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ABSTRACT

APPROACHES TO ESTIMATION OF HAPLOTYPE
FREQUENCIES AND HAPLOTYPE-TRAIT

ASSOCIATIONS

FEBRUARY 2009

XIAOHONG LI

B.E., NORTHERN JIAOTONG UNIVERSITY

M.E., INSTITUTE OF AUTOMATION, CHINESE ACADEMY OF SCIENCES

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrea S. Foulkes

Characterizing the genetic contributors to complex disease traits will inevitably

require consideration of haplotypic phase, the specific alignment of alleles on a single

homologous chromosome. In population based studies, however, phase is generally

unobservable as standard genotyping techniques provide investigators only with data

on unphased genotypes. Several statistical methods have been described for estimat-

ing haplotype frequencies and their association with a trait in the context of phase

ambiguity. These methods are limited, however, to diploid populations in which indi-

viduals have exactly two homologous chromosomes each and are thus not suitable for

more general infectious disease settings. Specifically, in the context of Malaria and

HIV, the number of infections is also unknown. In addition, for both diploid and non-

diploid settings, the challenge of high-dimensionality and an unknown model of asso-

vi



ciation remains. Our research includes: (1) extending the expectation-maximization

approach of Excoffier and Slatkin to address the challenges of unobservable phase

and the unknown numbers of infections; (2) extending the method of Lake et al. to

estimate simultaneously both haplotype frequencies and the haplotype-trait associa-

tions in the non-diploid settings; and (3) application of two Bayesian approaches to

the mixed modeling framework with unobservable cluster (haploype) identifiers, to

address the challenges associated with high-dimensional data. Simulation studies are

presented as well as applications to data arising from a cohort of children multiply in-

fected with Malaria and a cohort of HIV infected individuals at risk for anti-retroviral

associated dyslipidemia. This research is joint work with Drs. S.M. Rich, R.M. Yucel,

J. Staudenmayer and A.S. Foulkes.
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CHAPTER 1

INTRODUCTION

Characterizing the genetic contributors to complex disease traits will inevitably

require consideration of haplotypic phase, the specific alignment of alleles on a sin-

gle homologous chromosome. In population based studies, however, phase is gener-

ally unobservable as standard genotyping techniques only provide data on unphased

genotypes. Several statistical methods have been described for estimating haplotype

frequencies [4, 8, 40, 28, 34] and their association with a trait [25, 27] in the context

of phase ambiguity. These methods are limited, however, to diploid populations in

which individuals have exactly two homologous chromosomes each and are thus not

suitable for more general infectious disease settings. Specifically, in the context of

Malaria and HIV, the number of infections is unknown. In addition, for both diploid

and non-diploid settings, the challenge of high-dimensionality and an unknown model

of association remains. Our research tries to address these problems by developing

efficient methods that can be used in more general settings

First, we extend the Expectation-Maximization(EM) approach of Excoffier and

Slatkin [8] to address the challenges of unobservable phase and the unknown numbers

of infections. Excoffier and Slatkin [8] uses the EM algorithm to find the haplotype

frequencies maximizing the likelihood of observed sample of genotypes. For the human

genetic setting where the number of clones is always 2, this approach is straightforward

and effective. However, this method can only be applied in the diploid population

and thus not suitable for more general settings like Malaria. The approach we used

to handle the difficulty caused by the unknown number of clones (i.e. the number of

1



infections) is to impose a probability distribution on this number. More specifically,

three distributional assumptions are considered: fixed, unconditional Poisson (UP)

and conditional Poisson (CP). Our method can be reduced to the approach of [8] when

the number of infections is fixed at 2. The method we proposed addresses directly

the challenges of unobservable phase and the unknown numbers of infections, while

providing a computationally efficient framework that accommodates multiple genetic

loci.

Second, we extend the method of Lake et al. [25] to simultaneously estimate both

haplotype frequencies and the haplotype-trait associations in the non-diploid set-

tings. Lake et al. [25] uses EM algorithm to address the unknown haplotypic phase

and provides a comprehensive framework for simultaneous estimation of population

haplotype frequencies and haplotype-trait associations under generalized linear model

framework. This method, again, is limited to the diploid population and not suit-

able for general settings. Our method can deal with variable number of infections

by modeling this number. Similarly to the approach used in the first work, three

assumptions on the number of infections, including fixed, conditional Poisson(CP)

and Semi-parametric, are considered.

Third, We apply two Bayesian approaches to the mixed modeling framework with

unobservable cluster identifiers. Mixed modeling is a useful approach for charac-

terizing haplotype-trait associations in the context of population-based association

studies of unrelated individuals. In this case, clusters are often defined as groups of

genetically similar individuals, for example, the individuals who carry a common pair

of haplotypes. The problem of this approach is that haplotypic phase is unobserv-

able. Therefore, the cluster identifier is ambiguous and general estimation methods

for mixed model cannot be directly applied. In a recent manuscript, Foulkes and

Yucel [11] describe an Expectation Conditional Maximization (ECM) approach to

account for uncertainty in the cluster identifiers arising from unobserved haplotypic
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phase. The downside of that method is that it is computational unfeasible when

the number of ambiguous individuals within one cluster is large. In the method we

proposed, two prior distributions are assumed for cluster effects. We first consider a

single normal prior and then we relax the strict normality assumption and assume

random cluster effects arise from a discrete mixture distribution with a Dirichlet pro-

cess prior. Gibbs sampler are used for iteratively arriving at estimates. In order to

account for the unknown cluster identifier, we propose to impute the cluster mem-

bership for each individual at the beginning of each iteration. This approach have a

marked computational advantage over the ECM approach.

The next three chapters of this thesis describe these three parts of research in

detail. Chapter 5 summarizes all these work and discusses future work.

3



CHAPTER 2

AN EXPECTATION MAXIMIZATION APPROACH TO
ESTIMATE MALARIA HAPLOTYPE FREQUENCIES IN

MULTIPLY INFECTED CHILDREN

Summary: Characterizing genetic variability in the human pathogenic Plasmodium

species, the group of parasites that cause Malaria, may have broad global health im-

plications. Specifically, discerning the combinations of mutations that lead to viable

parasites and the population level frequencies of these clonal sequences will allow for

targeted vaccine development and individualized treatment choices. This presents an

analytical challenge, however, since haplotypic phase (i.e. the alignment of bases on

a single DNA strand) is generally unobservable in multiply infected individuals. This

manuscript describes an expectation maximization (EM) approach to maximum like-

lihood estimation of haplotype frequencies in this missing data setting. The approach

is applied to a cohort of N=341 malaria infected children in Uganda, Cameroon and

Sudan to characterize regional differences. A simulation study is also presented to

characterize method performance and assess sensitivity to distributional assumptions.

2.1 Introduction

Malaria continues to be a grave public health concern with an estimated 1-3 million

associated deaths per year [3], the estimated majority (> 75%) of which occur in

African children under the age of 5 [17]. Malaria is an infectious disease caused by

a group of parasites called the human pathogenic Plasmodium species. Development

of effective vaccines and appropriate treatment intervention strategies will inevitably

require characterizing the genetic variability of the parasites both within and across
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geographic regions. This, however, presents an analytical challenge due to the large

number of polymorphic sites in the parasite genome and the presence of multiple

clonal species within an individual host.

Vaccine development efforts generally target the cellular adhesion molecule, cir-

cumsporozoite protein (CSP). This protein is expressed by the parasite and facilitates

adhesion to hepatocytes (liver cells) in the human host [44, 21]. It is in the host liver

that the parasite multiplies and eventually differentiates into merozoites (daughter

cells) that infect red blood cells, leading to the common symptoms of malaria. In this

investigation, we focus on one polymorphic region (csp-th3) within CSP that encodes

a T-cell epitope. The data motivating our research arise from a cross-sectional study

of n = 341 malaria infected children from three African nations: Uganda, Cameroon

and Sudan. The genetic region consists of 12 loci, of which 10 are variable in our

cohort.

In endemic areas such as those we consider, each infected child commonly carries

between 1 and 5 different clonal species. Here the term clone is used to indicate

a genetically unique parasite. Malarial parasites are typically transmitted from one

human host to another via a mosquito vector. Sexual differentiation into male and

female gametes occurs in the mosquito and sporozoites with a single chromosomal

copy of a given malaria parasite are injected into the human host at the time a blood

meal is taken. Multiple infections generally arise due to (1) multiple parasites being

transmitted in a single blood meal and/or (2) multiple mosquitos taking blood meals

from a single individual.

The parasite genome is comprised of a sequence of bases represented by the four

letters A, C, T and G. Locations within this sequence that are variable across the

general population are termed single nucleotide polymorphism (SNP) loci. Data

across multiple SNP loci are referred to as multi-locus genotypes. The process of

individually genotyping each of the clonal sequences infecting a single human host
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is both laborious and expensive. For this reason, population assays are typically

generated that report the set of bases present at each locus on the parasite genome

within an individual. That is, for example, suppose an individual is infected with

two clones: the first clone has an A at locus one and the second clone has a G at

this locus. In this case, the observed genotype for this individual is given by A/G.

Notably, if the individual were additionally infected with a third clone that had a

G at this locus, then the observed genotype would be identical (A/G). That is, the

number of copies of a base within an individual at a given location is not observed.

As a result of the assay utilized, the alignment of bases on a given clone (commonly

referred to as haplotypic phase) is not observable. For example, suppose the parasite

population within an individual is sequenced and the two bases A and T are observed

at locus 1 and the bases G and C are observed at locus 2. That is, the genotype across

these two loci is given by (A/T,G/C). In this simple case, there are four possible

alignments of bases on a single clone: h1 = (A,G), h2 = (A,C), h3 = (T,G) and h4 =

(T,C). The precise combination of these haplotypes within a person is not observable.

For example, the true haplotypes could be (h1, h4) or (h2, h3). Moreover, since the

number of clonal sequences within each person is also unobserved, the number of

copies of each haplotype is unknown. For example, the true haplotype combination

could also be (h1, h4, h4) or (h1, h1, h4, h4) and depends on whether the individual

has 2, 3 or 4 infections. This is described further in Section 2.2 after additional

notation is outlined. Knowledge of haplotypic phase is particularly relevant to the

development of appropriate treatment and vaccine strategies that target large (i.e.

multi-site) regions of the parasite’s genome.

Several statistical approaches to inferring haplotypes from unphased genotype

data have been proposed in the context of human genetic investigations. These

include Clark’s algorithm [4], an EM-type algorithm [8] and more recently several

Bayesian approaches, including those of [40], [28] and [34]. Notably, these approaches
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were developed for diploid populations in which each individual has exactly two chro-

mosomes. In our setting, the number of clones (infections) is variable. That is,

each individual has multiple infections and the number of infections is not observed,

rendering the aforementioned approaches unsuitable. [20] derived a hill-climbing ap-

proach for this multiple clone setting; however, it is computationally intensive when

the number of variable loci is greater than two. This manuscript presents a novel

extension of the EM algorithm of [8] for haplotype reconstruction in this non-diploid

setting.

Our method addresses directly the challenges of unobservable phase and the un-

known numbers of infections, while providing a computationally efficient framework

that accommodates multiple genetic loci. This approach uses the general framework

of the EM algorithm, formalized by [5]. Since in our setting the number of clones (i.e.

the number of infections) is not known, we impose a probability distribution on this

number. Three (3) distributional assumptions are considered: fixed, unconditional

Poisson (UP) and conditional Poisson (CP). Our method reduces to the approach of

[8] when the number of infections is fixed at 2, which is straightforward to implement

using the haplo.em() function in the R package haplo.stats. By framing unob-

servable haplotypic phase as a missing data problem, we derive an EM approach that

is intuitively appealing and guarantees an increase in the likelihood at each iteration.

Notably, our approach is also closely related to methods described for the esti-

mation of population haplotype frequencies with pooled DNA samples [42, 22, 35].

Specifically, we propose a generalization of the EM approaches of [42] and [22] in

which the number of clones is fixed at 2 ∗M where M is the number of samples in

the pool. In Section 2.2.2 of this manuscript, we describe a similar EM approach

assuming a fixed number (c) of infections and extend this in Section 2.2.3 to the more

general setting of a variable number of infections.
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We begin in the following section by describing our modeling assumptions and the

EM procedure. In Section 2.3 we present a simulation study to characterize method

performance. Finally, application of the EM approach to a cross-sectional study

of n = 341 children in equatorial Africa is presented in Section 2.4 to characterize

regional differences in haplotype frequencies.

2.2 Methods

Estimating haplotype frequencies in a population of multiple infected individuals

requires making a distributional assumption about the number of infections. We

assume that each infection is independent. While multiple infections can arise with

a single mosquito bite, we are unable to distinguish between this occurrence and the

occurrence of multiple blood meals taken by different mosquitos. In Section 2.2.1 we

begin by outlining our notation. The approach presented in Section 2.2.2 assumes the

number of infections is fixed at a constant, c > 0. While this assumption is probably

not reasonable here, it represents a natural extension of the method of [8] and is useful

for comparison. It may also be useful for other settings, as described in Section 2.5.

In Section 2.2.3 we extend this approach further by allowing for a variable number of

clonal infections across our population. Specifically, both the unconditional Poisson

(UP) and conditional Poisson (CP) assumptions are considered.

2.2.1 Notation

Let Hi represent the combination of haplotypes and Gi be the unphased multi-locus

genotype for the ith individual, i = 1, . . . , n. In our setting, Gi is known for each

individual, while Hi is unknown. There are generally multiple values of Hi consistent

with Gi. In a diploid population, Hi consists of a pair of haplotypes; in general,

however, the number of elements of Hi will vary since a combination of 1 or more
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haplotypes may be consistent with the observed genotype Gi. That is, the number of

clones (C) in a combination may vary.

Let S(Gi) be the set of all haplotype combinations that are consistent with

genotype Gi. Further let h1, . . . , hK denote the K possible haplotypes over all ob-

served individuals, let θk be the population frequency of haplotype hk and define

θ = (θ1, . . . , θK). In general, interest lies in estimating θ. We propose a novel appli-

cation of the EM algorithm to arrive at a maximum likelihood estimate of θ.

Consider for example the simple case of two biallelic loci: the first locus is either A

or a and the second locus is B or b. There are 4 possible haplotypes across all individu-

als: h1 = (A,B), h2 = (A, b), h3 = (a,B), and h4 = (a, b). For the observed genotype

Gi = (A/a,B/b), the specific haplotype combination Hi is unknown, although there

are many combinations consistent with this genotype. The set of possible haplotype

combinations is given by S(Gi) = {(h1, h4) , (h1, h4, h4) , (h2, h3) , (h2, h3, h4) , . . .} and

the true (unobserved) haplotype Hi ∈ S(Gi). Note that since heterozygosity is ob-

served at 2 loci for this genotype, we know there are at least 2 clonal sequences.

Further, multiple copies of the same haplotype may be present in a single individual.

Thus, for example it is possible that Hi = (h1, h1, h4). A visual representation of this

unobservable data is given in Figure 2.2.1.

Finally, we define δik to be the number of copies of haplotype hk present in the

haplotype combination Hi, k = 1, . . . , K. For example δi1 is the number of copies of

h1 in the haplotype combination Hi and is given by:

δi1 =



1 if Hi = (h1, h4)

1 if Hi = (h1, h4, h4)

2 if Hi = (h1, h1, h4)

...
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Figure 2.1. Unobservable Haplotype Combinations
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All 29 possible haplotype combinations for clone number c ≤ 3 are illustrated. The combinations
consistent with the genotype AaBb are represented by shaded boxes.
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2.2.2 Estimation Assuming Known (Fixed) Number of Infections

Suppose there are exactly C > 0 clones present in each blood sample. That is, assume

each individual has exactly C infections, where C is some positive integer. In this

case we have
∑K

k=1 δik = C for i = 1, . . . , n and we can write the haplotype set

probabilities, Pr(Hi|θ) by:

Pr(Hi|θ) =
C!

δi1! . . . δiK !

K∏
k=1

θδikk (2.1)

Application of the EM algorithm typically proceeds by defining the complete data,

denoted Xcom in terms of the observed and missing components. In our setting, the

observed data Xobs is the genotype Gi for each individual and the complete data is

both the genotype and specific haplotype combination Hi for each individual. The

complete data likelihood is given by:

L(θ|Xcom) =
n∏
i=1

Pr(Hi|θ) (2.2)

where Pr(Hi|θ) is as defined in Equation 2.1.

The E-step involves calculating the expectation of the complete data log likelihood

conditional on the observed data Gi, i = 1, . . . , n. This conditional expectation is

given by:

E [logL(θ|Xcom)] =
n∑
i=1

∑
Hi∈S(Gi)

piHi
(θ) logPr(Hi|θ) (2.3)

where piHi
(θ) is the posterior probability of Hi given Gi. A formulation of this

posterior probability is given by:

piHi
(θ) =

Pr(Hi|θ)∑
Hi∈S(Gi)

Pr(Hi|θ)
(2.4)
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The M-step of the EM algorithm maximizes the conditional expectation of the

complete data log likelihood given in Equation 2.3. Let θ(t) be the estimate of θ

derived from the tth iteration of the EM algorithm. The (t + 1)th estimate of θ can

be obtained by finding the root for the following equation.

∂E [logL(θ|Xcom)]

∂θk
=

n∑
i=1

∑
Hi∈S(Gi)

piHi
(θ̂

(t)
)∂ logPr(Hi|θ)/∂θi

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(θ̂

(t)
)(
δik
θk
− δiK
θK

) = 0

(2.5)

Resulting closed form solutions for θ̂k are given by:

θ̂
(t+1)
k =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(θ̂

(t)
)δik

nC
(2.6)

2.2.3 Estimation Assuming Unknown (Variable) Numbers of Infections

In Section 2.2.2 we assume that the number of clones (infections) is fixed; however,

in general each individual may have a different number of clones. In this section we

relax this assumption and instead assume a probability distribution on the number

of infections per individual.

2.2.3.1 Unconditional Poisson Assumption

We begin by assuming the number of infections has a Poisson distribution with prob-

ability density given by:

φc(λ) = e−λ(λc/c!) (2.7)
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Note this density is a function of the rate parameter, λ which can be interpreted as the

average number of infections across the population. Equation 2.1 for the haplotype

combination probabilities is now replaced by:

Pr(Hi|Φ) = φci(λ)
ci!

δi1! . . . δiK !

K∏
k=1

θδikk (2.8)

where Φ = (θ, λ). Here ci is the number of clones in the set Hi and can vary across i.

Let n0 be the number of uninfected individuals. Without loss of generality, we

assume individuals are ordered so that i = 1, . . . , (n− n0) represent individuals with

at least one detected infection and i = (n− n0 + 1), . . . , n are uninfected individuals.

The complete data likelihood for this setting is given by:

L(Φ|Xcom) = Pr(c = 0)n0

n−n0∏
i=1

Pr(Hi|Φ) (2.9)

where Pr(c = 0) = e−λ. The expected conditional log likelihood is:

E [logL(Φ|Xcom)] = −n0λ+

n−n0∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ) logPr(Hi|Φ) (2.10)

where piHi
(Φ) is defined in Equation 2.4 with θ replaced by Φ.

Note that in our cross-sectional investigation of infected children n0 is set equal to

0. In general, random sampling of children would allow for incorporating the number

of individuals with no infection. Setting n0 equal to 0 in the cross-sectional setting

leads to overestimation of λ. For this reason, we recommend use of the conditional

Poisson approach described in Section 2.2.3.2 when sampling consists only of infected

children. Further discussion of this point is provided in Section 2.4.
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Estimation of θ is similar to the setting in which C is fixed. Resulting closed form

solutions for θ̂k are:

θ̂
(t+1)
k =

∑n−n0

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik∑n−n0

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))ci

(2.11)

where Φ̂(t) is the estimate of Φ derived from the kth iteration of the EM algorithm.

Estimation of λ is achieved by solving:

∂E [logL(Φ|Xcom)]

∂λ
= −n0 +

n−n0∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr(Hi|Φ)/∂λ

= −n0 +

n−n0∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))(

ci
λ
− 1) = 0

(2.12)

The resulting closed form solution is given by:

λ̂(t+1) =

∑n−n0

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))ci

n
(2.13)

2.2.3.2 Conditional Poisson Assumption

In general, datasets are comprised only of individuals with at least one detectable

parasitic clone and it is assumed that uninfected individuals convey no information

about haplotype frequencies. We now describe estimation under the conditional Pois-

son model in which we condition on at least one infection, as given in the following

equation:

φ∗c(λ) =


(λc/c!)/(eλ − 1) c > 0

0 c = 0

(2.14)
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The mean of this conditional Poisson distribution is given by:

µ = λ/(1− e−λ) (2.15)

Equation 2.1 for the haplotype combination probabilities is now replaced by:

Pr∗(Hi|Φ) = φ∗ci(λ)
ci!

δi1! . . . δiK !

K∏
k=1

θδikk (2.16)

Maximizing the conditional expectation of the complete data log likelihood results in

the haplotype frequency estimates given by Equation 2.11 where now the summation

is over all individuals.

The estimation of λ is achieved by solving the following equation.

∂E [logL(Φ|Xcom)]

∂λ
=

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr∗(Hi|Φ)/∂λ

∝
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))(

ci
λ
− eλ

eλ − 1
) = 0

(2.17)

This equation does not have a closed form solution and a Newton-Raphson pro-

cedure is employed. After we get the estimated λ, Equation 2.15 is used to get the

estimate of the mean number of infections per infected individual.

2.2.4 Individual Predictions and Statistical Inference

Notably, the resulting parameter estimates can be used to infer individual level hap-

lotypes and estimate the associated level of uncertainty. As described above, a set

of haplotype combinations is consistent with each observed genotype. Based on the
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final estimates of the haplotype frequences and the rate parameter, λ, the posterior

probabilities of each haplotype set can be calculated. This allows us to determine the

most probable haplotype set of a single individual, which may ultimately be relevant

for making individual level treatment decisions.

Formal testing of population level parameters is also tenable. In order to test

hypotheses involving haplotype frequencies, estimation of the corresponding variance-

covariance matrix is needed. This estimate can be computed by inverting the observed

information matrix. Within the E-M framework, this is computed via Louis’ method

[29]. An alternative approach is to approximate the observed information matrix with

the empirical observed information matrix [32], given by:

Ie(Φ; X) =
n∑
i=1

si(Φ)sTi (Φ)|Φ=Φ̂ (2.18)

where si(Φ) is the score function from the observed data likelihood for the ith indi-

vidual and can be computed as described in [31] and [25]:

si(Φ) = E{∂[logLi(Φ|X(com)
i )]/∂Φ|X(obs)

i } (2.19)

2.3 A Simulation Study

A simulation study was conducted in order to characterize the performance of the

maximum likelihood estimator under each of the 3 model assumptions for the number

of infections: fixed, UP and CP. The values of C and λ were chosen to approximate

the estimated values in the example provided in Section 2.4 and are presented in the

rows of Table 2.1(a). Models considered include 2 and 3 loci with varying numbers

of observed nucleotides at each, as described by the columns in Table 2.1(a). A
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Table 2.1. Simulation Results

Model 1† Model 2‡ Model 3∗

CR CI-length CR CI-length CR CI-length

Fixed
C=2 (0.94, 0.96) (0.023, 0.045) (0.94, 0.96) (0.036, 0.040) (0.94,0.96) (0.025,0.046)
C=3 (0.95, 0.96) (0.024, 0.040) (0.94, 0.96) (0.043, 0.045) (0.94,0.96) (0.036,0.058)
C=6 (0.93, 0.95) (0.035, 0.046) (0.93, 0.95) (0.084, 0.090) (0.93,0.95) (0.06,0.13)

CP
λ=0.8 (0.95, 0.96) (0.031, 0.28) (0.94, 0.96) (0.055, 0.22) (0.94,0.96) (0.029,0.23)
λ=2.0 (0.93, 0.95) (0.027, 0.39) (0.94, 0.96) (0.047, 0.27) (0.94,0.96) (0.028,0.28)
λ=3.0 (0.95, 0.97) (0.029, 0.46) (0.94, 0.96) (0.048, 0.31) (0.94,0.96) (0.031,0.34)

UP
λ=1.5 (0.93, 0.96) (0.027, 0.19) (0.94, 0.95) (0.049, 0.17) (0.93,0.96) (0.027,0.16)
λ=2.0 (0.95, 0.96) (0.026, 0.25) (0.94, 0.96) (0.045, 0.19) (0.92,0.95) (0.028,0.20)
λ=3.0 (0.94, 0.96) (0.027, 0.35) (0.94, 0.96) (0.045, 0.27) (0.93,0.97) (0.032,0.27)

(a) Overall results. The range of the coverage rates (CR) and the average length of the 95%
confidence intervals (CI-length) are reported. † Model 1 has two alleles at each of two loci. The 4
haplotype probabilities are 0.64, 0.16, 0.16 and 0.04. ‡ Model 2 has two alleles at the first locus and
three alleles at the second locus. The 6 haplotype probabilities are 1/6. ∗ Model 3 has two alleles
at each of three loci. The 8 haplotype probabilities are 0.24, 0.24, 0.16, 0.16, 0.06, 0.06, 0.04 and 0.04.

λ = 0.8 λ = 2.0 λ = 3.0
Parameter Est SE CR CI-length Est SE CR CI-length Est SE CR CI-length
θ1 = 0.64 0.64 0.02 0.95 0.078 0.64 0.015 0.95 0.06 0.64 0.014 0.96 0.056
θ2 = 0.16 0.16 0.014 0.95 0.053 0.16 0.011 0.93 0.043 0.16 0.011 0.95 0.042
θ3 = 0.16 0.16 0.014 0.95 0.056 0.16 0.011 0.95 0.043 0.16 0.011 0.97 0.042
θ4 = 0.04 0.04 0.008 0.96 0.031 0.04 0.007 0.95 0.027 0.04 0.007 0.96 0.029

λ 0.8 0.072 0.95 0.28 2 0.098 0.95 0.39 3 0.12 0.95 0.46

(b) Simulation Result for Model 1 Under CP Assumption. The mean estimate of the parameter
(Est), the empirical standard error (SE), the cover rate (CR), and the average confidence interval
length (CI-length) are shown.

more detailed summary of the simulation results for model 2 under CP assumption

is presented in Table 2.1(b).

Under each model (fixed, UP and CP), B = 500 data sets with n = 1000 were

generated. Using the algorithm appropriate for the underlying model, maximum

likelihood estimates were obtained. The range of the Coverage rates (CR) and the

average length of 95% confidence intervals (CI-length) are reported in Table 2.1 as

measures of performance. CRs are calculated as the fraction of the 95% confidence
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Table 2.2. Sample Genotype Data

Index Genotypes of polymorphic region CSP-TH3
1 T G A A C G C C G A G A
2 T G A A C G C C G A G A/C
3 T G A A C G C C G A G C
4 T G A A C G C C/G G A G A
5 T G A A C G C C/G G A G A/C
6 T G A A C G C G G A G A
7 T G A/G A C G C C G A A/G A/T
8 T G G G T A C G G A G A
9 T A A A C G C C G A G C
10 T G A/G A/G C G C C/G G A G A
11 T G A/G A/G C/T G C/G C/G A/G A G A
12 T G A/G A/G C/T A/G C G G A G A
13 T G A/G A/G C/T G C/G C/G A/G A G A
... . . .

There are 12 loci in the csp-th3 region under consideration. Among them, 10 loci are polymorphic in
our sample. A total of 55 unique genotypes are observed and 13 are presented above for illustration.

intervals that covered the true parameter value. For example, in model 1 with two

alleles at each of two loci, there are four unknown parameters (haplotype probabilities)

which were set to 0.64, 0.16, 0.16, and 0.04 under our simulation scenario. Under the

CP assumption with λ = 2, as shown in Table 2.1(b), the CRs were 0.95, 0.93, 0.95,

0.95, and 0.95, for the 4 haplotype probabilities and λ, respectively. The average

CI-lengths were 0.06, 0.043, 0.043, 0.027 and 0.39, respectively. Thus the range of

CR and CI-length are reported in Table 2.1 as ranges equal to (0.93, 0.95) and (0.027,

0.39). These results indicate that the frequentist properties of our algorithms resulted

in well calibrated interval estimates.

2.4 Example

In this section we present the results of applying the EM approach to data arising

from a cross-sectional study of n = 341 malaria infected children from 3 African

nations. Analysis is stratified by country in order to characterize potential regional

differences. Data on 12 loci within one polymorphic region (csp-th3) within CSP are

considered. A sample of observed genotype data is given in Table 2.2.
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The CP assumption is most appropriate in this setting since the number of infec-

tions is variable and the data are comprised of samples with at least one detectable

infection. In order to assess the sensitivity to the distributional assumption, however,

we performed the analysis under both the CP and the UP assumptions. Under the

CP assumption, the estimated population infection rates (λ) in Uganda, Cameroon

and Sudan are 0.87, 1.08 and 0.75, respectively. The corresponding estimates of the

mean numbers of infections per infected individual are µ = 1.50, 1.64 and 1.42, re-

spectively. Under the UP assumption, on the other hand, the estimated infection

rates are 1.66, 1.80 and 1.60, respectively.

As expected, the estimated rates are higher for the UP approach since this ap-

proach assumes that uninfected individuals are included in the sampling design and

the number of such individuals is equal to 0. In fact, using the λ from the CP ap-

proach, the expected number of uninfected individuals (n0) in the sample of Uganda,

Cameroon, and Sudan are 97.72, 75.63, and 52.62, respectively. If these numbers,

instead of 0s, are used in the UP approach for n0, then the results for UP and CP

are similar (data not shown). Interestingly, in both models, the estimated number of

infections is slightly higher in Cameroon than the other two countries. The estimated

haplotype frequencies by country are similar for the two approaches.

Estimated haplotype frequencies by country under the CP assumption are pre-

sented in Table 2.3. This result suggests that while some haplotypes have similar

frequencies across the three geographic regions (e.g. haplotype 1), there does appear

to be variability across regions in the frequencies of other haplotypes. For example,

haplotype 4 has an estimated frequency of about 5% in Uganda and Cameroon while

its frequency in Sudan is estimated to be 22%.

The Wald test is used to test formally for regional haplotype differences. Specifi-

cally, we test the null hypotheses H0 : θi,j = θi,j′ , where θ is the frequency of haplotype

i (i = 1, · · · , 16) for country j (j = Uganda, Cameroon, and Sudan). The test statis-
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Table 2.3. Estimated Haplotype Frequencies by Region

Index Haplotype Uganda Cameroon Sudan
1 T G A A C G C C G A G C 0.34 0.39 0.33
2 T G A A C G C C G A G A 0.24 0.25 0.31
3 T G A A C G C G A A G A 0.10 0.07 –
4 T G A A C G C G G A G A 0.05 0.06 0.22
5 T G G G T A C G G A G A 0.05 0.03 0.02
6 T G G G C G C G G A G C 0.04 – –
7 T G A A C G C C A A G A 0.04 0.06 –
8 T G G A C G C C G A G C 0.04 0.01 –
9 T G A A C G C G G A G C 0.03 0.07 –

10 T G G G C A C G G A G A 0.03 0.00 –
11 T G G G T G C G G A G A 0.01 – 0.06
12 T G G A C G C C G A A T 0.01 0.03 0.01
13 T G G G C G A G A A G A 0.01 – –
14 T G G A C G C C G A G A 0.01 – 0.03
15 C G A A C G C G G G G A – – 0.01
16 T G G G T G C C G A G A – – 0.02

N = 135, 148 and 58 individuals were included in the analysis for Uganda, Cameroon and Sudan,
respectively. Haplotypes with an estimated within country population frequency of at least 0.01 are
reported.

tic corresponding to the null hypothesis H0 : θ4,Sudan = θ4,Cameroon is 3.5, which is

significant at the 0.05 level after a Bonferroni correction is applied to adjust for 22

pairwise comparisons. Finally, posterior probability estimates of haplotype sets for

each individual with the observed genotype are presented in Table 2.4. Again, there

is reasonable consistency across the three countries though differences do appear to

be present. Specifically for genotype 5, the probability that the true clones are single

copies of haplotypes 4 and 1 is 65% in Sudan and only 31% in Cameroon. This is a

reflection of the variable frequency estimates of haplotype 4 presented in Table 2.3.

2.5 Discussion

In this manuscript, we describe a novel model fitting approach to arriving at maximum

likelihood estimates of haplotype frequencies in a population of children multiply

infected with the parasite that causes malaria. Characterizing the genetic variability

of the parasite, and particularly how polymorphisms align on a single clonal copy,

will have broad implications for vaccine development efforts that target large genetic
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Table 2.4. Estimated Posterior Probabilities for Each Haplotype Combination

Uganda Cameroon Sudan
Genotype (N∗) Haplotype Set p Haplotype Set p Haplotype Set p
1 (19,20,10) 2 0.90 2 0.87 2 0.89

2 2 0.09 2 2 0.12 2 2 0.10
2 2 2 − 2 2 2 0.01 2 2 2 0.01

2 (8,12,4) 1 2 0.77 1 2 0.70 1 2 0.78
1 1 2 0.11 1 1 2 0.15 1 1 2 0.10
1 2 2 0.08 1 2 2 0.09 1 2 2 0.09

3 (33,41,16) 1 0.86 1 0.80 1 0.88
1 1 0.13 1 1 0.17 1 1 0.11
1 1 1 0.01 1 1 1 0.02 1 1 1 −

4 (2,1,5) 4 2 0.88 4 2 0.85 4 2 0.82
4 2 2 0.09 4 2 2 0.11 4 2 2 0.09
4 4 2 0.02 4 4 2 0.03 4 4 2 0.07

5 (1,8,1) 4 1 0.46 4 1 0.31 4 1 0.65
9 2 0.20 9 2 0.24 4 1 2 0.15
4 1 2 0.10 9 1 2 0.10 4 1 1 0.08

6 (5,4,10) 4 0.98 4 0.97 4 0.92
4 4 0.02 4 4 0.03 4 4 0.08
4 4 4 − 4 4 4 − 4 4 4 −

7 (1,2,1) 12 2 0.89 12 2 0.86 12 2 0.87
12 2 2 0.09 12 2 2 0.11 12 2 2 0.10
12 2 2 2 − 12 12 2 0.02 12 14 2 0.02

8 (5,3,2) 5 0.98 5 0.98 5 0.99
5 5 0.02 5 5 0.02 5 5 −
5 5 5 − 5 5 5 − 5 5 5 −

· · ·

N∗ = (n1, n2, n3) denotes the number of individuals within each country who present with the
corresponding genotype. Genotypes are indexed in Table 2.2. Haplotypes are indexed in Table 2.3.
− indicates a posterior probability estimate of less than 0.01. For comparison, only the genotypes
present in all three countries are reported.
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regions. Notably, the approach we describe for a fixed number of clones (c > 2)

may be useful for polyploidy populations (e.g. goldfish, salmon, bread wheat, etc.),

in which the number of chromosomes is more than 2 but the same across all units.

Application of this approach to individuals multiply infected with HIV or carrying

multiple viral mutations is also tenable.

Our approach offers two primary advantages over existing methods. First, the

computational efficiency of our algorithm allows us to characterize a large number of

sites. In the example described in Section 2.4, we illustrate straightforward imple-

mentation of this method in the context of 10 variable sites. This distinguishes our

approach from the hill climbing method of [20]. Application of our method to the

data for two variable loci described in [20] resulted in consistent estimates (results

not shown.) Note that our approach also differs from [20] since we provide a testing

method. Our method also allows for a variable number of clones within an individual,

making it more flexible than approaches designed for diploid populations.

Several extensions that address the limitations of the proposed approach will pro-

vide further insight into the genetic variability and determinants of disease. Notably,

it is assumed that the information on uninfected children is non-informative. That

is, our analysis is based only on a cross-sectional study of children who were infected

and does not consider the potentially informative data arising from children who

could have been infected but were not. Application of causal inference methods may

be appropriate in this setting. Further extensions would also allow us to relax the

assumption that the observed number of heterozygous sites within an individual is

not informative. Finally investigating methods for correlated data that provide a

framework for evaluating changes over time would provide further insight into the

molecular evolution of the parasite.
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CHAPTER 3

ESTIMATING AND TESTING HAPLOTYPE-TRAIT
ASSOCIATIONS IN NON-DIPLOID POPULATIONS

Summary: Malaria is an infectious disease caused by a group of parasites of the genus

Plasmodium. Characterizing the association between polymorphisms in the parasite

genome and measured traits in an infected human host may provide insight into

disease etiology while ultimately informing new strategies for improved treatment and

prevention. This, however, presents an analytic challenge since individuals are often

multiply infected with a variable and unknown number of genetically diverse parasitic

strains. In addition, data on the alignment of nucleotides on a single chromosome,

commonly referred to as haplotypic phase, is not generally observed. An expectation

maximization algorithm for estimating and testing associations between haplotypes

and quantitative traits has been described for diploid (human) populations. We

extend this method to account for both the uncertainty in haplotypic phase and the

variable and unknown number of infections in the malaria setting. Further extensions

are described for the HIV/AIDS quasi-species setting. A simulation study is presented

to characterize method performance. Application of this approach to data arising

from a cross-sectional study of n = 126 multiply infected children in Uganda reveals

some interesting associations requiring further investigation.

3.1 Introduction

Several methods and related extensions for characterizing population level haplo-

type frequencies and haplotype-trait associations in human populations have been
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described [8, 40, 45, 39, 37, 25, 27, 11]. In the present manuscript, we propose a

further extension of the EM approach for haplotype-trait association studies [25, 27]

for infectious disease settings. Here interest lies similarly in characterizing the rela-

tionship between genetic information and a trait; however, in the infectious disease

context, the genetic information is typically measured on the infectious agent (such

as a parasite or virus) rather than the human. In both cases, we assume that the

trait is a host (human) level measurement. To elucidate the challenges inherent to

this setting, we begin by defining some terminology.

Consistent with the nomenclature adopted in several recent manuscripts, genotype

is used to refer to the observed genetic information (nucleotides) at polymorphic

sites. The term haplotypic phase refers to the alignment of nucleotides on a single

homolog within a linked region of DNA. Homologs are double-stranded segments

of DNA that contain information for the same biological or clinical trait but have

potentially different genetic codes, commonly referred to as alleles. For example,

humans, as diploid organisms, carry exactly two homologs (with the exception of

the sex chromosomes), one inherited from each parent. In association studies of

unrelated individuals, haplotypic phase is generally unobservable. That is, based on

the observed genetic information, and specifically if an individual in heterozygous at

two or more sites within a linked region of DNA, the alignment of nucleotides on each

chormosomal copy is unknown.

In the context of infectious disease investigations, a parallel terminology is used.

Here the term strain is used to refer to a parasite or viral lineage arising from a single

ancestry. Application of population based sequencing techniques similarly renders

the specific combination of nucleotides on a single strain unobservable. Notably, the

methods cited above for the human genetics setting, were specifically developed to

account for potential uncertainty in haplotypic phase, inherent in population-based

investigations of unrelated individuals.

24



Our investigation is motivated by a study of the human pathogenic species Plas-

modium falciparum, the group of parasites that cause malaria. Here interest lies in

characterizing associations between genetic polymorphisms in the haploid parasite

and clinical measures of disease severity, such as red blood cell count or the amount

of parasite in plasma. In this setting, multiple infections can arise as a result of two

or more singly infected mosquitoes taking blood meals from the same individual, an

infected mosquito taking blood meals over several days, or a single multiply infected

mosquito taking a blood meal from an individual. These three settings are indistin-

guishable from a data analytic perspective and all result in the presence of multiple

strains within a single human host. In general, the observed genotype data consist of

the set of bases present at each location of the genome across the entire population of

organisms within a single host. Thus, as in the human genetics setting, the specific

alignment of these bases on a single strain is generally unobservable. This constitutes

the first analytic challenge.

The second challenge, rendering the infectious disease setting unique from hu-

man investigations, is that the number of infections, i.e. the number of strains, is

unknown and this number can vary across individuals. This presents an additional

analytic challenge and serves as the motivation for our present research. Consider,

for example, an individual who is infected with up to 4 strains. In this case, between

1 and 4 bases will be observed at each site on the genome. Now suppose the observed

genotype for this individual is A1/A2 for site 1 and B1/B2 for site 2. In this simple

case, there are four possible haplotypes: h1 = (A1, B1), h2 = (A1, B2), h3 = (A2, B1)

and h4 = (A2, B2). The precise combination of these haplotypes within this individ-

ual is not observable. In a human population, the number of homologs is fixed at 2

and therefore, the truth could be (h1, h4) or (h2, h3). However, in the malaria setting,

since the number of strains within each person is also unobserved, the number of

copies of each haplotypes is unknown. In this case, the true haplotype combination
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could be (h1, h4), (h2, h3), (h1, h4, h4) or (h1, h1, h4, h4), etc. and depends on whether

the individual has 2, 3 or 4 infections. Note that two distinct strains may have the

same haplotype for the gene under consideration and thus we include, for example,

(h1, h4) and (h1, h4, h4) as two distinct possibilities. we propose an EM-type algo-

rithm that additionally takes into account information on a measured trait. This

provides a comprehensive framework for simultaneous estimation of population hap-

lotype frequencies and haplotype-trait associations. In previous work, we describe an

expectation-maximization (EM)-type algorithm for estimating haplotype frequencies

in the malaria setting that uses only the observed genotype data [26]. This prior work,

while extending the methods of [8] and [20], does not take into account phenotypic

or clinical information about the host. In the present manuscript, Thus the method

presented represents an extension of [26] to incorporate trait information as well as

an extension of [25] and [27] to the non-diploid setting.

An underlying premise motivating our research is that haplotypes may explain

variability in a measured trait that is not fully captured by consideration of genotype

data alone. In human genetic settings, haplotype-based investigations are important

if the polymorphisms under consideration are in linkage disequilibrium with the true

disease causing variant, but are not themselves causal. In the malaria settings, the

specific combinations of nucleotides on a single strain may be relevant to protein

production and ultimately, to parasite fitness. The method presented herein provides

the framework for evaluating these potential associations.

In the following Section, we describe an extension of the EM framework for es-

timation and inference under several models for the distribution of the number of

infections. In Section 3.3, this approach is applied in a simulation study as well as

to data arising from a cohort of n = 126 multiply infected children from Uganda.

Section 3.4 describes extensions for the HIV quasi-species setting in which multiple

strains can arise from repeat infections though more generally, this is a result of ex-
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ternal pressures, such as treatment exposures. Finally, in Section 3.5 we provide a

discussion of our findings.

3.2 Methods

We begin in this section by outlining our notation and the structure of the data.

We then describe three approaches to estimation of the effect of haplotypes on a

quantitative trait that each involves different assumptions about the distribution of

the number of infections: (1) First, we assume the number of infections within a

host is fixed at a constant C > 0; (2) Second, we assume this number follows a

conditional Poisson distribution where we condition on the presence of at least one

infection; and (3) Third, we make no assumption about the distribution of the number

of infections and estimate separately the probabilities of having exactly c infections

where c = 1, 2, . . . , C for C sufficiently large. Finally, a formal testing procedure is

described.

3.2.1 Notation

Let G = (G1, . . . , Gn) where Gi is the unphased (observed) multi-site genotype for

individual i. Further suppose H = (H1, . . . ,Hn) whereHi represents the combination

of haplotypes within individual i. In general, Hi is not known and multiple values of

Hi are consistent with Gi. The set of all haplotype combinations that are consistent

with Gi is denoted by S(Gi). Let h1, . . . , hK denote the K possible haplotypes over all

observed individuals and define θ = (θ1, . . . , θK) where θk is the population frequency

of hk. Now let Y = (Y1, . . . , Yn) where Yi is the trait for i = 1, . . . , n. We model

Y using the generalized linear model (GLM) such that the expected value of Yi is

related to the linear predictor

[
XT
i HT

i

]
β through a link function g:

g(E[Yi]) =

[
XT
i HT

i

]
β (3.1)
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where Xi is a vector of environmental or demographic covariates, including the in-

tercept as the first element, Hi is a vector of numerical codes for Hi and β is the

corresponding parameter vector. For a quantitative trait, g(·) reduced to the identity

link. Since the haplotype combination for individual i is potentially unobserved, we

consider all possible Hi consistent with the observed genotype data, as described be-

low in Section 3.2.2. Note Hi can take many forms depending on the specific genetic

model. For example, we may define Hi as a K × 1 vector of indicators for the pres-

ence of a specific dominant haplotype in individual i. Alternatively, we can set the

kth element of Hi equal to the number of copies of hk in individual i, corresponding to

an additive genetic model. Further discussion of formulations for this design matrix

are given in [27].

3.2.2 Estimation

In this section we describe the general EM framework for estimation, assuming a

given distribution for the number of infections. We then elaborate on this algorithm

for each of three distributional assumptions. First note that for the GLM framework,

we assume that the probability density of Y is from an exponential family, given by:

Pr(Y|X,H,β)

= L(β|Y,X,H) =
n∏
i=1

exp


(Yi

[
XT
i HT

i

]
β − b

([
XT
i HT

i

]
β

)
a(ψ)

+ c(Yi, ψ)


(3.2)

where a, b, and c are known functions, ψ is a scale parameter and in our setting

H is unknown. The ambiguity in H renders the haplotype-trait association study
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a missing data problem and thus an EM-type algorithm is a natural choice for this

setting. The EM algorithm, formalized by [5], involves first taking the conditional

expectation of the complete data log likelihood (E-step), maximizing this with respect

to the parameters of interest (M-step) and then iterating between these two steps until

a convergence criterion is met. In our setting, the observed data consist of Y, X, and

G and are denoted X(obs), while the complete data consist of Y, X, G, and H and

are denoted X(com). Let Φ be the parameters of interest, as described in each of the

following sections. The complete-data likelihood for Φ is thus given by:

L(Φ|X(com)) =
n∏
i=1

Pr(Yi|Xi,Hi,β)Pr(Hi|θ) (3.3)

where Pr(Hi|θ) is the corresponding haplotype set probabilities for the ith individ-

ual. Notably, this likelihood assumes the haplotype frequencies are independent of

environmental/demographic information. In general, if departures from this assump-

tion are tenable, a stratified analysis may be appropriate. As seen below, Pr(Hi|θ)

depends on the particular assumptions made with respect to the number of infections.

Let Φ̂(t) be the estimate of Φ derived from the tth iteration of the EM algorithm.

Formally, we have that the expectation of the complete data log likelihood conditional

on the observed data and the current parameter estimates is given by:

E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
=

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t)) [logPr(Yi|Xi,Hi,β) + logPr(Hi|θ)]

(3.4)

where:
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piHi
(Φ̂(t)) = p(Hi|Hi ∈ S(Gi), Yi,Xi, Φ̂

(t)) =
Pr(Yi|Xi,Hi, β̂

(t)
)Pr(Hi|θ̂

(t)
)∑

Hi∈S(Gi)
Pr(Yi|Xi, Hi, β̂

(t)
)Pr(Hi|θ̂

(t)
)

(3.5)

Next, we maximize the conditional expectation of the complete data log likelihood

given in Equation 3.4. It is straightforward to show that the (t + 1)th estimate of Φ

can be obtained by finding the root for the following equations:

∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂β

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logL(β|Yi,Xi,Hi)/∂β

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

(Yi − E(Yi|Xi,Hi,β))

[
XT
i HT

i

]T
a(ψ)

= 0

(3.6)

and

∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂θk

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr(Hi|θ)/∂θk = 0

(3.7)

As noted in [25] for the diploid setting, Equation 3.6 reveals that the regression

parameter β can be estimated via weighted regression, where the weights are the
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posterior probabilities of the haplotype sets for each individual, allowing us to use

standard statistical software packages at this step. In the following subsections

we describe estimation under specific assumptions for Pr(Hi|θ). We assume al-

gorithm convergence when max
(
|Φ̂(t) − Φ̂(t+1)|/Φ̂(t)

)
< 1.0 × 10−5. Alternatively,

a convergence criterion can be based on the observed data likelihood, given by∏n
i=1

∑
Hi∈S(Gi)

Pr(Yi|Xi,Hi,β)Pr(Hi|θ).

3.2.2.1 Fixed number of infections

Let δik denote the number of copies of haplotype hk present in the haplotype combi-

nation Hi. First suppose there are exactly C strains present in each individual where

C > 0. That is, assume each individual has exactly C infections, where C is some

known positive integer. Note that this implies
∑K

k=1 δik = C, where δik ranges from

1 to C. Pr(Hi|θ) of Equation 3.3 is thus given by:

Pr(Hi|θ) =
C!

δi1! . . . δiK !

K∏
k=1

θδikk (3.8)

In this case, Φ = (β,θ). Plugging Equation 3.8 into Equation 3.7, we have:

∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂θk

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

(
δik
θk
− δiK
θK

)
= 0 (3.9)

Resulting closed form solutions for θ̂k (see Appendix A) are given by:

θ̂
(t+1)
k =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

nC
(3.10)
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3.2.2.2 Poisson assumption on the numbers of infections

In Section 3.2.2.1 we assume that the number of infections is fixed; however, in gen-

eral this number may be variable for each individual. In this section we relax this

assumption and instead assume a Poisson distribution on the number of infections

per individual, as described in [20]. Since datasets are generally comprised only of in-

dividuals with at least one detectable infection, the conditional Poisson is considered.

Let the Poisson model conditioning on at least one infection is given by:

φc(λ) =


(λc/c!)/(eλ − 1) c > 0

0 c = 0

(3.11)

where φc(λ) is the probability of having c infections. In this case, Φ = (β,θ, λ). Since

the number of strains ci can be determined from Hi, Equation 3.8 for the haplotype

combination probabilities is now replaced by:

Pr(Hi|θ, λ) = Pr(Hi, ci|θ, λ) = φci(λ)
ci!

δi1! . . . δiK !

K∏
k=1

θδikk (3.12)

where ci is the number of infections for ith individual. Estimation of θ proceeds

similar to the setting in which C is fixed. Straightforward calculation (See Appendix

B) leads to closed form solutions for θ̂k given by:

θ̂
(t+1)
k =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))ci

(3.13)

Estimation of λ is achieved by solving:
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∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂λ

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr(Hi|θ, λ)/∂λ

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

(
ci
λ
− eλ

eλ − 1

)
= 0

(3.14)

There is no closed form for λ̂ and a Newton-Raphson procedure can be employed.

In this setting, the number of possible strains in an individual is not limited, which

leads to an infinite sum in the E-step of the EM algorithm. In practice, we consider

the number of strains to be limited by a large number (C) such that the probability

of having more than C infections is small.

3.2.2.3 Semi-parametric approach

Finally, we consider the approach in which no assumptions are made about the dis-

tribution of the number of infections. In this approach, we estimate separately the

probabilities of having exactly c infections where c = 1, 2, . . . , C for C sufficiently

large. Let qc be the probability of having c infections and define q = (q1, ..., qC),

Φ = (β,θ, q). Equation 3.8 for the haplotype set probabilities is now replaced by:

Pr(Hi|θ,q) =
ci!

δi1! . . . δiK !

K∏
k=1

θδikk

C∏
c=1

qI(ci=c)c (3.15)

where I(ci = c) equals to 1 if ci = c and 0 otherwise. Estimation of q proceeds by

solving:

33



∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂qc

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr(Hi|θ,q)/∂qc

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

[
I(ci = c)

qc
− I(ci = C)

qC

]
= 0

(3.16)

and resulting closed form solutions (See Appendix C) for q̂c are given by:

q̂(t+1)
c =

1

n

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = c) (3.17)

3.2.3 Inference

Wald tests are used to test hypotheses of haplotype-trait associations. In order to

do this, estimates of the model parameters and the corresponding variance-covariance

matrix are needed. Estimation of the variance-covariance matrix proceeds by invert-

ing the observed information matrix, which is computed via Louis’ method within the

EM framework [29]. An alternative approach is to approximate the observed informa-

tion matrix with the empirical observed information matrix which can be computed

by [32]:

Ie(Φ; X) =
n∑
i=1

si(Φ)sTi (Φ)|Φ=Φ̂ (3.18)

34



where Φ̂ is the estimates of the parameters in the last EM interation and si(Φ) is the

score function from the observed data likelihood for the ith individual. The score is

given by [31]:

si(Φ) = EΦ{∂logLi(Φ|X(com)
i )/∂Φ|X(obs)

i , Φ̂} (3.19)

For example, under the fixed assumption, we have:

si(Φ) =
∑

Hi∈S(Gi)

piHi
(Φ̂)



[Yi − E(Yi|Xi,Hi,β)]

[
XT
i HT

i

]T
/a(ψ)

(δi1/θ1 − δiK/θK)

...

(δik−1/θk−1 − δiK/θK)



(3.20)

3.3 Data examples

In the following simulation study and real data example we focus on a quantitative

trait for ease of presentation. In this case, g(·) of Equation 3.1 is set equal to the

identity link and we have the following linear regression model:

Yi =

[
XT
i HT

i

]
β + εi (3.21)

We further assume the εi are independent and normally distributed with mean 0 and

variance given by σ2. Notably, this model assumes homoscedasticity and is therefore

35



applicable when the standard deviation of the trait is constant over the values of

X and H. In the real data example provided below, we have no biological reason

to believe that there is a violation of this assumption, though in general, evaluation

of the appropriateness of the homoscedasticity assumption can be achieved through

close examination of residual plots.

3.3.1 Simulation study

In order to evaluate the performance of the methods described in Section 3.2,

we conduct a simulation study and report the type-1 error rates (ER) and power

under each of the three models for the number of infections: fixed, Poisson, and semi-

parametic. For each individual, the simulation starts by generating the number of

infections c. Under the fixed model, the number of infections is set equal to a constant

C. Under the Poisson assumption, c is generated randomly from a conditional Poisson

distribution with assumed rate parameters λ = 2 and λ = 3. Finally, under the semi-

parametric approach, we assume that the number of infections c ranges from 1 to 4

with corresponding probabilities q = (0.3, 0.3, 0.2, 0.2).

Next we simulate the haplotype combination for each individual based on the

multinomial distribution. Four haplotypes, given by h1 = (A1, B1), h2 = (A1, B2), h3 =

(A2, B1) and h4 = (A2, B2), with corresponding population frequencies of

θ = (0.25, 0.35, 0.20, 0.20), are assumed. The trait, Y is generated using random sam-

pling with the error generated from a normal distribution. A single haplotype effect

is assumed with an effect size ranging from 0.2 to 0.8. For simplicity of presentation,

we let σ2 = 1 and vary β. In addition, we consider a model in which there is no

haplotype effect, in which case the response is generated simply from a normal dis-

tribution with mean and variance equal to 1. In all cases, a dominant genetic model

is assumed. For each configuration, B = 200 datasets with sample sizes of n = 500

are generated. Analysis is performed using genotype data and trait information only.
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That is, we assume haplotypic phase and the number of infections is unknown and

apply the methods described in Section 3.2 above.

Simulation results are provided in Table 3.1. Bias, coverage rates, power and ER

are reported. Bias is defined as the absolute difference between the mean parameter

estimates over the simulations and the true value. The estimated standard error of

the parameter estimates based on the simulations is given by ŝe. The parameter

β1, the haplotype effect for the first haplotype h1 = (A1, B1), is varied across the

simulations. Power is defined as the proportion of simulations in which we detect the

true haplotype effect. The ER is the proportion of simulations for which an incorrect

haplotype is detected, averaged over the haplotypes that are assumed to have no

effect.

Under each of the three model assumptions and a range of haplotype effect sizes,

the bias ranges from < 0.001 to 0.086 and the coverage rates are between 0.92 and

0.97. This suggests that our algorithms results in reasonably well calibrated interval

estimates. As expected, the power for detecting the haplotype effect increases as the

effect size increases from 0.0 to 0.8. In general, for samples of size of n = 500, we

achieve > 80% power to detect moderate effect sizes of > 0.40. Notably, however, we

see a reduction in power and an increase in the bias for β1 as the number of infec-

tions (parasite strains) is increased from 2 to 4 under the fixed assumption. This is

likely to be the result of increased ambiguity associated with more possible haplotype

combinations within an individual as the number of infections (C) increases.

In order to evaluate the performance of the proposed method when the number of

infections violates model assumptions, we conduct several sensitivity analyses. First,

we perform estimation using the fixed approach, assuming the number of infections

is equal to 2, when in fact the probabilities of having c infections for c = 1 . . . 5

are all equal to 0.2. The results are presented in Table 3.2(a). Comparing this to

correct application of the semi-parametric method (Table 3.1), we see a dramatic
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power loss and a less severe, but noteworthy, decrease in coverage rates for both β

and θ. In addition, the type-1 ER is substantially larger for β1 ≥ 0.4. Secondly, we

perform estimation using the fixed approach, again assuming the number of infections

is equal to 2, when in fact the number of infections arises from a conditional Poisson

distribution with λ = 2. The results are presented in Table 3.2(b). Comparing these

results to correct application of the Poisson approach with λ = 2 (Table 3.1), we

see a more dramatic decrease in coverage rates for both β and θ. In addition, a

significant decrease in power and increase in the type-1 ER are observed for β ≥ 0.2.

These findings support the use of the more sophisticated modeling approaches in

these setting.

Next, we perform estimation using the Poisson approach when in fact the prob-

abilities of having c infections for c = 1 . . . 5 are all equal to 0.2 and present the

results in Table 3.2(c). Here the modeling approach provides estimates of λ and from

this, we calculate q̂c as (λ̂c/c!)/(eλ̂ − 1). As expected under this type of model mis-

specification, the coverage rates for qc are very low (0.12 − 0.15). Interestingly, the

coverage rates for both β and θ remain at approximately 95% and the power and

ER are reasonable, though slightly worse than using the correct model (Table 3.1).

Finally, we evaluate performance in applying the semi-parametric approach when the

number of infections actually arises from a Poisson with λ = 2. These results are

given in Table 3.2(d) and as expected, we see a slight loss in power for the smaller

effect sizes. For example, for an effect size of 0.4, the power of correctly using the

Poisson approach is 0.87 (Table 3.1). Power for the semi-parametric approach is es-

timated to be 0.81. Since we are not incorporating knowledge about the distribution

of the number of infections the loss in power is expected.
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3.3.2 Multiply infected children with Malaria

Malaria is an infectious disease affecting millions of individuals globally. In fact,

each year an estimated 1-3 million people die as a result of infection with the human

pathogenic Plasmodium species, the group of parasites that causes malaria [3]. The

majority of these deaths are in children under the age of 5 and in resource-constrained

settings since current treatment options are costly or unavailable [17, 18]. Recent ad-

vances in sequencing technologies provide new opportunities for population-based

genetic association studies to uncover complex relationships among genetic polymor-

phisms and measures of disease progression. Ultimately, these discoveries may help

to inform novel strategies for vaccine development.

One of the biggest challenges in characterizing genotype-trait associations in this

setting arises from the fact that individuals can be infected simultaneously with mul-

tiple parasitic strains. In the present investigation, we apply a novel approach to this

challenge (see Section 3.2) to data arising from a cross-sectional study of n = 126

malaria infected children from Uganda. We focus on haplotypes in one polymorphic

region (CSP-TH3) of the gene that encodes for a cellular adhesion domain of the cir-

cumsporozoite protein (CSP). CSP facilitates adhesion of the parasite to liver cells,

a critical initial step in its replication process in a human host [44, 21]. The goal of

our analysis is to uncover haplotype associations with red blood cell (RBC) count

(log-transformed). RBC count is a well-known diagnostic tool for detecting anemia,

a common and often lethal manifestation of malaria.

Data on 12 sites, 10 of which are polymorphic in our sample, are considered.

Across all individuals, we see up to 3 different nucleotides at a site and within a

single individual, between 1 and 2 nucleotides are present at any given site. A total

of 35 unique genotypes are observed in our data and a sample of the data is provided

in [26]. For computational purposes, the set of possible haplotypes is limited to

those with estimated frequencies of greater than 0.01 where frequency estimates are
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obtained using the approach of [26]. We assume a Poisson distribution and apply

the approach of Section 3.2.2.2. A dominant genetic model is assumed, as in the

simulation study.

Estimated haplotype effects on RBC and corresponding p-values for tests of the

null hypotheses that these effects equal 0, are provided in Table 3.3. P-values are

unadjusted for multiple comparisons. Using a Bonferroni adjustment, p-values less

than 0.05/14 = 0.0036 are considered significant at the 0.05-level. A significant

association is observed between red blood cell count and the 3 haplotypes numbered

8, 11 and 12. Interestingly, the effect of carrying at least one copy of haplotype 11

appears to increase RBC count e0.344 = 1.41-fold, suggesting a potential protective

effect. On the other hand, haplotypes 8 and 12 result in a lower RBC count with

estimated decreases of e−0.484 = 0.616-fold and e−0.137 = 0.872-fold, respectively.

Notably, the estimated number of individuals with each of these haplotypes (given

by 126 ∗ θ̂k) is small and further confirmatory research is required to make firm

conclusions.

3.4 Further extensions for the quasi-species setting

In the methods described above for estimation of haplotype effects on a trait,

we incorporate population level haplotype frequencies. These frequencies can be

thought of as the amount of each parasite strain circulating in the mosquito population

that infects humans. Importantly, we assume that the frequencies within individuals

reflect these population level parameters. In other words, the probability of being

infected with a given strain does not depend on prior infections and is equal to the

proportion of this strain in the general population. Patients infected with the human

immunodeficiency virus (HIV) similarly host a population of viruses; however, the

presence of such a quasi-species generally results from external pressures, such as

drug exposures, rather than multiple repeat infections. As a result, the frequencies
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of each haplotype within an individual may not reflect the true population level

frequencies. This is evidenced, for example, by the existence of latent reservoirs of

resistant variants that rapidly emerge in the presence of drug.

For this reason, rather than using population level haplotype frequencies in the

HIV setting, we consider the probabilities that an individual in the target population

carries a given haplotype. Note that while this distinction is subtle, it does require

modification of the estimation approach described in Section 3.2. Again let Gi be

the unphased (observed) multi-site genotype for the ith individual where i = 1, . . . , n.

Further supposeHi represents the combination of unique haplotypes within individual

i where Hi is generally unobservable and multiple values of Hi are consistent with Gi.

We emphasize unique here since in the previously described approach, such a minimal

set was not required. That is, we are now interested in whether an individual carries a

specific haplotype and not in the number of copies. Again, the set of all combinations

that are consistent with Gi is denoted S(Gi) and h1, . . . , hK denotes the K possible

haplotypes over all observed individuals. Let α = (α1, . . . , αK) where αk is the

probability that an individual carries at least one copy of hk and define:

δik =


1 if hk is present in ith individual

0 if hk is not present in ith individual

(3.22)

Under the model given in Equation 3.1, the complete likelihood function can again

be written as in Equation 3.3 where Pr(Hi|θ) is replaced with:

Pr(Hi|α) =
K∏
k=1

αδikk (1− αk)1−δik (3.23)

In this case, estimation of the regression parameter β proceeds as described above

and an estimate of α is obtained by finding the root of the following equation:
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∂E
[
logL(Φ)|X(com)|X(obs), Φ̂(t)

]
∂αk

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))∂ logPr(Hi|α)/∂αk

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))(

δik
αk
− 1− δik

1− αk
) = 0

(3.24)

Resulting closed form solutions (See Appendix D) for α̂k are given by:

α̂
(t+1)
k =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

n
(3.25)

3.5 Discussion

In this manuscript, we describe an approach to estimate and test haplotype-trait

associations among individuals with multiple strains of an infectious agent. Three

approaches to modeling the number of infections are described in Section 3.2 above.

The first, which involves fixing the number of infections to be a constant c, is presented

since it represents a natural extension of the diploid setting, within which c = 2 and

our approach reduces to the EM method of [25]. Since in the infectious disease

setting the number of infections is rarely known with certainty, this first approach

may be more relevant to investigations of polyploidy organisms in which the number

of homologous chromosomes is greater than 2, such as flatworms, goldfish, salmon

and a variety of ferns and flowering plants. Note that the assumption of independent

segregation made in Equation 3.8 needs to be addressed specifically for each of these

settings.

Our simulation study suggests that application of the Poisson approach when

in fact the numbers of infections are c = 1, . . . , 5 with equal probabilities, results
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in reasonable power and type-1 error rates but substantial bias in these probability

estimates. The semi-parametric approach performs reasonably well under the Poisson

model with a slight loss of power. Incorrect application of the fixed approach leads to

more substantial losses in power, reductions in coverage rates and increases in type-1

error rates. Applications of the correct models lead to reasonable power and control

of type-1 error rates.

Coupled with this investigation is the need for appropriate methods for controlling

type-1 error rates in the context of multiple comparisons. In Section 3.3.2, we applied

a Bonferroni correction to assess significance. Alternative single-step and step-down

methods based on the false discovery rate and that account for the correlated nature of

these tests [1, 2, 41] are also tenable. In addition, further consideration of resampling-

based approaches and related extensions [43, 36, 10] may be appropriate. Extensions

of the mixed-effects modeling approaches developed originally for the diploid setting

[12, 11] would offer a single degree of freedom omnibus test for association across all

haplotypes.

Notably, our analysis is limited to data arising from individuals who visited one of

the designated clinics. This may lead to ascertainment bias for several reasons, includ-

ing that the individuals under study exhibited symptoms severe enough to warrant

at least one visit to the doctor. This is a potential limitation of the method described

herein. Specifically, a population-level prevalence greater than 0 of infection by a

strain that results in mild symptoms may result in overestimation of the frequencies

of haplotypes that lead to more severe symptoms.

Application of this EM approach to a small cohort of children in Uganda re-

vealed 3 potentially informative haplotypes within the CSP region of the parasite

genome. In general, characterizing the association between polymorphisms in the

parasite genome and measured traits in an infected human host may provide greater

insight into disease etiology and help to inform new strategies for treatment and
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vaccine development efforts. Drawing meaningful biological and clinical conclusions,

however, will require further analysis. Specifically consideration of host level factors,

such as host genetic profile and clinical or demographic features may be warrented.

The methods described herein provide a general framework and the analytic tools to

investigate such associations under several models of association and models for the

numbers of infections.
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Table 3.1. Simulation Results for dominant model under 3 assumptions

Bias(ŝe)† Coverage rates‡

β∗1 β̂1 –
¯̂
θ β1 – θ̄ Power∗∗ ER∗∗∗

Fixed

C=2

0.0 0.0038 ( 0.132 ) – 0.0008 ( 0.016 ) 0.95 – 0.95 0.05 0.06
0.2 0.0009 ( 0.138 ) – 0.0005 ( 0.015 ) 0.96 – 0.95 0.35 0.07
0.4 0.0060 ( 0.138 ) – 0.0013 ( 0.015 ) 0.96 – 0.95 0.82 0.06
0.6 0.0002 ( 0.126 ) – 0.0003 ( 0.016 ) 0.95 – 0.95 0.99 0.06
0.8 0.0016 ( 0.122 ) – 0.0008 ( 0.015 ) 0.94 – 0.95 1.00 0.05

C=3

0.0 0.0035 ( 0.180 ) – 0.0007 ( 0.018 ) 0.94 – 0.94 0.08 0.07
0.2 0.0122 ( 0.181 ) – 0.0009 ( 0.017 ) 0.95 – 0.95 0.22 0.08
0.4 0.0136 ( 0.187 ) – 0.0006 ( 0.017 ) 0.95 – 0.95 0.59 0.08
0.6 0.0265 ( 0.181 ) – 0.0011 ( 0.017 ) 0.95 – 0.95 0.88 0.08
0.8 0.0291 ( 0.177 ) – 0.0004 ( 0.017 ) 0.95 – 0.94 0.97 0.07

C=4

0.0 0.0128 ( 0.206 ) – 0.0066 ( 0.019 ) 0.94 – 0.92 0.07 0.06
0.2 0.0078 ( 0.223 ) – 0.0037 ( 0.019 ) 0.97 – 0.94 0.20 0.09
0.4 0.0443 ( 0.212 ) – 0.0065 ( 0.020 ) 0.96 – 0.94 0.38 0.06
0.6 0.0856 ( 0.185 ) – 0.0048 ( 0.020 ) 0.93 – 0.95 0.62 0.07
0.8 0.0627 ( 0.197 ) – 0.0046 ( 0.018 ) 0.92 – 0.95 0.88 0.06

Poisson β̂1 λ̂
¯̂
θ β1 λ θ̄ Power∗∗ ER∗∗∗

λ=2

0.0 0.0098 ( 0.126 ) 0.0022 ( 0.111 ) 0.0025 ( 0.020 ) 0.96 0.94 0.94 0.04 0.05
0.2 0.0011 ( 0.150 ) 0.0093 ( 0.105 ) 0.0011 ( 0.019 ) 0.95 0.95 0.95 0.41 0.05
0.4 0.0001 ( 0.128 ) 0.0101 ( 0.089 ) 0.0013 ( 0.020 ) 0.96 0.96 0.97 0.87 0.06
0.6 0.0240 ( 0.129 ) 0.0042 ( 0.116 ) 0.0018 ( 0.020 ) 0.94 0.98 0.96 1.00 0.03
0.8 0.0160 ( 0.146 ) 0.0091 ( 0.104 ) 0.0012 ( 0.019 ) 0.96 0.95 0.94 0.99 0.05

λ=3

0.0 0.0022 ( 0.131 ) 0.0087 ( 0.123 ) 0.0017 ( 0.019 ) 0.96 0.97 0.94 0.04 0.03
0.2 0.0312 ( 0.129 ) 0.0372 ( 0.124 ) 0.0027 ( 0.019 ) 0.95 0.96 0.95 0.44 0.04
0.4 0.0002 ( 0.122 ) 0.0043 ( 0.137 ) 0.0017 ( 0.020 ) 0.94 0.96 0.95 0.91 0.05
0.4 0.0055 ( 0.129 ) 0.0216 ( 0.137 ) 0.0009 ( 0.018 ) 0.93 0.96 0.94 0.99 0.06
0.8 0.0120 ( 0.116 ) 0.0067 ( 0.126 ) 0.0024 ( 0.020 ) 0.97 0.96 0.94 1.00 0.06

Semi-parametric β̂1
¯̂q

¯̂
θ β1 q̄ θ̄ Power∗∗ ER∗∗∗

0.0 0.0034 ( 0.117 ) 0.0112 ( 0.033 ) 0.0024 ( 0.019 ) 0.95 0.79 0.96 0.05 0.03
0.2 0.0082 ( 0.108 ) 0.0119 ( 0.030 ) 0.0027 ( 0.018 ) 0.94 0.85 0.95 0.38 0.06
0.4 0.0024 ( 0.118 ) 0.0119 ( 0.029 ) 0.0018 ( 0.018 ) 0.96 0.81 0.96 0.94 0.06
0.6 0.0321 ( 0.141 ) 0.0132 ( 0.032 ) 0.0027 ( 0.019 ) 0.97 0.83 0.96 1.00 0.04
0.8 0.0015 ( 0.116 ) 0.0119 ( 0.032 ) 0.0007 ( 0.018 ) 0.96 0.83 0.95 1.00 0.05

*β1 is the effect of haplotype h1 = (A1, B1) on Y . †Bias is defined as the absolute
difference between the mean of the estimate over the simulations and the true param-
eter value. ‡Coverage rate is defined as the proportion of simulations for which the
true parameter value is within the corresponding 95% confidence interval. **Power
is the specific power for the haplotype effect of the first haplotype h1.***ER is the

type I error rate.
¯̂
θ and ¯̂q denote averaging across all θ̂s and q̂s, respectively. θ̄ and

q̄ denote averaging across all θs and qs, respectively.
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Table 3.2. Sensitivity Analysis to model mispecification

Bias† Coverage rates‡

β∗1 β̂1
¯̂
θ β1 θ̄ Power∗∗ ER∗∗∗

0.0 0.0016 ( 0.133 ) 0.0332 ( 0.044 ) 0.95 0.90 0.03 0.04
0.2 0.0441 ( 0.165 ) 0.0334 ( 0.045 ) 0.93 0.92 0.22 0.04
0.4 0.0810 ( 0.187 ) 0.0366 ( 0.042 ) 0.92 0.86 0.59 0.12
0.6 0.0761 ( 0.251 ) 0.0303 ( 0.041 ) 0.92 0.88 0.88 0.22
0.8 0.1081 ( 0.329 ) 0.0214 ( 0.044 ) 0.93 0.93 0.95 0.30

(a) Incorrect application of the fixed approach under semi-parametric data. The data
are simulated assuming between 1 and 5 infections with equal probabilities of 0.20
while the estimation approach assumes c = 2 fixed infections. See Figure 1 legend for
definitions of terms.

Bias† Coverage rates‡

β∗1 β̂1
¯̂
θ β1 θ̄ Power∗∗ ER∗∗∗

0.0 0.0158 ( 0.178 ) 0.0640 ( 0.104 ) 0.93 0.99 0.08 0.07
0.2 0.1112 ( 0.175 ) 0.0850 ( 0.083 ) 0.89 0.92 0.13 0.09
0.4 0.1499 ( 0.187 ) 0.0985 ( 0.065 ) 0.91 0.64 0.30 0.16
0.6 0.2177 ( 0.219 ) 0.0972 ( 0.068 ) 0.86 0.68 0.65 0.25
0.8 0.3546 ( 0.353 ) 0.0722 ( 0.092 ) 0.87 0.98 0.83 0.40

(b) Incorrect application of the fixed approach under Poisson distributed data. The
data are simulated assuming a conditional Poisson distribution with λ = 2, while the
estimation procedure assumes c = 2 fixed infections.

Bias† Coverage rates‡

β∗1 β̂1
¯̂q

¯̂
θ β1 q̄ θ̄ Power∗∗ ER∗∗∗

0.0 0.0086 ( 0.115 ) 0.0492 ( 0.009 ) 0.0023 ( 0.022 ) 0.97 0.15 0.95 0.02 0.04
0.2 0.0110 ( 0.142 ) 0.0491 ( 0.009 ) 0.0019 ( 0.022 ) 0.95 0.14 0.95 0.37 0.07
0.4 0.0026 ( 0.129 ) 0.0489 ( 0.008 ) 0.0011 ( 0.020 ) 0.96 0.12 0.94 0.90 0.05
0.6 0.0039 ( 0.141 ) 0.0492 ( 0.008 ) 0.0010 ( 0.021 ) 0.94 0.13 0.96 0.99 0.05
0.8 0.0134 ( 0.102 ) 0.0492 ( 0.009 ) 0.0010 ( 0.020 ) 0.95 0.15 0.94 1.00 0.06

(c) Incorrect application of the conditional Poisson model. The data are simulated
assuming between 1 and 5 infections with equal probabilities of 0.20.

Bias† Coverage rates‡

β∗1 β̂1
¯̂
θ β1 θ̄ Power∗∗ ER∗∗∗

0.0 0.0113 ( 0.114 ) 0.0027 ( 0.019 ) 0.96 0.95 0.04 0.05
0.2 0.0166 ( 0.123 ) 0.0025 ( 0.021 ) 0.95 0.95 0.34 0.04
0.4 0.0316 ( 0.147 ) 0.0025 ( 0.020 ) 0.97 0.96 0.81 0.04
0.6 0.0191 ( 0.115 ) 0.0022 ( 0.021 ) 0.95 0.95 1.00 0.05
0.8 0.0233 ( 0.121 ) 0.0010 ( 0.019 ) 0.94 0.94 1.00 0.04

(d) Incorrect application of the semi-parametric approach under Poisson distributed
data. The data are simulated assuming a conditional Poisson distribution with λ = 2.
The number of infections is assumed to range from 1 to 10.
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Table 3.3. Estimated Haplotype Effects for Uganda

Unique Haplotype Est Freq (θ̂) Est Effect (β̂) SE P-value
1 T G A A C G C C G A G C 0.328 -0.108 0.099 0.278
2 T G A A C G C C G A G A 0.241 -0.066 0.092 0.471
3 T G A A C G C G A A G A 0.103 -0.032 0.106 0.762
4 T G A A C G C G G A G A 0.057 -0.148 0.150 0.324
5 T G G G T A C G G A G A 0.044 -0.257 0.151 0.089
6 T G G G C G C G G A G C 0.046 -0.081 0.240 0.737
7 T G A A C G C C A A G A 0.046 -0.023 0.165 0.891
8 T G G A C G C C G A G C 0.041 -0.484 0.133 <0.001*
9 T G A A C G C G G A G C 0.034 0.200 0.583 0.731
10 T G G G C A C G G A G A 0.022 0.159 0.331 0.631
11 T G G G T G C G G A G A 0.011 0.344 0.008 <0.001*
12 T G G A C G C C G A A T 0.005 -0.137 0.000 <0.001*
13 T G G G C G A G A A G A 0.011 0.292 0.806 0.717
14 T G G A C G C C G A G A 0.009 0.206 2.031 0.919

*Indicates haplotype effect on RBC is significantly different than 0 after applying a
Bonferroni adjustment for multiple-comparisons. Results are based on a sample of
size n = 126 and assume a Poisson model for the number of strains per individual.
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CHAPTER 4

BAYESIAN MODELING WITH AMBIGUOUS CLUSTER
IDENTIFIERS

Summary: Mixed modeling is a useful approach for Characterizing haplotype-trait

associations in the context of population-based association studies of unrelated in-

dividuals. In this setting, clusters are defined as groups of genetically similar indi-

viduals, for example, the individuals who carry a common pair of haplotypes. This

presents an analytical challenge, however, since haplotypic phase (i.e. the alignment

of bases on a single DNA strand) is generally unobservable. Therefore, the cluster

identifier is ambiguous. In this paper, we describe a Bayesian method for estimation

in this missing data setting. Two prior distributions for cluster effects are assumed.

A simulation study is also presented to characterize method performance and assess

sensitivity to distributional assumptions.

4.1 Introduction

Characterizing haplotype-trait associations in the context of population-based as-

sociation studies of unrelated individuals presents several analytical challenges aris-

ing from: (1) the unobservable nature of haplotypic phase and (2) the large number

of potentially informative haplotypes under study. Haplotypic phase refers to the

alignment of alleles on a single homolog, inherited from a single parental genome,

and is relevant in the context of studying genotype-trait associations if the genetic

polymorphisms under investigation are markers for the true disease causing allele.

Phase information is typically not observed in populations of unrelated individuals

since ambiguity arises when heterozygosity is present at more than one locus within
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a gene. In addition to the challenge of phase ambiguity, methods for characteriz-

ing haplotype-trait association require consideration of multiple haplotypes within a

gene. Several methods and related extensions for characterizing haplotype-trait asso-

ciations in human populations have been described [25, 27]. These methods estimate

the haplotype-trait association in a generalized linear model frame work and work

well when the number of haplotypes is small. The number of haplotypes, however,

can be large and is an increasing function of the observed number of single nucleotide

polymorphisms (SNPs), given by M = 2S where S is the number of biallelic SNPs

under study within the corresponding gene. In that case, the number of coefficients

will be large and estimation of halplotype effects will not be feasible.

In a recent manuscript, [11] describe the application of a mixed effects modeling

framework to the setting where clusters are defined as groups of genetically similar in-

dividuals. This is a natural extension of the analysis of data arising from family-based

studies in which clusters are defined as self-declared family units [24]. An expectation

conditional maximization (ECM) approach is developed to account for uncertainty

in the cluster identifiers arising from unobserved haplotypic phase. The primary ad-

vantage of the mixed model is that it addresses the well-known degrees of freedom

problem that arises in the application of an analysis of variance (ANOVA) to this set-

ting. The motivation for clustering based on pairs of haplotypes is multi-faceted. On

the one hand, it is a natural grouping that is similar to grouping by family units since

individuals within the same family tend to have similar genetic profiles. Secondly,

this approach allows for simultaneous consideration of several polymophisms within a

gene since haplotypes are defined based on multiple single nucleotide polymorphisms

(SNPs). This is particularly relevant in the presence of statistical interaction among

SNPs. Thirdly, as discussed above, haplotypes can capture more variability in a dis-

ease trait than genotype data alone, since SNPs are often markers for the true disease

causing variant. Finally, consideration of pairs of haplotypes provides for discovery

of genetic interaction between homologous chromosomes. In this manuscript, we de-

scribe two Bayesian approaches to estimation and testing in the context of mixed

modeling with missing cluster identifiers. Importantly, we distinguish here between
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latent cluster effects on the trait and latent group identifiers. In our context, both the

cluster effects and the cluster identifiers are potentially unobservable. The approach

we present is a natural extension of the Gibbs sampler described for mixed models

and has a marked computational advantage over the ECM approach.

Two assumptions for random cluster effects are used in the proposed model. We

first consider a single normal prior on the random effects and then describe a mixture

modeling approach as a related method for discovering haplotype-trait associations.

In the later, we relax the strict normality assumption described in previous work for

the haplotype setting and assume random cluster effects arise from a discrete mixture

distribution with a Dirichlet process prior. Methods for Bayesian mixture model

fitting are well-described [6, 7, 23]. Interestingly, the Bayesian mixture modeling

naturally handles the ambiguity in cluster identifiers through simply assigning each

ambiguous individual to a single cluster. It also provides a powerful tool for discovery

in the context of a large number of markers. On the other hand, this approach does

not involve reconstructing individual level haplotypes. Thus further extensions are

needed to make conclusions about the specific haplotypes contributing to variability

in the trait and to estimate population level haplotype frequencies.

Bayesian methods for the analysis of data arising from population-based associa-

tion studies of unrelated individuals have been described previously. For example, the

pivotal work of [40] includes application of a Gibbs sampler to reconstruct individual

level haplotypes while drawing strength from a population genetic coalesence model.

Notably, this approach does not address haplotype-trait associations, which is the

focus of the present manuscript. More recently, [38] apply a Bayesian latent class

analysis for whole genome wide association data which, similar to the approach de-

scribed herein, considers random effects that arise from a mixture distribution. Our

approach, however, differs in that we consider haplotype data that are themselves

unobservable, yielding a doubly latent class structure.

In the following section we describe two Bayesian approaches to fitting the linear

mixed model in the context of unobservable cluster identifiers. In Section 4.3, we
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characterize these methods through a simulation study. Finally, in Section 4.4 we

offer a discussion of our findings.

4.2 Methods

In this section we present two Bayesian approaches to fitting a linear mixed model

in the context of unobservable cluster identifiers. While these approaches are broadly

relevant to settings with cluster ambiguity, we describe our methods in the context

of the analysis of population-based genetic association data. In our setting, the aim

is to characterize the association between haplotypes and a quantitative trait. We

begin by defining the associated model and describing clusters based on haplotypes.

4.2.1 Mixed model for haplotype-trait associations

Let y = (y1, . . . , yn) where yi is the observed response for individual i and let

j = (1, . . . , J)index the J possible clusters. Let ci = (ci1, . . . , ciJ) where cij = 1 if

individual i is in cluster j. Throughout this manuscript, we assume the number of

individuals in each cluster follows a multinomial distribution, given by:

[
n∑
i=1

ci|π

]
∝

J∏
j=1

π
∑n

i=1 cij
j (4.1)

where π = (π1, . . . , πJ) and πj is the population probability of an individual belonging

to the jth cluster

In general, because of the ambiguity of cluster identifier, ci is latent. Let S(Gi)

be the set of possible cluster membership for individual i. If S(Gi) has one element,

then ci is known. Let b = (b1, . . . , bJ) denote the latent effects of the J diplotypes.

The model we propose is
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yi|βββ,b, ci, σ2
e

ind.∼ N(xiβββ + cib, σ
2
e), i = 1, . . . , n.

βββ ∼ N(µ0,Σ)

σ2
e ∼ IG(ae, be)

π ∼ Dirichlet(ααα)

(4.2)

where IG denotes the inverse gamma distribution, µ0, Σ0, ae, be are assumed to be

known. To complete the model, we also need a prior on b. We consider two different

priors. The first option is to use a standard linear mixed model, where bj has a single

normal prior distribution.

bj|σ2
b

i.i.d.∼ N(0, σ2
b ), j = 1, . . . , J

σ2
b ∼ IG(a1, b1)

(4.3)

The second option assumes random cluster effects bj follow a discrete distribution

G, where G has a Dirichlet process prior(DPP) [9, 6, 30]. Additional details on the

semiparametic approach we describe are given in [23]. The model is written formally

as:

[bj] ∼ G

[G|M,Φ0] ∼ DP (M ×G0(Φ0))

(4.4)

where G0 is called the base measure and represents a distribution that approximates

the true nonparametric shape of G. The positive scaler M reflects our prior belief

about how similar G is to the base measure G0. For computational purposes, we

select G0 = N(0, σ2
b ).

This second option allows for the possibility that each of the J clusters may not

have distinct effects on the response. In that case, this second option allows the
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posterior for b to take on fewer than J distinct values. We use simulation to explore

the practical effects of these two priors for b in Section 4.3.

Clusters in our setting are defined as sets of individuals who carry a common pair

of haplotypes, called diplotypes, across one or more genes. To understand how clusters

can be formulated, consider the simple setting where there are two biallelic SNPs with

alleles A1/A2 and B1/B2 respectively. In this case there are four haplotypes within a

population, given by h1 = (A1, B1), h2 = (A1, B2), h3 = (A2, B1) and h4 = (A2, B2)

at a given gene. Each cluster is comprised of individuals with one of the ten possible

diplotypes, given by D1 = (h1, h2), D2 = (h1, h3), D3 = (h1, h4), D4 = (h2, h3),

D5 = (h2, h4), D6 = (h3, h4), D7 = (h1, h1), D8 = (h2, h2), D9 = (h3, h3) and D10 =

(h4, h4). Alternative groupings of individuals is also tenable and can incorporate prior

knowledge about the underlying genetic model. For example, if h4 is known to be

a dominant haplotype, then we can additionally group individuals with diplotypes

D3, D5 ,D6 and D10 together. Clusters can also be defined based on the presence

of a single haplotype. In this case, each individual would belong to two clusters

according to the corresponding pair of haplotypes. Now consider an individual who

is heterozygous at both sites, so that the observed genotype is (A1A2, B1B2). This

individual is ambiguous between the two possible haplotype pairs (h1, h4) and (h2, h3).

In fact, we will have haplotype ambiguity for all individuals who are heterozygous at

at least two SNPs within a gene. If the number of SNPs is large, then there are many

ways that this can occur. Since clusters are defined based on haplotype information,

a similar level of ambiguity exists among cluster identifiers. In another words, the

cluster membership is potentially unobserved for some individuals.

4.2.2 Estimation

Since it is difficult to sample the parameters from this joint posterior density, we

use a well-described application of the Gibbs sampling as an approximation. Gibbs

sampling [15, 13]is a form of Markov chain Monte Carlo simulation [33, 19]. It has

been found very helpful in many multidimensional problems. Further details of this

approach can be found in [14] and [16]. Briefly, the idea behind the Gibbs sampling is
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that we are able to generate data from a joint posterior distribution of interest based

on repeated sampling from a series of conditional distributions.

Based on our model in Equation 4.2 and Equation 4.3, the joint posterior density

of all of the parameters under single normal prior is defined as:

Pr(β, b, σ2
b , σ

2
e , π|y, c) ∝ IG(σ2

b |a1, b1)IG(σ2
e |ae, be)N(β|µ0,Σ0)

J∏
j=1

π
αj−1
j

×
n∏
i=1

N(yi|xiβ + cTi b, σ
2
e)

J∏
j=1

N(bj|0, σ2
b )

J∏
j=1

π
∑n

i=1 cij
j

(4.5)

It is straightforward to verify that the conditional distributions for β, bj, σ
2
b , σ

2
e

and π are given by:

[β|b, σ2
b , σ

2
e , π, y, c] ∼ N(Ta, T )

[bj|β, b−j, σ2
b , σ

2
e , π, y, c] ∼ N

(
σ2
b

σ2
e +

∑n
i=1 cijσ

2
b

n∑
i=1

(yi − xiβ)cij,
σ2
eσ

2
b

σ2
e +

∑n
i=1 cijσ

2
b

)

[σ2
b |β, b, σ2

e , π, y, c] ∼ IG

(
a1 +

1

2
J, b1 +

1

2

J∑
j=1

b2
j

)

[σ2
e |β, b, σ2

b , π, y, c] ∼ IG

(
ae +

1

2
n, be +

1

2

n∑
i=1

(yi − xiβ − cTi b)2

)

[π|β, b, σ2
b , σ

2
e , y, c] ∼ D(α +

n∑
i=1

ci)

(4.6)
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where T =
(∑n

i=1 x
T
i xi/σ

2
e + Σ−1

0

)−1
, a =

∑n
i=1 x

T
i (yi − cTi b)/σ2

e + Σ−1
0 µ0 and b−j is

the vector given by (b1, . . . , bj−1, bj+1, . . . , bJ).

Under the assumption of Dirichlet process prior for b, conditional distributions

for b is changed to:

[bj|β, b−j, σ2
b , σ

2
e , π, y, ] ∝ qkδbk +Mq0 ×N(0, σ2

b )
n∏
i=1

[N(xiβ + bj, σ
2
e)]

Icij=1 (4.7)

where qk =
∏n

i=1 [N(xiβ + bk, σ
2
e)]

Icij=1 and q0 =
∫ ∏n

i=1 [N(xiβ + b, σ2
e)]

Icij=1N(0, σ2
b )db.

Notice the above conditional distributions involve cij. Since the cluster identifiers

are potentially unobservable, cij is missing for some i. Therefore, we propose multiply

imputing the cij according to the posterior probability of group membership at the

beginning of each iteration of the sampler. This posterior distribution is defined for

each i and is conditional on the observed data and the most recent sample of the

parameters from the posterior. Formally, for individual i, the posterior probability of

membership to the jth group is given by:

Pr(cij = 1|y, β, b, σ2
e , π) =

Pr(yi|cij = 1)Pr(cij = 1)I[j ∈ S(Gi)]∑J
j=1 Pr(yi|cij = 1)Pr(cij = 1)I[j ∈ S(Gi)]

(4.8)

where Pr(yi|cij = 1) = N(xiβ + bj, σ
2
e), Pr(cij = 1) = πj and I[j ∈ S(Gi)] = 1 if

group j is in S(Gi) and 0 otherwise. Note that when ci is observed, imputation of ci

is not necessary. This is summarized as follows:

The Gibbs sampler for drawing from the posterior distribution, Pr(β, b, σ2
b , σ

2
e , π|y, c),

begins by selecting starting values β(0), b(0), σ2
b

(0)
, σ2

e
(0)

and π(0) and setting t = 0.

The sampler proceeds as follows:

Algorithm 1
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1. For all i and j, impute cij according to Equation 4.8

2. Sample β(t+1) from [β|b(t), σ2
b

(t)
, σ2

e
(t)
, π(t), y, c].

3. Sample σ2
e

(t+1)
from [σ2

e |β(t+1), b(t), σ2
b

(t)
, π(t), y, c].

4. Sample σ2
b

(t+1)
from [σ2

b |β(t+1), b(t), σ2
e

(t+1)
, π(t), y, c].

5. Sample π(t+1) from [π|β(t+1), b(t), σ2
b

(t+1)
, σ2

e
(t+1)

, y, c].

6. Sample b = (b1, . . . , bJ) as follows:

• Sample b
(t+1)
1 from [b1|β(t+1), b

(t)
−1, σ

2
b

(t+1)
, σ2

e
(t+1)

, π(t+1), y, c].
...

• Sample b
(t+1)
J from [bJ |β(t+1), b

(t+1)
−J , σ2

b
(t+1)

, σ2
e

(t+1)
, π(t+1), y, c].

7. Set t = t+ 1 and repeat steps (1)-(6) until convergence is met.

4.2.3 Convergence assesment

In practice, we use the multiple-chain diagnostic method described in [14] to check

for convergence of the algorithm. Briefly, this method involves first generating m

independent Gibbs sampling sequences of length n. Parameters are initialized with

over dispersed values and the Gibbs sampler is run for each set of initial values. Then

the simulations from the second halves of all the sequences together are collected.

For each scaler estimand ψ, let ψij be the ith simulation in the jth sequence. This

method monitor convergence by estimating the factor by which the scale of the current

distribution for ψ might be reduced if the simulations were continued in the limit

n −→∞. This potential scale reduction R̂ is estimated by:

R̂ =

√
ˆvar+(ψ|y)

W

where

ˆvar+(ψ|y) =
n− 1

n
W +

1

n
B

and B and W are the between- and within-sequence variances. They are computed

by the following equation.
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B =
n

m− 1

m∑
j=1

(ψ̄.j − ψ̄..)2,whereψ̄.j =
1

n

n∑
i=1

ψij, ψ̄.. =
m∑
j=1

ψ̄.j

W =
1

m

m∑
j=1

sj
2,wheresj

2 =
1

n− 1

∑
i=1

n(ψij − ψ̄.j)2

(4.9)

If R̂ is not near 1 for all of the parameters, continue the simulation. If R̂ near

1 for all scaler estimands of interest, treat the selected draws as samples from the

target distribution and take summary statistics for our estimates.

4.3 Simulation Study

In order to evaluate our methods described in Section 4.2, we conduct a simulation

study. We start by first assuming the random effects are coming from a single normal

prior, and estimation using 2 approaches described in this manuscript. A detailed

simulation result is presented in Table 4.1 for varying ratios of σb and σe. In this

simulation, a sample size of n = 1000 is assumed. The data is simulated assuming

5% ambiguity, 50 of the n = 1000 observations are ambiguous between the first two

clusters. In all cases, 21 clusters are assumed and frequencies ranging from 0.01 to

0.08. The simulation starts by assuming 21 clusters, each cluster has an assumed

cluster frequency, with the sum of these frequencies equals to 1. Then for each

individual, randomly assign the cluster membership according to these frequencies.

The random effects are generated from a normal distribution with normal 0 and

standard deviation ranging from 0.2 to 0.8. The average standard error(se), cover

rate, and the average confidence interval length are reported. Coverage rate is defined

as the percentage of simulations for which the true parameter value is within the

95% confidence interval. Convergence is evaluated using the method described in

Section 4.2.3. The results shows that both methods work well when σb/σe is 0.4 or

higher. However, when σb/σe = 0.2, the coverage rate for cluster effect b is relatively

low, but the CI length and standard error is smaller under dpp model compared with
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a single normal prior model. Secondly, we assume the random effects are from a

discrete model, and estimate the parameters assuming single normal prior and DPP

model. Specifically, we assume 10 clusters in the data, and the first 4 cluster effects

are some positive number, in our case, 2, 4, 8. The last 6 cluster effects are assumed

to be 0. The simulation result is presented in Table 4.2. Surprisingly, both models

works well. As expected, the bias and CI-length for ambiguous random effects bua are

slightly higher under single normal prior model than DPP model.

Figure 4.1 illustrates the mean of the estimated cluster effect for cluster 1 and

cluster 5 under DPP model.

Figure 4.1. Estimated Random Effects
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4.4 Discussion

In this manuscript, we describe a Bayesian approach to fitting the linear mixed model

in the context of unobservable cluster identifiers. Two priors for cluster effects are

proposed. We first assume the cluster effect follows a single normal distribution; then

we relax this assumption and assume the cluster effect follows a Dirichlet process
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Table 4.1. Simulation Results for differing variance ratios

σb/σe Coverage rates† bias‡

β̄ b̄a b̄ua π̄a π̄ua σb σe β̄ b̄a b̄ua π̄a π̄ua σb σe

0.2 0.97 0.97 0.96 0.93 0.96 0.94 0.96 0.02 0.11 0.11 0.01 0 0.06 0.02
0.4 0.96 1 1 0.92 0.96 0.94 0.96 0.04 0.15 0.14 0.01 0 0.06 0.02
0.6 0.96 1 1 0.96 0.96 0.94 0.91 0.05 0.16 0.16 0.01 0 0.08 0.02
0.8 0.96 1 1 0.93 0.96 0.96 0.95 0.07 0.18 0.19 0.01 0 0.12 0.02

σb/σe CI-Length(se)∗

β̄ b̄a b̄ua π̄a π̄ua σb σe

0.2 .12 ( 0.03 ) 0.62 ( 0.16 ) 0.62 ( 0.16 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) 0.32 ( 0.08 ) 0.09 ( 0.02 )
0.4 0.22 ( 0.06 ) 1.45 ( 0.37 ) 1.43 ( 0.36 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) 0.31 ( 0.08 ) 0.09 ( 0.02 )
0.6 0.28 ( 0.07 ) 2.1 ( 0.54 ) 2.19 ( 0.56 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) 0.41 ( 0.1 ) 0.1 ( 0.03 )
0.8 0.38 ( 0.09 ) 3.02 ( 0.77 ) 3.02 ( 0.77 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) 0.56 ( 0.14 ) 0.09 ( 0.02 )

(a) The cluster effects are generated assuming a single normal prior. Estimation using
single normal prior model.

σb/σe Coverage rates† bias‡

β̄ b̄a b̄ua π̄a π̄ua σb σe β̄ b̄a b̄ua π̄a π̄ua σb σe

0.2 0.97 0.63 0.62 0.91 0.96 – 0.89 0.02 0.15 0.15 0.01 0 – 0.02
0.4 0.96 1 0.99 0.91 0.95 – 0.92 0.04 0.15 0.15 0.01 0 – 0.02
0.6 0.97 1 1 0.94 0.96 – 0.94 0.06 0.16 0.17 0.01 0 – 0.02
0.8 0.96 1 1 0.98 0.96 – 0.96 0.06 0.18 0.18 0 0 – 0.02

σb/σe CI-Length(se)∗

β̄ b̄a b̄ua π̄a π̄ua σb σe

0.2 0.13 ( 0.03 ) 0.31 ( 0.08 ) 0.32 ( 0.08 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) – 0.09 ( 0.02 )
0.4 0.19 ( 0.05 ) 1.25 ( 0.32 ) 1.31 ( 0.33 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) – 0.09 ( 0.02 )
0.6 0.29 ( 0.07 ) 2.12 ( 0.54 ) 2.16 ( 0.55 ) 0.03 ( 0.01 ) 0.03 ( 0.01 ) – 0.09 ( 0.02 )
0.8 0.34 ( 0.09 ) 2.87 ( 0.73 ) 2.94 ( 0.75 ) 0.04 ( 0.01 ) 0.03 ( 0.01 ) – 0.08 ( 0.02 )

(b) The cluster effects are generated assuming a single normal prior. Estimation using
Drichlet process prior (DPP) model.
†Coverage rate is defined as the proportion of simulations for which the true parameter
value is within the corresponding 95% confidence interval; ‡Bias is defined as the
absolute difference between the mean of the estimate over the simulations and the
true parameter value; ∗CI-Length(se)is defined as the lenth of the 95% confidence
interval and the standard error of the parameter estimates; β̄ denotes average over
all βs; b̄a and b̄ua denote average over all random effects bs across ambiguous and
unambiguous clusters. π̄a and π̄ua denote average over all cluster frequencies πs
across ambiguous and unambiguous clusters.
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Table 4.2. Simulation Results for differing random effects

σb/σe Coverage rates† bias‡

β̄ b̄a b̄ua π̄a π̄ua σe β̄ b̄a b̄ua π̄a π̄ua σe

2 0.9 0.93 0.93 0.95 0.95 0.95 0.01 0.23 0.25 0.02 0.01 0.04
4 0.9 0.94 0.95 0.94 0.95 0.93 0.01 0.21 0.24 0.02 0.01 0.04
8 0.93 0.94 0.94 0.95 0.96 0.97 0.01 0.19 0.25 0.02 0.01 0.04

σb/σe CI-Length(se)∗

β̄ b̄a b̄ua π̄a π̄ua σe

2 0.06 ( 0.01 ) 0.9 ( 0.23 ) 1.15 ( 0.29 ) 0.11 ( 0.03 ) 0.07 ( 0.02 ) 0.18 ( 0.05 )
4 0.06 ( 0.01 ) 0.96 ( 0.24 ) 1.21 ( 0.31 ) 0.11 ( 0.03 ) 0.07 ( 0.02 ) 0.21 ( 0.05 )
8 0.06 ( 0.01 ) 0.91 ( 0.23 ) 1.25 ( 0.32 ) 0.1 ( 0.03 ) 0.07 ( 0.02 ) 0.18 ( 0.05 )

(a) The cluster effects are generated from a discrete distribution, with the b1 through
b4 equals a positive number from 2 to 8. Estimation using single normal prior model.

σb/σe Coverage rates† bias‡

β̄ b̄a b̄ua π̄a π̄ua σe β̄ b̄a b̄ua π̄a π̄ua σe

2 0.9 0.91 0.93 0.96 0.95 0.97 0.01 0.22 0.2 0.02 0.01 0.05
4 0.94 0.93 0.94 0.97 0.94 0.95 0.01 0.19 0.18 0.02 0.01 0.04
8 0.93 0.95 0.95 0.95 0.94 0.95 0.01 0.2 0.17 0.02 0.01 0.04

σb/σe CI-Length(se)∗

β̄ b̄a b̄ua π̄a π̄ua σe

2 0.06 ( 0.01 ) 0.98 ( 0.25 ) 0.95 ( 0.24 ) 0.1 ( 0.03 ) 0.07 ( 0.02 ) 0.22 ( 0.06 )
4 0.06 ( 0.02 ) 0.93 ( 0.24 ) 0.92 ( 0.23 ) 0.1 ( 0.03 ) 0.07 ( 0.02 ) 0.21 ( 0.05 )
8 0.06 ( 0.01 ) 0.98 ( 0.25 ) 0.9 ( 0.23 ) 0.11 ( 0.03 ) 0.07 ( 0.02 ) 0.19 ( 0.05 )

(b) The cluster effects are generated from a discrete distribution, with the b1 through
b4 equals a positive number from 2 to 8. Estimation using DPP model. See Figure 1
legend for definitions of terms.
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prior(DPP). Gibbs sampler is used to arrive at the estimates. To address the ambi-

guity of the cluster identifiers, we impute the cluster membership according to the

posterior probability of belonging to each cluster at beginning of each iteration.
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CHAPTER 5

CONCLUSION

Three methods have been described in my thesis.

In chapter 2, I described a novel model fitting approach to arriving at maximum

likelihood estimates of haplotype frequencies in a population of children multiply

infected with the parasite that causes malaria. This approach offers two primary

advantages over existing methods. First, the computational efficiency of our algorithm

allows us to characterize a large number of sites. Secondly, our method also allows

for a variable number of clones within an individual, making it more flexible than

approaches designed for diploid populations.

In chapter 3, I described a method for estimation and test the haplotype effect

on the disease phenotype. Inferring the haplotype effect is important because the as-

sociation between the disease phenotype and the haplotypes is likely to provide more

information on the complex relationship between genetic variation and phenotype

than any single SNP can provide. Characterizing the association between polymor-

phisms in the parasite genome and measured traits in an infected human host may

provide insight into disease etiology while ultimately informing new strategies for

improved treatment and prevention. The method I proposed provides a comprehen-

sive framework for simultaneous estimation of population haplotype frequencies and

haplotype-trait associations in a general setting where the number of clones within

an individual is variable.

In chapter 4, I described two Bayesian approaches for estimation and testing in

the context of mixed modeling with missing cluster identifiers. In the method we

proposed, two prior distributions are assumed for cluster effects. First we assume a

single normal prior. Then we relax this assumption and instead assume a Dirichlet
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process prior. Gibbs sampler are used for iteratively arriving at estimation. In or-

der to account for the unknown cluster identifier, we propose to impute the cluster

membership for each individual at the beginning of each iteration.
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APPENDIX A

FIXED ASSUMPTION ON THE NUMBER OF
INFECTIONS

Note that the sum of the population level haplotype frequencies must equal 1, so we

have θK = 1−
∑K−1

k=1 θk. Equation 3.9 is then given by:

∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂θk

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

(
δik
θk
− δiK

1−
∑K−1

k=1 θk

)
= 0

for k = 1, . . . , K − 1, or equivalently,



∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

θ1∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi2

θ2

...∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δiK−1

θK−1


=



∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δiK

1−
∑K−1

k=1 θk∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δiK

1−
∑K−1

k=1 θk

...∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δiK

1−
∑K−1

k=1 θk


(A.1)

Note that all of the elements of the vector in the right hand of the above equation

are equal. Therefore, we can set the first element of the vector in the left hand of

Equation A.1 equal to each of the remaining elements of this vector. That is, for

k = 2, . . . , K − 1, we have:

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

θ1

=

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

θk

or equivalently:
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θk =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

θ1 (A.2)

Thus we can derive an estimate of θ1 and then use Equation A.2 to find estimates

of θk for k = 2, . . . , K − 1. To find θ̂1, note we can write:

1−
K−1∑
k=1

θk = 1− θ1 − θ1

K−1∑
k=2

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

Therefore from the first element of Equation A.1, we have:

θ1

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δiK

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

(
1− θ1 − θ1

K−1∑
k=2

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

)

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1 − θ1

K−1∑
k=1

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

Equivalently:

θ1

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

K∑
k=1

δik =
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1 (A.3)

Note
∑K

k=1 δik = C and
∑
Hi∈S(Gi)

piHi
= 1 and so Equation A.3 yields:

θ̂
(t+1)
1 =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

nC
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APPENDIX B

POISSON ASSUMPTION ON THE NUMBER OF
INFECTIONS

Under the Poisson assumption, we have
∑K

k=1 δik = ci and therefore Equation A.3 is

written:

θ1

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))ci =

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1

resulting in

θ̂
(t+1)
1 =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δi1∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))ci
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APPENDIX C

SEMI-PARAMETRIC ASSUMPTION

Note that the sum of the qc must equal 1, so we have qC = 1 −
∑C−1

c=1 qc and Equa-

tion 3.16 is given by:

∂E
[
logL(Φ|X(com))|X(obs), Φ̂(t)

]
∂qc

=
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

[
I(ci = c)

qc
− I(ci = C)

1−
∑C

c=1 qc

]
= 0

for c = 1, . . . , C − 1. This is equivalent to:



∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=1)

q1∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=2)

q2

...∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=C−1)

qC−1


=



∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=C)

1−
∑C

c=1 qc∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=C)

1−
∑C

c=1 qc

...∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci=C)

1−
∑C

c=1 qc


(C.1)

Since all of the elements of the vector on the right hand side of the above equation

are equal, we can set each element of the vector on the left hand side equal to first

element of this vector. That is, we can write:

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = 1)

q1

=

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = c)

qc

for c = 2, . . . , C − 1. Equivalently, we have:
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qc =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = c)∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = 1)

q1 (C.2)

Thus, similar to the estimation of θ in Appendix A.1, we can derive an estimate of

q1 and then use Equation C.2 to find estimates of qc for c = 2, . . . , C − 1. To find q̂1,

note we can write:

1−
C−1∑
c=1

qc = 1− q1 − q1

C−1∑
c=2

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = c)∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = 1)

and using the same approach as we did for deriving Equation A.3, we have:

q1

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))

C∑
c=1

I(ci = c) =
n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = 1) (C.3)

Since
∑C

c=1 I(ci = c) = 1 and
∑
Hi∈S(Gi)

piHi
= 1 Equation C.3 yields:

q̂
(t+1)
1 =

1

n

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))I(ci = 1)
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APPENDIX D

ESTIMATION IN QUASI-SPECIES SETTING

From Equation 3.24, we have:

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

αk
=

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))(1− δik)

(1− αk)
or equivalently:

αk

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t)) =

n∑
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik (D.1)

Since
∑n

i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t)) = n, Equation D.1 yields:

α̂
(t+1)
k =

∑n
i=1

∑
Hi∈S(Gi)

piHi
(Φ̂(t))δik

n
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