Subject 49055538 (Fall 2016) wrote:

\If there is a hint while I am stuck in a problem, it will be great. Otherwise

I will just give up after many tries."

Subject 88229136 (Spring 2017) wrote:

\If I got stuck and couldn't progress, well, too bad. You need to include

a hint system or something."

187

However, after the hint-line feature from Section 3.1.7 was introduced, a number

of subjects expressed concern that it was hindering their learning. Subject 94521523

(Spring 2018) wrote:

\It is too easy to be guided by the hints and try even just one or two

guesses, and have them immediately con�rmed; I didn't feel forced to be

careful."

Subject 35917331 (Spring 2018) wrote, \I would like to see an option to turn o�

hints." In another comment, they further elaborated:

\The tutor gives you hints about how to go about the proof. Although

I could see the hints being helpful if I were completely stuck, I often got

hints without wanting any. This allowed me to do some of the proofs

using the hints without really understanding what I was doing."

Both semesters where the hint-line feature was used had somewhat disappointing

results. In Fall 2017, there was no association found between usingComplexity

Tutor and exam improvement, even though an association had been found the

previous semester. In Spring 2018, subjects who usedComplexity Tutor did not

do well on a posttest evaluation. Is it possible that the hint-line feature is either

partially or fully to blame for those results?

The above subjects' suggestions that the hint-line feature was helping them so

much that they no longer had to think critically about the problem is a concern.

While the hint-line feature may still be bene�cial to some students, it may also need

more tweaking to provide the right level of assistance. Developing a student model

would also help ensure that hints are given to the students who will bene�t from them

the most.

188

5.4 Conclusion of study results

Many subjects enjoyed usingComplexity Tutor and saw much potential for

it as a learning aid, although some had frustrations with the interface. The results

from the discrete mathematics course experiments also show promise that construct-

ing proofs in the Theorem Proving Environment may be a better way to practice

developing skills in theorem proving than normal pen-and-paper construction, but a

more comprehensive study is needed to give con�rmation to this �nding.

Programming in Python was not a signi�cant hardship for students using the

Algorithm Environment to do NP-completeness reductions, which indicates that it

could potentially be a pedagogically suitable replacement for pseudocode in other

types of theoretical problems that require algorithms. There was signi�cant improve-

ment on the NP-completeness reduction problems, once subjects were given hints to

help them understand basic problem constraints. This led the experimental group

for Spring 2018 to perform better than the control group did on the BIN-PACKING

Reduction Problem, and it is conjectured that if the class was taught Levin reduc-

tions, the gap between the experimental group and the control group would grow

even further. It is also conjectured that one of the main reasons that students do

not succeed in abstract domains like NP-completeness is because they have trouble

understanding the problems they are asked to solve.

A key consideration for experimental design that was highlighted by Section 5.1.3

is the importance of problem selection. One problem from the prepositional logic

experiments correlated much more strongly with performance on the exam problems

than any other. However, there is not yet a well-developed theory to predict for

any two proof problems, how a student's ability to solve one will correlate with their

ability to solve the other. Building a theory to explain this would be an interesting

area for future research, and likely necessary to build a good intelligent tutoring

189

system. The author's ideas for \proof complexity" explained in Section 5.1.1 may be

a starting-point for such a theory.

This study pointed out a potentially signi�cant limitation of the Theorem Proving

Environment, which is that it may not do enough to illuminate student misconcep-

tions. However, to put this in perspective, it is doubtful than any of the systems or

approaches covered in Chapter 2 would do any better thanComplexity Tutor at

resolving this problem.

Those systems assume that students will be trained to use a formal logical system,

and that they will use it consistently throughout the course they are taking. To

compare Complexity Tutor fairly against those systems, it would need to be

used consistently in place of narrative proofs while teaching a course. Formal logical

systems prevent the errors illustrated in Section 5.1.2 from occurring in the �rst place,

but they cannot ensure that the student using them will not still have misconceptions

about theoretical ideas somewhere in their mind.

In this regard, informal narrative has a pedagogical advantage over formal logical

systems, because it allows students to express ideas close to as freely as their mind can

conceive of them, illuminating misconceptions that a human grader can identify and

attempt to correct. But even narrative has its limitations, as illustrated by Section

5.1.2, where there was ambiguity about what students understood based on what they

wrote on the posttest quiz. Thus, human dialogue is even more e�ective at exposing

misconceptions than narrative. Until machines become as intelligent as humans, no

computerized system could ever completely replace Socrates or even Sigmund Freud,

both who developed techniques of using human dialogue to reveal secrets buried in

the mind.

Complexity Tutor was designed to bridge the gap between formal logical sys-

tems and the informal narrative arguments that have been used by mathematicians

to train their pupils for millennia. Humans can be trained to reason in a formal log-

190

ical system, but there is evidence (Section 2.3) that it is not natural for them, which

would explain why errors occur when humans reason in informal narrative that would

not occur in a formal logical system.

Complexity Tutor gets closer to informal narrative than any other system

that the author is aware of has, but there is still a gap.

Nevertheless, the author has ideas for ways to addressComplexity Tutor 's

current shortcomings when it comes to identifying and correcting student misconcep-

tions. Those ideas are presented in the next chapter on future work. Without further

ado, please proceed to the next chapter.

191

CHAPTER 6

FUTURE WORK

The roadmap forComplexity Tutor becoming an intelligent tutoring system

that can adapt to the individual needs of students in their theoretical computer

science classes is as follows. An accuratestudent modelneeds to be produced. A

provisional one is suggested in Section 6.6. However, important questions came up

from the �ndings of the empirical study in this dissertation, and the answers to these

questions might alter the proposed student model:

� In the practice of proof construction, what determines if successfully complet-

ing one set of problems will lead to successfully completing a di�erent set of

problems?

� Why did students retain \bugs" after usingComplexity Tutor ?

� Is practice in Complexity Tutor comparable to practicing proofs on pen and

paper when the student does not have \bugs"?

� What factors determine if a student will successfully complete a proof?

So, more experimental studies are needed to answer these questions, and that

should be the �rst order of business. That will lead to re�ning and expanding the

student model of Section 6.6 as appropriate.

Once a general student model is formed, the plan is to parameterize it using

maching learning techniques, as was done for Deep Thought (Section 2.4.6). However,

that will require a lot of data.

192

There are two dimensions to the required data. First, a large library of sca�olded

problems that students can work on in a given domain is required. Second, data is

required of a large number of students working on those problems over a lengthier

period of time than was looked at in this dissertation's study.

The researchers behind Deep Thought had this data. Before they turned Deep

Thought into an intelligent tutoring system, they already had a large library of scaf-

folded problems and many semesters of data of students working on these problems.

However, it was not so di�cult for them to produce the library of sca�olded problems

to begin with, because developing new problems in formal logic is considerably less

laborious than developing new problems forComplexity Tutor .

Hence, one of the priorities going forward will be to investigate methods for auto-

matically or semi-automatically generating new problems forComplexity Tutor .

This can happen in parallel to when the experimental studies are taking place to

answer the questions mentioned at the beginning of this section. Having methods to

automatically generate problems for Complexity Tutor would not only speed-up the

development of a comprehensive sca�olded library of problems for one domain, but

allow Complexity Tutor to be rapidly adapted to new domains.

Thus, researching the automation of problem generation is the most e�cient way

forward, and also of particular intellectual interest to the author.

Finally, along the way,Complexity Tutor should be updated with new features

to address some of its shortcomings and make it more versatile. However, the roll-out

of these new features in experimental studies should be slow so it is easy to make

comparisons to previous studies and isolate variables of interest. One of the main

lessons that the author learned from the work in the current study is that having

too many variables change between experiments creates a lot of uncertainty when

empirical results are analyzed.

193

The remainder of this chapter will address an assortment of ideas for improving

and expanding uponComplexity Tutor , a provisional student model that might

be used for intelligent tutoring, and ideas for the automated problem generation

mentioned above.

6.1 Correcting student misconceptions

It was disappointing that so many subjects from the NP-completeness experiment

in Spring 2018 remained confused about major concepts in NP-completeness, even

after receiving practice withComplexity Tutor .

One possible hypothesis for why the Theorem Proving Environment may not have

corrected the students' misconceptions is that the \immediate feedback" provided

may have been too immediate, and as such, students did not have enough time to

internally process their mistakes.

Furthermore, the feedback given to students has a positive bias|students are

rewarded witharrows and complete dotsfor correct actions, but the negative feedback

given is much more subtle, since the only negative feedback is the absence of a reward.

In consideration for this being the possible reason for why students did not have

their misconceptions corrected, four new modes of interaction are proposed to ex-

plicitly draw students' attention to their misconceptions. These modes areDelayed

Feedback Mode, Debug Mode, Find-the-Bug Modeand Freestyle Mode.

6.1.1 Delayed Feedback Mode

In Chapter 1, it was argued that computer science students should get immediate

feedback on their theory problem sets like they get from their compilers for program-

ming assignments. However, the Theorem Proving Environment, in its current form,

actually delivers feedback that is more immediate than even a compiler would give.

194

After all, when students are writing code, they generally do not receive immediate

feedback after every line of code they type. Instead, they �nish their code and then

give it to the compiler.

Delayed Feedback Mode would make the Theorem Proving Environment more

like a compiler, where students would attempt to complete a construction of a proof

before receiving any feedback from the compiler.

Students would still be given assumptions and assertions to use in their proof, but

the status of assertions would not initially be displayed when dragged into the Proof

Space. Furthermore, students would have the freedom to connect arrows from any

assumption or assertion in the Proof Space to any other assumption or assertion.

Once the student believed that they had a correct proof, they could click a \Check

Proof" button, which would evaluate their proof. If the student got the proof com-

pletely correct, they would be noti�ed of such. Otherwise, the student would receive

one of two kinds of feedback|Minimal Feedback or a Graphical Error Report. These

two kinds of feedback are listed below.

6.1.1.1 Minimal Feedback

Minimal Feedback tells the student that their proof is incorrect and gives them

some general descriptive and statistical information about what is wrong with the

proof. Examples:

\Your proof has 5 arrows that are incorrect."

\Your proof has 2 assertions that are incorrect."

\The granularity of your proof is too low."

However, Minimal Feedback does not inform the student of exactly what inferences

are incorrect, but rather just gives a small hint, giving the student the opportunity

to �gure out the mistakes on their own.

195

Minimal Feedback may be appropriate for a student if they have put little e�ort

into constructing their proof before clicking the \Check Proofs" button, and thus are

nowhere near close to a complete proof.

Minimal Feedback may also be appropriate for a student who is very close to

a correct proof, and will likely �gure out the mistakes on their own if given the

opportunity to do so.

6.1.1.2 Graphical Error Report

Mistakes in the student's proof space are identi�ed and highlighted as follows:

� For all assertionsA and B, if the student has connected an arrow fromA to B

but there is no path from A to B in the proof graph, then the arrow is part of

an incorrect inference. The arrow's color is changed from blue to red to denote

that it is erroneous.

� For all assertionsA and B, if the student has connected an arrow fromA to B

and there is a path fromA to B in the proof graph, but the length of the path

is greater than some threshold (set to 1 by default), then the arrow is part of

an inference that is too coarse in granularity. So replace it with a hint-line.

� For all assertions in the Proof Space, if an assertion is erroneous, give it a hashed

dot. Then, for all arrows extending from it, change the color from blue to red

to denote that they represent incorrect inferences.

� For all assertions in the Proof Space, if an assertion is correctly justi�ed, then

assign it a complete dot.

� For all remaining assertions in the Proof Space that have not been assigned a

dot yet, assign a partial dot.

After receiving the Graphical Error Report, the student is placed in Debug Mode

to correct their mistakes.

196

6.1.2 Debug Mode

In Debug Mode, a student corrects a Graphical Error Report. They �rst remove

all of the incorrect inferences. From there, Debug Mode behaves the same as Delayed

Feedback Mode, letting the student attempt to �x the proof. When they think they

have corrected it, they can click, \Check Proof". The feedback options that result

from this are the same as for Delayed Feedback Mode.

Note that Graphical Error Reports do not have to be generated from a mistake

the student made. Students can be given Graphical Error Reports of common \bugs"

to correct (possibly mistakes that many other students made).

6.1.3 Find-the-Bug Mode

This mode can be thought of as the inverse of the Debug Mode. Instead of being

given mistakes to correct in a Graphical Error Report, the student is given a proof

attempt, and they must construct their own Graphical Error Report to identify all

the mistakes.

6.1.4 Freestyle Mode

In Freestyle Mode, students are not given any assertions but write their own

and connect them together with arrows. The purpose of this mode is to identify

misconceptions students have that would otherwise not be identi�ed, but could be

identi�ed in narrative proof.

Obviously, in this mode, Complexity Tutor cannot provide direct feedback,

since its knowledge model does not cover arbitrary assertions. So an expert like the

instructor would need to attempt to debug the proof. Once an expert does that, any

\bugs" that were discovered could be automatically added to a \bug library" for use

in the other modes.

197

Alternatively, instead of having an expert evaluate the Freestyle Mode proof at-

tempts, those attempts could be crowd-sourced to other students to correct in Find-

the-Bug Mode.

6.2 Developing a graphical interface that can represent a

wide range of proof strategies

Frederic Fitch developed a notation [54], referred to as theFitch-style diagramor

Fitch proof, which has become popular in teaching formal logic. The main bene�t of

this notation is that it provides a way to expresssubproofswithin a proof. This is

important because common theorem proving strategies such asproof by cases, proof

by induction and proof by contradiction all implicitly use the notion of a subproof.

Fitch-style diagrams are used in some of the systems mentioned in Chapter 2, such as

the EPGY Theorem Proving Environment (Section 2.4.2) and AProS (Section 2.4.4).

Pedagogically, Fitch-style diagrams are advantageous since they provide a frame-

work for reducing a theorem proving goal to a hierarchy of subgoals. Structuring

problems in terms of their subgoals as a general strategy has been demonstrated to

help students adapt what they learn from a given problem solution to new prob-

lems [39]. This principle has already been shown successful in areas of computer

science education [111].

Figure 6.1 shows an example of a Fitch-style diagram provingA \ (B [C) �

(A \ B) [(A \ B). The vertical bars in the Fitch-style diagram are referred to as

scope lines, which along with indentation indicate where subproofs begin and end.

Each subproof has its ownscopewith assumptions that only exist while the subproof

is active.

In the graphical setting, a natural analogue for the scope lines is to draw boxes

around subproofs. Figure 6.2 shows the Fitch-style proof from Figure 6.1 converted

to a graphical format. It should be noted, for historical interest, that prior to the

198

1. x 2 A \ (B [C)

2. x 2 A from 1
3. x 2 B [C from 1

4. x 2 B

5. x 2 A \ B from 2,4
6. x 2 (A \ B) [(A \ C) from 5

7. x 2 C

8. x 2 A \ C from 2,7
9. x 2 (A \ B) [(A \ C) from 8

10. x 2 (A \ B) [(A \ C) from 3, 4{6, 7{9

11.A \ (B [C) � (A \ B) [(A \ B) from 1{10

Figure 6.1: Fitch-style diagram.

popularization of Fitch-style diagrams for teaching formal logic, Stanis law Ja�skowski

introduced [77] a similar convention of drawing boxes around subproofs. Stanis law

Ja�skowski was also one of the main inventors of natural deduction logic. Fitch's

notation became more popular than Ja�skowski's because it was easier to typeset with

the technology of the time.

6.2.1 Interface challenges with using subproof boxes in the Proof Space

While the presentation shown in Figure 6.2 seems like a good solution for present-

ing Fitch-style proofs using the graphical idiom, this solution creates new interface

design problems that must be resolved before being adapted toComplexity Tutor .

Consider that when a student is constructing a proof, they do not know what it

will look like ahead of time. The biggest problem with introducing boxes for subproofs

in the Proof Space, is that the size a box needs to be cannot be known by the student

in advance. So eitherComplexity Tutor would have to decide how big the box

199

Figure 6.2: Graphical version of a Fitch-style diagram. Boxes indicate subproofs
with their own scope. The dot with the disjunction symbol is used to indicate a split
between the casesx 2 B and x 2 C.

should be, or the student will have to be given some easy method for resizing the box

on the demand.

If Complexity Tutor were to decide the size of the box in advance, based on

knowledge of what is required for a particular subproof, then that perhaps uninten-

tionally gives the student a hint about the subproof, since the student then knows it

must �t within the box. The student's ability to explore di�erent possibilities when

constructing the subproof would also be limited, since they only have a �xed amount

of physical space to work with.

On the other hand, if the box were to be resizable, the biggest problem would be

re-arranging all the proof items outside of the box to make room for a larger box. If

200

the student were required to do this manually, it would be very tedious. Instead, it

would be better if resizing the box automatically moved the other items in the Proof

Space to make room for it. For instance, increasing the box 50 pixels in width might

shift all items to the right of it by 50 pixels. The more complicated issue to deal with

is what should be done if the box is reduced in size. For instance, a student might

create a large box for their subproof and then later realize that they don't need all

that space. When the box is reduced in size, the items around it cannot simply be

automatically shifted inward, as that might cause them to overlap with each other.

The alternative is to not automatically move any items outside of the box when the

student reduces the box's size, but then the student will likely feel the need to move

the items themselves to reclaim space, which again could be quite tedious.

This problem could be mitigated by discouraging students from creating boxes for

their subproofs that are too large to begin with. For instance, perhaps, instead of

giving the student the ability to resize the subproof box as they please, the box is only

increased in size incrementally as the student adds connections inside the subproof.

Yet another idea would be to give the subproof boxes scroll bars like the Proof

Space itself. While there is a certain conceptual elegance to this idea, since each

\subproof space" would then behave much the same as the main Proof Space, the

end result would be reminiscent of theinline frame (i.e., IFRAME) elements used in

some websites from the 1990's and would be visually undesirable.

Beyond the issue of resizing subproof boxes, there must be no confusion over which

proof items belong to the subproof and which do not. It should be assumed that any

proof items that fully overlap the box belong to the subproof, and any proof items

that are outside of the box do not. Since a proof item that partially overlaps the box

and is partially outside of it would be ambigious, the interface must not permit this.

Thus, the interface must be modi�ed so that when proof items are being dragged in

201

the Proof Space, if they land at the border of a subproof box, they either \snap" to

the inside of the box or to the outside.

On the other hand, if the student wants to move the subproof box itself in the

Proof Space, this is even more problematic. The student should not be permitted

to move the box in such a way that it would overlap with any other items in the

Proof Space. This means that the student will either need to manually move other

proof items to make space for the box in its new location, or there will need to be an

intuitive method for automatically pushing the other items out of the way as the box

is moved inside of the Proof Space.

6.2.2 Alternative possible subproof representations

It is clear that using boxes to represent subproofs will be encumbered by a number

of interface issues. Here are two alternatives, which would be relatively easy to

implement within Complexity Tutor 's existing interface:

6.2.2.1 Labeling assertions to denote the subproof they belong to

Figure 6.3 shows an alternative to Figure 6.2, where instead of using boxes, each

assertion is given a di�erent type of label to classify the subproof it belongs to.

Gerhard Gentzen used a similar idea for his natural deduction proof trees [60], where

a unique identi�er label was given to each node that represented a new assumption in

the tree, while other nodes would use this same identi�er to indicate when a particular

assumption had been discharged, thus ending its scope. The downside of these types

of schemes is that they don't make subproofs as visually obvious as the subproof

boxes.

6.2.2.2 Using a separate Proof Space for each subproof

Complexity Tutor already uses a tabbed interface to switch between the The-

orem Proving Environment and the Algorithm Environment. Each subproof could

202

Figure 6.3: Alternative graphical representation of subproofs. The dots for each proof
statement are labeled according to the subproof they belong to. In this example, there
are three subproofs. Statements that belong to the outer subproof get `A' labels.
Statements that belong to the two inner subproofs get `B' and `C' labels respectively.
The dot `10' is outside all the subproofs.

instantiate a new tab within Complexity Tutor with its own separate Proof Space.

The downside of this idea is that some subproofs, like the ones shown in Figure 6.2,

are very simple and using a whole Proof Space to represent a very simple proof seems

wasteful. Furthermore, it is bene�cial to the student to be able to visualize the whole

proof at once when completed, and this is not possible with this approach.

203

6.2.3 How proof strategies would be applied in the Theorem Proving

Environment

Once an interface for subproofs has been implemented in the Theorem Proving

Environment, integrating proof strategies that involve subproofs would be relatively

straightforward. The proposed way to do this would be to have a context menu that

appears when a student right-clicks a speci�c proof statement in the Proof Space.

The context menu would show speci�c proof strategies that the student could apply

to that speci�c proof statement.

For instance, in the example shown in Figure 6.2, a student would right-click on

the \ x 2 B [C" assertion and be shown a context-menu with the option \Prove by

cases". If they then selected this option, the node with the disjunction symbol would

automatically be added to the Proof Space and connected from the \x 2 B [C"

assertion. Two new subproofs would be instantiated, one containing the assumption

\ x 2 B" and the other containing the assumption \x 2 C". When both subproofs

had been completed, the student would then be able to justify \x 2 (A \ B)[(A \ C)".

Note that the proof by cases strategy is applied to a premise (\x 2 B [C") rather

than its conclusion (\x 2 (A \ B) [(A \ C)"). The strategy is open-ended because

the student may not know exactly what they will conclude after breaking a particular

assertion into cases. Most other proof strategies, such as proof by induction and proof

by contradiction would be directly applied to a conclusion rather than a premise.

Some proof strategies may open up other modules inComplexity Tutor , such

as the Algorithms Environment. Rather than having the Algorithms Environment

immediately available at the beginning of a problem, it could be hidden until a \proof

by algorithms" strategy is applied to an appropriate assertion.

This would also provide a general mechanism for incorporating new modules in

Complexity Tutor . For instance, a computer algebra module which allows stu-

204

dents to manipulate equations, would be a useful addition toComplexity Tutor

for doing proofs in subjects that involve equation manipulation.

6.3 Other general interface issues

In general, the more proof items that are in the Proof Space, the harder it becomes

to arrange them in an orderly manner. There were comments (Section 5.3) about the

Proof Space becoming cluttered, and it being cumbersome to move items around in

the Proof Space.

One potential solution to this hindrance would be to use an automatic graph

layout algorithm [23] to manage the Proof Space for the student. This would have

the additional bene�t of also solving all the layout problems mentioned in Section

6.2.1 concerning user-controlled layout of subproof boxes.

However, there are some potential downsides to consider with automatic layout.

One downside is that if an algorithm is constantly updating the layout of the Proof

Space, this might hinder a student's spatial memory|an assertion suddenly jumps

from one location in the Proof Space to another, and then the user can no longer

quickly �nd it. Therefore, automatic layout algorithms that are considered should

have the property of making minimal modi�cations to an existing spatial arrangement

when updates occur.

Also, the author hypothesizes that giving users the ability to spatially arrange

items in the Proof Space as they see �t may help the process by which they cogni-

tively structure information about the proof. In future studies, this hypothesis could

be tested to see if students improve their learning more when the Proof Space has

automatic layout or when they have the freedom of manual arrangement.

205

6.4 Inductive Example Construction Aid

The Inductive Example Construction Aid would be an additional module for help-

ing students with theoretical computer science problems that involveformal languages

as entities in the problem, such as NP-completeness reduction problems.

The analysis of the NP-completeness experiments (Section 5.2.1.4) shows that

subjects likely were not able to succeed at producing a correct reduction because

they did not understand the problem constraints. In other words, they did not have

a good understanding of the languages of BIN-PACKING or PARTITION.

The Inductive Example Construction Aid is designed to help in such a situation,

and is motivated by the pedagogical meta-skill introduced in Section 1.2.5 where

students generate concrete examples of abstract languages. It uses Socratic dialog as

the means to motivate students to develop this meta-skill.

For instance, in the example given in Section 1.2.5, where the student �rst tries

to create an example of PARTITION, imagine this dialog between the student and

the tutor taking place:

tutor: What is an example of PARTITION?

student: f 5; 1g?

tutor: That's not correct. Please try again.

student: f 1; 2; 2; 3g?

tutor: Yes, that f 1; 2; 2; 3g is an example of partition because ifX 1 = f 1; 3g

and X 2 = f 2; 2g then X = f 1; 2; 2; 3g. Can you think of another example

of PARTITION?

If however, the student did not �gure out an example of PARTITION so quickly,

the tutor might list some examples. An alternate dialog might take place:

tutor: What is an example of PARTITION?

student: 5 + 5?

206

tutor: No, an example of PARTITION must be a set of non-negative integers.

Please try again.

student: f 1; 0g?

tutor: That's not correct. Please try again.

student: f� 1; 2g?

tutor: No, here are some examples of PARTITION:f 1; 1g, f 2; 2g, f 1; 2; 3g,

f 2; 3; 5g, f 1; 1; 2; 0g, f 2; 4; 1; 5g. Can you give any other examples?

In the example, after the tutor is convinced the student has a good understanding

of what PARTITION is, it will then ask the student to come up with examples of

KNAPSACK.

Note that these dialogues also address the objective of Section 1.2.3, since show-

ing examples is one way for the student to learn the notation used in the problem

descriptions. A student who is not comfortable with the notation will not be able to

produce examples, or they will produce some incorrect examples.

6.5 Hypothesis about problem description types

The author conjectures that when computer science students are given problems

to solve in their theory classes, the way the problem is described will be a signi�cant

variable in determining if they are able to correctly solve it.

This conjecture comes from the arguments made in Sections 1.2.2 and 1.2.3, which

together imply that for people who have little exposure to abstract mathematics, the

initial barrier they face is mostly a language comprehension issue.

Further evidence to support the conjecture comes from the fact that subjects in the

NP-completeness experiments seemed to struggle to understand the BIN-PACKING

Reduction Problem. Hypothetically, if the problem had been described in a di�erent

way, they might have understood it better.

207

Future experiments will test if how students perform on a theoretical problem

such as an NP-completeness reduction changes when the description type changes. If

the test con�rms the author's hypothesis, then a future research track would be to

look at if language acquisition strategies can be e�ectively applied to the domain of

theoretical computer science and mathematics. Three di�erent problem description

types will be considered:

1. Formal set-builder notation{This is a formal mathematical notation that is a

very compact way to describe problems. It is used often in textbooks and

sometimes homework assignments, but instructors almost never use it to teach

their lecture materials. An example of this description type is the 0/1-PROG

Reduction Problem from Appendix B.

2. English vernacular|This kind of description uses idioms that are common in

computer science. Instructors usually use a similar type of description when

they teach, probably because they think it makes most sense to explain the

material in terms of these idioms. An example of this description type is the

BIN-PACKING Reduction Problem from Appendix B.

3. Abstract word problem It is called \abstract" but in another sense one might

consider it \concrete", because rather than give a general description of a math-

ematical problem, a speci�c concrete example is given. The reason then for

calling it an \abstract word problem" is that the student is required to take a

very concrete situation and abstract away the important details to put it in the

context necessary to solve the problem, e.g., complexity theory. It is a test to

see if the student really understands the fundamental underlying problem. An

example of this description type is Question 4 from Appendix E.

208

6.6 Using machine learning to develop a student model

Once a su�cient amount of data on students' interactions with Complexity

Tutor is collected, machine learning can be used to build a student model, which

can be used to customize the problem selection for each student. Additionally, having

a well developed student model would allowComplexity Tutor to adjust problem

parameters and guidance o�ered to �t the individual needs of each student, giving

them a personalized learning experience. This objective is similar to what Deep

Thought (Section 2.4.6) accomplished for the simpler learning space of formal logic.

The student model has a large number of hidden and observed states. Machine

learning is applied to update the hidden states from the observed states. The following

is a non-exhaustive list of state variables that might be included in the student model:

1. For a given problem, what is the likelihood the student will be able to solve it

correctly before giving up?

2. For a given type of problem goal, what level of pro�ciency does the student have

at solving it?

3. For agiven problem description type(from Section 6.5), what level of pro�ciency

does the student have in understanding problems with that description type?

4. For a given assumptionor partial reduction algorithm available to the student,

what is the likelihood that given an arbitrary problem that is easier to solve

using the assumption (as dictated by model proofs), the student will be able to

recall and correctly apply the assumption?

5. For a given subset of objectsin a given problem, what is the likelihood that

seeing examples of each of the objects will signi�cantly help the student solve

the problem? This variable could predict when the Inductive Instruction Aid

mentioned in Section 6.4 would be helpful.

209

6. For a given inference conceptused implicitly in a given step in a proof, what

is the likelihood that the student understands that this concept is being used

even though the granularity is too low to force the student to explicitly make

that inference?

The �rst �ve of these variables give us criteria for evaluating a student's overall

ability, as well as giving us control variables for selecting what problem to give to the

student next. Notice that variables 3{5 essentially quantify most of the meta-skills

listed in Section 1.2, with the exception of applying proof schema, which should be

somewhat correlated with variable 2. Variable 6, on the other hand, is used to adjust

proof granularity for each student.

The most signi�cant feedback that can be used to update these variables is whether

or not the student solves a particular problem correctly without giving up. If the

student does give up, then that means the previous assessment of variable 1 was

wrong, and it should be updated to have a value of 0% likelihood, and machine

learning can be used to propagate the e�ect of changing that variable to all the other

variables.

If on the other hand, the student does correctly solve the problem, then increase

the value of variable 1 for that problem.

There are of course other observations collected by the student model other than

whether a student solves a problem or not.

For instance, one can look at how many cumulative errors the student made before

they arrived at the correct solution, or how many they made before they gave up. If

they made a lot of errors, that might explain that they were not that comfortable

solving the problem.

But it might additionally explain that they were persistent in trying to solve the

problem. It is probably important to treat students with di�erent levels of persistence

di�erently, especially when deciding what di�culty level the problem you give them

210

next should be. The amount of typing they did might also tell something about their

persistence, or whether they chose to use the Inductive Example Construction Aid

(Section 6.4).

Also, how did the number of errors change over time? Did the student start out

making a lot of errors everywhere, or was there only one step in the proof they had

signi�cant trouble �guring out?

It is also important to identify speci�c errors that students make over and over

again in their proofs throughout the tutoring session, because these might be \bugs"

that need to be corrected. Thus, there is this important variable:

7. For a given error that a student made, what is the likelihood it is a \bug"?

Of course, \bugs" are not always observed, so it is a good idea to consider this

hidden variable:

8. What is the likelihood that a student has agiven \bug"?

And if the student could not solve a problem, what did they do correct? Did they

state the correct goals? Did they use the right assumptions?

To be able to assess the likelihood of whether a student would be able to solve a

particular problem, there are other variables that one might want to infer from:

9. Does the student know what goals to solve fora given problem?

10. For each of thosegiven goals, is the student pro�cient in applying the associated

proof schemas (Section 1.2.4)?

11. For eachentity in the problem (e.g., a \language" entity for instance), has the

student successfully solved other problems that require them to use that entity?

211

6.7 Automation of problem generation

Even though the Theorem Proving Environment inComplexity Tutor is a

domain-independent framework for proof construction, it still requires a domain ex-

pert to manually author every single proof problem for a given domain.

It would be nice if there was a tool that could take a set ofComplexity Tutor

problems that have already been created for a given domain, and from that set of

problems automatically generate new problems.

This task can be broken into two separate research challenges, each which is

interesting in its own right:

Challenge 1

Given a formal language, can a new problem and its solution be generated?

Challenge 2

Given a set of problems, can the inference rules of a formal language that will

produce it be generated? This is the inverse of the Challenge 1 problem.

Consider Challenge 2 �rst. Recall that EXCHECK from Section 2.4.1 had 700

context-free grammar rules to support a controlled natural language based formal

logical system. The goal would be to automatically infer grammar rules like these

from proof graphs, so there would be no need to manually construct a grammar with

700 rules. This is essentially a machine learning problem, referred to asgrammar

induction. Considering that grammar induction in other areas like programming lan-

guages [92,149] and natural languages sentences [69] have been successful, the author

is optimistic that grammar induction on the signi�cantly more structured domain of

inference relations inComplexity Tutor proof graphs would not be overwhelming,

and would produce positive results of well-speci�ed inference rule grammars.

For Challenge 1, assume that a set of assumptions have already been speci�ed

in the formal language that was produced from Challenge 2. Then there are two

212

versions of Challenge 1, a hard version and an easy version. The hard version is

when the goal has been pre-determined along with the assumptions. This is hard

because it reduces to automated proof search in an arbitrary formal logical system

with arbitrary inference rules.

Without having intelligent heuristics for searching for proofs in that particular

proof space, one is unlikely to be able to produce a proof of the goal. The closest

work that the author is aware of that comes anywhere close to addressing the hard

version of Challenge 1 is a strategy for searching a restricted space of propositional

calculus formulas with arbitrary inference rules [2]. That work uses a representation

of formulas encoded by their truth table semantics to reduce the search space for

problems with a limited number of variables.

That said, the easy version of Challenge 1 where the goal is not constrained

seems to be much easier to accomplish. A random walk through the proof search

space will result in an arbitrary goal that is generated and an arbitrary proof graph

that is explored. This will produce new problems, although they may not be of

desirable quality. To construct good quality problems, constraints must be placed on

the random walk through the proof search space. For instance, inference rules that

would produce assertions over a certain string length should probably be avoided.

Furthermore, properties of other existing proof graphs for problems that are already

considered to be good quality should be analyzed to construct a model that produces

similar problems, using similar inference applications, etc.

6.8 Going beyond Levin reductions

When Complexity Tutor was �rst conceived, the intention was to build a

tutoring system that would help students learn any topic fromcomplexity theory,

and that would have methods for automatically validating the correctness of any

kind of algorithmic reduction students would be exposed to when learning about

213

computational complexity. This is after all where the nameComplexity Tutor

comes from. But this turned out to be a very ambitious goal.

The method for validating reductions that is described in Section 3.2.2.1 can only

be applied topolynomial-time reductionsbetween languages that belong to the com-

plexity class NP. In fact, it only works speci�cally for Levin reductions. This provides

a way to tutor NP-completeness, which is one of the most signi�cant topics from com-

putational complexity, and the one that is most commonly taught to undergraduate

computer science students.

At the University of Massachusetts Amherst, students are required to take an

algorithms course that covers the topic of NP-completeness, but they are not required

to take courses that would teach them about other complexity classes.

So how couldComplexity Tutor be adapted to helping students learn to do

reductions involving other complexity classes? Restricting the programming model

that students are allowed to use in the Algorithm Environment would potentially

permit the representation of �ner-grained reductions, such aslog-space reductions,

allowing Complexity Tutor to give problems involving smaller complexity classes

than NP. However, automatically evaluating reductions involving larger complexity

classes such as PSPACE or the class of allcomputable languageswould require a very

di�erent approach, since it is not feasible to \run" those reductions.

Perhaps, at that point, it might make more sense to use a puzzle-like framework

similar to Parsons Problems [122], in place of the existing framework of allowing

students to freely write code for their reductions. Future research could compare

using a Parsons Problem type framework to the existing Algorithm Environment to

see which helps students more with learning reductions.

214

APPENDIX A

MATERIALS USED TO PRESENT AND DIRECT
EMPIRICAL STUDY

A.1 Script announcing study

I am Mark McCartin-Lim, and I am a computer science Ph.D. student at the

University of Massachussetts at Amherst.

As part of my dissertation research, I am developing a tutoring system that is

designed to help students in theoretical computer science classes, such as the class

you are currently taking.

I am conducting a research study to determine the usefulness and e�ectiveness of

this system, and I need some students to participate in the study to test the system.

I am inviting you to voluntarily participate in my research study. More information

about the study and your rights as a participant or non-participant are described

in the Informed Consent document that will be handed out. If you need still more

information, you may obtain it from me via my email address found in the Informed

Consent document.

As an additional incentive for you to participate in the study, Professor

has kindly agreed to give an extra credit of up to 5 points toward the �nal exam of

participants. He will also provide an alternative work assignment for non-participants

wishing to earn extra credit.

Please take a copy as you leave the classroom if you want more information about

the research study and your rights as a participant or non-participant. If you think

you might want to participate in the study, please take two copies. If you decide to

215

participate, please return one signed copy at on , and keep the

other copy for your information or reference.

Are there any questions?

A.2 Text of Informed Consent Form

INFORMED CONSENT

for participation in the research study:

Novel Computerized Self Tutoring System for Proof Construction

Mark McCartin-Lim, Principal Investigator

Professor Beverly Woolf, Faculty Sponsor

Introduction and Purpose of the Research Study:

This document contains important information that prospective participants of

the research study need to consider before they consent to participate.

The Principal Investigator (PI) has invented a novel computerized self-tutoring

system that will provide immediate feedback for students to rectify learning prob-

lems, and will assist students to learn theoretical topics at their personal pace of

learning. This UMass-Amherst Institutional Review Board approved research study

will determine the usefulness of this tutoring system as an extra tool to help students

in learning theoretical topics from computer science that involve proof construction.

Study Procedures:

The e�ectiveness of the computerized self-tutoring system for proof construction

will be tested with student volunteers recruited from upper-year UMass Amherst

computer science courses that involve theoretical content. The instructor of these

courses will give extra credit of up to 5 points (minimum of 3 points for participating)

that will go toward the �nal exam of students who volunteer to participate in the

study. The instructor will also o�er an alternative extra credit assignment to students

216

who want to earn extra credit but do not want to participate in the research study.

Except for earning the extra credit, participating in this study will have no in
uence

on a student's grade for the course.

The course instructor will select two groups from the participating students with

random sampling strati�ed by grade distributions. One group will be the experimental

group that will use the computerized self-tutoring system to solve practice problems

similar to problems of existing homework assignments. The other group will be the

control group, and will be given the same practice problems to solve as usually,

by hand writing the problem solutions on paper and giving the solutions to the

instructor for evaluation. The PI will not have access to identi�able data of the past

performance of the participants, but will have access to aggregate non-identi�able

data as permitted by FERPA. Any surplus participating students not needed for the

experimental or control groups will earn their extra credit by completing the same

work as the students in the control group, but they will not be a part of the research

study.

For the experimental group students using the computerized self-tutoring system,

they will either install software given to them by the PI on their personal computers,

or they will be given access to use the software in a computer at a computing lab

facility at UMass-Amherst. In addition to providing feedback to the student to correct

mistakes, the software will provide data on the learning progress and performance

pro�ciency of the student. This data will be made available without student identi�ers

to the PI.

These students will also be asked to anonymously complete a single page paper

questionnaire to give their opinions and comments on the computerized self-tutoring

system. Completing the questionnaire is optional; to complete the questionnaire,

the participants will answer questions with check marks and brief written comments

without any need to disclose their names or student identi�ers. The objective of

217

the questionnaire is to obtain honest and unrestrained opinions, evaluations, and

comments about the computerized self-tutoring system from the students who have

used it.

After completing the practice problems, the students in both groups will be given

a non-graded quiz, with questions similar to actual exam questions in the course, to

assess their performance. The PI will analyze the performance data of these students

without student identi�ers to determine the e�cacy of using the computerized self-

tutoring system as a supplemental aid in learning proof construction.

Duration of Time Needed for Participation:

The participants will be given some practice problems typical of existing homework

practice problems to solve, and time needed will be similar to that of a homework

assignment. Since the pro�ciency for solving the problems is di�erent for each student,

an estimate of the time needed to solve the problems may range from 3 to 12 hours.

The time needed for completing the questionnaire is about 10 minutes. The maximum

time for completing the non-graded quiz is two hours.

Interactions of Participants with Principal Investigator:

There are no planned meetings for participants to attend with the PI during

the study. The PI will communicate with the participants mainly by email when

needed. For example, the PI will send emails to participants to provide information

on obtaining and installing the needed software, etc. The participants may contact

the PI by email when needed to obtain information on technical issues with the study.

Obtaining More Information About the Research Study:

Students needing more information about the research study should contact the

PI, Mark McCartin-Lim markml@cs.umass.edu Phone: 413-842-6275

218

Obtaining More Information About the Student Protection:

Students needing more information about their rights as a participant in a re-

search study may contact the University of Massachusetts Amherst Human Research

Protection O�ce (HRPO) at (413) 545-3428 or humansubjects@ora.umass.edu.

Voluntary Participation and Right to Withdraw:

Participation in this study is voluntary, and there is no penalty for not partic-

ipating. Participating or not participating in the research study will not impact a

student's grade for the course. A participant may withdraw from the study without

giving any reason. To withdraw, the participant will simply notify the PI of the

decision to withdraw from the study.

Protection of Privacy and Personal Information of Students:

Data with student identi�ers will have the student identi�ers removed and replaced

with a code. The PI will not have access to the key of the code used. The PI will

not keep any data with student identi�ers. Student privacy will be respected in this

research study. Publications and public disclosures resulting from the study will not

reveal student identi�ers.

Possible Risks from Participation:

There are no known risks associated with this research study; however, a possible

inconvenience may be the time it takes to participate in the study.

Potential Bene�ts from Participation:

Participants may not directly bene�t from taking part in this study. However,

participants of this research study will gain more exposure and practice with learning

material that is relevant to the speci�c course they are currently enrolled in, and this

may result in improved understanding of that material. Those who are chosen to use

219

the self- tutoring system will have the opportunity to use a learning method in this

course not previously available to them. While it cannot be promised that this system

will provide a more e�ective learning experience than the learning methods that

the participant has previously been exposed to, existing positive results of tutoring

systems in other domains make it hopeful that this tutoring system will also yield

positive results. In addition to the above bene�ts, participation in this study will

further research in e�ective ways to learn abstract topics in theoretical computer

science and mathematics, helping future students taking those courses.

Consenting to Participate:

Before signing the consent to participate in the research study, students should

take the necessary time to carefully read and comprehend this entire document.

A.3 Sample of directions emailed to experimental group (Fall

2017)

Hi there!

You are receiving this email, because you volunteered to

participate in a research study on the affectiveness of

using a tutoring system to teach theoretical computer

science topics, such as what you are learning in CS 250.

If for some reason, you believe you have received this email

by accident, please let me know.

220

You have been chosen to test a software tutoring system

called Complexity Tutor. To participate, please CAREFULLY

READ and follow the directions below:

Please complete STEPS 1-8 below by THURSDAY, NOVEMBER 30. By

doing so, you will be eligible for up to 5 extra credit

points on your final exam:

-- 3 points just for correctly following the instructions in

this email

-- 2 points based on your performance on the three problems

you will be asked to solve

NOTE that all URLs listed in this email are CASE-SENSITIVE,

so please make sure to type them correctly. If you

encounter any problems, send email to markml@cs.umass.edu

.

STEP 1 - GET A PARTICIPANT ID

You will first need to get a Participant ID for the study.

Throughout the study, you will be identified by this

Participant ID and NOT your actual name. This protects

your privacy and gives you a high level of anonymity. As

221

such, it is essential that you keep track of your

Participant ID until you are finished with the study.

The anonymity also means that you are free to drop-out of

the study at any time, and we won't know who has decided

to do so.

However, if you want to receive the extra credit bonus you

are entitled to for participating, you will need to

reveal your Participant ID to the instructor to confirm

your participation. However, the instructor will not keep

this information, so there will be no permanent record

linking you to your Participant ID after the course is

over.

Please follow this link to generate a new Participant ID:

http://people.cs.umass.edu/˜markml/participantID.php

VERY VERY IMPORTANT: Make sure you WRITE DOWN the

Participant ID and DO NOT LOSE it. Every time you go to

the above URL, it will generate a new ID!!!

STEP 2 - MAKE SURE YOU CAN RUN COMPLEXITY TUTOR

The minimal requirements for Complexity Tutor are a Windows

PC with a screen resolution set to 1024 x 768 at the bare

222

minimum. If you are not sure if you have the right

screen resolution, please check before you start the

experiment.

You will also need to have the Microsoft .NET Framework

Version 4 or higher installed. If you have Windows 8 or

Windows 10, you almost certainly already have this

installed, because it is installed by default with those

operating systems. Even if you have Windows 7 or older,

there is a decent chance you may already have it

installed since it is frequently pushed to users by

Windows Update.

However, if you do not have .NET Framework or your version

is too old, you will need to install this version from

Microsoft:

https://www.microsoft.com/EN-US/DOWNLOAD/confirmation.aspx?

id=17718

If you need to install .NET Framework, make sure to run the

installer in Administrator Mode, by right-clicking the

installer file and selecting "Run as administrator". You

may need to reboot your computer after the install.

If you are not sure if you have the right version of .NET

Framework installed or not, you can try running

223

Complexity Tutor, and it will give you an error message

if you don't have the right version.

WE CURRENTLY DO NOT SUPPORT MAC OR LINUX, BUT THERE ARE SOME

OPTIONS IF YOU DO NOT HAVE WINDOWS:

1. UMass students enrolled in CS courses are eligible for a

FREE copy of Windows, which will run on Macs too:

http://www.umass.edu/it/support/software/microsoft-imagine-

no-cost-software-education-research#How to Obtain &

Install Software

2. The UMass library will loan a Windows laptop for a 24

hour period. Go here for information:

https://www.library.umass.edu/services/computers/laptops/

3. If neither of these options work for you, please email me

and we can discuss alternate arrangements.

STEP 3 - GET COMPLEXITY TUTOR

Download it from here:

https://people.cs.umass.edu/˜markml/CTutorCS250_F17.zip

224

Once it is downloaded, unzip it somewhere on your computer,

and it will create a folder called "Complexity Tutor for

CS 250".

At that point it is ready to run, and no further

installation is needed. When you are finished with the

experiment, you can simply delete the folder and the zip

file and it will be completely removed from your computer

.

Inside the folder, you will see a subfolder called "

SubmissionData". This folder will store all the data you

will submit to us after you use the software. Whenever

you run Complexity Tutor, it will create video files

recording your usage of the software, which will be

stored inside the "SubmissionData" folder. Feel free to

look at these videos, but do not alter them in anyway.

Also, we ask that you not delete any of the files either,

since we would like to see all your attempts at using

the software.

In case you are interested, the videos are created with

FFMPEG, an industry standard open source video

transcoding tool.

Please DO NOT share the Complexity Tutor software with

anyone else.

225

STEP 4 - TUTORIAL ON HOW TO USE COMPLEXITY TUTOR

Watch the following YouTube playlist:

https://www.youtube.com/playlist?list=PLDchYViZHp92uMNv-

O9teUPALRkvkKS5q

These two quick videos will tell you what you need to know

about how to use Complexity Tutor. If you would like to

follow along with the problem demonstrated in the video,

you can load the "Tutorial1.CTP" file in Complexity Tutor

.

Here is an additional tip:

As your proof gets large, it may not fit entirely on the

screen. That is okay because the Proof Space will

automatically expand to give you more room and scroll

bars, when you move stuff off the screen.

STEP 5 - DO THREE PROBLEMS IN COMPLEXITY TUTOR

Now, we get to the fun part!

In the "Complexity Tutor for CS 250" folder, you will find

the following 3 Complexity Tutor Problem files:

226

"Problem1.CTP"

"Problem2.CTP"

"Problem3.CTP"

We want you to attempt each of these problems. Here's how:

Run the "ComplexityTutor.exe" application. It will give you

a dialog box, asking you to select a problem file. Choose

one of the above mentioned files. You may need to wait a

moment for the problem to load, especially the first

time you are using Complexity Tutor. When the problem has

loaded, you will be presented with a screen similar to

what you saw in the tutorial videos.

In the problem, you will be asked to try to prove something.

You should try to work on the problem until Complexity

Tutor tells you that you have completed your proof, or

until you get too frustrated to keep working on the

problem.

When you feel you are done with the problem, close the

Complexity Tutor application, and reload it to select

another problem.

Feel free to attempt a problem multiple times. For instance,

if you get stuck on one problem, you may wish to close

227

it and try another problem, and then come back to the

original problem later. Unfortunately, Complexity Tutor

does not yet have a feature to save partial progress, so

if you do decide to go back to a problem you previously

attempted, you will have to restart it from scratch. Also

, Complexity Tutor does not let you have multiple

problems open at once either, since we can only record

you working on one problem at a time.

It is up to you how much time you decide to devote to using

Complexity Tutor to solve these problems, however we ask

that you at least attempt all three problems, and try to

make the same amount of effort you would if these

problems were given to you for a homework assignment.

To incentivize you to try your best to completely solve all

three problems, we will give you more extra credit for

each problem you manage to take down. Note the three

problems will all be weighted evenly though.

VERY IMPORTANT: Please DO NOT discuss the problems or even

anything about using the Complexity Tutor software with

anyone else in the class. The normal collaboration policy

for CS 250 does not apply to this study. For this study,

no collaboration is permitted at all. If you have a

technical problem with the software, you should email me

at markml@cs.umass.edu rather than asking for help from

228

your fellow students. This will ensure I get the research

data I need.

STEP 6 -- ZIPPING UP YOUR DATA

We need you to ZIP up the data, before you send it to us.

First, make sure the Complexity Tutor program has been

CLOSED.

Next, navigate to the "Complexity Tutor for CS 250" folder.

Inside it, you should see a subfolder called "

SubmissionData". This folder contains all the data we

need. We want you to create a ZIP of this "SubmissionData

" folder...

In most versions of Windows, you can do so as follows:

1. Right-click the "SubmissionData" folder, and select "Send

To", and then select "Compressed (zipped) folder".

2. A new ZIP file with the name "SubmissionData.zip" is

created. You should rename this ZIP file to include your

Participant ID.

229

Alternatively, you can use any 3rd party ZIP utility you

prefer to do the above task (i.e. 7Zip, WinZip, etc.)

If you have any technical difficulties zipping your data,

please send a reply to this email for troubleshooting.

STEP 7 -- UPLOADING YOUR DATA

Please go to the following webpage to submit your data:

https://people.cs.umass.edu/˜markml/study_fall16/submitS17.

html

You will be prompted for a username and password to access

this page, found here:

Username: research311

Password: iknowalgorithms

Note that this is CASE-SENSITIVE.

The webpage will give you a box that allows you to Upload a

file. Please do the following:

1. Click "Choose File" and select the ZIP file you

previously created.

230

2. (VERY IMPORTANT) In the "Description" box, PLEASE TYPE

YOUR PARTICIPANT ID!!!

3. Click the "Upload" button.

4. Wait while the file is being uploaded. Do not close the

browser window. This may take several minutes.

5. When the file has been successfully uploaded, you should

see the following message:

"Success. Your file has been uploaded, and the

folder owner has been notified."

If for some reason you do not see this message, and/or an

extremely long passes and it seems to be stuck uploading

the file, then I recommend you close your browser window

and try again to repeat the upload process. There may be

a problem with your Internet connection that has

interrupted the upload.

If that does not work and you are still having trouble

uploading your file, please send a reply to this email

for troubleshooting.

STEP 8 -- FILL OUT A SHORT QUESTIONNAIRE

Please fill-out this questionnaire:

231

https://goo.gl/forms/72UPZwaLZs9NmesW2

STEP 9 -- ASSESSMENT QUIZ

You will be emailed a short assessment quiz to complete in

early December, to evaluate your performance after having

participated in this study. The quiz can be done at home

, and should take about 15-30 minutes to complete.

FURTHER STEPS:

Once you have completed the above steps, you are eligible

for the extra credit. Your instructor will notify you

with the procedures for claiming your extra credit.

Please reply to this email if you have any additional

questions.

A.4 Sample of directions emailed to control group (Fall 2017)

Hi there!

You are receiving this email, because you volunteered to

participate in a research study on the effectiveness of

232

using a tutoring to teach theoretical computer science

topics, such as what you are learning in CS 250.

If for some reason, you believe you have received this email

by accident, please let me know.

You have been chosen to be a part of the Control Group in

our study. To participate, please CAREFULLY READ and

follow the directions below:

Please complete STEPS 1-5 below by THURSDAY, NOVEMBER 30. By

doing so, you will be eligible for up to 5 extra credit

points on your final exam:

-- 3 points just for correctly following the instructions in

this email

-- 2 points based on your performance on the three problems

you will be asked to solve

NOTE that all URLs listed in this email are CASE-SENSITIVE,

so please make sure to type them correctly. If you

encounter any problems, send email to markml@cs.umass.edu

.

STEP 1 - GET A PARTICIPANT ID

233

You will first need to get a Participant ID for the study.

Throughout the study, you will be identified by this

Participant ID and NOT your actual name. This protects

your privacy and gives you a high level of anonymity. As

such, it is essential that you keep track of your

Participant ID until you are finished with the study.

The anonymity also means that you are free to drop-out of

the study at any time, and we won't know who has decided

to do so.

However, if you want to receive the extra credit bonus you

are entitled to for participating, you will need to

reveal your Participant ID to the instructor to confirm

your participation. However, the instructor will not keep

this information, so there will be no permanent record

linking you to your Participant ID after the course is

over.

Please follow this link to generate a new Participant ID:

http://people.cs.umass.edu/˜markml/participantID.php

VERY VERY IMPORTANT: Make sure you WRITE DOWN the

Participant ID and DO NOT LOSE it. Every time you go to

the above URL, it will generate a new ID!!!

234

STEP 2 - DO SOME PROBLEMS

As part of the Control Group, we would like you to do a

short problem set in the same manner as you would

normally complete homework problems in your CS 250 course

.

We would additionally like you to record approximately how

much time you spent working on each problem.

The problem set to do can be found here:

http://people.cs.umass.edu/˜markml/ControlGroup_CS250.pdf

You should either scan or type your solutions, and prepare

them as a PDF file. Make sure to write your Participant

ID inside it as well.

STEP 3 -- CHECK YOUR PDF

You should have a PDF file for the solutions you write to

the problem set. This PDF can be either a scanned copy of

handwritten solutions or it can be typeset. Please make

sure it is a PDF file though, and not any other format!

235

Also, make sure that you have included your Participant ID #

instead of your name in the solutions.

Also, make sure you have written a time estimate for how

much time you have spent on each problem.

STEP 4 -- UPLOAD YOUR DATA

Please go to the following webpage to submit your data:

https://people.cs.umass.edu/˜markml/study_fall16/submitS17.

html

You will be prompted for a username and password to access

this page, found here:

Username: research311

Password: iknowalgorithms

Note that this is CASE-SENSITIVE.

The webpage will give you a box that allows you to Upload a

file. Please do the following:

1. Click "Choose File" and select your PDF file.

236

2. (VERY IMPORTANT) In the "Description" box, PLEASE TYPE

YOUR PARTICIPANT ID!!!

3. Click the "Upload" button.

4. Wait while the file is being uploaded. Do not close the

browser window. This may take several minutes.

5. When the file has been successfully uploaded, you should

see the following message:

"Success. Your file has been uploaded, and the

folder owner has been notified."

If for some reason you do not see this message, and/or an

extremely long passes and it seems to be stuck uploading

the file, then I recommend you close your browser window

and try again to repeat the upload process. There may be

a problem with your Internet connection that has

interrupted the upload.

If that does not work and you are still having trouble

uploading your file, please send a reply to this email

for troubleshooting.

STEP 5 -- GET FEEDBACK ON YOUR SOLUTIONS

Feedback on your solutions will be emailed to an anonymous

email account at Dispostable.com.

237

To access the feedback, please go to http://www.dispostable.

com.

Your anonymous email address will be Participant[YOUR

PARTICIPANT ID]@dispostable.com. For instance, if your

Participant ID was 987654321, then your anonymous email

address would be Participant987654321@dispostable.com.

Type in your anonymous email address, and click "Check inbox

>>". There is no password associated with this email

address, and privacy is protected by the uniqueness of

your Participant ID, so make sure to not share it with

anyone.

Note that emails are automatically deleted from the

Dispostable.comservers every 3 days, so make sure to

check your Dispostable.comaccount regularly after

November 3 until you receive your feedback.

STEP 6 -- ASSESSMENT QUIZ

You will be emailed a short assessment quiz to complete in

early December, to evaluate your performance after having

participated in this study. The quiz can be done at home

, and should take about 15-30 minutes to complete.

238

FURTHER STEPS:

Once you have completed the above steps, you are eligible

for the extra credit. Your instructor will notify you

with the procedures for claiming your extra credit.

239

APPENDIX B

NP-COMPLETENESS PROBLEMS USED IN
COMPLEXITY TUTOR EXPERIMENTS

B.1 Conceptual Problem 1

Let PATH = fhG; s; ti j G is a graph with a path from s to tg. We know PATH

is in P. Prove that if P=NP, PATH is NP-Complete.

B.2 Conceptual Problem 2 (used in Spring 2018 only)

Note: For this problem, you must use the Karp Reduction (pg. 473 of the textbook

[87]) de�nition of polytime reductions. The de�nition is: Y � p X if there is a

polytime function A(s) where s 2 Y () A(S) 2 X .

Show for all decision problemsX and Y, if X is in NP and Y � p X , then Y is

also in NP.

B.3 Conceptual Problem 3 (used in Spring 2018 only)

Note: For this problem, you must use the Karp Reduction (pg. 473 of the textbook

[87]) de�nition of polytime reductions. The de�nition is: Y � p X if there is a

polytime function A(s) where s 2 Y () A(S) 2 X .

Recall the de�nition of co-NP (pg. 496 of the textbook [87]):

A decision problem X is in co-NP if there is a decision problem Y in

NP where s 2 X () s =2 Y.

Show for all decision problemsX and Y, if X is in co-NP andY � p X , then Y is

also in co-NP.

240

B.4 Conceptual Problem 4 (used in Spring 2018 only)

Note: For this problem, you must use the Karp Reduction (pg. 473 of the textbook

[87]) de�nition of polytime reductions. The de�nition is: Y � p X if there is a

polytime function A(s) where s 2 Y () A(S) 2 X .

A decision problem X is co-NP-Complete if X is in co-NP and for all

Y in co-NP, Y � p X .

Prove that if a decision problemX is both NP-Complete and co-NP-Complete then

NP=co-NP. HINT: You can assume the results you proved in Conceptual Problem 2

and Conceptual Problem 3.

B.5 BIN-PACKING Reduction Problem

Assume PARTITION is NP-Complete and BIN-PACKING is in NP. Prove that

BIN-PACKING is NP-Complete.

241

B.6 0/1-PROG Reduction Problem

Prove 0/1-PROG = fh Matrix A; Vector bi j There exists a Vectorx consisting of

elements in the setf 0; 1g such that Ax � b, whereA is an m-by-n Matrix and b and

x are lengthn vectorsg is NP-Complete. Hint: Use 3-SAT.

242

APPENDIX C

LOGIC PROBLEMS USED IN COMPLEXITY TUTOR
EXPERIMENTS

C.1 Pizza Problem

Emily and Catherine each have their own pizza. Using the given assumptions,

prove that Emily is not lactose intolerant.

Given Assumptions:

1. Any pizza that has pepperoni also has cheese.

2. Either Catherine's pizza or Emily's pizza, or both, has pepperoni, but Cather-

ine's pizza does not have cheese.

3. If someone is lactose intolerant, then their pizza does not have cheese.

C.2 Muddy Dog Problem

Suppose there are 3 dogs|Biscuit, Cardie and Duncan. Using the given assump-

tions, prove that Duncan is not muddy.

Given Assumptions:

1. Either Cardie or Biscuit, but not both, went in the pond, and if Cardie is not

muddy then Biscuit is muddy

2. A dog is wet if and only if it went in the pond or it went in the swamp

3. Every muddy dog went in the swamp, and every dog who went in the pond is

not muddy

243

4. Not all of the three dogs are wet

C.3 Murder Mystery Problem

Professor Plum (p), Miss Scarlet (s), Mr. Green (g) and Colonel Mustard (m)

are suspects in a murder investigation. The police have determined that one of them

did a murder in either the Ballroom (b), the Dining Room (d) or the Hall (h)|with

either the Knife (k), the Rope (r) or the Candlestick (c).

Referring to the predicate and set definitions below, usethe given assumptions to

prove who did the murder, wherethey did it, and with what weapon:

Let set S = f p; s; g; mg|the �nite set of suspects.

Let set W = f k; r; cg|the �nite set of weapons.

Let set L = f b; d; hg|the �nite set of locations.

Let predicateM (x; y; z) mean \suspectx did the murder in locationy with weapon

z".

Let predicate L(x; y) mean \suspectx was in locationy during the murder".

Let predicateT(x; y) mean \suspectx testi�ed they were in location y during the

murder".

Let predicate O(x; z) mean \suspectx owns weaponz".

Let predicate Q(x) mean \suspectx told the truth".

Given Assumptions:

1. 8x : 8y : [(9x0 : 9z0 : M (x0; y; z0)) ^ L(x; y)] ! [9z0 : M (x; y; z0)]

2. 8x : 8y : 8y0 : y = y0_ : L(x; y) _ : L(x; y0)

3. 8x : 8y : Q(x) ! [T(x; y) ! L(x; y)]

4. 8y : [9x : 9z : M (x; y; z)] ! [8x : 8x0 : x = x0_ : L(x; y) _ : L(x0; y)]

5. 8x : 8y : 8z : M (x; y; z) ! : O(x; z)

244

6. Only one suspect did not tell the truth.

7. Plum testi�ed he was in the Hall during the murder.

8. Scarlett testi�ed she was in the Hall during the murder.

9. Green testi�ed he was in the Dining Room during the murder.

10. Mustard owns the Knife.

11. Scarlett owns the Rope.

12. Plum owns the Candlestick.

13. The murder was done in the Hall.

14. The murder was not done with the Knife.

15. During the murder, Mustard was in the same location as Plum.

245

APPENDIX D

EXAMS QUESTIONS USED IN EMPIRICAL STUDY

This appendix reproduces with minor edits some actual exam questions that were

given to students in the courses studied, and which were analyzed for the research

of this dissertation. Some minor typographical errors have been corrected from the

original source material, but those errors were unlikely to have substantially a�ected

how students performed when answering the questions.

D.1 Spring 2017 midterm exam questions

On this exam, there were three related questions, concerning �rst-order preposi-

tional logic. These questions used the following de�nitions:

Let D be a �nite set of dogs consisting of exactly the four distinct dogs Cardie

(c), Duncan (d), Mia (m), and Whistle (w).

Let Z be a �nite set of languages consisting of exactly the �ve distinct languages

Chinese (C), English (E), French (F), Latin (L), and Spanish (S).

Let T be the unary relation onD de�ned so that T(x) means \dogx is a terrier".

Let R be the binary relation from D to Z de�ned so that R(x; y) means \dog x

responds to commands in languagey".

Question 1 (20 points)

Translate each statement as indicated, using the set of dogsD = f c; d; m; wg, the

set of languagesZ = f C; E; F; L; Sg, the predicateT(x) meaning \dog x is a terrier",

and the predicateR(x; y) meaning \dog x responds to commands in languagey". In

246

general,x is used as a variable of type \dog" (S) and y is used as a variable of type

\language" (Z), but this should also be clear by the usage of variables in predicates.

� (to English) Statement I: : (R(c; F) ! R(c; S)) ^ : (: R(c; L) _ R(c; S))

� (to symbols) Statement II: Cardie responds to commands both in French and

in Latin.

� (to English) Statement III: 8y : (y 6= C) $ (9x : R(x; y))

� (to symbols) Statement IV: There is exactly one dog, Whistle, who responds to

commands in Spanish.

� (to English) Statement V: 8x : 8y : R(x; y) ! R(x; E)

� (to symbols) Statement VI: Unless Duncan is a terrier, he responds to commands

in Chinese.

� (to English) Statement VII: 9x : 8y : : T(x) ^ (R(x; y) $ (y = E))

� (to symbols) Statement VIII: Any dog who does not respond to commands in

English must be a terrier.

Question 2 (10 points)

This question uses the sets, de�nitions, and predicates above, and the statements

from Question 1.

Prove that if Statement I is true, Statement II must be true as well. You may use

either a truth table or a deductive argument.

Question 3 (20 points)

This question also uses the sets, de�nitions, and predicates from above and the

statements from Question 1.

247

Prove, using any or all of Statements I through VII, that Statement VIII is true.

Do not assume anything about the English meaning of the predicates, except what

you are given in the statements. Make your use of quanti�er proof rules clear.

(Hint: If you have an arbitrary dog x, you may divide into the four casesx = c,

x = d, x = m, and x = w. It is possible to solve this problem with or without Proof

By Contradiction.)

D.2 Spring 2017 �nal exam questions

Two parts of Question 2, concerning �rst-order prepositional logic, were considered

individually from this exam.

Question 2 deals with the following scenario. All of the dogs in the neighborhood

are avid birdwatchers. One day, a set of �ve dogs met after their morning walks to

compare their observations of �ve possible bird species. The setD of dogs consists

exactly of Arly (a), Cardie (c), Duncan (d), Mia (m), and Whistle (w). The set S

of species consists exactly of Bluebird (B), Crow (C), Heron (H), Mallard (M), and

Woodpecker (W). The relation R � (D � S) is de�ned so that (x; y) 2 R means \dog

x observed a bird of speciesy".

Question 2a (10 points)

In the following �ve statements, variables are of type \dog" or of type \bird

species". Translate each of these �ve statements as indicated.

� (to symbols) Statement I: There is a species that was observed by all the dogs.

� (to English) Statement II: 8z : R(a; z) $ (z = C)

� (to symbols) Statement III: Every dog other than Arly observed at least two

di�erent species of bird.

248

� (to English) Statement IV: 8x : [(x 6= a) ^ (x 6= c)] ! [(8y : R(c; y) !

R(x; y)) ^ (9z : R(x; z) ^ : R(c; z))]

� (to symbols) Statement V: Duncan was the one and only dog who observed a

Woodpecker, and Whistle was the one and only dog who observed a Bluebird.

Question 2b (20 points)

Assuming that Statements I-V from Question 2a are all true, prove that some

dog observed a Heron. You may use either English or symbols, but make your use of

quanti�er rules clear.

D.3 Fall 2017 midterm exam questions

On this exam, there were two related questions, concerning �rst-order preposi-

tional logic. These questions used the following de�nitions:

Let A be a �nite set of animals consisting of exactly the �ve distinct animals

Cardie (c), Duncan (d), Floyd (f), Scout (s), Whistle (w).

Let D be the unary relation onA de�ned so that D(x) means \x is a dog".

Let F be the unary relation on A de�ned so that F (x) means \x lives on the

farm".

Let R be the unary relation onA de�ned so that R(x) means \x is a retriever".

Let M be the binary relation onA de�ned so that M (x; y) means \animal x met

animal y during the morning walk". Note that two animals could be together on the

walk without meeting during it.

Question 1 (15 points)

Translate each statement as indicated, using the set of animalsA = f c; d; f; s; wg,

the predicateD(x) meaning \animal x is a dog", the predicateF (x) meaning \animal

x lives on the farm", the predicateR(x) meaning \animal x is a retriever", and the

249

predicate M (x; y) meaning \animal x and animal y met during the morning walk".

Note that two animals might be together for the entire morning walk but not meet

during it. All these are also de�ned above. Note that variables and constants of type

\animal" are in small letters, and predicates are in capital letters.

� (to symbols) Statement I: Floyd, who is not a dog, met every animal who does

not live on the farm.

� (to English) Statement II: 8x : : R(x) _ D(x)

� (to symbols) Statement III: It is not the case that if Floyd lives on the farm,

than Duncan met Cardie.

� (to English) Statement IV: [8z : : M (x; x)] ^ [8y : 8z : M (y; z) ! M (z; y)]

� (to symbols) Statement V: Cardie and Duncan met exactly the same animals,

and they met all the animals who live on the farm.

� (to English) Statement VI: : F (w) ^ [9x : R(x) ^ F (x) ^ M (x; w)]

� (to symbols) Statement VII: Whistle met every animal who lives on the farm.

Question 2 (30 points)

These questions use the sets, de�nitions, and predicates above, and the statements

from Question 1.

a. (10 points) Use Statements I, II, and III to infer propositional statements about

the propositions D(f), F (f), and R(f). Use propositional methods (a truth

table, or deductive or equational proof rules) to determine the truth of these

three propositions, assumingonly that Statements I, II, and III are true.

b. (10 points) Assuming that Statements I, IV and V are true, use propositional

and predicate proof rules to prove Statement III. Do not assume the truth of

250

any of the other statements. You may use English, symbols, or a combination,

as long as your argument is clear.

c. (10 points) Assuming that Statements I, II, III, IV, V, and VI are all true, use

propositional and predicate proof rules to prove Statement VII. Do not assume

the truth of any of the other statements. You may use English, symbols, or a

combination, as long as your argument is clear.

D.4 Fall 2017 �nal exam questions

Question 1, concerning �rst-order prepositional logic, was considered from this

exam. Question 1 deals with the following scenario:

The web site WeRateDogsTM gives numerical ratings of animals based on pho-

tographs, and publishes these attwitter.com/dog_rates . They provided rat-

ings for a setA of six animals, consisting exactly of Cardie (c), Duncan (d), Floyd

(f), Mia (m), Pushkin (p), and Tib (t). Thus, there is a function r from A to N

wherer (x) is the rating of animal x.

There are a number of additional predicates de�ned onA:

� E(x) means \animal x is enormous".

� ML (x; y) means \animal x is much larger than animaly" and this is de�ned to

mean \E(x) ^ : E(y)".

� D(x) means \animal x is a dog".

� P(n) means \natural number n is prime".

Question 1 (30 points)

This question deals with the scenario described above, and with six statements

about a set of animalsA, consisting of exactly the six animals Cardie (c), Duncan

251

(d), Floyd (f), Mia (m), Pushkin (p), and Tib (t). It uses the function r : A 7! N

and the predicatesE, ML , D, and P de�ned above.

a. (10 points) Translate each of these six statements as indicated.

� (to symbols) Statement I: Floyd, who is enormous, received a rating of 7,

and no enormous animal received a higher rating.

� (to English) Statement II: 8x : P(r (x)) ^ ((r (x) > 10) $ D(x))

� (to symbols) Statement III: Tib received the same rating as some animal

much larger than herself.

� (to English) Statement IV: 8x : 9y : (x 6= y) ^ (r (x) = r (y))

� (to symbols) Statement V: Pushkin received a rating that was less than

some other animal's rating and greater than some other animal's rating.

� (to English) Statement VI: :8 x : 8y : (D(x) ^ D(y)) ! (r (x) = r (y))

b. (10 points) Assuming that Statements I-VI are all true, determine exactly which

of the six animals are dogs, and prove your answer.

c. (10 points) Assuming that Statements I-VI are all true, prove that some dog

received a rating of 13 or more.

252

APPENDIX E

POSTTEST QUIZZES

E.1 NP-Completeness posttest quiz used in Spring 2018

� This quiz should take about 15-30 minutes to complete.

� Please complete it in a single sitting.

� Do not consult your textbook, classmates, Internet, or other resources when

completing the quiz.

� You must submit a quiz to receive extra credit, but your performance on the

quiz will not a�ect how much extra credit you receive or a�ect your course grade

in anyway.

DIRECTIONS:

There are 5 Questions. Only the last one requires you to write a proof.

For Questions 1-4, you are given an assertion along with anattempted proof of the

assertion. The attempted proof may or may not be correct. If the attempted proof

is correct, write \CORRECT" for that problem and move on.

If the proof is not correct and has
aws or bugs, underline any and all parts of

the proof that are wrong, and write an explanation for why they are wrong.

Question 1

Given decision problemsX and Y, show that if X is not in P and X � p Y, then

Y is not in P.

253

Attempted Proof:

Since X is not in P, X must be NP-Complete. And sinceX reduces toY, it

follows that Y is also NP-Complete. Therefore,Y is not in P.

Question 2

We de�ne co-P as follows: A decision problemX is in co-P if there is a decision

problem Y in P where s 2 X () s =2 Y.

Prove that P=co-P.

Attempted Proof:

Suppose we have a decision problemX in co-P. Therefore, there is a decision

problem Y in P where s 2 X () s =2 Y. SinceY is in P, there is polytime decider

algorithm for Y, which we can refer to as decide-Y. If we simply run decide-Y and

invert the result it gives, then this is a polytime decider algorithm forX . Thus X is

in P.

SoX 2 co-P =) X 2 P. Now we prove the converse:

Suppose we have a decision problemX in P. Now, consider the decision problem

Y where s 2 Y () s =2 X . We know that Y is in co-P. From what we proved

above,Y must also be in P. But this means thatX is in co-P.

SoX 2 P =) X 2 co-P.

We have shownX 2 P () X 2 co-P, which means P and co-P are equal.

Question 3

Prove that if no NP-Complete problems are in NP\ co-NP then P 6= NP.

Attempted Proof:

Since there are no NP-Complete problems in NP\ co-NP, we know that no

problems from NP belong to NP\ co-NP. This in turn implies that NP \ co-NP is

empty and that no problems from NP belong to co-NP. But then that implies NP6=

co-NP. To complete the proof, we show that NP6= co-NP implies P 6= NP.

254

We do so by contrapositive, showing that P = NP would imply NP = co-NP.

Assuming, P=NP, if a given decision problemX is in NP then it must also be in

P, and we know that its opposite (swapping `Yes' and `No' outputs) must also be in

P and therefore in NP. This would mean thatX is in co-NP. So NP is a subset of

co-NP.

Also assuming P=NP, if a given decision problemX is in co-NP, then its opposite

is in NP, which is also in P, which impliesX itself is in P. And thus X is in NP.

Hence, co-NP is a subset of NP.

If NP is a subset of co-NP and co-NP is a subset of NP, then NP = co-NP.

Question 4

Uncle Scrooge is writing his will, and wants Huey, Duey, Louie and Abigail to each

receive an inheritance of equal value. In other words, he has a list of items to split

between them, each item with a monetary value, and he wants to split the items into

4 sets that each sum to the same amount. Show that determining if this is possible

is NP-Complete.

Attempted Proof:

Given a set of integers, the problem is to determine if we can split the set into 4

subsets with equal sum. This problem is obviously in NP because if we were given a

particular assignment of the inheritance of Huey, Duey, Louie and Abigail, we could

easily check that the assignment is fair, by just adding up the value of each nephews

inheritance and comparing. This takes linear time.

To show that the problem is actually NP-Complete, we will reduce to a similar

problem, PARTITION. The problem of PARTITION is \Given a set of integers,

determine if we can split the set into 2 subsets with equal sum". We already know

that PARTITION is NP-Complete.

255

The reduction is as follows: Given a PARTITION solver, determine how to split

the set into two subsets. Then, if the solver was successful, recursively run the solver

on each of the two subsets. If we are successful, we will have created four subsets of

equal sum, a solution to the inheritance problem. If not, there is no way to divide

the inheritance. So to be able to divide the inheritance, we need to be able to solve

PARTITION.

Therefore, the inheritance problem is NP-Complete.

Question 5

Let PRIMES = fhpi j p is a prime numberg. We know PRIMES is in P. Prove

that if P=NP, PRIMES is NP-Complete.

E.2 First-order logic posttest quiz used in Fall 2017

� This quiz will not a�ect your grade at all, so please do not cheat! Please do not

consult friends or any other resources while attempting this quiz.

� If you are struggling with the quiz, it is okay to submit a blank sheet with just

your Participant ID, since knowing how many people struggled with the quiz is

bene�cial to my research. However, if you can write something to explain why

you are struggling that would be even better.

Merlin (m), Sabrina (s) and Harry (h) are children who may have received some

presents for Christmas.Did Merlin receive a unicorn for Christmas?

Using the given de�nitions and assumptions, determine whether or not Merlin

received a unicorn for Christmas, and prove it!

De�nitions:

Let set C = f m; s; hg { the set of children

Let predicate S(y; x) mean \Santa delivered presenty to child x".

Let predicate R(x; y) mean \Child x received presenty for Christmas".

256

Assumptions:

1. 8x : 8y : 8y0 : y = y0_ : R(x; y) _ : R(x; y0)

2. 8y : [9x : S(y; x)] ! [8x : 8x0 : x = x0_ : R(x; y) _ : R(x0; y)]

3. There is a present that both Merlin and Sabrina received for Christmas.

4. Santa delivered a unicorn to a child.

257

BIBLIOGRAPHY

[1] Abrahams, Paul. Machine veri�cation of mathematical proofs. PhD thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1963.

[2] Ahmed, Umair Z., Gulwani, Sumit, and Karkare, Amey. Automatically gen-
erating problems and solutions for natural deduction. InProceedings of the
Twenty-Third International Joint Conference on Arti�cial Intelligence (2013),
AAAI Press, pp. 1968{1975.

[3] Aho, Alfred V., and Ullman, Je�rey D. Foundations of Computer Science.
Computer Science Press, Inc., New York, NY, USA, 1992.

[4] Albert, Elvira, Arenas, Puri, Genaim, Samir, and Puebla, Germ�an. Closed-
form upper bounds in static cost analysis.Journal of Automated Reasoning 46,
2 (Feb 2011), 161{203.

[5] Anderson, John R, Boyle, C Franklin, Corbett, Albert T, and Lewis,
Matthew W. Cognitive modeling and intelligent tutoring. Arti�cial intelligence
42, 1 (1990), 7{49.

[6] Anderson, John R., Boyle, C. Franklin, and Yost, Gregg. The geometry tutor. In
Proceedings of the 9th International Joint Conference on Arti�cial Intelligence
- Volume 1 (1985), Morgan Kaufmann Publishers Inc., pp. 1{7.

[7] Anderson, J.R.Language, memory, and thought. The experimental psychology
series. L. Erlbaum Associates, 1976.

[8] Anderson, J.R.The architecture of cognition. Harvard University Press, Cam-
bridge, Massachusetts, 1983.

[9] Anderson, J.R.Rules of the Mind. L. Erlbaum Associates, 1993.

[10] Anderson, J.R. The Architecture of Cognition. Cognitive science series. Erl-
baum, 1996.

[11] Andrews, Peter B. Refutations by matings.IEEE Trans. Comput. 25, 8 (Aug.
1976), 801{807.

[12] Andrews, Peter B. Transforming matings into natural deduction proofs. In5th
Conference on Automated Deduction Les Arcs, France, July 8{11, 1980(Berlin,
Heidelberg, 1980), Wolfgang Bibel and Robert Kowalski, Eds., Springer Berlin
Heidelberg, pp. 281{292.

258

[13] Andrews, Peter B., Bishop, Matthew, Issar, Sunil, Nesmith, Dan, Pfenning,
Frank, and Xi, Hongwei. TPS: A theorem-proving system for classical type
theory. Journal of Automated Reasoning 16, 3 (Jun 1996), 321{353.

[14] Arora, S. Reductions, codes, PCPs, and inapproximability. InProceedings of
the 36th Annual Symposium on Foundations of Computer Science(1995), IEEE
Computer Society, pp. 404{413.

[15] Arora, Sanjeev, and Barak, Boaz.Computational Complexity: A Modern Ap-
proach, 1st ed. Cambridge University Press, New York, NY, USA, 2009.

[16] Autexier, Serge. The CoRe calculus. InAutomated Deduction { CADE-20
(Berlin, Heidelberg, 2005), Robert Nieuwenhuis, Ed., Springer Berlin Heidel-
berg, pp. 84{98.

[17] Autexier, Serge, and Dietrich, Dominik. Atomic metadeduction. InKI
2009: Advances in Arti�cial Intelligence (Berlin, Heidelberg, 2009), B•arbel
Mertsching, Marcus Hund, and Zaheer Aziz, Eds., Springer Berlin Heidelberg,
pp. 444{451.

[18] Autexier, Serge, Dietrich, Dominik, and Schiller, Marvin. Cognitive tutoring
in mathematics based on assertion level reasoning and proof strategies (ex-
tended abstract). In THedu'11, Workshop associated to CADE-23. THedu -
CTP Components for Educational Software (ThEdu-11), located at Conference
on Automated Deduction, July 31, Wroclaw, Poland(7 2011), Pedro Quaresma
and Ralph-Johan Back, Eds., no. 2011/001 in CISUC Technical Report, Center
for Informatics and Systems, University of Coimbra, Portugal, University of
Coimbra, Portugal, pp. 11{15.

[19] Baader, Franz, and Nipkow, Tobias.Term Rewriting and All That. Cambridge
University Press, 1998.

[20] Bachmair, Leo.Canonical Equational Proofs. Birkhauser, 1991.

[21] Barnes, Ti�any. Game2Learn Lab Research.http://eliza.csc.ncsu.
edu/research.html . Accessed: 2019-05-01.

[22] Barnes, Ti�any, and C. Stamper, John. Automatic hint generation for logic
proof tutoring using historical data. Educational Technology & Society 13(01
2010), 3{12.

[23] Battista, Giuseppe Di, Eades, Peter, Tamassia, Roberto, and Tollis, Ioannis G.
Graph drawing: algorithms for the visualization of graphs. Prentice Hall PTR,
1998.

[24] Bell, Chester, and Newell, Allen.Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

259

[25] Ben-Amram, Amir M. On decidable growth-rate properties of imperative pro-
grams. In Proceedings International Workshop on Developments in Implicit
Computational complExity, DICE 2010, Paphos, Cyprus, 27-28th March 2010.
(2010), pp. 1{14.

[26] Ben-Sasson, Eli, and Wigderson, Avi. Short proofs are narrow | resolution
made simple.J. ACM 48, 2 (Mar. 2001), 149{169.

[27] Benzm•uller, Christoph, Dietrich, Dominik, Schiller, Marvin, and Autexier,
Serge. Deep inference for automated proof tutoring? InKI 2007: Advances in
Arti�cial Intelligence (Berlin, Heidelberg, 2007), Joachim Hertzberg, Michael
Beetz, and Roman Englert, Eds., Springer Berlin Heidelberg, pp. 435{439.

[28] Benzm•uller, Christoph, and Vo, Quoc Bao. Mathematical domain reasoning
tasks in natural language tutorial dialog on proofs. InProceedings of the 20th
National Conference on Arti�cial Intelligence - Volume 2 (2005), AAAI'05,
AAAI Press, pp. 516{522.

[29] Bertot, Yves, and Castran, Pierre. Interactive Theorem Proving and Pro-
gram Development: Coq'Art The Calculus of Inductive Constructions, 1st ed.
Springer Publishing Company, Incorporated, 2010.

[30] Bibel, W. An approach to a systematic theorem proving procedure in �rst-order
logic. Computing 12, 1 (Mar 1974), 43{55.

[31] Bledsoe, W.W. Splitting and reduction heuristics in automatic theorem proving.
Arti�cial Intelligence 2 , 1 (1971), 55 { 77.

[32] Boolos, George S., Burgess, John P., and Je�rey, Richard C.Computability and
Logic, 4 ed. Cambridge University Press, 2002.

[33] Boolos, G.S., Burgess, J.P., and Je�rey, R.C.Computability and Logic. Com-
putability and Logic. Cambridge University Press, 2002.

[34] Braine, Martin D. On the relation between the natural logic of reasoning and
standard logic. Psychological Review 85, 1 (1978), 1{21.

[35] Brauner, Paul, Houtmann, Clement, and Kirchner, Claude. Principles of su-
perdeduction. InProceedings of the 22Nd Annual IEEE Symposium on Logic in
Computer Science(Washington, DC, USA, 2007), LICS '07, IEEE Computer
Society, pp. 41{50.

[36] Brockschmidt, Marc, Emmes, Fabian, Falke, Stephan, Fuhs, Carsten, and Giesl,
J•urgen. Analyzing runtime and size complexity of integer programs.ACM
Trans. Program. Lang. Syst. 38, 4 (Aug. 2016), 13:1{13:50.

[37] Brown, John Seely. Process versus product: A perspective on tools for com-
munal and informal electronic learning. Journal of Educational Computing
Research 1, 2 (1985), 179{201.

260

[38] Br•unken, Roland, Moreno, Roxana, and Plass, Jan L.Cognitive Load Theory.
Cambridge University Press, 2010.

[39] Catrambone, Richard. The subgoal learning model: Creating better examples
so that students can solve novel problems.Journal of experimental psychology:
General 127, 4 (1998), 355.

[40] Cheng, Patricia W, and Holyoak, Keith J. Pragmatic reasoning schemas.Cog-
nitive Psychology 17, 4 (1985), 391 { 416.

[41] Collins, Allan, and Brown, John Seely. The computer as a tool for learning
through re
ection. In Learning Issues for Intelligent Tutoring Systems, Heinz
Mandl and Alan Lesgold, Eds. Springer US, New York, NY, 1988, pp. 1{18.

[42] Cook, Stephen A. The complexity of theorem-proving procedures. InProceed-
ings of the Third Annual ACM Symposium on Theory of Computing(New York,
NY, USA, 1971), STOC '71, ACM, pp. 151{158.

[43] Cooper, Graham, and Sweller, John. E�ects of schema acquisition and rule
automation on mathematical problem-solving transfer.Journal of educational
psychology 79, 4 (1987), 347.

[44] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clif-
ford. Introduction to Algorithms, Third Edition , 3rd ed. The MIT Press, 2009.

[45] Cosmides, Leda, and Tooby, John. Cognitive adaptations for social exchange.
In The adapted mind: Evolutionary psychology and the generation of culture,
Jerome H. Barkow, Leda Cosmides, and John Tooby, Eds. Oxford University
Press, New York, 1992, ch. 3, pp. 163{228.

[46] Denny, Paul, Luxton-Reilly, Andrew, and Simon, Beth. Evaluating a new exam
question: Parsons problems. InProceedings of the fourth international workshop
on computing education research(2008), ACM, pp. 113{124.

[47] Dietrich, Dominik, and Buckley, Mark. Veri�cation of proof steps for tutoring
mathematical proofs. InProceedings of the 2007 Conference on Arti�cial Intel-
ligence in Education: Building Technology Rich Learning Contexts That Work
(Amsterdam, The Netherlands, The Netherlands, 2007), IOS Press, pp. 560{
562.

[48] Dijkstra, Edsger W., and Scholten, Carel S.Predicate Calculus and Program
Semantics. Springer-Verlag, Berlin, Heidelberg, 1990.

[49] Douce, Christopher, Livingstone, David, and Orwell, James. Automatic test-
based assessment of programming: A review.J. Educ. Resour. Comput. 5, 3
(Sept. 2005).

[50] Epp, Susanna S. The role of logic in teaching proof.The American Mathematical
Monthly 110, 10 (2003), 886{899.

261

[51] Ericson, Barbara Jane.Evaluating the e�ectiveness and e�ciency of Parsons
problems and dynamically adaptive parsons problems as a type of low cognitive
load practice problem. PhD thesis, Georgia Institute of Technology, 2018.

[52] Ericsson, K.A., and Simon, H.A.Protocol Analysis: Verbal Reports as Data. A
Bradford book. Bradford Books, 1993.

[53] Falkner, Nickolas, Sooriamurthi, Raja, and Michalewicz, Zbigniew. Puzzle-
based learning for engineering and computer science.Computer 43, 4 (2010),
20{28.

[54] Fitch, F.B. Symbolic Logic: An Introduction. Ronald Press Company, 1952.

[55] Flores-Montoya, Antonio, and H•ahnle, Reiner. Resource analysis of complex
programs with cost equations. InProgramming Languages and Systems(Cham,
2014), Jacques Garrigue, Ed., Springer International Publishing, pp. 275{295.

[56] Forgy, Charles L. OPS5 user's manual. Tech. Rep. CMU-CS-81-135, Depart-
ment of Computer Science, Carnegie Mellon University, 1981.

[57] Fori�sek, Michal. On the suitability of programming tasks for automated evalu-
ation. Informatics in education 5, 1 (2006), 63{76.

[58] Fuchs, Norbert E, Kaljurand, Kaarel, and Kuhn, Tobias. Attempto con-
trolled english for knowledge representation. InReasoning Web. Springer, 2008,
pp. 104{124.

[59] Garey, Michael R., and Johnson, David S.Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[60] Gentzen, Gerhard. Untersuchungen •uber das logische schlie�en. i.Mathematis-
che Zeitschrift 39, 1 (Dec 1935), 176{210.

[61] Giesl, J•urgen, Brockschmidt, Marc, Emmes, Fabian, Frohn, Florian, Fuhs,
Carsten, Otto, Carsten, Pl•ucker, Martin, Schneider-Kamp, Peter, Str•oder,
Thomas, Swiderski, Stephanie, and Thiemann, Ren�e. Proving termination of
programs automatically with AProVE. In Automated Reasoning(Cham, 2014),
St�ephane Demri, Deepak Kapur, and Christoph Weidenbach, Eds., Springer In-
ternational Publishing, pp. 184{191.

[62] Greer, Jim, and McCalla, Gordon. A computational framework for granularity
and its application to educational diagnosis. InProceedings of the 11th Inter-
national Joint Conference on Arti�cial Intelligence - Volume 1 (San Francisco,
CA, USA, 1989), IJCAI'89, Morgan Kaufmann Publishers Inc., pp. 477{482.

[63] Gries, David. The Science of Programming, 1st ed. Springer-Verlag, Berlin,
Heidelberg, 1987.

262

[64] Gries, David, and Schneider, Fred B.A Logical Approach to Discrete Math.
Springer-Verlag, Berlin, Heidelberg, 1993.

[65] Gries, David, and Schneider, Fred B. A new approach to teaching mathematics.
Tech. Rep. TR94-1411, Department of Computer Science, Cornell University,
1994.

[66] Gries, David, and Schneider, Fred B. Equational propositional logic.Informa-
tion Processing Letters 53, 3 (1995), 145 { 152. The calculational method.

[67] Griggs, Richard A., and Cox, James R. The elusive thematic-materials e�ect
in Wason's selection task.British Journal of Psychology 73, 3 (1982), 407{420.

[68] Guglielmi, Alessio. Deep inference. InAll About Proofs, Proofs for All. College
Publications, 2015.

[69] Haghighi, Aria, and Klein, Dan. Prototype-driven grammar induction. In
Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics
(2006), Association for Computational Linguistics, pp. 881{888.

[70] Hamalainen, Wilhelmiina. Problem-based learning of theoretical computer sci-
ence. InFrontiers in Education, 2004. FIE 2004. 34th Annual(2004), IEEE,
pp. S1H{1.

[71] Herbrand, J.Recherches sur la th�eorie de la d�emonstration. (Prace Towarzystwa
Nauk. Warsz). imprimerie J. Dziewulski, 1930.

[72] Herstein, I.N. Topics in algebra. Xerox College Pub., 1975.

[73] Hobbs, Jerry R. Granularity. In Proceedings of the 9th International Joint
Conference on Arti�cial Intelligence - Volume 1 (San Francisco, CA, USA,
1985), IJCAI'85, Morgan Kaufmann Publishers Inc., pp. 432{435.

[74] Hollingsworth, Jack. Automatic graders for programming classes.Commun.
ACM 3, 10 (Oct. 1960), 528{529.

[75] Hopcroft, John E., Motwani, Rajeev, and Ullman, Je�rey D. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[76] Huang, Xiaorong. Reconstruction proofs at the assertion level. InAutomated
Deduction - CADE-12, 12th International Conference on Automated Deduction,
Nancy, France, June 26 - July 1, 1994, Proceedings(1994), pp. 738{752.

[77] Ja�skowski, S. On the Rules of Suppositions in Formal Logic. Studia logica.
Nak ladem Seminarjum Filozo�cznego Wydzia lu Matematyczno-Przyrodniczego
Uniwersytetu Warszawskiego, 1934.

263

[78] Johnson-Laird, Philip N. Mental Models: Towards a Cognitive Science of Lan-
guage, Inference, and Consciousness. Cognitive science series. Harvard Univer-
sity Press, 1983.

[79] Johnson-Laird, Philip N. Mental models and human reasoning.Proceedings of
the National Academy of Sciences 107, 43 (2010), 18243{18250.

[80] Jonassen, David H. Objectivism versus constructivism: Do we need a new
philosophical paradigm? Educational Technology Research and Development
39, 3 (1991), 5{14.

[81] Jones, F. Burton. The Moore method.The American Mathematical Monthly
84, 4 (1977), 273{278.

[82] Jones, Neil D.Computability and Complexity: From a Programming Perspec-
tive. MIT Press, Cambridge, MA, USA, 1997.

[83] Kahl, Wolfram. CalcCheck: A proof checker for teaching the \logical approach
to discrete math". In Interactive Theorem Proving(Cham, 2018), Jeremy Avi-
gad and Assia Mahboubi, Eds., Springer International Publishing, pp. 324{341.

[84] Karp, Richard M. Reducibility among combinatorial problems. InComplexity
of computer computations. Springer, 1972, pp. 85{103.

[85] Keet, C. M. A taxonomy of types of granularity. In2006 IEEE International
Conference on Granular Computing(May 2006), pp. 106{111.

[86] Kfoury, A. J., Arbib, Michael A., and Moll, Robert N. Programming Approach
to Computability. Springer-Verlag, Berlin, Heidelberg, 1991.

[87] Kleinberg, Jon, and Tardos, Eva.Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[88] Koedinger, Kenneth. Tutoring Concepts, Percepts, and Rules in Geometry
Problem Solving. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsyl-
vania, 1991.

[89] Koedinger, Kenneth R, and Anderson, John R. Reifying implicit planning in
geometry: Guidelines for model-based intelligent.Computers as cognitive tools
(2013), 15.

[90] Korf, Richard E. Macro-operators: A weak method for learning.Arti�cial
intelligence 26, 1 (1985), 35{77.

[91] Laird, John E, Newell, Allen, and Rosenbloom, Paul S. Soar: An architecture
for general intelligence.Arti�cial intelligence 33 , 1 (1987), 1{64.

[92] L•ammel, R., and Verhoef, C. Semi-automatic grammar recovery.Softw. Pract.
Exper. 31, 15 (Dec. 2001), 1395{1448.

264

[93] Larkin, Jill H, McDermott, John, Simon, Dorothea P, and Simon, Herbert A.
Models of competence in solving physics problems.Cognitive science 4, 4 (1980),
317{345.

[94] Laursen, S. L., Hassi M.-L. Kogan M. Weston T. J. Bene�ts for women and
men of inquiry-based learning in college mathematics: A multi-institution study.
Journal of Research in Mathematics Education 45, 4 (2014), 406{418.

[95] Lay, S.R. Analysis: With an Introduction to Proof. Prentice Hall, 2000.

[96] Levin, Leonid Anatolevich. Universal sequential search problems.Problemy
Peredachi Informatsii 9, 3 (1973), 115{116.

[97] Lipton, Richard Jay. Why is discrete math hard to
teach? https://rjlipton.wordpress.com/2015/12/27/
why-is-discrete-math-hard-to-teach/ , Dec. 2015. Accessed:
2019-05-01.

[98] Manktelow, K. I., and Evans, J. St B. T. Facilitation of reasoning by realism:
E�ect or non-e�ect? British Journal of Psychology 70, 4 (1979), 477{488.

[99] Marion, Jean-Yves. A type system for complexity
ow analysis. InLogic
in Computer Science (LICS), 2011 26th Annual IEEE Symposium on(2011),
IEEE, pp. 123{132.

[100] Martelli, Alberto, and Montanari, Ugo. An e�cient uni�cation algorithm. ACM
Trans. Program. Lang. Syst. 4, 2 (Apr. 1982), 258{282.

[101] Martin, Philippe. Knowledge representation in CGLF, CGIF, KIF, frame-CG
and formalized-English. InInternational Conference on Conceptual Structures
(2002), Springer, pp. 77{91.

[102] McCarthy, John. Computer programs for checking mathematical proofs.Recur-
sive Function Theory, Proceedings of Symposia in Pure Mathematics 5(1962).

[103] McCartin-Lim, Mark, Woolf, Beverly, and McGregor, Andrew. Connect the
dots to prove it: A novel way to learn proof construction. InProceedings of the
49th ACM Technical Symposium on Computer Science Education(New York,
NY, USA, 2018), SIGCSE '18, ACM, pp. 533{538.

[104] McCune, William. Prover9 manual version 2009-11a.https://www.cs.
unm.edu/ ˜ mccune/prover9/manual/2009-11A/ . Accessed: 2019-05-
01.

[105] McDonald, James. The EXCHECK CAI system.University-level Computer-
assisted Instruction at Stanford: 1968-1980(1981).

[106] McGraw-Hill. McGraw-Hill Education acquires Redbird Advanced Learning, a
digital personalized learning provider for K-12. Press Release, September 2016.

265

[107] McMath, David, Rozenfeld, Marianna, and Sommer, Richard. A computer
environment for writing ordinary mathematical proofs. InLogic for Program-
ming, Arti�cial Intelligence, and Reasoning (Berlin, Heidelberg, 2001), Robert
Nieuwenhuis and Andrei Voronkov, Eds., Springer Berlin Heidelberg, pp. 507{
516.

[108] Michalewicz, Zbigniew, and Michalewicz, Matthew. Puzzle-based learning. In
Proceedings of the 2007 AaeE Conference(2007), pp. 1{8.

[109] Miller, Dale A. Proofs in higher-order logic. PhD thesis, Carnegie Mellon
University, 1983.

[110] Mitkov, Ruslan. Outstanding issues in anaphora resolution. InInterna-
tional Conference on Intelligent Text Processing and Computational Linguistics
(2001), Springer, pp. 110{125.

[111] Morrison, Briana B., Margulieux, Lauren E., and Guzdial, Mark. Subgoals, con-
text, and worked examples in learning computing problem solving. InProceed-
ings of the Eleventh Annual International Conference on International Comput-
ing Education Research(New York, NY, USA, 2015), ICER '15, ACM, pp. 21{
29.

[112] Mostafavi, Behrooz, and Barnes, Ti�any. Determining problem selection for a
logic proof tutor. In Educational Data Mining 2013(2013).

[113] Naumowicz, Adam, and Korni lowicz, Artur. A brief overview of Mizar. In
Theorem Proving in Higher Order Logics (Berlin, Heidelberg, 2009), Ste-
fan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, Eds.,
Springer Berlin Heidelberg, pp. 67{72.

[114] Newell, Allen. Production systems: Models of control structures. InVisual
information processing. Elsevier, 1973, pp. 463{526.

[115] Newell, Allen.Uni�ed Theories of Cognition. Harvard University Press, Cam-
bridge, MA, USA, 1990.

[116] Newell, Allen, Shaw, J. C., and Simon, H. A. Empirical explorations of the
logic theory machine: A case study in heuristic. InPapers Presented at the
February 26-28, 1957, Western Joint Computer Conference: Techniques for
Reliability (New York, NY, USA, 1957), IRE-AIEE-ACM '57 (Western), ACM,
pp. 218{230.

[117] Newell, Allen, and Simon, H.A.Human problem solving. Prentice-Hall, 1972.

[118] Nipkow, Tobias, Wenzel, Markus, and Paulson, Lawrence C.Isabelle/HOL:
A Proof Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg,
2002.

266

[119] North Dakota State University, American Mathematical Society. Mathematics
genealogy project.

[120] Paas, Fred G. Training strategies for attaining transfer of problem-solving skill
in statistics: A cognitive-load approach.Journal of educational psychology 84,
4 (1992), 429.

[121] Paas, Fred GWC, and Van Merri•enboer, Jeroen JG. Variability of worked
examples and transfer of geometrical problem-solving skills: A cognitive-load
approach. Journal of educational psychology 86, 1 (1994), 122.

[122] Parsons, Dale, and Haden, Patricia. Parson's programming puzzles: a fun
and e�ective learning tool for �rst programming courses. InProceedings of
the 8th Australasian Conference on Computing Education-Volume 52(2006),
Australian Computer Society, Inc., pp. 157{163.

[123] Pease, Adam, and Murray, William. An english to logic translator for ontology-
based knowledge representation languages. InNatural Language Processing and
Knowledge Engineering, 2003. Proceedings. 2003 International Conference on
(2003), IEEE, pp. 777{783.

[124] Perkins, Douglas. Strategic proof tutoring in logic. Master's thesis, Carnegie
Mellon University, 2007.

[125] Pfenning, Frank. Proof Transformations in Higher-Order Logic. PhD thesis,
Carnegie Mellon University, Jan. 1987.

[126] Polk, T. A., and Newell, A. Modeling human syllogistic reasoning in Soar.
In The Soar Papers (Vol. 1), Paul S. Rosenbloom, John E. Laird, and Allen
Newell, Eds. MIT Press, Cambridge, MA, USA, 1993, pp. 627{633.

[127] Post, Emil L. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics 65, 2 (1943), 197{215.

[128] Prawitz, Dag. Natural Deduction: A Proof-Theoretical Study. Dover Publica-
tions, 1965.

[129] Prensky, Marc.Digital Game-based Learning. McGraw-Hill, 2001.

[130] Ravaglia, Raymond, Alper, Theodore, Rozenfeld, Marianna, and Suppes,
Patrick. Successful pedagogical applications of symbolic computation. In
Computer-Human Interaction in Symbolic Computation. Springer, 1998, pp. 61{
88.

[131] Riazanov, Alexandre, and Voronkov, Andrei. The design and implementation
of vampire. AI Commun. 15, 2,3 (Aug. 2002), 91{110.

[132] Rips, Lance J. Cognitive processes in propositional reasoning.Psychological
Review 90, 1 (1983), 38{71.

267

[133] Robinson, Alan, and Voronkov, Andrei, Eds. Handbook of Automated Rea-
soning. Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The
Netherlands, 2001.

[134] Robinson, J. A. A machine-oriented logic based on the resolution principle.J.
ACM 12, 1 (Jan. 1965), 23{41.

[135] Scheines, Richard, and Sieg, Wilfried. An Experimental Comparison of Alter-
native Proof Construction Environments, August 1993.

[136] Schiller, Marvin R. G. Granularity Analysis for Tutoring Mathematical Proofs.
PhD thesis, Saarland University, Saarbr•ucken, Germany, 2010.

[137] Schwitter, Rolf. English as a formal speci�cation language. InDatabase and
Expert Systems Applications, 2002. Proceedings. 13th International Workshop
on (2002), IEEE, pp. 228{232.

[138] Schwitter, Rolf. The jobs puzzle: Taking on the challenge via controlled natural
language processing.Theory and Practice of Logic Programming 13, 4-5 (2013),
487501.

[139] Schwonke, Rolf, Renkl, Alexander, Krieg, Carmen, Wittwer, J•org, Aleven, Vin-
cent, and Salden, Ron. The worked-example e�ect: Not an artefact of lousy
control conditions. Computers in Human Behavior 25, 2 (2009), 258{266.

[140] Shahaf, Dafna, and Amir, Eyal. Towards a theory of AI completeness. InIn
Proc. of 8th International Symposium on Logical Formalizations of Common-
sense Reasoning (Commonsense'07), in AAAI Spring Sympo(2007).

[141] Sieg, Wilfried. AProS: Background and evolution. http://www.phil.
cmu.edu/projects/apros/index.php?page=overview&subpage=
background . Accessed: 2019-05-01.

[142] Sieg, Wilfried, and Byrnes, John. Normal natural deduction proofs (in classical
logic). Studia Logica: An International Journal for Symbolic Logic 60, 1 (1998),
67{106.

[143] Sieg, Wilfried, and Field, Clinton. Automated search for G•odel's proofs.Annals
of Pure and Applied Logic 133, 1 (2005), 319 { 338. Festschrift on the occasion
of Helmut Schwichtenberg's 60th birthday.

[144] Simon, Donald Lee.Checking Number Theory Proofs in Natural Language. PhD
thesis, The University of Texas at Austin, 1990.

[145] Sinn, Moritz. Automated Complexity Analysis for Imperative Programs. PhD
thesis, TU Wien, Faculty of Informatics, Wien, Austria, 2016.

[146] Sipser, Michael.Introduction to the Theory of Computation, 1st ed. Interna-
tional Thomson Publishing, 1996.

268

[147] Smith, R. L., Smith, N. W., and Rawson, F. L. Construct: In search of a theory
of meaning. Tech. Rep. 238, Institute for Mathematical Studies in the Social
Sciences, Stanford University, 10 1974.

[148] Smith, Robert L., and Blaine, Lee H. A generalized system for university
mathematics instruction. In Proceedings of the ACM SIGCSE-SIGCUE Tech-
nical Symposium on Computer Science and Education(New York, NY, USA,
1976), SIGCSE '76, ACM, pp. 280{288.

[149] Stevenson, Andrew, and Cordy, James R. A survey of grammatical inference in
software engineering.Science of Computer Programming 96(2014), 444 { 459.
Selected Papers from the Fifth International Conference on Software Language
Engineering (SLE 2012).

[150] Suppes, Patrick.Axiomatic Set Theory. Dover Publications, Inc., New York,
1972.

[151] Suppes, Patrick. Computer-assisted instruction at Stanford. InMan and Com-
puter: Proceedings of International Conference, Bordeaux, 1970. Karger, Basel,
1972, pp. 298{330.

[152] Suppes, Patrick, Smith, Robert, and Beard, Marian. University-level computer-
assisted instruction at stanford: 1975.Instructional Science 6(04/1977 1977),
151{185.

[153] Sutcli�e, Geo�. The CADE ATP system competition{CASC. AI Magazine 37,
2 (2016).

[154] Sweller, John, and Cooper, Graham A. The use of worked examples as a
substitute for problem solving in learning algebra.Cognition and instruction 2,
1 (1985), 59{89.

[155] Sweller, John, Van Merrienboer, Jeroen JG, and Paas, Fred GWC. Cogni-
tive architecture and instructional design.Educational psychology review 10, 3
(1998), 251{296.

[156] Taft, Darryl K. U.S. tops China in programming, but lags in math,
logic. eWeek (Oct. 2011). http://www.eweek.com/development/u.
s.-tops-china-in-programming-but-lags-in-math-logic . Ac-
cessed: 2019-05-01.

[157] Trafton, J Gregory, and Reiser, Brian J. The contributions of studying examples
and solving problems to skill acquisitiony. InProceedings of the 15th Annual
Conference of the Cognitive Society(1993), pp. 1017{1022.

[158] Tucker, Allen B., Kelemen, Charles F., and Bruce, Kim B. Our curriculum
has become math-phobic! InProceedings of the Thirty-second SIGCSE Techni-
cal Symposium on Computer Science Education(New York, NY, USA, 2001),
SIGCSE '01, ACM, pp. 243{247.

269

[159] Turing, Alan M. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London mathematical society 2, 1 (1937),
230{265.

[160] Van Merri•enboer, Jeroen JG. Strategies for programming instruction in high
school: Program completion vs. program generation.Journal of educational
computing research 6, 3 (1990), 265{285.

[161] Van Merri•enboer, Jeroen JG, and De Croock, Marcel BM. Strategies for
computer-based programming instruction: Program completion vs. program
generation. Journal of Educational Computing Research 8, 3 (1992), 365{394.

[162] van Rossum, Guido. Glue it all together with Python. InWorkshop on Com-
positional Software Architecture, 1998(1998).

[163] VanLehn, K. Mind Bugs: The Origins of Procedural Misconceptions. A Brad-
ford book. MIT Press, 1990.

[164] Verma, Rakesh M. A visual and interactive automata theory course emphasizing
breadth of automata. In Proceedings of the 10th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education(New York, NY,
USA, 2005), ITiCSE '05, ACM, pp. 325{329.

[165] W3Schools.com. Browser display statistics.https://www.w3schools.
com/browsers/browsers_display.asp . Accessed: 2019-05-01.

[166] Wack, Benjamin.Typage et d�eduction dans le calcul de r�e�ecriture. PhD thesis,
Universit�e Henri Poincar�e-Nancy I, 2005.

[167] Wason, Peter C. Reasoning. InNew Horizons in Psychology, B. Foss, Ed.
Harmondsworth: Penguin Books, 1966, pp. 135{151.

[168] Wong, Wing-Kwong, Yin, Sheng-Kai, Yang, Hsi-Hsun, and Cheng, Ying-Hao.
Using computer-assisted multiple representations in learning geometry proofs.
Journal of Educational Technology & Society 14, 3 (2011).

[169] Woolf, Beverly Park. Building Intelligent Interactive Tutors: Student-centered
Strategies for Revolutionizing e-Learning. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2007.

[170] Wos, Larry, and Pieper, Gail W.A Fascinating Country in the World of Com-
puting: Your Guide to Automated Reasoning. World Scienti�c Publishing Co.,
Inc., River Edge, NJ, USA, 1999.

[171] Xing, Cong-Cong. Proof diagrams: A graphical tool for assisting set proofs.J.
Comput. Sci. Coll. 22, 5 (May 2007), 70{77.

270

[172] Xue, Ping, Poteet, Steve, Kao, Anne, Mott, David, and Braines, Dave. Con-
structing controlled english for both human usage and machine processing.
RuleML2013@ Challenge, Human Language Technology and Doctoral Consor-
tium (2013).

[173] Zinn, Claus. Understanding informal mathematical discourse. PhD thesis, In-
stitut fur Informatik, Universitat Erlangen-Nurnberg, 2004.

271

	Acknowledgments
	Abstract

