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ABSTRACT 

ENHANCING MANAGEMENT OF BUILT AND NATURAL WATER AND 
SANITATION SYSTEMS WITH DATA SCIENCE  

MAY 2022 

NELSON DA LUZ, B.S., MANHATTAN COLLEGE 

M.E., MANHATTAN COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Emily Kumpel 

In the age of the data revolution, the civil engineer can enhance the management of 

infrastructure systems using new techniques focused on data. This dissertation present three studies in 

which data science approaches are used to enhance management of water and sanitation systems in 

both the built and natural environments. Chapters 1 and 2 focus on improving methods for data 

collection relating to water quality monitoring. In Chapter 1, the efficacy of different water quality 

sampling program designs is evaluated as the programs relate to meeting monitoring goals. 

Considerations include how timing, location, and distribution system operations can affect monitoring 

program outcomes. In Chapter 2, a framework for water quality monitoring program development 

based on a systematic understanding of potential hazards (The Hazard Based Water Quality 

Monitoring Planning Framework) is developed and tested for a large and important watershed in 

Massachusetts. A method for leveraging long-term datasets to evaluate sampling frequencies is also 

presented. Chapter 3 focuses on geospatial data processing and machine learning techniques that can 

be used to predict locations of buried sanitation infrastructure. A path forward for scaling up that 

work to the national level in the United States is presented. These studies provide strong examples of 

how the future of the field of civil engineering can be improved using data science.  
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INTRODUCTION 

The civil engineer in particular is responsible for “planning, designing, constructing, 

maintaining, and operating infrastructure while protecting the public and environmental health, as 

well as improving existing infrastructure that may have been neglected” (Wikipedia contributors, 

2021). Questions of interest to civil engineers include: 1) “How do we know if a system is operating 

properly?”, 2) “How do we plan well?”, and “What lets us know what has to be maintained?”.  

The term “data revolution” coined in 2013 is defined by a sharp increase in the volumes, 

sources, and speed with which data are produced and disseminated (United Nations, 2014). The same 

report had the following statement: “Data are the lifeblood of decision-making and the raw material 

for accountability” (United Nations, 2014). As civil engineers are accountable for decision-making 

relating to infrastructure, they must make use of all tools available to them to enhance management of 

infrastructure, particularly data science tools in the age of the data revolution.  Many fields including 

civil and environmental engineering have begun to embrace the idea of the data revolution, but there 

exists a large gap between practitioners’ data skills and optimal use of data for solving civil and 

environmental engineering challenges.  The data revolution is dependent on data science, which we 

can define as “the multidisciplinary field that combines data analysis with data processing methods 

and domain expertise, transforming data into understandable and actionable knowledge relevant for 

informed decision making” (Gibert et al., 2018). Here, I present three studies as evidence that 

application of data science tools can enhance the management of civil infrastructure systems, 

particularly built and natural water and sanitation systems. The first two studies focus primarily on 

data collection and analysis methods while the third study focuses on big data processing and 

machine learning.  

The first two studies presented address the civil engineer’s questions of 1) “How do we know 

if a system is operating properly?” and 2) “How do we plan well?”. These first two studies focus on 

water quality monitoring, a key source of data relating to management of both built (e.g. piped 

distribution systems) and natural water systems (e.g. surface water resources). Water quality 
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monitoring is an important method for agencies responsible for the protection of water resources to 

characterize the suitability of water for its designated purpose. The information determined through 

water quality monitoring can have important effects on how water systems are operated and on how 

risks are managed.  Water quality monitoring is often used for understanding drinking water, source 

water protection (surface waters and groundwater), recreational water, and ambient waters. Across all 

these areas, the primary considerations are the management of risk to water users and protecting 

human and environmental health. In thinking about water quality monitoring in any of these areas, 

one must consider the decisions that go into the development and usefulness of the programs for 

water quality monitoring and subsequent data analysis. Principal considerations for water quality 

monitoring program development are examining when and where to monitor for water quality, 

agency resources and abilities, and what parameters to sample for in different scenarios. Our primary 

objectives lie beyond examining these design variables though. We are mainly concerned with seeing 

how the design of a sampling program impact the information that is generated and the knowledge 

than can be gained from the program.  

Key aspects of designing water quality monitoring programs (WQMPs) across all these areas 

include network layouts, sample collection, laboratory analysis, data handling, data analysis, and 

information utilization (Sanders, 1983). Designing WQMPs that are useful and informative depends 

heavily upon establishing objectives of the monitoring program at the beginning of development and 

well before implementation (Khalil and Ouarda, 2009). Water quality monitoring network design 

includes selection of sampling locations, sampling frequencies (how many samples over a given time 

period), and water quality parameters to monitor. Aspects of drinking water quality monitoring 

programs such as sampling frequencies and water quality parameters to monitor for are clearly 

dictated in some drinking water regulations (e.g. The EPA Total Coliform Rule (TCR) specifies the 

required number of samples and water quality parameters). At other times, however, the regulations 

are not as clear. (e.g. The TCR is vague on where to sample).  Aspects of surface water quality 

monitoring programs such as when and where to monitor are generally not as clearly defined by 
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regulations. The parameters to monitor to meet certain water quality criteria can be somewhat 

ambiguous in surface water quality regulations. In the US, surface water quality standards exist that 

stipulate acceptable numerical concentrations of constituents in water, but there are also narrative 

standards for water quality such as aesthetics that may not specify a particular constituent or 

contaminant and do not have a numerical limit (US EPA, 2008). 

In Chapters 1 and 2, I address key issues relating to water quality monitoring for both 

drinking water distribution systems and surface waters. A key part of my research is finding practical 

ways for water suppliers and water managers to carry out monitoring that will allow them to meet 

compliance requirements while also generating informative data useful for decision-making purposes. 

First, I address challenges in choosing representative sampling locations for water quality sampling in 

piped distribution systems. Second, I propose and test a framework for WQMP development based on 

a systematic understanding of potential hazards (Hazard Based Water Quality Monitoring Planning).  

The third study presented addresses the civil engineer’s third question: “What lets us know 

what has to be maintained?”. There has not been a national effort to collect detailed data on the 

sanitation infrastructure systems serving the population since the 1990 Census when at least 20% of 

the population were served by septic systems (US Census Bureau, 1993). Sanitation systems can be 

centralized (e.g. sewer systems) or decentralized (e.g. on-site wastewater treatment systems (OWTS) 

or septic systems). With a large portion of the population served by septic systems, it is important to 

quantify where these systems are located, how prevalent they are, if they serve their purpose, and 

what populations are served by them. All septic systems lead to some level of groundwater 

contamination, but improperly managed septic systems can be a leading contributor to contamination 

of groundwater (McQuillan, 2004) and disease in areas of high septic system density (Borchardt et 

al., 2003). Coincidental with the lack of data on where these systems are located is a lack of data on 

what populations are served by them. There is evidence that United Nations Joint Monitoring 

Programme (JMP) estimates of access to sanitation services in the US are inaccurate (Capone et al., 

2020).  
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In Chapter 3, we address this lack of up-to-date data on buried sanitation infrastructure. 

Machine learning techniques have become prevalent in addressing challenges related to buried 

infrastructure (Singh and Nene, 2013; Travassos et al., 2020) including drinking water systems (Shi et 

al., 2017) and sewer systems (Kleiner et al., 2006). I present a framework for processing publicly 

available datasets and then using that processed data with machine learning models to predict 

prevalence of sanitation infrastructure types and introduce a process for evaluating relationships 

between sanitation infrastructure service types and environmental justice populations.  

The aim of these three studies is to accomplish the following objectives: 

(1) Evaluate the effectiveness of sampling programs in representing distribution system water 

quality. This is accomplished by investigating whether the definition of representative used to 

establish sampling locations and times in a piped distribution system will have a significant impact on 

conclusions about water quality parameters including disinfectant residual in comparison to true 

system conditions, or about protection of public health. The approach is validated by evaluating the 

effectiveness of sampling programs using water quality models for two different distribution systems 

as a basis for comparison.  

(2) Establish a method for water quality monitoring program development based on a 

systematic understanding of potential hazards (Hazard Based Water Quality Monitoring Planning). I 

present a framework for developing a monitoring plan from initiation of a reason for needing 

monitoring through reviewing plan effectiveness after implementation. This framework is 

implemented in cooperation with an agency responsible for water supply protection. In applying the 

framework, a method for evaluating effect of sampling frequency on long-term trend detection is also 

shown.  

(3) Develop methods for predicting prevalence of buried sanitation infrastructure. I first 

present geospatial data processing techniques that are used to generate input datasets for use with 

machine learning models. I apply these techniques to three counties in the state of Florida, train 

classification tree models using the processed datasets, and evaluate model performance. Finally, I 
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compare known sanitation infrastructure prevalence against environmental justice data from the US 

Environmental Protection Agency’s EJSCREEN products.  

Within this dissertation, I present the background from academic literature, develop novel 

techniques for enhancing water quality data collection, and demonstrate use of data intensive 

approaches for sanitation infrastructure asset management. Pathways for future work are presented 

with a discussion of the impact of each study on the field of water and sanitation infrastructure 

management.  
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CHAPTER 1 

EVALUATING THE IMPACT OF SAMPLING DESIGN ON DRINKING WATER 

QUALITY MONITORING PROGRAM OUTCOMES 

This chapter appeared as da Luz, N., Kumpel, E., 2020. Evaluating the impact of sampling 

design on drinking water quality monitoring program outcomes. Water Research 185, 116217. 

https://doi.org/10.1016/j.watres.2020.116217 

1.1 Introduction 

Water suppliers are required to monitor water quality in their distribution systems. To do so, 

suppliers must develop a water quality monitoring program (WQMP), the purpose of which is to 

provide information about whether the water suppliers are providing is safe for consumption and alert 

them of potential risks to human health (Rahman et al., 2011; World Health Organization, 2011). Key 

aspects of an effective WQMP include clearly establishing the objectives of the monitoring program, 

and then setting the locations of sample collection, timing of sample collection, and numbers of 

samples collected to meet those objectives (Ellis, 1989; Khalil and Ouarda, 2009; Sanders, 1983).  

Water suppliers use the data collected from WQMPs to demonstrate compliance with regulations and 

to make decisions on system operations; whether these objectives can be met depend on the design 

and constraints of the plan. In the words of Ellis (1989), “Today’s programme design becomes 

tomorrow’s programme interpretation.” However, while there are often stated objectives of many 

regulatory monitoring activities, guidance on designing plans - and, in particular, the locations for 

collecting grab samples - that can meet those objectives is more limited (Narasimhan et al., 2004; US 

EPA, 2007).  

Requirements for selecting locations for sample collection vary throughout the world. 

Drinking water quality regulations like the United States Environmental Protection Agency’s 

(USEPA) Revised Total Coliform Rule (TCR) often specify that sampling locations should be chosen 
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to be representative of water quality throughout a distribution system (US EPA, 2015), but guidance 

specifying what makes a sampling location representative is limited. In what appears to be a 

fundamentally different approach, the World Health Organization recommends that sampling location 

selection consider places with increased likelihood of contamination (World Health Organization, 

2011). According to the European Drinking Water Directive, samples should be equally distributed in 

both time and location (European Union, 1998). Considering the variation in guidance on sampling 

location selection, there is a need to better define and test what representative means in the context of 

sampling program location selection as it pertains to guidance for grab samples collected and tested 

for compliance purposes.    

Drinking water contains physical, biological, and chemical constituents that can be important 

to monitor to evaluate potential risks to human health. Immediate risks to human health may be posed 

by pathogens, commonly evaluated by detection of indicator organisms like total coliform or E. coli. 

While these indicators are often not correlated with human health in drinking water, they, and 

measures such as heterotrophic plate counts, can be used to indicate whether a treatment process or 

distribution system may be compromised (Edberg et al., 2000; Francisque et al., 2009; Pepper et al., 

2015). However, monitoring of bacteriological indicators in drinking water presents challenges 

because of low coliform occurrence in well-functioning distribution systems (Besner et al., 2002). 

Free chlorine concentration (i.e. free chlorine residual, FCR) can be used as a proxy of bacteriological 

quality in cases where it is added as a secondary disinfectant (National Research Council, 1980). 

Additionally, the US Surface Water Treatment Rule (SWTR) requires residual disinfectant 

concentration to be measured at the same time as total coliform samples and states that residual 

disinfectant concentration should not be undetectable in more than 5% of samples in a month  

(National Primary Drinking Water Regulations (40 CFR 141), 2006). This makes FCR an important 

water quality parameter to monitor.  

Previous studies evaluating whether sampling strategies could detect or represent 

bacteriological or disinfectant residual in a distribution system have focused on how to select 
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locations, water quality modeling methods, and event detection. A randomized stratified sampling 

method employed by Speight et al. (2004) identified distance from a treatment plant with 

proportionate location allocation as the most effective method of representing FCR throughout the 

system. Further work employing similar methods demonstrated that fixed location continuous 

monitors may not be effective for monitoring systemwide disinfectant residual conditions (Speight, 

2009). Grayman et al. (2008) proposed using a Monte Carlo simulation approach to generate 

synthetic water quality futures under which sampling programs could be evaluated. Other studies 

have explored whether sampling strategies (including locations, timing, and numbers for grab 

samples or continuous monitoring with sensors) could be designed to detect contamination events. 

For example, a case study using simulated contamination events found that standard monitoring 

programs (through grab sampling) have a low probability of detecting even severe fecal 

contamination by E. coli in drinking water mains (e.g. 5% chance of detection for a 16 h intrusion of 

raw sewage into a distribution main) (van Lieverloo et al., 2007). Similarly, an evaluation of 

alternative sampling options (i.e. three times per month, daily, and continuous) for total coliforms 

found that the possibility of event detection varied based on event characteristics (e.g. high duration 

and magnitude) and monitoring option used; the TCR-based sampling program could not detect any 

tested events (Grayman et al., 2007). Other work has focused on placement of continuous sensors for 

detecting contamination and FCR (Helbling and VanBriesen, 2008; Ostfeld et al., 2008). However, 

we identified three gaps in the literature on selecting sampling locations in distribution systems. First, 

previous studies have developed strategies that rely on calibrated hydraulic models and copious 

system information; however, many systems lack such tools and information (Hart and Murray, 

2010). Second, many of these studies have selected from ‘ideal’ or optimized locations (Ostfeld et al., 

2008), location selection methods (Speight, 2009; Speight et al., 2004), and timings (Grayman et al., 

2007; Ostfeld et al., 2008). However, these may not be feasible in practice; in reality, many utilities 

have sampling programs where they only sample at certain times of day and from some locations 

(Narasimhan et al., 2004; Speight et al., 2004). Third, there has been limited research conducted on 
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the impacts of routine, regulatory monitoring methods on sampling program outcomes and 

implications.  

The objective of this research is to quantitatively assess how differences in sampling program 

designs based on the likely practices of real-world utilities affect the information they offer to water 

utilities and regulators.  

1.2 Methods 

We designed sampling programs that consist of four main parts: the locations where samples 

are taken, location selection method, timing of sample collection, and number of samples taken in a 

given week (Fig. 1.1). To evaluate the sampling programs, we used EPANET 2.0, an open-source 

hydraulic and water quality modeling software (Rossman, 2000), using water quality models for two 

piped water distribution networks (BWSN (Battle of the Water Sensor Networks) and MWSC 

(Midwestern Small City)). This study focuses on systems that effectively have one disinfectant dosing 

location, as approximately 69% of United States utilities surveyed indicated not using disinfectant 

booster stations in their systems (AWWA Disinfection Committee, 2018). We evaluated efficacy of 

the sampling programs by their ability to accurately reflect modeled system water quality conditions 

on weekly and daily timescales. We also investigated the effects of operational changes and fixed 

(constant) sampling location selection on sampling program results. Finally, we compared results for 

the two modeled networks.  
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Fig. 1.1  Overview of Study Methods 

1.2.1 Sampling program design  

The definition of sampling programs that are ‘representative’ of a network is often left up to 

interpretation due to ambiguity in guidelines and requirements (US EPA, 2007). We define location 

cases as either representative of (1) the whole system, or (2) worst quality (Table 1.1) based on 

suggestions for possible ways to account for temporal and spatial variability in water quality (Ellis, 

1989). These potential location cases are not exhaustive, but they demonstrate a range of definitions 

of representative. The location cases used here are generally designed to reflect sample location 

selection methods of utilities who have not or do not have the ability to use computer-based 

optimization techniques or rely on use of a hydraulic model to aid in sample location selection.  
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Table 1.1 Location cases and associated descriptions of node (i.e. possible sampling location) 

selection methods. 

Location Case Short Name Description of Node Selection 

Number of Nodes to 
Select from 

BWSN MWSC 
Whole System 

 
   

All locations (Simple Random) All  All Sample Nodes  12525 960 

Geographically distributed 
locations 

GeoGrid 10000ft x 10000ft grid cells *  *  

Balanced Allocation Stratification BalStrata Concentric rings spaced one mile 
apart 

*  *  

Worst Quality  
 

   

20% Furthest Locations Far20 Based on shortest distance to each 
node from source 

2506 192 

Locations below target at least 50% 
of simulation 

Below50 Based on water quality model 
results 

1604 317 

Extremities/dead ends DeadEnds Locations of “dangling” nodes 1680 169 

*For these location cases, all network nodes are available for selection, but selection of particular nodes is limited by map 
features.  

 

Locations for sampling is a key aspect of sampling programs. Each network to be tested was 

converted into ArcGIS format (Esri, 2016). Pipe lengths were verified in ArcGIS (i.e. ArcGIS vector 

length had to match EPANET pipe length parameter input) before carrying out node selection.  

�x All (Fig. 1.2a): All nodes, meaning all potential points for water quality sample collection 

(e.g. consumer taps, hydrants, or storage tanks typified by a junction or tank object in 

EPANET), in the network are possible sampling locations. This location case represents a 

simple random selection of locations, a method used to remove bias from selection procedure 

and generate a representative sample (Gravetter and Forzano, 2012).  

�x GeoGrid: Geographically Distributed Locations (Fig. 1.2b): A grid of 10,000ft by 

10,000ft cells was laid over the network using ARCGIS. One node was randomly selected 

from a grid cell up to the number of grid cells corresponding to the number of samples to be 

collected (e.g. if 38 samples are required, 38 grid cells are randomly selected with one node 

randomly selected from within each cell). This location case represents a scenario where a 

utility lacks a hydraulic model and has limited information about water quality but wants to 

attempt coverage of different areas in their distribution system.  
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�x BalStrata: Balanced Allocation Stratification (Fig. 1.2c): Concentric rings, spaced one 

mile apart from each other (a distance-based stratum), were centered around the distribution 

system’s sources of water using ARCGIS, and an approximately equal number of sampling 

locations was chosen from within each ring which represents a stratum. This location case 

represents a scenario where a utility wants to determine water quality characteristics in 

different areas of their system.  

�x Far20: Furthest 20% of points from the source (Fig. 1.2d): The shortest length from the 

system’s disinfectant sources to each node in the network was determined using ARCGIS. 

The 20% furthest sampling nodes were then set as potential sampling nodes. This location 

case represents a scenario where a utility expects to find the worst quality water at the points 

of their system furthest from its treatment facility due to increased water age (Li et al., 2019; 

Mercer, 2011). 

�x Below50: Locations below target for at least 50% of simulation (Fig. 1.2e): Potential 

sampling nodes were determined using water quality model results to identify nodes with < 

0.2 mg/L FCR for at least 50% of all time steps. Employing this method is only possible for 

utilities with an available water quality model or detailed data from an extensive grab 

sampling campaign designed to identify such areas. This location case represents a scenario 

where a utility prioritizes sampling at locations for which consistent poor water quality is 

expected.  

�x DeadEnds: Extremities/dead ends (Fig. 1.2f): Potential sampling nodes were determined 

by identifying the locations of pipes with an isolated endpoint using ARCGIS. This allowed 

for identification of network dead ends, which are typical points of stagnation (and therefore 

poor water quality) (Barbeau et al., 2005; Galvin, 2011).  
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Fig. 1.2 Location cases in the BWSN network including pipes (grey), network nodes available 

for selection for each location case (red circles), and reservoirs (black pentagons). 

 

Location Selection Methods. The evaluated sampling programs selected Varying Locations, 

meaning that sampling locations were chosen from a pool of potential locations each time that 



14 

program was used. We also evaluated selecting Constant Locations, meaning that sampling locations 

were chosen from a more restricted pool of sampling locations. 

Timing of Sample Collection. Three timing scenarios were used: 24-hour (any hour of the 

day), 7am-12pm, and 6am-4pm. The two restricted timing scenarios were based on sample collection 

times that coincide with working hours of water system operators. Sampling programs were evaluated 

on two time scales: weekly (i.e. the entire simulation) and daily (i.e. each day of the simulation). 

These were used because they are horizons over which a distribution system operator may be 

interested in reviewing water quality sampling results and altering operational decisions. 

Number of samples collected (sample frequency). The USEPA’s TCR requires public water 

suppliers to take a minimum number of total coliform samples each month as determined by the 

population served by the system (US EPA, 2015). We used the table from the TCR to determine this 

minimum number of monthly samples based on the population served for each. We then divided by 4 

(weeks) to determine the number of samples that would need to be taken in a typical week for 

compliance purposes (i.e. 150 samples/month/4 equates to 38 weekly samples for a network serving a 

population 250,000 and 20 samples/month/4 equates to 5 weekly samples for a network serving a 

population of 20,000). We also evaluated alternate sampling frequencies (e.g. increasing the number 

of samples beyond the minimum requirement (1.5x for BWSN and 2x for MWSC). Daily sampling 

frequencies were calculated by having an approximately equal number of samples per day based on 

the weekly sampling frequency.  

1.2.2 Distribution Systems and Hydraulic Models 

Two EPANET water quality models were used to model FCR (i.e. disinfectant residual 

concentration), and we evaluated the sampling programs using the water quality output of each 

EPANET model. Application of sampling program designs to water quality model outputs and 

statistical analysis of sampling program results were carried out in R (R Core Team, 2017). 
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Simulations were used to generate 1000 possible outcomes for each sampling program (with parallel 

processing using the snow package) with a set seed of 23. Results were evaluated on weekly and daily 

timescales.  

1.2.2.1 System 1: BWSN 

The first EPANET model was based on Network 2 from the Battle of the Water Sensor 

Networks (BWSN) (Ostfeld et al., 2008), with some adjustments to enable the spatially-based 

network location selections in this study. Briefly, corrections were made to pipe length using ArcGIS 

to match the physically mapped network, the total head of reservoirs in the system was adjusted to 

allow the hydraulic model to execute given the pipe length changes, a water source (a well) was 

removed, and demands were assigned to nodes to reflect potential points for sample extraction. The 

BWSN network has 12,525 nodes (potential sampling locations), representing a network serving 

approximately 250,000 people (Fig. 1.3). There are two reservoirs, two tanks, and four pumping 

stations that serve the system. The tanks use a completely mixed modeling technique, meaning that 

the model assumes instantaneous and complete mixing in the tanks. There are simple control 

statements that affect the operation of the pumps and valves surrounding each of the tanks. We set the 

average FCR leaving each of the two reservoirs as 1 mg/L FCR to approximate a single source of 

disinfectant to the entire system with a first order bulk water decay coefficient of -0.384/day and a 

first order wall decay coefficient correlation of -24.4. The simulation has 168 1-hour reporting time 

steps (1 week). Hydraulic time steps were 1-hour and water quality time steps were 6 minutes. Two 

sampling frequencies were evaluated: 38 samples (the estimated minimum number of TCR-required 

samples per week), and 56 samples (scaling up the number of required samples per week by a factor 

of 1.5). 
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1.2.2.2 System 2: MWSC 

The same processes were applied to a hydraulic model of a different distribution system for a 

small city in the midwestern US designed to serve approximately 20,000 customers (MWSC) (Fig. 

1.3) (Wong et al., 2017). There are four tanks (completely mixed model), four pumping stations, and 

one reservoir (source) in the system. For more information on this system, see Wong et al., 2017.  The 

same chlorine decay parameters and chlorine dosing pattern were used for this water quality model: 

average FCR leaving the source was set to 1 mg/L with a first order bulk water decay coefficient of -

0.384/day and a first order wall decay coefficient correlation of -24.4. The simulation has 168 1-hour 

reporting time steps (1 week). Hydraulic and water quality time steps were both 5 minutes.  

 

Two sampling frequencies were evaluated: 5 samples (the estimated minimum number of 

TCR-required samples per week), and 10 samples (doubling the number of required samples per 

week). 

 

Fig. 1.3 The BWSN (Ostfeld et al., 2008) and MWSC (Wong et al., 2017) systems represented in 

EPANET. 
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1.2.3 System Evaluations 

1.2.3.1 Measures of efficacy 

As previously stated, the SWTR requires residual disinfectant concentration to be measured 

at the same time as total coliform samples, and that no more than 5% of samples in a month can have 

undetectable residual concentration (National Primary Drinking Water Regulations (40 CFR 141), 

2006). For these analyses, we use FCR as the water quality parameter of interest as a proxy for 

microbial water quality. A target concentration of 0.2 mg/L FCR was used because this is a common 

recommendation for the minimum disinfectant residual at the point of water delivery (Lantagne, 

2008). We define the metric to describe the extent of low FCR throughout the distribution system as 

the percentage of samples less than target (PLT) concentration. For each location case, the PLTActual is 

the true percentage of sample locations with FCR less than the target concentration across all nodes to 

be considered for a given location case across all timesteps (i.e. 168-weekly, 24-daily) in the 

evaluation period based on water quality simulation results (Eq.1.1). The PLTActual value changes 

depending on the location case tested. Sample PLT values were calculated for each sampling program 

developed using simulations (described above). 

�2�.�6�º�Ö�ç�è�Ô�ß=
�Ã�Ç�â�×�Ø�æ �ê�Ü�ç�Û �¿�¼�Ë �´ �4.�6 �à�Ú/ �Å �Ô�Ö�å�â�æ�æ �ç�Ü�à�Ø �æ�ç�Ø�ã�æ

#�Ç�â�×�Ø�æ �¼�â�á�æ�Ü�×�Ø�å�Ø�× ×  # �ç�Ü�à�Ø �æ�ç�Ø�ã�æ
× 100     (Eq.1.1) 

Non-parametric statistics (the Wilcoxon-rank sum and Kruskal-Wallis tests) were applied in 

instances where distributions of sampling program results were compared to avoid violating the 

statistical assumptions required for parametric tests. Parametric tests (the t-test) were used where 

sampling program results were compared to point values (i.e. PLTActual).  

Non-parametric statistics were applied in cases where distributions of sampling program 

results were being compared to avoid violating the statistical assumptions required for parametric 

tests. The Wilcoxon-rank sum test was used to test for statistical difference between distributions of 

sampling program results using different numbers of samples. The Kruskal-Wallis test was used to 
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test for statistical differences in the sampling program results between timing scenarios for both the 

weekly and daily time scales. Parametric tests were used where sampling program results were being 

compared to point values (i.e. PLTActual). The t-test was used to determine if sample PLT results of 

simulations were statistically different from PLTActual values for each sampling program for both the 

weekly and daily time scales.  

1.2.3.2 Operational Changes: Chlorine Dosing Outage 

The sensitivity of the model to changes in chlorine dosing was evaluated for the BWSN 

system only. We simulated a hypothetical extreme malfunction in chlorine dosing equipment at a 

treatment plant by setting the chlorine dose at both reservoirs to 0 mg/L for four hours starting at 

12pm on the third day of the simulation (Fig. 1.4). 

  

Fig. 1.4 Chlorine dose outage simulation. Hourly PLT  values for the whole network compared 

for baseline (open circles) and chlorine dose outage simulations (squares). Thick vertical lines 

represent the period where chlorine is not dosed; vertical dashed lines represent 7am-12pm 

each day. 
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1.2.3.3 Constant Sampling Locations  

State primacy agencies can require that utilities have fixed (constant) sampling locations for 

compliance purposes. The TCR requires that if a sample measures positive for TC, the supplier must 

take repeat samples at the original location and nearby upstream and downstream locations. This 

necessitates that suppliers have a regular ability to access these sites (US EPA, 2007). A 1985 survey 

found that 82.1% of 1,796 surveyed water utilities used at least some fixed locations for their 

bacterial sampling programs (Narasimhan et al., 2004). This practice may have increased since these 

data were collected, as the TCR has shifted water suppliers towards having less varying sampling 

locations. Water suppliers may also use constant locations to generate time series for water quality 

parameters.  

We investigated the effects of restricted sample location selection (Constant Locations) 

versus Varying Locations on the ability of sampling programs to represent true system conditions. We 

achieved this for the location cases in Table 1.1 for the BWSN network by testing: 1) 38 possible 

sampling locations with a “Locked” method (e.g. sample at Site A on Monday every week), 2) 38 

possible sampling locations with an “Unlocked” method (e.g. sample at Site A at least once a week), 

3) 76 possible sampling locations as “Double” (double the required number of weekly samples), and 

4) 114 possible sampling locations as “Triple”. Using the MWSC network, the “Locked” locations 

was tested for each location case in Table 1.1 and the “Unlocked” locations was tested on the All 

location case. Fewer analyses were carried out for the MWSC network because few samples were 

taken (n=5).  

Statistical differences between sample PLT results and PLTActual values for each sampling 

program at weekly time scales were evaluated with t-tests. Differences between Constant Location 

and Varying Location sampling program results were evaluated with Wilcoxon-rank sum tests, and 

the effects of timing scenarios for Constant Location sampling programs were investigated with 

Kruskal-Wallis tests. 



20 

1.2.4 Comparing the BWSN and MWSC networks 

To summarize the differences in results for the Varying Location sampling programs, we 

compared statistical difference from PLTActual values at 95% confidence for 1) BWSN-TCR: the 

BWSN network with the TCR number of required samples (n=38); 2) MWSC-TCR: the MWSC 

network with the TCR number of required samples (n=5); and 3) MWSC-Comp: the MWSC network 

with varying numbers of samples to account for expected differences in sampling error between the 

networks (to minimize the effects of different sample numbers and margins of error between the 

networks).  

The number of samples required for the BWSN and MWSC networks to have approximately 

equal margins of error were calculated. The base condition was 38 samples for the BWSN network; 

the corresponding number of samples for the MWSC network (nMWSC) was calculated (Eq. 1.2; Table 

1.2). Z is the z-score for the desired confidence level, p is the PLTActual value for the location case 

being considered, and nBWSN is the TCR required number of samples for the BWSN network (i.e. 38). 

The PLTActual value for each location case was used because it represents the best possible estimate of 

the true proportion of samples less than the target concentration for sampling programs using that 

location case. If the calculated nMWSC value exceeded 5% of the population of possible sampling 

locations, then the Finite Population Correction (FPC) was applied (Eq. 1.2 multiplied by Eq. 1.3).  

�< �®§
�ã�³�È�Ä�¿(�5�?�ã�³�È�Ä�¿)

�á�³�È�Ä�¿
 = �< �®§

�ã�¾�Ä�À�¹ ( �5�?�ã�¾�Ä�À�¹ )

�á�¾�Ä�À�¹
    (Eq. 1.2) 

�(�2�%=
�Ç�?�á�¾�Ä�À�¹

�Ç�?�5
 ,�0 = 960     (Eq. 1.3) 

Table 1.2 Samples required to compensate for sampling error between distribution networks. 

Location Case Number of Samples 
Required for MWSC-Comp 

“All”, GeoGrid, BalStrata* 82 
Far20 45 
Below50 35 
DeadEnds 37 

*It was not possible to evaluate the BalStrata program using these adjusted sample numbers because the outer ring did not contain enough 
possible sampling locations.  
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1.3 Results and Discussion 

1.3.1 BWSN Network  

1.3.1.1 Effects of the Number of Samples on Sampling Program Results 

The results produced by the Varying Location sampling programs applied to the BWSN 

model with 38 samples and 56 samples were not statistically different at the 95% confidence level 

���S�•�������������:�L�O�F�R�[�R�Q-rank sum) except for Below50 programs (Table A.1). For Below50 programs, the 

Wilcoxon-rank sum test may have performed improperly due to right truncated distributions and tied 

ranks (a 2-sample rank-sum permutation test was performed to address the right-truncated 

distributions and showed no statistical differences for any sampling program tested (Table A.2)). We 

can then conclude that the number of samples taken did not affect conclusions about distributions of 

sampling program results for most location cases when a relatively low number of samples were 

taken from the population of possible sampling locations. We focus the remainder of the analysis 

using 38 samples only, which corresponds to the TCR-recommended number. As a caveat, this 

conclusion may not hold if higher numbers of samples were to be collected (e.g. 500+). From a 

statistical perspective, smaller sample sizes always result in higher margins of error. 

1.3.1.2 Weekly and Daily Timescale Evaluations  

Distributions of weekly PLT results were compared to PLTActual values for each Varying 

Location sampling program (Fig. 1.5). Out of the whole system location cases, the All location case 

programs performed best, with only the 24-hour program yielding statistically different results 

compared to systemwide PLTActual (p=0.036, t-test). It is expected that the All location case (i.e. 

simple random sampling) would perform the best (Gravetter and Forzano, 2012). For GeoGrid and 

BalStrata programs, we see poorer performance in representing systemwide PLTActual (Figure 5), 
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potentially because it becomes more likely to select a sampling location with typically lower FCR 

(since some grid cells or strata contain more system extremities or dead ends which typically have 

lower FCR). We can draw this conclusion based on the similarity of the distributions for results of 

these programs (GeoGrid and BalStrata) compared to worst quality programs (Far20 and DeadEnds) 

(Fig. A.1). Among the worst quality programs, Far20 and DeadEnds performed the best, with no 

sampling programs producing statistically different results from the corresponding worst quality 

PLTActuals ���S�•�������������W-test). Overall, the worst quality programs provided better representations of true 

worst quality PLT conditions in the network, likely due to a lower average standard deviation in FCR 

values at potential sampling locations for those location cases.  

Using different timing scenarios had little impact on observed statistical differences between 

sampling program results, with no observed statistical differences between timing scenarios for most 

programs (p<0.05, Kruskal-Wallis) except for BalStrata and Below50 (Fig 5). For the BWSN 

network, the timing for sample collection appeared to have little impact on whether the results of the 

sampling program represented true PLT in the network, likely related to its large spatial size which 

muted effects of timing despite variations in demand (Fig. A.2a).  
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Fig. 1.5 Weekly timescale evaluations for Varying Location sampling programs for the BWSN 

network. Boxplots have vertical lines representing PLTActual for each location case. p-values next 

to boxes are t-test results for statistical difference from PLTActual ���Q�V���L�P�S�O�L�H�V���S�•������������ Kruskal -

Wallis (KW) test p-values show statistical difference between timing scenarios. *x axis scale 

differs from other panels.  

 

Daily PLT values for each program were compared to daily PLTActual values (Fig. 1.6). Like 

the weekly timescale results, the majority of daily PLT estimates were able to accurately represent 

daily systemwide PLTActual values (except in GeoGrid and BalStrata programs, expected given the 

observed results on the weekly timescale). The timing scenarios led to statistically different program 

results (p<0.05, Kruskal-Wallis) for a given day and location case for 5 of the 42 daily results (Table 

A.3). This reinforces the conclusion from the weekly timescale evaluation for this network, that the 

timing of sample collection does not significantly impact whether the sampling program results will 

represent true PLT conditions in this network (again, likely related to network size). 
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Fig. 1.6 Average daily PLT for each Varying Location sampling program for the BWSN 

network. 

Black lines represent the daily PLTActual values corresponding to that location case. * represent daily 

sampling program results that are significantly different (p<0.05, t-test) from daily PLTActual. 

1.3.1.3 Operational Changes: Chlorine Dosing Outage 

When modeling an interruption to chlorination, the GeoGrid, BalStrata, and Below50 

program results were statistically different from PLTActual on the weekly timescale (p<0.001, t-test) 

(Fig. A.3). The 6am-4pm timing scenario led to the most program results that were not statistically 

different (p>0.05, t-test) out of the three timing scenarios. Generally, more programs were statistically 

different (p<0.05, t-test) when chlorination was interrupted as compared to the base BWSN water 

quality model. It is expected that an accurate estimate of conditions in the network would be difficult 
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to attain due to the increased variation in FCR concentrations throughout the network over the 

simulated week. 

For all groups of location cases evaluated with the chlorination interruption, the timing 

scenarios led to statistically different program results (p<0.05, Kruskal-Wallis), except for DeadEnds 

programs. Daily results showed statistical differences between timing scenarios for All, GeoGrid, 

BalStrata, and Far20 programs on Day 3 (p<0.05, Kruskal-Wallis) (Table A.4). Daily PLT values for 

each program were compared to daily PLTActual values, with results showing that all GeoGrid and 

BalStrata program results, as well as the majority of Below50 program results, were statistically 

different from daily systemwide PLTActual values (p<0.001 and p<0.05, respectively; t-test) (Fig. 1.7). 

Every location case tested had at least one program with a timing scenario that led to statistically 

different results from daily PLTActual (p<0.05, t-test) on the day the outage was modeled (Day 3), 

which demonstrates that being able to accurately capture PLT conditions in the network can be 

difficult when a significant operational change takes place.  
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Fig. 1.7 Bar charts showing average daily PLT values of Varying Location sampling programs 

when a chlorination interruption was modeled. Black lines represent the daily PLTActual values 

corresponding to that location case. * represent daily sampling program results that are 

significantly different (p<0.05, t-test) from daily PLTActual. 

1.3.1.4 Constant Sampling Location Sampling Programs 

Tests for statistical difference from PLTActual values showed that most Constant Location 

programs had statistically different results (p<0.05, t-test). Only 3 out of 72 (6 Location Cases x 3 

Timing Scenarios x 4 Constant Location methods) programs yielded results that were not statistically 

different from PLTActual values at 95% confidence, all of which used the “Triple” pool Constant 

Location method (Far20-7am-12pm and 24-hour, All-7am-12pm). These results demonstrate that 

choosing fixed sampling locations will largely prevent attaining results that represent true PLT 
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conditions in the network. Notably, constant sampling locations are used by many water suppliers; 

however, these findings demonstrate that suppliers looking to quantify the extent of low FCR in their 

system may obtain inaccurate estimates with constant locations. Additional tests showed that most 

(63/72) Constant Location sampling programs were statistically different (p<0.05, Wilcoxon-rank 

sum) from corresponding Varying Location sampling programs (Table A.5).  

Results of tests for differences between timing scenarios were largely dissimilar: Varying 

Location results mostly showed no significant difference between timing scenarios, while most 

Constant Location programs did (20/24 with p<0.05, Kruskal-Wallis) (Table A.6). All “Locked” 

programs yielded statistically different results (p<0.05, Kruskal-Wallis) between timing scenarios. 

This demonstrates that timing for grab sampling programs using Constant Locations may be more 

important than those using Varying Locations since the window of time during which samples are 

collected appears to have a more pronounced effect on the results of sampling programs that use 

Constant Locations. It is possible that the temporal variability of the sampling locations selected as 

Constant Locations is high and that would make them better suited as locations for installation of 

continuous monitoring of low FCR (Speight, 2009). It is important to consider this possibility as more 

utilities incorporate online monitors: 45% of utilities surveyed in the United States 2017 reported 

using online monitors at some place in their distribution system (AWWA Disinfection Committee, 

2018). 

1.3.2 MWSC Network  

1.3.2.1 Effects of the Number of Samples on Sampling Program Results 

The Varying Location programs with 5 samples and 10 samples were not statistically 

different at a 95% confidence level ���S�•�������������:�L�O�F�R�[�R�Q-rank sum) except for Below50 programs and 

the Dead Ends 24-hour program (Table A.7). This result is similar to that of the BWSN network and 
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again allows us to conclude that the number of samples taken did not affect our conclusions for most 

location cases for relatively low numbers of samples (Table A.7). Therefore, the presented analysis 

uses 5 samples only. 

1.3.2.2 Weekly and Daily Timescale Evaluations 

Distributions of PLT results on the weekly timescale were compared to PLTActual values for 

each Varying Location sampling program (Fig. 1.8). Out of the representative of whole system 

location cases, the All location case programs performed the best, with only the 7am-12pm program 

results statistically different (p=0.044, t-test) from systemwide PLTActual. GeoGrid and BalStrata 

programs were unable to represent systemwide PLTActual for similar reasons as in the BWSN network 

(i.e. higher likelihood of selecting a location with lower FCR, since most GeoGrid cells and the 

outermost BalStrata ring contain system extremities (Fig. A.4). Of the worst quality location cases, 

the DeadEnds programs were able to produce statistically similar results to PLTActual (p<0.05, t-test). 

Notably, there was slightly worse performance for the MWSC worst quality programs than the 

BWSN worst quality programs, potentially due to its fewer required samples (5 vs. 38) and/or 

differences in network layout and water quality patterns. Only those programs using Far20 and 

Below50 location cases had statistically different results between timing scenarios (p<0.05, Kruskal-

Wallis).  
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Fig. 1.8 Boxplots showing weekly timescale evaluations for Varying Location sampling 

programs for the MWSC network. Vertical lines represent PLTActual corresponding to that 

location case. p-values next to boxes are t-test results for statistical difference from PLTActual (ns 

�L�P�S�O�L�H�V���S�•������������ Kruskal -Wallis (KW) test p-values show statistical difference between timing 

scenarios.  

Daily PLT values for each program were compared to daily PLTActual values (Fig. A.5). 

Unsurprisingly, with only one sample taken per day, it was not possible to accurately represent daily 

PLTActual values for any program tested (p<0.001, t-tests for all). Doubling the number of samples (to 

10) did not improve estimates (Fig. A.6). For the MWSC network, the daily timescale proved 

ineffectual for evaluating system conditions relating to low FCR. We can conclude that when few 

daily samples are taken it may be inappropriate to draw systemwide conclusions on any given day. A 

similar conclusion was made by Taylor et al. (2018) who determined that most water suppliers in 

their collected dataset did not sample frequently enough to ensure microbial water quality met  an 

example regulatory limit.  
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1.3.2.3 Constant Sampling Location Sampling Programs 

Each “Locked” and “Unlocked” program for the All location case was statistically different from the 

corresponding PLTActual (p<0.001, t-tests); for the other programs using different location cases, the 

“Locked” method Constant Location program results did not improve (Table A.8), likely due to the 

limited number of samples. Only the Below50 6am-4pm program yielded a statistically similar result 

at 95% confidence (p=0.254, t-test) (for DeadEnds programs, the t-test could not be applied). Timing 

of sample collection affected results for all programs using the same location case (p<0.05, Kruskal-

Wallis), except for the GeoGrid “Locked” programs. These results demonstrate the limitations of 

using Constant Location when few samples are taken. Unless a system has gone through great effort 

to characterize water quality throughout their system and has a validated water quality model to 

inform their sampling program, it is likely inappropriate to use Constant Locations and expect 

accurate information. This is supported by a study on the trade-offs between “continuous” and “grab” 

samples, which showed that using “continuous”  monitoring (i.e. Constant Location) samples instead 

of “grab” (i.e. Varying Location) samples caused a significant decrease in sampling program 

performance (Speight, 2009). Even when experts make decisions about location selection, their 

decisions can improve when tools such as hydraulic models are used; previous research has found that 

engineering judgment and intuition alone are often inadequate for sensor placement (Ostfeld et al., 

2008; Trachtman, 2006). It is also worth considering that judgment may be skewed to support 

convenience; 35.5% of surveyed utilities who specified used fixed locations considered convenience 

as a factor for location selection (Narasimhan et al., 2004).   
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1.3.3 Comparing the BWSN and MWSC Networks 

1.3.3.1 Comparing TCR Minimum Required Numbers of Samples (BWSN-TCR, 

MWSC-TCR) 

Using the TCR required number of samples appropriate to each network (i.e. 38 for BWSN 

(BWSN-TCR) and 5 for MWSC (MWSC-TCR)) (Table 1.3), the DeadEnds programs were able to 

accurately represent worst quality PLT values for both network layouts (p>0.05, t-test), while the 

GeoGrid and BalStrata programs failed to accurately represent PLT values for both networks 

(p<0.001 for all programs, t-test). It is likely that poor results for BalStrata programs are due to not 

weighting each stratum when calculating PLT. The MWSC network had more sampling programs 

that resulted in statistically significant differences (p<0.05, t-test) than the BWSN network. For both 

networks, the “Locked” method yielded sampling program results that were statistically different 

(p<0.05, t-test) from PLTActual for all programs except the Below50 6am-4pm program. This is 

potentially worrisome as many utilities carry out their sampling programs in such a fashion 

(Narasimhan et al., 2004).  

1.3.3.2 Comparing Networks Accounting for Sampling Error (BWSN-TCR, MWSC-

Comp) 

 When comparing the BWSN network with the TCR required number of samples (MWSC-

TCR) and the MWSC network with varying numbers of samples to give a comparable sampling error 

to the BWSN network (MWSC-Comp) (Table 1.3), again, DeadEnds programs were most able to 

accurately represent worst quality PLT values for both network layouts (only 1 of 6 programs with 

p<0.05, t-test). The GeoGrid programs failed to approximate PLTActual for both networks (p<0.001 for 

all 6 programs, t-test). The MWSC-Comp had more sampling programs that resulted in significant 
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difference (p <0.05, t-test) from PLTActual than the BWSN network; the statistical difference from 

PLTActual values in the MWSC-Comp programs predominantly occurred when restricted timing 

scenarios were used. Therefore, we may conclude that the timing of sample collection is more 

important for the MWSC network, likely attributed to network layout and hydraulic conditions. One 

aspect of these hydraulic conditions is system demand patterns. The water demand multipliers for 

each network are different (BWSN uses a 96-hr pattern with sharper peaks, MWSC uses a 24-hr 

pattern with lower relative peaks) which implies differing hydraulic conditions (Fig. A.2). In addition 

to differing demand conditions, another indicator that the system operations and hydraulic conditions 

of the networks impact water quality results can be seen by evaluating the EPANET average reaction 

rates for each system, where the percentage of water quality reactions attributed to tanks are 1.15% 

for the BWSN network and a much higher 24.42% for the MWSC network. The system demands and 

operation of tanks and pumping stations undoubtedly affects water quality conditions  since flow rates 

affect water age which in turn affects FCR conditions, which means that utilities considering applying 

the location selection methods used in this study should also consider how their system’s hydraulics 

can impact the results they may get if a restricted timing scheme is used.  

  



33 

Table 1.3 p-values from t-tests comparing PLTActual to sampling program results using the 

required number of samples for BWSN-TCR, MWSC-TCR, and MWSC-Comp sampling error 

compensated. 

Location 
Case 

Timing 
Scenarios 

BWSN-TCR MWSC-TCR MWSC-
Comp 

All  7am-12pm 0.434 0.044 0.001 

6am-4pm 0.794 0.372 0.012 

24-hour 0.036 0.417 0.629 

GeoGrid 7am-12pm <0.001 <0.001 <0.001 

6am-4pm <0.001 <0.001 <0.001 

24-hour <0.001 <0.001 <0.001 

BalStrata 7am-12pm <0.001 <0.001 NA 

6am-4pm <0.001 <0.001 NA 

24-hour <0.001 <0.001 NA 

Far20 7am-12pm 0.384 0.058 <0.001 

6am-4pm 0.149 0.208 <0.001 

24-hour 0.176 0.049 0.613 

Below50 7am-12pm 0.100 0.002 <0.001 

6am-4pm <0.001 <0.001 <0.001 

24-hour 0.365 0.701 0.246 

DeadEnds 7am-12pm 0.608 0.945 0.694 

6am-4pm 0.599 0.788 0.017 

24-hour 0.711 0.417 0.538 

1.3.4 Limitations and Future Work 

This study applies sampling program designs to simulated water quality models for two 

distribution systems. Simulated data do not necessarily accurately represent real water quality 

conditions, as chlorine decay can be affected by different demand within a system, decay due to pipe 

materials and age, temperature, etc. (Al -Jasser, 2007; Fisher et al., 2012; Hallam et al., 2002; Mercer, 

2011). Simulated data did, however, allow us to evaluate 198 different sampling program designs 

between the two networks and various conditions applied, which can help inform future work 

including field sampling. It would be useful to link the water quality simulation tools used here with 

field sampling data to represent real-world water quality conditions in distribution systems, although 

results would still only reflect that distribution system. Direct cooperation with a utility in future 
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studies would allow for an evaluation of how well a real-world sampling program used by a water 

utility compares to the other methods location selection studied here. Second, since only two systems 

were evaluated, these results reflect only these hydraulic and water quality conditions; every full-

scale distribution system will have different hydraulic and water quality conditions. However, the 

current study was designed to compare results from these two and establish a method of assessing 

sampling program efficacy. Also, the simulations carried out do not account for seasonality in water 

demand patterns and temperature dependent reaction kinetics; evaluating these would be useful future 

work.  

The current study effectively focused on one source systems in terms of entry of disinfectant 

into the distribution system. Most of the location cases tested in this study could be applied to systems 

with multiple sources of disinfectant (e.g. chlorine booster stations). The one exception to this would 

be the Far20 case, which would require further consideration into what the “furthest 20% of locations 

from the sources” encompasses (e.g. for a two source system Far20 could be defined as the 20% of 

locations furthest from either of the two sources). The statistical evaluations carried out also still 

apply, however it is likely that in a system with multiple sources of disinfectant that PLTActual values 

may be lower compared to a one source system depending on the system configuration. Another 

consideration that would lead to systems with different disinfectant conditions could be a system with 

a source that has FCR and a source where chlorine is not dosed. Although not as frequently 

encountered, systems that use different types of disinfectants within a single system such as free 

chlorine at one source and chloramines at another, would also lead to different observations in 

sampling program results particularly at locations where waters with the different disinfectant 

residual types mix with each other.  

We evaluated the number of samples that a water supplier may collect in a week based on 

current regulatory minimums. This number may be too low to determine proper estimates of 

distributions (Speight et al., 2004; Taylor et al., 2018), however, our study focused on reflecting the 

reality of the current regulations and limitations on resources such as lack of access to hydraulic 
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models (Hart and Murray, 2010). The main metric we use in this study, PLT, is just one of several 

possible methods of quantifying the extent of low disinfectant residuals in a distribution system and 

reflects only one possible monitoring program objective. Other metrics such as the percent of samples 

with no detected residual or values based on a percentile or confidence of failure could be of more 

interest (Ellis, 1989; ISO, 2008). Our use of PLT is related to the SWTR requirement to take residual 

samples at the same time and place as total coliform samples and assumptions about what points in 

time that suppliers assess their data. Also, we assumed that sample collection was distributed evenly 

throughout the month, although this may not be the case. Finally, we evaluated a limited selection of 

location scenarios; future work could evaluate scenarios such as pressure zones or critical customers. 

We only considered FCR in this study. Some water suppliers may need to monitor other 

disinfectants like chloramines or may not maintain a disinfectant residual. However, disinfectant 

residual, and particularly FCR, is still widely used in the US, and the methods developed could be 

applied to other parameters representing microbiological water quality in the future, including cell 

counts from flow cytometry counts or ATP (Prest et al., 2016). Notably, appropriate locations for 

sampling programs would vary depending on the water quality parameter of interest: for example, 

there are differing requirements for sample locations for the USEPA Lead and Copper Rule versus the 

TCR (high risk of contamination versus representative of water quality throughout the distribution 

system). Appropriate locations vary depending on the water quality parameter of interest also leads to 

the possibility of employing other sampling methods, such as continuous monitoring or composite 

sampling. However, composite sampling could not be applied to FCR, since it decays over time 

(Ellis, 1989). 

1.4 Conclusions 

This study investigates how FCR monitoring results vary using different sampling program 

designs for two distribution systems. Overall, there is no one-size fits all approach that can be applied 
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to distribution system water quality sampling programs development, but the following points should 

be considered when designing routine monitoring programs.  

�x Sample Locations: The objective of a sampling program should impact the selected sample 

locations. Here, our main objective was determining the extent of low FCR in a system. For 

representing the whole system, geographically distributed and balanced allocation 

stratification selection methods led to results that did not accurately represent network FCR 

conditions. While these programs give some geographical representation of the system, they 

may not give an accurate representation of systemwide water quality. Results showed that 

achieving accurate estimates of worst quality conditions in a network was more likely than 

achieving accurate estimates of systemwide conditions.  

�x Timing for Sample Collection: The results demonstrated that the timing of sample collection 

is likely important. While timing may not matter for some networks, it can depend on 

consumer demand patterns. Operational changes such as alterations to disinfectant dosing 

also impact the importance of timing. Operators should be aware of how these factors may 

impact sampling program results. The evaluation period (e.g. weekly vs. daily) should also be 

considered, particularly when faced with operational changes or changing demand patterns.  

�x Number of Samples: The number of samples taken for a sampling program can have stronger 

impacts on decisions made from sampling program results in some systems (e.g. MWSC), but 

not for others (e.g. BWSN). It is inappropriate to make conclusions about systemwide 

conditions when very few samples are taken over an evaluation period (e.g. daily). This 

suggests that the TCR required numbers of samples for total coliform may not be appropriate 

to use when evaluating other water quality parameters such as FCR.  

�x Constant Sampling Locations: Using constant (fixed) sampling location selection can make it 

difficult to accurately represent water quality conditions across the entire network. Many 

public water suppliers use constant sampling location selection for their sampling programs, 
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which makes it important for operators to give more consideration to the implications of how 

sampling program results are analyzed. If results are evaluated in aggregate (on weekly or 

daily timescales) as opposed to individually, there can be implications for decision making by 

operators such as deciding to increase or decrease disinfectant dosing unnecessarily.  
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CHAPTER 2 

WATER QUALITY MONITORING WITH PURPOSE: USING A NOVEL FRAMEWORK 

AND LEVERAGING LONG-TERM DATA 

This chapter appeared as da Luz, N., Tobiason, J.E., Kumpel, E., 2022. Water quality 

monitoring with purpose: Using a novel framework and leveraging long-term data. Science of The 

Total Environment 818, 151729. https://doi.org/10.1016/j.scitotenv.2021.151729 

2.1 Introduction  

Agencies responsible for protecting surface water supplies must consider both the end-

purpose (e.g., public drinking water) and the environmental health of the systems. Water quality 

monitoring programs are tailored to specific purposes, such as meeting regulatory requirements, 

evaluating long-term environmental changes, or quantifying the impacts of emergency events (e.g. 

petroleum release). While tools such as Water Safety Plans (Bartram et al., 2009) and the United 

States Environmental Protection Agency (EPA) Watershed Protection Plan guidance exist, tools for 

developing comprehensive water quality monitoring programs to support risk management through 

water supply protection are not as well established. Prior research on water quality monitoring rarely 

addresses multiple aspects of water quality monitoring (e.g. determining monitoring objectives, 

establishing a sampling site network, establishing sampling frequency and recurrence, and/or data 

handling) simultaneously (Behmel et al., 2016). There are many resources available on the topic of 

water quality monitoring program development, many of which are designed for specific systems, 

dated, and may further convolute the monitoring program development process for practitioners 

(Behmel et al., 2016). Developers of water quality monitoring programs should be able to create 

monitoring programs that are systematic yet versatile without being overwhelmed by the large 

number of topical resources available.  
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Planning and carrying out water quality monitoring programs includes network design, 

logistical preparation, and data handling, analysis, and use (Behmel et al., 2016; Strobl and Robillard, 

2008). Network design includes selecting sampling locations and frequencies, and parameter selection 

(i.e.  where and when to sample, and what to sample). Ensuring that resources are expended 

effectively in monitoring can be difficult: large effort can be put into data collection with little 

consideration for how data will be used (Falkenberg and Styan, 2014), and those who collect data 

often lack the tools for analyzing large amounts of data effectively (Lischeid, 2009). The benefits of 

water pollution control programs, which typically include water quality monitoring, are often 

underestimated, as benefits of these programs relating to health, removal of toxic materials, and 

effects on neighboring natural resources such as coastal areas or groundwater are often not considered 

in cost-benefit analyses (Keiser, 2019; Keiser et al., 2019). Thus, as water quality monitoring 

programs are developed, it would be beneficial to comprehensively understand their potential impacts 

(positive or negative) and how collected data will be used.  

Comprehensive guidance for water quality protection is limited. Two examples of tools 

available for water supply protection are the EPA “Handbook for Developing Watershed Plans to 

Restore and Protect Our Waters” (US EPA, 2008) and World Health Organization (WHO) Water 

Safety Plans (WSPs) (Bartram et al., 2009).  The EPA’s handbook gives advice on parameters to 

monitor and emphasizes the importance of a tailored monitoring program; however, the details of 

how to develop the monitoring plan are limited, and it is focused on impaired waterbodies. The WHO 

supports the use of WSPs as to manage drinking water supply safety and acceptability through a 

“comprehensive risk assessment and risk management approach” from source (catchment) to the 

consumer. WSPs vary from community to community, but consist of steps of: preparation, system 

assessment, monitoring, management and communication, and feedback and improvement (Bartram 

et al., 2009). Despite extensive guidance for carrying out most of these stages, the details of how to 

monitor are often neglected; for example,  monitoring to evaluate climate change impacts (Rickert et 

al., 2019). Insufficient guidance for WSP implementation, including the monitoring components, has 
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been identified as a barrier to successful implementation of WSPs (Amjad et al., 2016; Baum et al., 

2015; Kanyesigye et al., 2019; Summerill et al., 2010). Thus, guidance for protection of waters 

(supply or otherwise) that effectively details how to conduct monitoring is limited in both the United 

States and internationally.  

The research community recognizes the importance of stakeholder engagement for water 

resources management, yet these principles have not been widely applied to water quality monitoring.  

Such complementary knowledge and skills are needed to develop adaptive approaches to water 

quality monitoring (Quevauviller et al., 2005; Raadgever et al., 2008). Timmerman et al. (2010) 

proposed a method called CATWOE (Customer, Actor, Transformation, Weltanschauung, Owner, 

Environment) that specifies information needs from stakeholders. Participative approaches in water 

resources and water quality emphasize mutual learning as a benefit and a shared vision for a system 

or process (Brown et al., 2011; Falconi and Palmer, 2017; Palmer et al., 1999). Researchers have used 

participative approaches including using Bayes Nets and conceptual diagrams for water resource 

management  (Chan et al., 2010) and public participation geographical information systems (PPGIS) 

and workshops for eliciting water quality monitoring needs (Behmel et al., 2018). The need for 

increased communication between researchers and model developers and stakeholders was also 

emphasized by Bende-Michl et al. (2011) to increase knowledge gained from monitoring and 

modeling. These examples demonstrate that participative approaches to water management (including 

water quality) are essential to long term success in these efforts.  

Many efforts to optimize water quality monitoring location selection have attempted to 

redesign existing monitoring networks to meet different monitoring objectives. Many have sought to 

reduce the number of proposed sampling locations (Bastidas et al., 2017; Keum et al., 2017; Wang et 

al., 2015). Conversely, Destandau and Diop (2016) evaluated the value of information from a 

monitoring network by establishing new sampling locations using a Bayesian framework. In 

describing the changes to the Dutch National Water Monitoring Program over several decades, 

Timmerman et al. (2010b) demonstrated that optimization efforts can lead to significant changes in 
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monitoring programs, but that decision-makers and information users were often left out of the 

process of monitoring program evaluation. da Luz and Kumpel (2020) showed that the sampling 

location selection method can influence monitoring program outcomes and assessments of whether 

monitoring objectives are met. Other factors, such as optimizing for seasonality, were demonstrated 

by Varekar et al. (2015) as part of a systematic approach for determining the optimal number and 

location of sampling sites for evaluating seasonal variations in point and diffuse pollution loading. 

Land use and associated nutrient loading are considered important, and other optimization methods 

have included these through mapping (Alilou et al., 2018; Do et al., 2012, 2011). Multi-criteria 

decision analysis has been used to identify preferred monitoring locations depending on monitoring 

program objectives (Abbatangelo et al., 2019). Each of these optimizations were implemented for 

different purposes: determining seasonal effects on water quality, system nutrient loading, or 

emergency response.  These differences highlight the importance of clearly identifying the objectives 

for monitoring prior to developing a water quality monitoring plan and applying a method appropriate 

to the situation.  

Tools such as trend analysis, temporal variograms, and confidence intervals have been used 

to optimize sampling frequencies (i.e. how often samples must be taken) for surface water quality 

monitoring programs. Like optimization techniques for monitoring locations, the use of these 

techniques often results in a reduction of frequency to reduce sampling costs. Ideal sampling 

frequencies are dependent on the water quality parameters being measured (Skeffington et al., 2015; 

Vilmin et al., 2018). Liu et al. (2014)  proposed a water pollution index deviation ratio to optimize 

and reduce sampling frequency for a river water quality monitoring system. Both Scannapieco et al. 

(2012) and Naddeo et al. (2013) found that sampling frequencies could be reduced when there were 

stable downward trends in water quality measurements. Water quality dataset deconstruction (i.e. 

taking a full dataset and reducing the total number of components) has been used for multi-criteria 

decision analysis (Abbatangelo et al., 2019; Ross et al., 2015) and environmental loading estimations 

(Jiang et al., 2019; Thompson et al., 2021) to evaluate the importance of sampling frequency for 
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water quality monitoring programs. Results of these studies showed that less frequent sampling is 

often sufficient for capturing overall or mean water quality conditions but can lead to less accurate 

process signal representation and loading estimations. Thus, when optimizing sampling frequency, it 

is necessary to apply techniques that consider the potential effects of optimization (often frequency 

reduction) on monitoring program objectives.  

Evaluating information obtained through water quality monitoring programs (WQMPs) can 

aid in improving programs. Statistical techniques, including trend analysis, principal component 

analysis, and binomial tests, have been used to evaluate information obtained through sampling 

programs. These techniques, in contrast to optimization, are used primarily to evaluate ongoing 

WQMPs rather than to design or redesign programs. Statistical techniques (summary statistics, 

confidence intervals, and trend analysis) can aid in defining compliance criteria and evaluating if 

these criteria are met by WQMP results (Ellis, 1989). Other statistical approaches (correlation and 

regression analysis, PCA, trend analysis, Bayesian analysis, entropy concepts, and multivariate data 

analysis) have been used to aid in selection of monitoring locations, frequency, and parameter 

selection for WQMPs (Khalil et al., 2010). When WQMPs have been run long term (>10 years), 

analysis of the water quality datasets can be used to inform data users about patterns in water quality 

conditions that may lead to adverse environmental events (e.g. fish kills) (Espinosa-Díaz et al., 2021) 

and inform risk assessment and management (Deng et al., 2021). These tools can be used to evaluate 

information obtained from water quality monitoring programs, and, in some cases, propose 

improvements to those programs.  

Building on statistical techniques, neural networks have been used as tools for water quality 

forecasting in coastal waters, rivers, and distribution systems (Faruk, 2010; May et al., 2008; Palani et 

al., 2008; Zhang and Stanley, 1997). These techniques cannot universally be applied to sampling 

frequency, sampling location, and parameter selection due to underlying conditions of the data such 

as non-normality, skew, autocorrelation of water quality variables, and nonlinearity. Non-linear 

techniques (e.g.  non-linear primary component analysis (NLPCA) and non-linear canonical 
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correlation analysis (NLCCA)) should be applied to multi-variate water quality datasets, and neural 

networks also show promise for circumventing limitations of techniques that require linearity of data 

(Khalil and Ouarda, 2009).  

The objectives of this work are to: 1) establish a novel method for water quality monitoring 

program development that focuses on systematic parameter selection and statistical analysis to meet 

monitoring needs related to hazards; and 2) evaluate trends and sampling frequency within the 

watershed of a water supply reservoir using long-term water quality datasets and water quality dataset 

deconstruction. We first present the Hazard Based Water Quality Monitoring Planning (HBWQMP) 

framework as a method for water quality monitoring program development based on a systematic 

understanding of potential hazards. The HBWQMP goal is to develop a monitoring plan that allows 

water management agencies to meet monitoring objectives, run successful monitoring programs, and 

make appropriate management decisions based on output of those programs that are relevant to the 

hazards facing their system. The framework considers initiation through post-implementation 

effectiveness. This framework is implemented for the case of achieving regulatory compliance in 

cooperation with an agency responsible for water supply protection in the Northeast United States. 

Through this, we use a novel application of water quality dataset deconstruction and the Seasonal 

Kendall test (SKT) to leverage long-term water quality data within a watershed to simulate effects of 

sampling frequency on long-term trend detection at several watershed sites.  

2.2 Framework 

2.2.1 Motivation 

The Massachusetts Water Resources Authority (MWRA) supplies water to 53 communities in 

Greater Boston, MetroWest, and Central Massachusetts (“MWRA -  How the Water System Works,” 

n.d.) The system is served by surface water supplies from the Quabbin and Wachusett Reservoirs, 
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which supply an average of 200 million gallons per day to consumers. The reservoirs are protected 

and most watershed land is undeveloped: over 85% of the surrounding lands are covered in forest and 

wetlands and about 75% cannot be developed (“MWRA -  How the Water System Works,” n.d.). The 

Massachusetts Department of Conservation and Recreation (DCR) Division of Water Supply 

Protection (DWSP) protects the watershed.  MWRA and DCR divide and manage responsibilities 

such as watershed protection, operation, and maintenance. DCR regularly patrols the land around the 

reservoirs and assesses water quality. Due to the high quality of the reservoir waters, MWRA has a 

waiver of filtration under the US EPA Safe Drinking Water Act (40 CFR § 141.71) and measures 

water quality for compliance with the Surface Water Treatment Rule. In relation to this waiver, the 

Massachusetts Department of Environmental Protection (MassDEP), the EPA primacy agency in 

Massachusetts, approves DCR’s Watershed Protection Plan (WPP) for an unfiltered water supply, 

updated every five years (last update in 2018). DCR communicates water quality and maintenance 

information about the reservoirs to MWRA, and MWRA communicates about operational changes to 

DCR, primarily through quarterly Reservoir Operations Group (ResOps) meetings.  

The focus herein is on the water quality monitoring program for the Quabbin watershed. In 

Fall 2016, DCR staff voiced the following questions: 1) Should certain monitoring parameters and/or 

monitoring frequency be increased or decreased to develop a more comprehensive program? 2) Is the 

sampling schedule appropriate to characterize watershed inputs; or should the sampling schedule be 

more event-based? 3) Are the analytical parameters sufficient for a long-term understanding of water 

quality? A holistic approach to water quality monitoring is essential to address these questions. The 

following framework, Hazard Based Water Quality Monitoring Planning (HBWQMP), was 

developed to address these questions and improve monitoring practices. Here, we employ statistical 

tools and dataset deconstruction to redesign sampling frequencies for a monitoring program and 

explore how advanced statistical techniques can be used to create an effective sampling program. We 

also discuss methods for stakeholders to complete similar analysis using advanced statistical 

techniques. 
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2.2.2 Framework Steps 

The HBWQMP framework (Fig. 2.1) for water quality monitoring program development 

systematically assesses hazards and complements existing water quality management tools. 

This process recognizes that water quality monitoring plans must have an objective: sampling 

designed for one purpose or related hazard may not necessarily answer questions for another purpose, 

although sometimes there is alignment. Explicitly specifying the hazard or issue for monitoring 

simplifies selection of measured parameters or proxies. If the hazards or issues are identified 

individually, practitioners are more likely to ensure that all sampling program objectives are met. 

Steps one through three are iterative. 

 

Fig. 2.1 The Hazard based Water Quality Monitoring Planning Framework as a diagram. 

Step 1: Identify hazards in consultation with stakeholders (e.g. public water supplier, 

watershed protection agency) through a workshop or meeting. Eliciting the perceived impacts or 

potential events influencing water quality informs hazard identification. 
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Step 2: Review literature and stakeholder knowledge of hazards. Conduct a review of the 

literature via scholarly databases (e.g.  Google Scholar and Web of Science) and grey literature (e.g. 

reports, policy literature, working papers) using the hazard and its impacts as key words, producing a 

written document describing and categorizing potential water quality impacts. The stakeholders 

review results and fill in gaps. This process is iterative.   

Step 3: Categorize impacts. Group related water quality impacts together. For example, if 

increased nitrogen and phosphorus concentrations are identified as causes of a hazard that may impact 

a water body of interest (e.g. by eutrophication), they could be categorized as nutrient loading. Tables 

and/or figures can aid in this process.  

Step 4: Determine parameters that serve as (proxy) indicators. This step uses the generated 

information to identify measurable water quality parameters informing the hazard or its impacts. In 

some cases, parameters that in and of themselves are not related to the hazard are important when 

considered in conjunction with other parameters or system conditions (i.e. ‘proxy’ indicators, e.g. 

UV254 as a proxy for organic matter).  

Step 5: Determine thresholds of importance such as regulatory limits or “tipping points” 

under which severe system impacts are likely to be observed. These should be identified from 

literature on the measured parameters and input from the stakeholders’ past experiences. When 

identifying these thresholds, critical points (e.g. minimum dissolved oxygen levels for supporting 

aquatic life, maximum nutrient concentrations before algal blooms) should be identified and 

quantified. Sub-thresholds, or points before critical conditions are reached (e.g. low/no concern, 

future exceedance, likely imminent exceedance, threshold exceeded), should also be identified.  

Step 6: Identify potential rates of change through existing water quality datasets if possible. 

Tools include the nonparametric Mann Kendall test, ordinary least squares (OLS) regression of Y 

(e.g. constituent concentration) on time, and, when accounting for exogenous variables such as flow, 

the Mann Kendall test on residuals or regression of Y on X (e.g. flow) and time. Parameters impacted 

by seasonality can be analyzed through the SKT, OLS regression on de-seasonalized data, or multiple 
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regression with periodic functions (Helsel et al., 2020), or it may be appropriate to use techniques 

such as artificial neural networks or entropy concepts to forecast future conditions, or to predict 

changes in system loading using tools such as the USGS SPARROW (SPAtially Referenced 

Regression On Watershed) methodology (Schwarz et al., 2001) . These analyses can inform revisions 

of thresholds (Step 5). 

Step 7: Establish sampling frequencies for each indicator and proxy based on case specifics. 

Expected rates of change and thresholds of importance are used to set sampling frequencies that 

capture approaching thresholds. It may also be appropriate to employ optimization. Simulations of 

altered sampling frequency with existing data (dataset deconstruction) can be used evaluate their 

ability to detect trends.  

Step 8: Develop sampling program options and consult with stakeholders based on the 

selected parameters and their sampling frequencies. The bulk of the HBWQMP framework steps 

focus on water quality parameter and sampling frequency selection. In Step 8, sampling program 

options are created; this step requires sampling location selection, one of the most important aspects 

of water quality monitoring program development. Sampling locations need to be developed, which 

will vary depending on the hazard to monitor and resources available (e.g.  personnel and time). 

Depending on the considered hazard, optimization for aspects of the sampling programs could be 

applied. If possible, a suite of sampling program options should be presented to stakeholders, which 

can aid in their identification of perceived largest risks. There may be cases where exploratory 

sampling programs are proposed to gain more information before deciding on a final sampling 

program.  

Step 9: Conduct sampling based on the results of the previous step. A final sampling program 

is adopted and carried out.  

Step 10: Periodically review the sampling program. Data from the new sampling program is 

periodically reviewed to identify if thresholds are being approached. If the program is not generating 
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useful information, reasons should be identified. Simple changes should be made if necessary, or, if 

more drastic changes are proposed, start at Step 1 again.  

2.3 Methods for Framework Application 

The methods here describe the specific mode of application of the HBWQMP framework to the 

Quabbin watershed.  

2.3.1 Step 1-3: Identifying hazards, Literature and Stakeholder Review, and 

Categorizing Impacts 

Meetings were held with UMass and DCR to identify hazards of concern. A literature review 

of state and federal law specific to surface water quality was executed. Agreements that stipulate 

regulatory requirement between state agencies (in this case, MassDEP) and the partnering agency 

(DCR) were obtained and summarized.  

2.3.2 Determining parameters and thresholds of importance 

Tables were developed for the Quabbin (and Wachusett) watersheds (for the reservoirs and 

tributaries). These consisted of the principal groups of relevant parameters, whether parameters are 

direct indicators or proxies, thresholds identified from literature or legal documents, and allowable 

exceptions. The thresholds of importance listed in these tables generally correspond to chronic (long-

term) water quality criteria or guidelines since DCR water quality monitoring programs are typically 

used to compare to baseline conditions and historical trends, and state regulations also focus on 

typical (baseline) conditions in most cases. Parameters and thresholds relevant to acute water quality 

criteria for the protection of aquatic life could be added to the tables. Many parameters have narrative 

(non-numeric) criteria, which can be ambiguous. For groupings dominated by narrative criteria, other 
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sources (e.g. EPA Gold Book (US EPA, 1986) and EPA nutrient criteria (US EPA, 2000)) were used 

to assign numeric thresholds (when deemed possible) to enable evaluation of trends or patterns.  

The list of potential parameters to measure identified in the first version of the table was 

extensive. More targeted versions focusing on DCR’s higher priorities were then developed as 

“Priority Tables” (Appendix B), which highlight parameters currently measured. This allowed DCR 

to determine whether to monitor more or fewer parameters or identify new parameters worth 

monitoring. 

Nutrients have different potential thresholds or criteria for tributaries and reservoirs, as 

differences can occur based on geology and land use. One approach for addressing these differences 

is to use the 2000 EPA concept of ecoregions, which are areas where ecosystems are generally similar 

(US EPA, 2000). DCR watersheds are split between Level III ecoregions 58 (Northeastern Highlands) 

and 59 (Northeastern Coastal Zone). We developed a spreadsheet that describes how ecoregion 

nutrient criteria apply to established sampling locations within DCR watersheds.  

2.3.3 Rates of change 

Rates of change for indicators are then determined. We focused on Quabbin watershed 

tributary water quality. We used DCR’s WAVE (Water System Data Analysis and Visualization 

Environment) program (Zinck, 2018) to access their extensive water quality datasets for Quabbin 

Reservoir and its associated tributaries. The trend analysis in key (core) Quabbin Reservoir tributary 

monitoring sites (seven core monitoring sites, Fig. 2.2) was carried out for specific conductance, 

turbidity, total coliform, and total phosphorus (Table 2.1).  
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Fig. 2.2 Locations of core water quality monitoring sites in the Quabbin watershed and 

reference image of the state of Massachusetts 
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Table 2.1 Lengths of records used, sample sizes, and approximate sampling frequencies for water quality monitoring sites in Quabbin 

watershed tributaries for four parameters.  

         
Parameter   211 212 213 215 216 BC GATE 

Specific 
Conductance 

Start Date 1987-01-05 1987-01-05 1987-01-05 1987-01-05 1987-01-05 1994-02-14 1994-03-28 
End Date 2019-12-31 2019-12-19 2019-12-31 2019-12-31 2019-12-31 2019-12-31 2019-12-31 
# Samples 941 884 914 894 934 622 672 

Total 
Coliform 

Start Date*  2010-01-12 2010-01-12 2010-01-12 2010-01-12 2010-01-12 2010-01-12 2010-01-12 
End Date 2019-12-31 2019-12-19 2019-12-31 2019-12-31 2019-12-31 2019-12-31 2019-12-31 
# Samples 262 264 266 262 262 265 258 

Total 
Phosphorus 

Start Date 2005-03-29 2005-03-29 2005-03-29 2005-03-29 2005-03-29 2005-03-29 2005-03-29 
End Date 2019-12-31 2019-12-05 2019-12-31 2019-12-31 2019-12-31 2019-12-31 2019-12-31 
# Samples 66 64 65 64 64 59 62 

Turbidity 
NTU 

Start Date 1987-01-05 1987-01-05 1987-01-05 1987-01-05 1987-01-05 1994-02-14 1994-03-28 
End Date 2019-12-31 2019-12-19 2019-12-31 2019-12-31 2019-12-31, 2019-12-31 2019-12-31 
# Samples 935 877 907 887 926 582 650 

*Total coliform data collected before 2010 were unavailable for this analysis. 



52 

Time-series data were used to identify trends in measured water quality over time. 

Seasonality in time series data was determined using boxplots of grouped seasonal sampling data, 

with sampling seasons defined as the typical period of time between water quality sample collection 

events over the period of record (e.g. twice monthly (henceforth biweekly), monthly, or quarterly). 

The SKT, a non-parametric test for trend analysis, was used when seasonality was deemed important 

by visual inspection of boxplots (kendallSeasonalTrendTest function from the EnvStats packge in R 

(Millard, 2013)). User defined functions were developed in R to streamline the ability to run the SKT 

function from the EnvStats package with the WAVE data formats that DCR use. For the period of 

record, overall slopes and seasonal slopes were calculated, and their significance was identified.  

2.3.4 Sampling Frequencies 

 Many water quality parameters were measured biweekly, monthly, or quarterly. One of the 

main goals of DCR’s water quality monitoring program is to identify long-term trends. We evaluated 

options for sampling frequency based on ability to detect long-term trends in three parameters of 

interest: specific conductance, turbidity, and total coliform for the following reasons. Specific 

conductance levels have been increasing due to road deicing/road salting in the Northeast United 

States (Kaushal et al., 2005; Stets et al., 2018), turbidity levels relate to regulatory compliance for the 

filtration waiver, and total coliform counts have been noted as of concern in the Quabbin Reservoir 

with in-reservoir total coliform counts increasing over time, and background concentrations affecting 

laboratory bacterial analysis and regulatory compliance downstream of the reservoir intake.  

Specific conductance, turbidity, and total coliform were measured approximately biweekly 

(approximately 24 samples per year) in core sites in Quabbin Reservoir tributaries starting from either 

1987,1994, or 2010 (depending on the tributary and/or parameter) through 2019 (data extracted May 

2021). We conducted simulation experiments using dataset deconstruction to determine if similar 

long-term trend detection was observed with reduced sampling frequency. For all three parameters, 



53 

we simulated monthly sampling (12 samples per year) by deconstructing (reducing) the overall 

dataset to one sample for each parameter for each month of data available (the sample collected 

closest to the middle or beginning of each month). First, to simulate quarterly sampling (4 samples 

per year), the samples collected closest to the 15th of March, June, September, and December over the 

available record were selected, as they correspond to the quarterly sampling schedules of other 

parameters measured by DCR. Other quarterly sampling reduction methods (i.e. choosing the samples 

closest to January/April/July/October 15th or February/May/ August/November 15th) were also tested. 

We ran the SKT on the deconstructed datasets, evaluated slopes for statistical significance, and 

calculated the absolute error in slope magnitudes between the biweekly (true) sampling schedule and 

the simulated reduced sampling frequencies. Within the context of long-term trend detection, when 

absolute errors were relatively low, we recommended that it would be feasible to reduce sampling 

frequency at that site if DCR planned to do so. If absolute errors were high, we recommended that 

sampling frequencies should remain the same or increase.  

2.3.5 Subsequent steps 

In Step 8, sampling locations were identified as part of developing the three broad aspects of 

water quality monitoring of interest (what to monitor, when to monitor, and where to monitor). DCR 

continues to put significant effort into selecting sampling locations that allow water quality 

characterization of different areas of the Quabbin watershed and DCR staff are identifying possible 

sampling location changes reflecting this ongoing process. Sampling program options (for sampling 

frequency) were presented to DCR who can then choose to implement options they deem fit and 

conduct future reviews of the sampling programs internally or with assistance of the UMass-DCR 

partnership (Step 10).  
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2.4 Results 

2.4.1 Steps 1-5: Identifying Why and What to Monitor  

Step 1 was carried out with DCR. Two hazard cases were identified: 1) regulatory 

compliance and 2) climate change, from which we selected the former: failing to meet regulatory 

standards for this analysis. If the agency does not meet standards for regulatory compliance, there 

may be a potential risk to public health or financial implications (e.g. fines and increased staffing 

requirements). For DCR and MWRA, the cost of achieving compliance would be significant if the 

filtration avoidance criteria are not met. We first reviewed all laws relating to water quality 

monitoring and protection for surface waters that serve as drinking water supplies.  

The U.S. federal laws that apply to surface water quality are the Clean Water Act, the Safe 

Drinking Water Act, under which the National Primary Drinking Water Regulations (40 CFR 141) 

(2006), including the Surface Water Treatment Rule are found. Of specific interest in our case study 

is the criteria for avoiding filtration in 40 CFR §141.71. All of these federal regulations are enforced 

by the state in Massachusetts. In Massachusetts, the regulatory standards relevant to DCR are 314 

CMR 4: The Massachusetts Surface Water Quality Standards (2013), 310 CMR 22: The 

Massachusetts Drinking Water Regulations  (2016), and 313 CMR 11: Watershed Protection (2017). 

The Quabbin and Wachusett reservoirs are for drinking water supply, and therefore Class A 

waterbodies that are protected as Outstanding Resource Waters. For regulatory purposes, the 

tributaries that enter each reservoir are considered part of the basin boundary. The MWRA is 

responsible for all regulatory monitoring to meet the Drinking Water Regulations. 313 CMR 11 on 

Watershed Protection gives the required conditions for DCR’s watershed management and protection 

practices. 

From the surface water quality standards, the following water quality parameters are 

emphasized for ensuring classification as a Class A waterbody: dissolved oxygen, temperature, pH, 
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bacteria, solids, color and turbidity, oil and grease, and taste and odor (Table B.1). Other minimum 

criteria are related to aesthetics, bottom pollutants or alterations, nutrients, radioactivity, and toxic 

pollutants. Some of these criteria are numeric, while others are narrative or descriptive. The drinking 

water regulations specify monitoring and limits for coliform bacteria and turbidity.  

DCR designs the general sampling program, including specific sampling frequencies. The 

measured water quality parameters have varied over the years as concerns evolve; for example, acid 

rain was a focus in the 1980s. Some measured water quality parameters are not directly required 

under state regulations but are used by DCR as part of the DWSP Watershed Protection Plan. In the 

process of completing Steps 4 and 5 (determining parameters and thresholds of importance), we used 

academic literature, the 1986 EPA Gold Book (US EPA, 1986), and EPA nutrient criteria (US EPA, 

2000) to convert narrative criteria to numerical criteria when possible.  

Applying Steps 2-5 of the framework resulted in tables for the Quabbin watershed (Table 2.2, 

Appendix B Full Tables) that included parameters deemed priorities for the relevant watershed’s 

tributaries and reservoir and a comprehensive list of all possible parameters (based on literature 

review and stakeholder input). Repeated parameters were deemed relevant to multiple categories.  

Except for those parameters designated “as stated by MA law”, others are suggestions. The Nutrients 

tab is based on a spreadsheet originally developed by DCR staff with additions to include chlorophyll 

a and EPA ecoregions of tributary sampling sites. The tables were completed iteratively whereby the 

UMass team developed versions of the tables and then elicited and incorporated feedback from DCR.  
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Table 2.2 Snippet of HBWQMP Parameter Table for Quabbin Watershed with brief regulatory description for parameter groupings 

added. Bolding added for emphasis. Sources linked in Appendix B. Abbreviations: ind – indicator, geomean – geometric mean, y- yes, 

n- no, n/a not applicable 

Grouping Brief Regulatory Description Parameter Ind/ 
Proxy 

Source Threshold Exception 
for Naturally 
Occurring 

Dissolved 
Oxygen 
  

“Shall not be less than 6.0 mg/l in cold water 
fisheries and not less than 5.0 mg/l in warm 
water fisheries.” (314 CMR 4) 

DO (mg/L) ind 314 CMR 4 < 6 mg/L y 
DO (% Saturation) ind Maine DEP < 75%  n/a 

pH 
  

“Shall be in the range of 6.5 through 8.3 
standard units but not more than 0.5 units 
outside of the natural background range. 
There shall be no change from natural 
background conditions that would impair any 
use assigned to this Class.”  (314 CMR 4) 

pH ind 314 CMR 4 outside 6.5-8.3 y 
Alkalinity (mg/L as CaCO3) proxy ARM, NRWQC < 20 mg/L y 

Taste and 
Odor/ 
Biology 
  
  

“None other than of natural origin .” (314 
CMR 4) 

Human Inspection ind 314 CMR 4 Sensory- None other than 
natural origin 

n 

See NRWQC - Organoleptic 
Effects 

ind NRWQC Varies n/a 

Decaying vegetation, 
actinomycetes 

proxy SD Lin (Illinois) Excessive Presence of n/a 

Bacteria 
  
  
  

“At water supply intakes in unfiltered public 
water supplies: either fecal coliform shall 
not exceed 20 fecal coliform organisms per 
100 ml in all samples taken in any six month 
period, or total coliform shall not exceed 
100 organisms per 100 ml in 90% of the 
samples taken in any six month period, If 
both fecal coliform and total coliform are 
measured, then only the fecal coliform 
criterion must be met.” (314 CMR 4) 

Total Coliform ind 314 CMR 4 >100 organisms/100mL n 
Fecal Coliform ind 314 CMR 4 >20 organisms/100mL n 
E. coli ind 314 CMR 4 >126 colonies/100mL 

(geomean), never above 235 
n 

Enterococci ind 314 CMR 4 >33 colonies/100mL 
(geomean), never above 61 

n 

Turbidity “The Turbidity level cannot exceed one NTU 
… in representative samples of the source 
water immediately prior to the first or only 
Point of Disinfectant Application…The 
Turbidity level cannot exceed five NTU (at 
any time)” (310 CMR 22) 

Turbidity (NTU) Ind 310 CMR 22 > 5 NTU n 

Non-
Regulatory 

 Specific Conductance ind Massachusetts 
CALM Guidance 
Manual (2018) 

> 3,193 uS/cm (acute) and  
> 904 uS/cm (chronic) 

n/a 
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2.4.2 Step 6: Identifying Rates of Change  

Specific conductance data were first analyzed to assess temporal and seasonal trends; an example 

from Site 213 (Middle Branch Swift River) is shown here, with data from additional sites in the SI (Fig. 

2.3, SI Fig. B.1-6). Site 213 has a drainage area of 9 square miles and 25.2% of the land is owned by 

DCR DWSP. Site 213 is shown as an example as it shares the same period of record with several other 

core monitoring sites. This visual analysis of temporal and seasonal trends demonstrated that using the 

SKT would be appropriate for the sites and parameters considered.  

   

Fig. 2.3 Time series and seasonally grouped (biweekly sampling periods) data for specific 

conductance at Site 213 in the Quabbin watershed from 1987-2019. a) Linear trend line shown on 

time series. b) The horizontal line crossing the boxplots represents the overall median for specific 

conductance at the site over the period of record. 

The overall trend slopes at all the sites were statistically significant when evaluated overall and at 

the seasonal period trends (e.g. biweekly period in the first half of July) (p<0.001, SKT) (Fig. 2.4). Gates 

Brook (GATE) was the only site with a negative trend for specific conductance and Boat Cove Brook 

(BC) and West Branch Swift River (211) had several seasonal periods where trends were not significant.  
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Fig. 2.4 SKT Seasonal Trend Slopes for specific conductance at each of the Quabbin core tributary 

sites. Colors represent statistical significance. 

The overall slopes for each studied parameter were statistically significant (p < 0.05) for specific 

conductance at all sites, turbidity at all sites except Gate Brook (GATE), total coliform at Site 215, and 

total phosphorus at Boat Cove Brook (BC) (Table 2.3). Slopes considered borderline significant (p<0.1) 

were observed for turbidity at GATE, total coliform at Sites 212 and 213, and total phosphorus at Site 

216. For most sites, quarterly sampling of total phosphorus did not show statistically significant slope 

(p<0.05), while biweekly sampling of specific conductance and turbidity did. While the majority of 

specific conductance and turbidity slopes across all sites were positive (increasing in concentration over 

time), total coliform and total phosphorus exhibited negative slopes at several sites (decreasing in 

concentration over time).  
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Table 2.3 Overall slopes by the SKT at core Quabbin tributary monitoring sites and typical 

sampling frequency over the period evaluated given. *=p<0.1, **=p<0.05, ***=p<0.001 

Site 

Slope (units/yr) 

Specific Conductance 

�����V���F�P�� 

Turbidity 

(NTU) 

Total Coliform 

(MPN/100mL) 

Total Phosphorus 

(mg/L) 

Biweekly Sampling Quarterly Sampling 

211 0.2***  0.003*** -5 0.0002 

212 1.4***  0.009*** -10* 0.0000 

213 1.8***  0.010*** -10* -0.0002 

215 1.3***  0.007*** -27** -0.0001 

216 0.8***  0.003*** -3 -0.0004* 

BC 0.4***  0.009*** 7 0.0005** 

GATE -0.3***  0* 3 0.0002 

2.4.3 Step 7: Sampling Frequencies 

We simulated reducing sampling frequencies for specific conductance, turbidity, and total 

coliform (total phosphorus was only sampled quarterly during the period of record). For specific 

conductance, all sites and all sampling frequencies (except for Site 211 when sampled quarterly, and Boat 

Cove Brook when sampled quarterly in January, April, July, and October) resulted in overall slopes that 

were statistically significant (p <0.05) (Fig. 2.5). Similarly for turbidity, overall slopes were statistically 

significant, except at Boat Cove Brook (BC) when sampled quarterly and at Gates Brook when sampled 

monthly and quarterly. For total coliform, most overall slopes were not statistically significant regardless 

of sampling frequency.  

For specific conductance, turbidity, and total coliform, the average absolute error between the 

biweekly sampling frequency and monthly and quarterly sampling frequencies across all sites was 5.4-

13.3%, 4.4%-12.7%, and from 68-215.4% respectively (Tables B.2, B.3, B.4). These results indicate that 

total coliform varied more significantly than specific conductance and turbidity in the Quabbin watershed, 
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and that it is likely useful to monitor it more frequently (e.g. biweekly). When comparing absolute errors 

for each site and sampling frequency to the “truth” (biweekly sampling), no sampling reduction method 

resulted in a consistently lower absolute error across all sites (Tables B.2-4). Site 211 had relatively 

higher average absolute errors compared to Sites 212, 213, and 215 for all parameters analyzed.   
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Fig. 2.5 Observed overall slopes for a. specific conductance, b. turbidity, and c. total coliform using 

different sampling reductions. Dotted line corresponds to the value of the biweekly (true) overall 

slope for that site. *Indicates sampling pattern similar to typical DCR sampling schedules. 
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2.5 Discussion 

 We established and applied the HBWQMP framework to the Quabbin watershed and made the 

following observations about the method’s application. In Step 1, conversations with DCR staff helped 

identify and define key concerns for their watersheds. In the literature review (Step 2), we found that 

federal and state regulations often include narrative criteria; operationalizing these for monitoring was 

difficult and it was necessary to find additional sources to assign relevant numerical values. The 

culmination of Steps 2-5 was the HBWQMP Parameter Tables, which were developed iteratively to 

create tables that were a useful long-term output. While the tables represent one set of possible parameters 

to monitor relating to regulatory requirements, the full versions of these tables allow for easy selection of 

new parameters to monitor as priorities or requirements change. 

Seasonality was observed for the parameters of interest, so the SKT was appropriate to use. 

Specific conductance, of concern due to salt use for road deicing over the past several decades, has been 

increasing throughout the watershed at all sites other than  Gates Brook, which is consistent with trends in 

specific conductance in waters throughout the US (Gutchess et al., 2016). Overall slopes were significant, 

but some seasonal slopes were not, indicating that there may be higher interannual variation in specific 

conductance for specific sampling periods (seasons) at certain sites. Specific conductance and turbidity 

measured biweekly resulted in statistically significant slopes (p<0.001) at nearly all sites, while biweekly 

measured total coliform did not result in statistically significant slopes at most sites. Based on the distance 

between tributary sampling locations (except BC) and the drinking water intake (near Site 202; the 

location where total coliform matters more for regulatory purposes) (Fig. 2.2), high reservoir residence 

times, and decreasing trends at several sites, total coliform in tributaries is likely not of high concern for 

the Quabbin system. Total phosphorus measured quarterly did not result in statistically significant slopes 

at many sites. Notably, there were changes in sampling frequency for total phosphorus and other nutrients 

since 2019 in the Quabbin watershed. In part due to discussion relating to this framework, DCR staff 

changed sampling frequency to monitor nutrients, nitrate, ammonia, and total phosphorus, more 
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frequently (biweekly) temporarily to determine effects on patterns or trend detectability.  Future SKT 

analysis should be used to evaluate if the biweekly sampling frequency affects long-term trend detection. 

Nutrient concentrations can have a direct impact on presence of algal indicators, a hazard of concern. 

Based on the total phosphorus results, we conclude that nutrients should be sampled more often than once 

every quarter. For specific conductance and turbidity, results suggest that sampling frequency could be 

reduced from biweekly to monthly with similar long-term trend detection. For total coliform, reduced 

sampling frequencies would not be beneficial for long-term trend detection.  The importance of 

monitoring results for meeting regulatory or other goals should be evaluated when deciding whether to 

alter sampling frequencies.  

We found that a decreased sampling frequency corresponded with a decreased ability to detect 

statistically significant trends. By evaluating absolute error of slopes, we found that the error was 

relatively small for specific conductance and turbidity but was high for total coliform. This is likely due to 

total coliform varying due to rainfall (hence streamflow) and temperature which may have more 

interannual variation (Hong et al., 2010). Our analysis of sampling reduction methods showed that no one 

method resulted in a consistently lower absolute error compared to the “truth” (biweekly sampling), 

highlighting the importance of evaluating conditions that may affect water quality at sites in different 

parts of a watershed. High average absolute error amongst sampling frequency reduction methods was 

observed at Site 211. This aligns with the lack of statistically significant (p<0.05, SKT) results for 

seasonal slope values at Site 211 for specific conductance (Fig. 2.4), indicating higher interannual 

variation at this site.   

A limitation of this study was that flow data were not available for all the monitoring locations 

and therefore flow is not included in trend analysis. While specific conductance is a largely conservative 

water quality parameter, turbidity is more likely to be affected by flow. If flow data become available in 

the future, it would be helpful to account for it by performing a test such as SKT on residuals from 

ordinary least square regression of concentrations on flow (Helsel et al., 2020). We only looked at 

sampling frequency reduction in this study because evaluating increasing frequency would require 
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additional sampling outside of the scope of this project, but it would be worthwhile to evaluate effects of 

increasing sampling frequency in the future. Like our study with reducing sampling frequencies, future 

efforts to study increased sampling frequency should make use of carefully designed simulation 

experiments and use of statistical methods. We only applied the statistical methods to one watershed; this 

watershed is pristine and in the northeast US climate. Results of this analysis may not translate directly to 

more polluted watersheds or watersheds in different climatic regions. It would be useful to apply the 

methods to other watersheds to see if they are applicable in other places. We only applied these methods 

to grab samples in tributaries; it would be useful to apply these methods in reservoirs or lakes where 

samples can be collected at several locations and depths. Other water quality parameters, sample volumes, 

and continuous vs. grab samples are other aspects of monitoring programs that would be useful to 

evaluate through the lens of this framework.  

In application of this framework, we did not make any direct recommendations on sampling 

location selection to DCR staff. Future work related to this framework should include in-depth analysis of 

monitoring location selection, as this is one of the most important aspects of a water quality monitoring 

program. The tools we developed for DCR could be enhanced by allowing for comparison between water 

quality trends at different sampling locations. Other hazards, such as climate change, could also be 

considered and applied as relevant. In our development of the HBWQMP Parameter Tables, we presented 

one possible lens for setting numerical nutrient criteria: EPA ecoregions. EPA is in the process of revising 

their nutrient criteria guidance, so it would be helpful to consider the new guidance when available. 

Future work should also consider evaluating the length of historical records required for detecting long-

term trends, and be applied for additional hazards, including climate change (another hazard identified by 

DCR). During a stakeholder meeting held with DCR, some of the potential impacts relating to the hazard 

of climate change included less ice cover on the reservoirs in the winter, more wintry mix weather events 

leading to increased road salting, exposure of shoreline elements due to changes in water surface 

elevation, and increased chance of cyanotoxin appearance.  An initial literature review for the climate 

change case revealed categories for potential impacts related to climate change including algae, changing 



65 

precipitation, extreme events, water chemistry, nutrients, and organic carbon (Table B.5). As DCR has 

already started evaluating altered sampling frequency for nutrients, if sampling frequencies of other 

parameters are altered based on evaluation completed through this framework, the final HBWQMP 

framework step of carrying out a periodic review of the revised monitoring program should be carried 

out.  

We developed a toolset that addresses a gap in data analysis capability commonly encountered by 

monitoring agencies. While trends in specific conductance were perceived as a concern in the relevant 

watersheds before using this framework, its application allowed for statistical exploration of these trends 

and confirmed statistically significant (mostly increasing) trends at several tributary sampling sites. Under 

its current design, DCR’s WAVE has few tools for advanced statistical analysis (e.g. SKT), so we 

developed R functions to employ these with existing data structures, allowing the monitoring agency to 

directly continue these analyses. With these tools available, analyses should be carried out for water 

quality parameters of interest in other DCR managed watersheds such as the Wachusett system. While we 

focused on sampling frequency reduction, DCR increased frequency of sampling (quarterly to biweekly) 

for nutrients in tributaries during project implementation to better characterize variations in nutrient 

loading and relations to possible nuisance algal blooms.  

2.6 Conclusions 

The HBWQMP framework was designed as a transferrable and versatile tool that can be used by 

regulators and watershed managers to comprehensively develop appropriate water quality monitoring 

programs for addressing hazards facing water systems in a variety of geographic and climatic settings. 

Here, we demonstrated its application and usefulness in water quality program development, particularly 

parameter and sampling frequency selection. We also employed a novel application of dataset 

deconstruction and the SKT to evaluate long-term trend detection with varying sampling frequencies for 

water quality parameters commonly included in watershed monitoring programs. Tools were developed to 
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allow for future application of this method for use with DCR data. The application of our novel tool 

(HBWQMP framework) resulted in key revelations about existing gaps in long-term monitoring programs 

relative to DCR program goals (e.g., monitoring frequency for nutrients was insensitive to long-term 

trend detection). DCR modified sampling frequency for nutrients in response to these findings. The 

HBWQMP framework and sampling frequency evaluation methods described here can be applied to a 

variety of situations to meet the needs of different watersheds.  
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DEVELOPING METHODS TO PREDICT BURIED SANITATION INFRASTRUCTURE 

Some data used in this chapter was provided by Zillow through the Zillow Transaction 

and Assessment Dataset (ZTRAX). More information on accessing the data can be found at 

http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not 

reflect the position of Zillow Group. 

3.1 Introduction 

 Access to sanitation services in integral to ensuring human health. Sanitation services are used to 

manage human waste by collecting, storing, emptying or transporting it for treatment and eventual 

discharge or reuse (World Health Organization and United Nations Children’s Fund (UNICEF), 2017a). 

The United Nations Joint Monitoring Programme (JMP) uses service ladders to differentiate between 

different levels of service across countries. For sanitation, the top rung of the service ladder requires 

safely managed sanitation. Safely managed sanitation means that waste is “treated and disposed of in situ, 

stored temporarily and then emptied, transported and treated off-site, or transported through a sewer with 

wastewater and then treated off-site” (World Health Organization and United Nations Children’s Fund 

(UNICEF), 2017b).  

In the United States, at least 20% of the population use on-site wastewater treatment systems 

(OWTS)for management of human waste (US Census Bureau, 1993). One of the predominant types of 

OWTS is the septic system. While we acknowledge that there are other types of OWTS, we will use the 

terms “septic” and “septic system” as general terms referring to all types of OWTS throughout this 

chapter due to the predominance of septic systems as an OWTS technology. However, the last time that a 

national-scale census of prevalence of sanitation systems was conducted in the US was in 1990, over 30 

years ago. More recent surveys, such as the 2019 American Housing Survey (AHS) provide data on 

sanitation system prevalence, but the data typically do not allow for estimations on local scales (US 

Census Bureau, 2013). Because a large portion of the US population uses septic systems for sanitation 
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purposes, it is important to understand where these systems are, how many there are, if they are serving 

their purpose, and who is served by them.  

How do OWTS work? 

 Septic systems are typically used for buildings that are not connected to public sewer systems. 

Buildings connect to sewer systems often have their waste treated at a central wastewater resource 

recovery facility, while septic systems treat waste in-situ. Whereas septic systems were once seen by 

many as a temporary option before centralized treatment could be installed, there is now recognition that 

these systems are a reasonable approach for waste treatment, particularly when implementing centralized 

treatment is not economically feasible on account of remoteness or large distance between properties, or 

cannot expand fast enough for growing populations (Davenport, 2004; Metropolitan North Georgia Water 

Planning District, 2006). Septic systems are a form of decentralized waste management, most often used 

to treat relatively small quantities of wastewater before discharge into surrounding water sources and soil 

(Meeroff et al., 2008). Septic systems typically consist of a tank and a subsurface wastewater infiltration 

system (USEPA, 2002).  With the recognition that septic systems can be permanent waste treatment 

options, there is recognition that basic system designs are not always adequate, particularly for protection 

of water quality. Innovative/alternative (I/A) septic systems designed to remove organic contaminants 

such as pharmaceuticals (Wilcox et al., 2009) and nitrogen (Cooper et al., 2015; De and Toor, 2016) have 

been tested and used in places such as Cape Cod, MA and Suffolk County, Long Island, NY (Walton, 

2020). Towards the other end of OWTS spectrum, there are cesspools and straight pipes (direct surface 

discharge of raw wastewater from households). Research has demonstrated that up to 50% of unsewered 

homes use straight pipes in some US counties (Maxcy-Brown et al., 2021).  

Are OWTS providing adequate treatment?  

For OWTS to be considered safely managed sanitation, there must be some form of in-situ waste 

treatment. By default, this eliminates straight pipes as safely managed on-site sanitation. Traditional or 

I/A septic systems can be considered safely managed sanitation if they are operating properly. Defining 

septic system failure comprehensively is difficult, but one of the key variables is if the system is 
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contaminating nearby soils and groundwater with wastewater products. Groundwater contamination from 

septic systems has been identified as the leading cause of contaminated groundwater ahead of all other 

sources in the state of New Mexico (McQuillan, 2004). High densities of septic systems in an area were 

related to endemic diarrheal disease in Wisconsin (Borchardt et al., 2003). In southeastern Michigan, 

more enteric virus-positive samples were found at sites served by septic systems compared to sites served 

by sewer systems (Francy et al., 2004). A study in Florida demonstrated that while micropollutants in the 

area tested posed minimal risk to human health, that there is a risk of incomplete removal and appearance 

of micropollutant transformation products that can lead to continuous environmental inputs and further 

effects in the future (Yang et al., 2017). These examples from various parts of the US demonstrate the 

need for septic systems to be operated properly to protect human health and the environment.  

In developing a novel GIS-based framework for assessing septic system vulnerability, Hoghooghi 

et al. (2021) demonstrated that it is important for septic system design regulations to consider variables 

including tank capacity, drainfield type, and depths to seasonal groundwater tables. It’s been shown that 

water from shallow wells (<20m depth, below land surface) had more chemical indicators (e.g. Cl/Br 

ratio) of potential impact from septic systems (Katz et al., 2011). A study using artificial intelligence 

techniques to predict potential septic system failure showed that variables including soil slope, soil 

loading rate, tank size, and number of bedrooms were important predictors (Ravi and Johnson, 2021). 

These studies demonstrate that septic system configuration and location can impact septic system 

operability and potential for failure. This further demonstrates the need to identify locations of septic 

systems nationally for protection of human health. The importance of proper sanitation system 

management for protection of health has been highlighted in Lowndes County, Alabama where poor 

sanitation management including use of straight pipes has coincided with high rates of poverty and 

parasitic infection (hookworm) for the population (McKenna et al., 2017) .  

What techniques exist for identifying locations of infrastructure like OWTS? 

A major challenge in infrastructure management is identifying locations of infrastructure, 

particularly buried infrastructure, as asset management techniques have varied over time. Here, we 
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propose the use of machine learning techniques to identify locations of buried sanitation infrastructure 

(e.g. OWTS and sewers) in the United States. Recent research efforts driven by an age of unprecedented 

computing power and methods for processing datasets have sought to improve management of civil 

infrastructure using machine learning methods. Computer vision techniques have been employed for 

purposes of inspection of structures such as bridges (Spencer et al., 2019). Machine learning and 

modeling techniques have demonstrated their usefulness in evaluating the condition or deterioration of 

infrastructure in industry (Diez-Olivan et al., 2019), drinking water pipe networks (Sattar et al., 2019; Shi 

et al., 2017), and sewer pipe networks (Caradot et al., 2018; Kleiner et al., 2006; Yin et al., 2020). 

Computer vision and image analysis techniques have been used to identify locations of buried 

infrastructure in concert with ground penetrating radar data (Singh and Nene, 2013; Travassos et al., 

2020). Machine learning has also been applied in locating defunct manufactured gas plants, sites requiring 

environmental remediation (Tollefson et al., 2021). Machine learning techniques have also been used to 

identify lead plumbing in public water systems (Gurewitsch, 2019). Based on the success of past 

applications of machine learning methods in the area of infrastructure management, we will add to this 

field of research by conducting large-scale applications of machine learning to identify locations of buried 

sanitation infrastructure.  

Who is served by OWTS and how are they regulated? 

According to the JMP, 90% of the total population and over 95% of the urban population of the 

United States has access to safely managed sanitation. There is a lack of data on safely managed 

sanitation in rural areas, but estimates indicate over 99% of both the rural and urban US populations have 

access to at least basic sanitation services (World Health Organization and United Nations Children’s 

Fund (UNICEF), 2019). However, through comparisons of JMP estimates with estimates from the US 

Department of Housing and Urban Development on homelessness and the American Community Survey 

on household water and sanitation facilities, it had been estimated that at least 930,000 persons in US 

cities lack sustained access to basic sanitation (Capone et al., 2020). Data collected by the WHO in 2012 

calculated that for every US$1 invested in sanitation, there was a return of US$5.50 in lower health costs, 
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increased productivity, and fewer premature deaths (World Health Organization, 2019). Federal 

interventions in sanitation have had a demonstrated effect on reducing infant mortality rates in Native 

American populations since 1970 (Watson, 2006).  

These examples show that increasing access to sanitation is important, and benefits are likely to 

increase with a move from basic sanitation to safely managed sanitation. However, two issues arise in 

achieving this goal: regulatory structures and racial exclusion from municipal services such as water and 

wastewater infrastructure. A study carried out in Ohio demonstrated that only 20% of those in a 

regulatory role for OWTS felt well equipped in their daily tasks indicating a need for training in 

permitting, design and installation of OWTS and I/A systems (Vedachalam et al., 2012). Exclusionary 

zoning practices known as “underbounding” have caused systematic exclusion of some black 

communities in the southern US, forcing dependence on private wells and OWTS as opposed to public 

water supplies and sewer systems. A byproduct of this underbounding is a low awareness of the potential 

connections between septic system maintenance and well water quality, inadequate water testing and 

septic tank maintenance, and misperceptions on septic system maintenance guidance (Fizer et al., 2018). 

Increasing understanding of who and where people are served by OWTS in the US will aid in targeting 

efforts for safe management of these systems and hopefully promote equity in access to sanitation 

services. 

What can we do about it? 

 Here, we propose the creation of a national inventory of buried sanitation infrastructure to fill the 

gap in recent nationally available data on who in the US is served by different types of buried sanitation 

infrastructure. In this chapter, we lay the foundation for the development of such an inventory using 

machine learning and data processing techniques. We present a case study describing the development 

and application of these techniques in the state of Florida. We describe processing techniques for 

geospatial data, testing of different machine learning techniques, areas for future improvements, and a 

brief analysis of sanitation service type coverage for different socio-economic groups. Ultimately, we will 



72 

describe how we plan to use the results shown here to develop a national inventory of buried sanitation 

infrastructure.  

3.2 Methods 

3.2.1 Study Area 

The state of Florida was chosen for the introductory analysis of this project because of its public 

records of the locations of septic and sewer systems in most of the counties of the state as part of the 

Florida Water Management Inventory (FLWMI). The FLWMI is meant to be an “up-to-date centralized 

geographic data map for developed properties with a drinking water source (public water or private 

domestic well) and wastewater treatment method (central sewer or onsite septic)” (Florida Department of 

Health, 2021). The FLWMI maps have individual parcels and indicate the sanitation infrastructure type 

associated with the parcel. We analyzed three counties in the state of Florida: Marion County, Miami-

Dade County, and Washington County. Each of these counties is in a different part of the state and has a 

different population density (Fig. 3.1). This variety of locations and population densities was selected to 

cover a range of different characteristics within a single state and to serve as a proxy for expected 

variances in model behavior and performance in other states.  
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Figure 3.1 Map of Florida, Counties analyzed labeled, population density indicated. 

3.2.2 Data Acquisition 

We identified and collected sanitation system indicator data to infer the presence (or absence) of 

underground sanitation infrastructure (Fig. 3.2). For this analysis, the base observational unit is the parcel. 

Data from these sources were processed (described in Section 3.2.3) and then associated geospatially to 

individual parcels. When possible, use of datasets that were available across broad scales, (e.g. nationally 

or statewide) were prioritized over more localized datasets, for purposes of generalizing data processing 

across multiple geographies (i.e. counties). Individually, each sanitation system indicator dataset paints an 

incomplete picture, but we believe that employing them in concert using data from a variety of locations 

can enable inference of properties served by sewer or OWTS with high accuracy in most communities. 

Sanitation system indicator datasets used in this analysis included: roadways, wastewater treatment plant 

locations, building locations and areas, landcover, US Census American Community Survey (ACS) data, 

and Zillow ZTRAX Assessment data. 
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Figure 3.2 Sanitation system indicator data will be used to predict if a parcel is served by a sewer or 

OWTS. Images from: Amherst MA (2021); City of Tacoma (2013); Wilson (2018) 

1. Roadways. Sewer systems tend to follow roadways (Kapo et al., 2017); we used public data on road 

networks from the US Census Bureau as one method to infer likely locations of sanitation infrastructure. 

Number of roads, road type, and density of roads in the area surrounding an address were calculated as an 

indicator of probable sanitation infrastructure type.  

2. Wastewater treatment plant (WWTP) locations. A data layer of Wastewater Facility Regulation 

(WAFR) Facilities and the permitted flows associated with facilities allowed by either National Pollution 

Discharge Elimination System (NPDES) permits or State Pollution Discharge Elimination System 

(SPDES) permits was obtained from the Florida Department of Environmental Protection Geospatial 

Open Data portal (Florida Department of Environmental Protection, 2018).  

3. Building locations and areas. Microsoft Maps has released freely available, national building footprint 

datasets, containing over 125 million computer generated building footprints based on computer vision 

algorithms of satellite imagery, which we used to calculate building density surrounding addresses 
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(Microsoft, 2020). In areas with high building density, we hypothesized that properties are more likely to 

be sewered, while places with minimal footprints likely do not require sanitation.  

4. Land cover data. Data from the National Landcover Database (NLCD) (Dewitz, 2021) was used as an 

indicator of land development and thus whether an address is likely to have sanitation infrastructure and 

its type. 

5. US Census American Community Survey (ACS) data. The US Census ACS collects a variety of data on 

social, economic, housing, and demographic characteristics of the American population (US Census 

Bureau, 2021a). In many cases, these data can be geospatially linked to census block group areas. We 

used housing characteristics, and a limited number of social and economic characteristics as potential 

predictors of sanitation infrastructure type. We excluded demographic and most social and economic data 

as predictors to avoid potential bias against historically disadvantaged demographic and economic groups. 

We carry out analysis based on these characteristics later.  

6. Assessor information. Our team has access to the Zillow Transaction and Assessment Dataset 

(ZTRAX), which contains data on property characteristics for approximately 150 million parcels in over 

3,100 counties across the US (Zillow, 2021). The ZTRAX ZAssessment tables (sourced from county 

assessors’ offices) included in this dataset contain a variety of potential predictors based on housing 

characteristics, such as building square footage, number of rooms and bathrooms, and water and sewer 

service (the latter is available for only a select few locations, based on city- and county-specific data 

collection methods). This dataset can be used to determine typical property characteristics in the area 

surrounding an address and thus aid in making estimates of sanitation infrastructure types. 

3.2.3 Data Processing 

 All geospatial analysis was conducted in R, predominantly using the Simple Features package for 

spatial data manipulation.  
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Cluster Computing. Several of the computing operations described below required a large amount of 

computing resources (i.e. RAM, CPUs, and time) and could not feasibly be conducted using a single 

computer. All the operations described below were run on the UMass swarm2 computing cluster to 

accommodate RAM requirements, allow use of multiple CPUs for parallel processing, and reduce total 

computation time compared to operations run serially on a single computer. We first ensured that 

geospatial datasets used a consistent map projection(USA Contiguous Albers Equal Area Conic 

projection was used) and that data were in a format that would facilitate the subsequent analysis, the tidy 

data format in R (Wickham and Grolemund, 2016). R and linux scripts were developed to make the 

geospatial processing as streamlined and general as possible and to reduce the time needed for analyzing 

new counties in the future.  

Roadways. Grids of two sizes (1km by 1km and 2km by 2km) were lain over the map of each county. 

Within each grid cell, the length and number of each type of road as defined by US Census MAF/TIGER 

Feature Class Codes (MTFCC) were calculated. The aggregate of total length and number of roads for 

each grid cell was also calculated. After grid cell road properties were calculated, each parcel was 

assigned road properties based on the maximum and mean values of all grid cells that may have 

intersected the parcel by a spatial join. 

Wastewater treatment plant (WWTP) locations. The distance from each parcel’s centroid to the nearest 

wastewater facility indicated in Florida DEP’s WAFR Facilities data layer was calculated. The associated 

permitted flow of the corresponding facility was determined and linked to the parcel.  

Building and Parcel properties. Grids of various sizes (250m by 250 m, 500m by 500m, and 1km by 

1km) were lain over the map of each county. Within each grid cell, the following properties were 

calculated: parcels intersecting grid cell (PIGC), parcels completely contained by grid cell (PCBGC), 

median parcel area of parcels intersecting grid cell (MPAIGC), buildings intersecting grid cell (BIGC), 

buildings completely contained by grid cell (BCBGC), total building area within grid cell (TBAwGC), 

and median building area within grid cell (MBAwGC). After grid cell building and parcel properties were 
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calculated, each parcel was assigned the properties based on the mean values of all grid cells that may 

have intersected the parcel by a spatial join.  

For each individual parcel, the number of buildings intersecting the parcel, number of buildings 

completely contained by the parcel, the parcel area, total building area in the parcel, maximum building 

area in the parcel, and the ratios of building area to parcel area and non-building area to parcel area were 

calculated.  

Landcover data. For each parcel, the percentage of different types of landcover as defined by the National 

Landcover Database (Dewitz, 2021) in that parcel were calculated.  

US Census American Community Survey (ACS) data. Data for over 600 variables from the ACS including 

information about workers, their commutes, home ownership, utility access, etc. for each census block 

group in the county was spatially joined to individual parcels.  

Assessor information. ZTRAX ZAssessment (ZAsmt) data was extracted for the entire state of Florida, 

then data for individual counties was filtered as needed. The most recent dataset vintage from Zillow 

(August 2021) was used for analysis to have the most up to date information possible. An initial 

investigation as to data availability for variables reported in ZTRAX showed that some variables were 

more widely available in Florida and other states. The variables chosen to include based on reasonable 

availability were the county reported: tax amount, property land use code, bath count, bedroom count, 

number of stories, number of bath plumbing fixtures, roof cover type, number of buildings, and 

improvements, lot size, and building square footage of each parcel.  

Data Collation. Each of the processed datasets contained a row for each parcel in the county and could be 

uniquely identified by the county assigned parcel number. All the processed datasets were merged by 

parcel number to create a data structure with a row for each parcel number and a column for each 

calculated property. In total, each row contained 683 variables including the parcel number and the 

sanitation infrastructure type indicated by FLWMI.  
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3.2.4 Creating a workflow for data processing, model building, and model testing 

 For each county analyzed, regardless of how many parcels there were, properties for 683 

variables were assigned to each parcel. To accomplish this, it was necessary to design a workflow such 

that each county’s data was processed in an identical manner. This entailed developing R scripts that were 

highly generalized. Ultimately, this entailed using US Census FIPS (Federal Information Processing 

Standards) codes that correspond to states and counties. The main stages of the workflow including state 

level GIS preprocessing, county level GIS preprocessing, variable calculation using GIS processing, 

county data collation, classification tree building, and model testing (Fig. 3.3). 

 

Fig. 3.3 Workflow for data processing, model building, and model testing 

In practice, when applied within the state of Florida, this workflow results in greatly reduced human time 

and effort required to generate results. For Florida, where the analysis for this chapter was carried out, to 

process a new county with steps 1-3 in Fig. 3. 4, would simply require downloading the county parcel 

map from FLWMI, the road layer from the US census, and then running 6 scripts in the linux command 

line with the associated County FIPS code. For the model prediction stage, the user needs to run 1 script 

from the linux command line with the county to conduct the prediction on and the model to use to make 

the prediction. This workflow will greatly simplify analysis of future counties in the state of Florida and 

sets up a reliable framework by which analysis in other US states can be carried out.  
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3.2.5 Machine Learning – Two Classification Tree Model 

This effort is primarily a classification problem as we seek to categorize parcels by the type of 

sanitation infrastructure by which they are served. Classification trees are part of the family of 

classification models in machine learning. These tree-based models consist of nested “if-then” statements. 

Benefits of classification tree models include being highly interpretable and being able to handle many 

types of predictors (Kuhn and Johnson, 2013). The aim of these models is to partition data into smaller, 

homogenous, groups. In our analysis, once the dataset for a county was collated, we used the rpart 

(Recursive PARTitioning) package in R (Therneau and Atkinson, 2019) to develop classification tree 

models to classify parcels as being served by different types of sanitation infrastructure. The FLWMI 

dataset has several categories for sanitation infrastructure type including likely sewer, known sewer, 

likely septic, known septic, non-applicable, and unknown. In our analysis, we grouped “likely” and 

“known” categories together for purposes of model simplification yielding the categories of “septic” and 

“sewer”. In developing trees, we excluded parcels assigned “unknown” from training datasets.  

 Two classifications were performed: 1) “Is it applicable to make an estimate of sanitation 

infrastructure type for this parcel?” (“applicable” vs. “non-applicable”), 2) What type of sanitation 

infrastructure is this parcel served by?” (“septic” or “sewer”). The benefit of using two classification trees 

instead of one tree with three classes (Septic, Sewer, NonApp) is that classification tree models tend to 

have better performance when there are fewer possible classification options. For each parcel, a prediction 

is made using Tree 1, then, if applicable, a prediction is made using Tree 2 (Fig. 3. 4).  
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Fig. 3.4 Two Classification Tree Model System 

3.2.6 Training the Models 

 Three sets of classification tree models were built using the rpart package in R. Before creating 

the tree models, 6 training datasets were developed (Table 3.1). The first two sets of trees were built using 

data from Marion County and Miami-Dade County respectively. For each county, a set of two trees was 

developed with training data comprised of a random 70% of parcels with known classification 

corresponding to the tree being developed. The remaining 30% of parcels were used later for model 

testing. The third set of trees was developed using training data from both Marion and Miami-Dade 

Counties. For this set of trees, training data were selected based on the characteristics of neighboring 

parcels (e.g. Parcels with “Septic” bordered only by other parcels with “Septic” as the class). The goal in 

creating this training dataset was to develop a balance between parcels with homogenous bordering 

parcels and heterogeneous bordering parcels from two counties with differing population densities. Once 

training datasets were developed, the rpart function was used to develop the classification trees.  
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Table 3.1 Training Dataset Characteristics for classification trees developed 
 
Training 
Data Source 

Tree 1 (Applicable? Yes/No) Training 
Data 

Tree 2 (Septic or Sewer?) Training Data 

Marion 
County 

Random 70% of known classes Random 70% of known classes 

Miami-Dade 
County 

Random 70% of known classes Random 70% of known classes 

Marion and 
Miami-Dade 
Counties 
(Stratified 
Random 
Dataset) 

-Random 70% Marion Cty parcels 
known as “Yes” bordered only by other 
parcels known as “Yes”  
-Random 70% Marion Cty parcels 
known as “Yes” bordered by other 
parcels known as “No” or “Unknown”  
-Random 70% Marion Cty parcels 
known as “No” bordered only by other 
parcels known as “No”  
-Random 70% Marion Cty parcels 
known as “No” bordered by other parcels 
known as “Yes” or “Unknown” 
-Random 70% Miami-Dade Cty parcels 
known as “Yes” bordered only by other 
parcels known as “Yes”  
-Random 70% Miami-Dade Cty parcels 
known as “Yes” bordered by other 
parcels known as “No” or “Unknown”  
-Random 70% Miami-Dade Cty parcels 
known as “No” bordered only by other 
parcels known as “No”  
-Random 70% Miami-Dade Cty parcels 
known as “No” bordered by other parcels 
known as “Yes” or “Unknown” 

-Random 70% Marion Cty parcels known as 
“Sewer” bordered only by other parcels known 
as “Sewer”  
-Random 70% Marion Cty parcels known as 
“Sewer” bordered by other parcels known as 
“Septic”, “NonApp”, or “Unknown”  
-Random 70% Marion Cty parcels known as 
“Septic” bordered only by other parcels known 
as “Septic”  
-Random 70% Marion Cty parcels known as 
“Septic” bordered by other parcels known as 
“Sewer”, “NonApp” or “Unknown” 
-Random 70% Miami-Dade Cty parcels 
known as “Sewer” bordered only by other 
parcels known as “Sewer”  
-Random 70% Miami-Dade Cty parcels 
known as “Sewer” bordered by other parcels 
known as “Septic”, “NonApp”, or “Unknown”  
-Random 70% Miami-Dade Cty parcels 
known as “Septic” bordered only by other 
parcels known as “Septic”  
-Random 70% Miami-Dade Cty parcels 
known as “Septic” bordered by other parcels 
known as “Sewer”, “NonApp” or “Unknown” 

 

3.2.7 Testing the Models 

 For the first two sets of models developed on county specific training data, the classification tree 

models were first run on the remaining 30% of data for the corresponding county (e.g. The models trained 

with Marion County data were run with the Marion County input data not included in the training 

dataset). Then, the models were run with input data from the other counties not included in the training 

dataset (e.g. The models trained with Marion County data were run with Miami-Dade County input data). 

For the third set of models using the Stratified Random training dataset with data from both Marion and 
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Miami-Dade Counties, the models were run with input data from each of the counties to be analyzed. In 

each of the testing scenarios, confusion matrices (Tables of comparisons of known vs. predicted values) 

and overall misclassification rates corresponding to the results of each tree model were evaluated then 

compared. Finally, each of the models developed above was used with input data from Washington 

County to evaluate model performance with input data separate from the sample space used to train the 

models. In total 6 models were tested in various ways against 3 counties (Table 3.2). 

Table 3.2 Model Testing Against 3 counties in Florida 
  Tested on  

 Model Trained with 
data from  Marion County Miami-Dade County Washington 

County 

Tree 1 
(Applicable? 

Yes/No) 

Marion 
County 

Remaining 30% of 
Marion County parcels 
not in training dataset 

All parcels All parcels 

Miami-Dade 
County All parcels 

Remaining 30% of Miami-
Dade County parcels not 

in training dataset 
All parcels 

Stratified 
Random 
Dataset 

All parcels All parcels All parcels 

Tree 2 
(Septic or 
Sewer?) 

Marion 
County 

Remaining 30% of 
Marion County parcels 
not in training dataset 

All parcels All parcels 

Miami-Dade 
County All parcels 

Remaining 30% of Miami-
Dade County parcels not 

in training dataset 
All parcels 

Stratified 
Random 
Dataset 

All parcels All parcels All parcels 

3.2.8 Demographic analysis 

 A preliminary demographic analysis was carried out using the known septic or sewer 

classifications from Marion, Miami-Dade, and Washington Counties in Florida. Demographic data from 

the US EPA EJSCREEN (Environmental Justice Mapping and Screening Tool) products were used. 

EJSCREEN demographic data are based on US Census American Community Survey Results (US EPA, 

2019) and contain synthesis of demographic data on the US census block group level to represent 
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percentages of low income populations (LOWINC), minority populations(MINOR), linguistically isolated 

(LINGISO) populations, populations under age 5 (UNDER5) and above age 64 (OVER64), and 

populations with less than high school education (LESSHS). EJSCREEN also calculates a demographic 

index, which is the average of the minority and low-income percentages in each census block group. EPA 

also calculates 11 EJ Indices for each census block group (Table C.1).  

 The percentage of the number of occupied parcels (defined as parcels having either septic or 

sewer service) with either septic or sewer for each census block in the three counties previously analyzed 

was calculated for each census block group in each of those counties. These calculated percentages of 

septic or sewer coverage were compared to the EJSCREEN demographic and EJ indices. The Pearson’s R 

correlation coefficient between each of these percentages and the EJSCREEN indices was calculated 

using R and evaluated for statistical significance (p<0.05).  

3.3 Results 

3.3.1 Classification Trees Built 

3.3.1.1 Tree 1 Models 

 Classification tree models to determine whether it was applicable (Yes or No) to make a 

prediction of sanitation infrastructure type (Septic or Sewer) were created (Fig. 3.5). The Miami-Dade 

and Stratified Random Dataset Tree 1 models shared 3 common variables, while the Marion County Tree 

1 model did not share any common variables with the other trees (Fig. 3.6). For all three trees, the root 

nodes (NoOfStoriesSum: sum of building stories on parcel, Sumsqfeet: sum of building square footage on 

parcel) were from ZTRAX data. For the Miami-Dade and Stratified Random Dataset trees, two variables 

were based on building area (TBAwGC250: total building area within the 250mx250m grid cell 

overlaying the parcel, MaxBldgArea: maximum building area of all buildings in the parcel). Other 
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variables included in trees were from the ACS (B25010e1: average household size of occupied housing 

units by tenure: total: occupied housing units) and ZTRAX (TaxAmountAvg: the assessor tax amount 

assigned to the parcel).  

 
Fig. 3.5 Tree 1, Is it applicable to make a prediction of septic or sewer? (Yes or No) models using 

training data from A. Marion County, B. Miami-Dade County, C. A Stratified Random dataset 



85 

 
Fig. 3.6 Venn diagram of variables selected in Tree 1 models for 3 training datasets.  

3.3.1.2 Tree 2 Models 

Classification tree models to determine sanitation infrastructure type (Septic or Sewer) were 

created (Figs. 3.7-3.9). All three trees included the variable TBAwGC1000 (total building area within the 

1000mx1000m grid cell overlaying the parcel). The Stratified Random Dataset Tree 2 model shared 6 of 

its 9 parameters with at least one other tree model (Fig. 3.10). Overall, building characteristics, road 

characteristics, and ACS variables served as the primary predictor categories for all three trees.  
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Table 3.3 Variables selected by Tree 2 (Septic or Sewer) classification models 
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Fig. 3.7 Tree 2 Model (Septic or Sewer) trained on Marion County data 
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Fig. 3.8 Tree 2 Model (Septic or Sewer) trained on Miami-Dade County data 
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Fig. 3.9 Tree 2 (Septic or Sewer) Model trained on Stratified Random Dataset 
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Fig. 3.10 Venn diagram of variables selected in Tree 2 models (Septic or Sewer) for 3 training 

datasets. 

3.3.2 Testing the Models Against 3 Counties 

 Each of the models developed was tested in three counties (Marion County, Miami-Dade 

County, and Washington County).  
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3.3.2.1 Analysis of models trained with data from the same county tested 

The primary evaluations that must be made are to compare the results of models trained with 

data from the same county (i.e. Marion and Miami-Dade Counties). 

 For Marion County, when Tree 1 was tested against the testing dataset (30% not used in 

training dataset) the overall misclassification rate was 2.7% (Table 3.4). There was a higher 

percentage of parcels misclassified as No that should have been classified as Yes (3.7%). When Tree 

2 was tested against the resting dataset, the overall misclassification rate was 10.3% (Table 3.5). 

There was a higher percentage of parcels misclassified as Septic that should have been classified as 

Sewer (14.2%).  

Table 3.4 Marion County data trained Tree 1 Model (Applicable? Yes or No) Confusion Matrix 

  
Predicted Misclass 

Known as other 
Description 
of Misclass Yes No 

Known 
Yes 43423 1654 3.7% Yes as No 
No 467 32868 1.4% No as Yes 

 

Table 3.5 Marion County data trained Tree 2 Model (Septic or Sewer) Confusion Matrix 

  
Predicted Misclass Known 

as other 
Description of 

Misclass Septic Sewer 

Known 
Septic 28489 2737 8.8% Septic as Sewer 
Sewer 1799 10898 14.2% Sewer as Septic 

 
 For Miami-Dade County, when Tree 1 was tested against the testing dataset (30% not used in 

training dataset) the overall misclassification rate was 2.5% (Table 3.6). There was a higher 

percentage of parcels misclassified as Yes that should have been classified as No (11.1%). When Tree 

2 was tested against the resting dataset, the overall misclassification rate was 12% (Table 3.7). There 

was a higher percentage of parcels misclassified as Sewer that should have been classified as Septic 

(19.6%). 
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Table 3.6 Miami -Dade County data trained Tree 1 Model (Applicable? Yes or No) Confusion 

Matrix  

  
Predicted Misclass 

Known as other 
Description 
of Misclass Yes No 

Known 
Yes 143980 2594 1.8% Yes as No 
No 1390 11108 11.1% No as Yes 

 

Table 3.7 Miami -Dade County data trained Tree 2 Model (Septic or Sewer) Confusion Matrix 

  
Predicted Misclass Known 

as other 
Description of 

Misclass Septic Sewer 

Known 
Septic 16121 3925 19.6% Septic as Sewer 
Sewer 13542 111660 10.8% Sewer as Septic 

 

3.3.2.2 Analysis of Models when used to make full county predictions 

 The results for the analysis of models trained with data from the same county tested indicated 

that the two classification tree model approach was adequate for making predictions of sanitation 

infrastructure coverage. Next, we analyzed the county specific models and the Stratified Random 

dataset trained models on each of three Florida counties of interest. Very high performance 

(misclassification <5%) was observed for most Tree 1 models except for the Marion County Model 

used to make predictions of applicability in Washington County (Table 3.8). It is necessary to note 

here that the specific misclassification rate for misclassifying “Yes” parcels as “No” for Washington 

County with the Marion County Tree 1 model was 99.6%. The performance of Tree 2 models on out 

of county data tended to be much poorer when tested on counties outside of the training dataset, but 

moderately high performance (~10-15% misclassification) was observed when the Stratified Random 

dataset trained model was used (Table 3.9). Predicted maps of sanitation infrastructure coverage (Fig. 

3.11) demonstrate that out of county predictions made with models trained on data from a different 

county tend to underperform. 2 out of 4 predictions in this category had overall misclassification rates 
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>30% and 1 prediction had an overall misclassification rate >20%. When the Stratified Random 

dataset trained model was used, there was a slight drop in performance compared to county specific 

models (8.17% to 9.09% misclass for Marion County and 13.31% to 16.13% for Miami Dade 

County) , but out of sample space predictions were quite good (4.66% overall misclassification of 

Washington County Parcels using Stratified Random Dataset trained models).  

Table 3.8 Misclassification Rates of Tree 1 models (Applicable? Yes or No) for three counties  

Applicable? (Yes/No) 
County Predicted Misclassification Rate 

Marion 
County 

Miami-Dade 
County 

Washington 
County 

Model 
Used 

Marion County Model 2.66% 4.10% 21.83%* 
Miami-Dade County 

Model 4.76% 2.50% 1.57% 

Stratified Random Dataset 
Model 3.09% 2.48% 1.44% 

* Misclassification of “Yes” parcels as “No” was 99.6%. 

Table 3.9 Misclassification Rates of Tree 2 models (Septic or Sewer) for three counties 

Septic or Sewer? 
County Predicted Misclassification Rate 

Marion 
County 

Miami-Dade 
County 

Washington 
County 

Model 
Used 

Marion County Model 10.08% 36.02% 9.56% 
Miami-Dade County 

Model 51.81% 12.01% 46.35% 

Stratified Random Dataset 
Model 14.77% 15.16% 13.12% 
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Fig. 3.11 Known versus predicted sanitation infrastructure coverage for three counties with 

overall county misclassification rates indicated.  
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3.3.3 Demographic Analysis 

 No significant correlations between the percentage of sewer or septic and EJ indices existed 

for Marion County (Fig. 3.12A). For Miami Dade County, the EJ percentages of demographic 

indicators for minority populations and low-income populations are positively correlated with the 

percentage of parcels served by sewer (Fig. 3.12B). Results also indicate positive correlation with the 

EJ indices for proximity to National Priorities List sites and Risk Management Plan facilities with the 

percentage of parcels served by sewer. The EJ Index for Proximity to Treatment Storage and Disposal 

(TSDF) facilities was positively correlated with percentage of parcels served by septic. For 

Washington County, there was an inverse relationship between total population in the census block 

and percentage of parcels served by sewer (Fig. 3.12C). Results may be skewed by the limited 

number of census block groups (15) in Washington County. The EJ Index for Traffic proximity and 

volume was positively correlated with percentage of parcels served by sewer.  
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Fig. 3.12 Statistically significant (p<0.05) Pearson’s R correlations between percentage of septic 

and sewer served parcels versus EJSCREEN demographic and EJ indices for A. Marion 

County, B. Miami-Dade County, and C. Washington County.  

3.4 Discussion 

3.4.1 Classification Trees Built 

 The ZTRAX dataset was the source of the variables at the root node at each of the Tree 1 

models created. This result suggests that the county assessor data is a good filtering tool for 

determining which parcels in a county require sanitation infrastructure or not. Data on presence of 

buildings on or near a parcel were also important to making these predictions. These results are highly 

intuitive; if there is a building of a certain size on a parcel, it follows that there would be a need for 
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sanitation infrastructure. The Stratified Random dataset and Miami-Dade County models both relied 

heavily upon building based parameters (Fig. 3.6). Tree 2 models were more intricate and contained 

several more branches than Tree 1 models. This suggests that there is greater variation in what makes 

a parcel more likely to have septic or sewer as compared to having sanitation infrastructure or not. All 

three trees included a measure of building density in the area near a parcel (TBAwGC1000), and the 

Miami-Dade and Stratified Random Dataset models used this in combination with road density as 

prediction pathways. These particular results of the tree models are intuitive in that measures of 

infrastructure density relate to presence of sanitation infrastructure types. 6 of the 9 parameters 

selected for the Stratified Random Dataset Tree 2 model were common to at least one of the other tree 

models indicating that the model selects parameters that will describe the full breadth of the contents 

of the training dataset, which is here comprised of data from two counties. While there were 29 

unique parameters between all the trees developed, they broadly fell into a few categories of building 

characteristics, road characteristics, and employment related data. The convergence of categories 

suggest that these parameters are likely to be key predictors of sanitation infrastructure coverage in 

other counties in Florida and that information contained in datasets such as landcover can be similarly 

attained with other data about infrastructure density and community characteristics.  

3.4.2 Testing the Models Against 3 Counties 

3.4.2.1 Analysis of models trained with data from the same county tested 

The primary evaluations made compared the results of models trained with data from the 

same county (i.e. Marion and Miami-Dade Counties). Both county specific models had low 

misclassification rates associated with Tree 1, which both used ZTRAX data for the root node. For 

Marion County, which has approximately 2.5 times the number of parcels served by septic compared 
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to parcels served by sewer, there was a higher percentage of parcels misclassified as septic that should 

have been classified as sewer. For Miami-Dade County, which as approximately 6.2 times the number 

of parcels served by sewer compared to parcels served by septic, there was a higher percentage of 

parcels misclassified as sewer that should have been classified as septic. These results are likely due 

to imbalance in the proportion of parcels of each type in the training datasets developed by simple 

random sampling from each county. This realization about dataset imbalance led to the stratified 

random sampling approach used to develop the training set of models that included data from both 

Marion County and Miami-Dade County.  

3.4.2.2 Analysis of Models when used to make full county predictions 

 Very high performance (misclassification <5%) was observed for most Tree 1 models, except 

for when the Marion County model was used for Washington County and there was a 99.6% 

misclassification rate for parcels that should have been a “Yes” as “No”. This poor result was driven 

by incomplete data in the Washington County ZTRAX data for the variable “NoofStoriesSum”; all 

values for this variable in Washington County were either 0 or NA. The performance of Tree 2 

models on out of county data tended to be much poorer when tested on counties outside of the 

training dataset, but moderately high performance (~10-15% misclassification) was observed when 

the Stratified Random dataset trained model was used. Out of county predictions made with models 

trained on data from a different county tend to underperform. Most of these cases had 

misclassification rates more than 20%. When the Stratified Random dataset trained model was used, 

there was a slight drop in performance compared to county specific, but out of sample space 

predictions were quite good (4.66% overall misclassification of Washington County Parcels using 

Stratified Random Dataset trained models). These results suggest that the stratified random sampling 

approach for training dataset composition used to create the third set of classification tree models may 
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have beneficial use for making predictions on other counties in Florida or geographies with similar 

properties to the counties analyzed here.  

3.4.3 Demographic Analysis 

 The demographic analysis did not reveal consistent correlations between the percentage of 

septic or sewer served parcels in a census block group and EJ indices across counties. In Miami-Dade 

County which has a higher population density (see Fig. 3.1) than the other two counties analyzed, 

there were correlations between sanitation service type and demographic indicators for minority 

populations and low-income populations. These results are likely driven by the Miami’s high 

Hispanic population (~70%) (US Census Bureau, 2019) and the definition of minority population 

used by EPA for its EJSCREEN products. In Washington County, there was a positive correlation 

between the EJ index for traffic proximity and volume and the percentage of parcels served by sewer. 

This result appears intuitive; areas of higher population may be more likely to have sewers and higher 

traffic. As more counties are analyzed, general relationships between EJ populations and sanitation 

infrastructure service type may become clearer.  

3.4.4 Moving forward 

Ultimately, this work will be scaled to the national level for the United States. The following 

sections describe some of the challenges associated with this scale up, future data acquisition plans, 

and methods for improving machine learning model performance.  
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3.4.4.1 Data Acquisition and Processing 

The landcover data, road data layers, building data layers, and ACS data are all publicly 

available for national, state, or county level download online. For wastewater treatment plant data, the 

US Environmental Protection Agency (EPA) Facility Registry Service for Wastewater Treatment 

Plants provides data on WWTPs with National Pollution Discharge Elimination System (NPDES) 

permits, which we will use to signal proximity of addresses to sewers. Other WWTP data will be 

collected from individual states’ records for their State Pollution Discharge Elimination System 

(SPDES) permits. Between NPDES and SPDES data, full coverage of WWTP locations across the 

US can be compiled. The project team has access to the ZTRAX assessment data until 2023 when 

Zillow will terminate the ZTRAX program.  

There are some potential limitations for these datasets though. For roads, a potential 

limitation is incomplete information for roadways in new housing developments. For the Microsoft 

building footprints, image capture dates used to create these datasets average to the year 2012, so in 

some areas, newer land developments may be missing. The ZTRAX county assessor data is widely 

available for counties across the country, but as seen for Washington County and the variable 

NoofStories, sometimes there is missingness for variables of interest for model input. This behavior 

of missingness can be seen across several US states and different parameters (Nolte et al., 

2021).While currently available, the degree to which detailed results will be available for future US 

Census Bureau ACS products may be affected the COVID-19 pandemic (US Census Bureau, 2021b).  

In this analysis, we used parcels as the base unit for analysis of sanitation infrastructure 

prevalence. The classification tree models developed suggest that parcel boundary data is important 

for making predictions of whether a location needs a prediction of sanitation infrastructure type or not 

(see inclusion of Maximum Building Area on parcel in Tree 1 models, Fig. 3.5). Thus, it will be 

necessary to acquire GIS parcel layers for each county nationally, such layers are available in 97.8% 
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of US counties (Nolte et al., 2021). Some states, such as Massachusetts, Florida, and North Carolina 

have open-access parcel data, while many others have parcel data available under license 

agreements.  

The FLWMI maintained by the state of Florida provides a great wealth of known labels of 

sanitation infrastructure types for use in training machine learning models. At present, five states 

(Delaware, Florida, Rhode Island, Georgia, and Hawai‘i) have substantial publicly available data on 

OWTS (Delaware Open Data, 2021; Florida Health, 2021; Hawaii Geodata, 2021; Southern Georgia 

Regional Commission, 2021; State of Rhode Island, 2021) while a mix of towns, cities, and counties 

across the country also publish their datasets. However, these datasets only cover a minority of homes 

and businesses across the country. In the future, we will use the data available from these states and 

other locations with available data to train models to be applied nationally in the US.  

3.4.4.2 Training Machine Learning Models for Sanitation Infrastructure Classification 

The method applying two classification trees serially in this study proved adequate for 

achieving good estimate of sanitation infrastructure type coverage in the three counties investigated. 

However, before analyzing additional counties, other machine learning techniques for classification 

problems such as random forest, logistic regression, or neural networks should be tested to see if 

model performance can be further improved before massive scale-up to additional counties and states. 

The classification tree models used in this study are considered “white-box” models since they are 

highly interpretable; a reader can see exactly what variables are included, values of importance, and 

how variables relate to each other in making predictions. Other machine learning methods which are 

less interpretable are often called “black-box” models; the reader is not necessarily able to see how 

variables included in the models affect results directly. Black-box models can often have better 

predictive capabilities than white-box models by relating input variables in nonlinear ways that 
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produce good results but aren’t as readily interpretable. We will consider the relative value offered by 

white-box techniques that make clear how the model is constructed weighed against what is likely to 

be better performance from black-box methods.  

As future work proceeds, model performance will be evaluated similarly to how it was here. 

The effect of training dataset composition will be evaluated as other geographies are considered. 

Model performance in different geographies will be evaluated, particularly in the context of different 

states or regions of the United States. In sample versus out of sample performance will be evaluated 

as it was for Washington County in this study. Incremental improvement in model performance with 

addition of predictor variables will also be evaluated.  

3.4.4.3 Demographic and Environmental Quality Analysis 

In this study, the relationship between sanitation infrastructure type and environmental justice 

populations was briefly investigated. To draw stronger conclusions, other counties will need to be 

analyzed. Carrying out this analysis will aid in future work on equity of accessibility to safely 

managed sanitation infrastructure in the United States. Once estimates of sanitation infrastructure 

coverage types are made extensively across the United States, this type of analysis can be used to 

identify locations that are more at risk of OWTS failure and subsequently if these locations of higher 

risk are associated with certain environmental justice populations or other EJ indices.  

3.4.4.4 What can be done with a national inventory of sanitation infrastructure? 

Here, we laid out a pathway towards creating an up to date, comprehensive, national 

inventory of buried sanitation infrastructure. This national inventory can be used to evaluate risk of 

failure for on-site sanitation systems such as septic systems. The national inventory can be used to 

calculate density of septic tank systems in an area. Correlations between increased septic tank density 
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and risk of failure have been observed (Capps et al., 2020; Yates, 1985). There have been studies 

conducted on risk assessment for on-site sanitation systems, but none have been conducted on a 

national scale (Capps et al., 2020; Carroll et al., 2006; Tetra Tech, Inc., 2005). If areas with high 

septic tank density are determined to be at higher risk of failure, it may be reasonable to upgrade or 

centralize these systems into existing sewer systems. The national inventory would be indispensable 

in evaluating feasibility and/or need for consolidation of sanitation infrastructure systems in the 

United States.   

3.4.5 Study Limitations 

 One of the limitations of our study is the limited number of geographies used for analysis. We 

tested three counties in Florida and achieved promising results, but it is possible that model 

performance may drop in other counties within Florida or other states. We reduced the classifications 

used in the FLWMI to three categories: septic, sewer, and non-applicable. By removing the “likely 

septic” and “likely sewer” categories from our analysis, we simplified our classification problem, but 

may be improperly classifying some parcels for which the certainty of the sanitation infrastructure 

type is not completely known. We used datasets that are available on the national or state-level when 

possible. However, it is possible that these datasets may be incomplete or unavailable in other 

geographies. For example, the Zillow’s ZTRAX datasets do not have consistent coverage for all 

potential variables of interest across different counties in the US (Nolte et al., 2021). Additionally, not 

all states may have geospatial maps of all wastewater treatment plant locations like the state of 

Florida does. Assessing indicator data availability across different US states will be an important 

factor in scaling up this work to the national scale.  



 

104 

 

3.5 Conclusions 

We presented a workflow for geospatial data processing for input into models for predicting 

presence of sanitation infrastructure types. This workflow proved efficient for processing geospatial 

data across several counties and thus shows promise for application to other geographies within the 

United States. A machine learning method that involves using two classification trees serially was 

shown to be effective for making predictions of sanitation infrastructure coverage in three counties in 

Florida. Stratified random sampling for training dataset creation proved useful for increasing model 

performance on out of sample geographies. Initial evaluation of sanitation infrastructure coverage 

versus demographics and environmental justice indicators was carried out, but further analysis must 

be conducted before solidifying conclusions. A path to expanding this work to the national scale in 

the United States is presented including steps for data acquisition, data processing, and improving 

performance of machine learning models. Creating a national inventory of sanitation infrastructure 

serving the population will help to aid in targeting efforts for safe management of these systems and 

hopefully promote equity in access to sanitation services. The national inventory can also aid in 

evaluating risk of failure of on-site sanitation systems and evaluating feasibility of sanitation 

infrastructure centralization in different regions of the United States.  
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CONCLUSION 

The three studies presented each addressed challenges in management of built and natural 

water and sanitation infrastructure systems using data science. Three key questions facing the civil 

engineer were addressed using data science tools. In Chapter 1, we asked, “How do we know if a 

system is operating properly?” and demonstrated that the way a sampling program is run can affect 

the decisions made based on its results. In Chapter 2, we asked, “How do we plan well?” and 

developed and used the Hazard Based Water Quality Monitoring Planning Framework. In Chapter 3, 

we asked, “What lets us know what has to be maintained?” and developed methods for building a 

national inventory of buried sanitation infrastructure for the US.  

The first two studies focused on ways that water quality monitoring programs can be 

improved and discussed best practices for data collection in that field. Monitoring water quality is 

essential for protection of the natural environment and protection of human health. There has long 

been recognition of this fact; “They have learnt by this time that there is something a good deal more 

expensive than analyzing water, and that is not analyzing it” (Shadwell, 1898). While in 1898 many 

people had to be convinced of the benefits of water quality monitoring, now the situation differs. The 

question has changed from “Will we spend money on water quality monitoring?” to “How will we 

best spend money on water quality monitoring to make it effective?”.  

In Chapter 1, the effects of sampling design on the outcomes of a program were evaluated. 

Results showed that it was more likely to achieve accurate estimates of worst quality conditions rather 

than systemwide conditions in a piped distribution network. The use of constant or set sampling 

locations was also shown to increase difficulty in accurately representing systemwide conditions; this 

is important to consider as this practice is common and/or required in law in many places. The timing 

of sample collection was shown to be important depending on factors like consumer demand patterns 

or changes in treatment facility operation. Results also indicated that making conclusions about 

systemwide conditions with very few samples taken is inappropriate. Data can be collected and 
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analyzed, but this study demonstrates that the way in which we collect data can have a strong impact 

on the results that are found from water quality sampling programs.  

In Chapter 2, a framework for water quality monitoring program development based on a 

systematic understanding of potential hazards was developed and tested. The Hazard Based Water 

Quality Monitoring Planning framework was applied to the Quabbin watershed in Massachusetts. The 

framework is versatile and systematic; it addresses multiple aspects of development (hazard 

identification, parameter selection, monitoring locations/frequency) simultaneously. A method for 

using the Seasonal Kendall trend test with dataset deconstruction of long-term water quality datasets 

was used to evaluate the effects of sampling frequency on long-term trend detection at several 

watershed sites. Results showed that when sampling frequency is decreased, ability to detect 

statistically significant trends often decreases. We found that no one sampling reduction method 

resulted in a consistently lower absolute error compared to the “truth” (biweekly sampling), 

highlighting the importance of evaluating conditions that may affect water quality at sites in different 

parts of a watershed over time. The methods used can be readily applied to other watershed systems. 

This framework can help to improve data collection methods, particularly water quality parameters 

and sampling frequencies chosen, used by those carrying out water quality monitoring programs. The 

application of the framework shown here demonstrated how long-term datasets can be leveraged to 

improve future data collection efforts, provided tools to carry out future data analysis for trends, and 

proved the framework’s usefulness as a means for enhancing management of water resources and 

infrastructure using data driven approaches. 

In Chapter 3, we shifted from improving management of water systems through effective 

water quality monitoring practices to asset management for buried sanitation infrastructure systems. 

The rationale behind this chapter was to fill a gap in existing information about locations of buried 

sanitation infrastructure to allow for understanding the current state of sanitation infrastructure 

inventories, better assessment of places at risk of sanitation infrastructure failure, and providing 
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information for policy-makers.  Large quantities of data from a variety of sources were collected and 

processed as inputs into machine learning models for prediction of locations of buried sanitation 

infrastructure. A workflow for conducting the data processing necessary to train and test machine 

learning models was developed and can be used to scale up the method to other geographies and 

eventually the entire United States. The use of machine learning methods such as classification trees 

was demonstrated to be viable for predicting locations of buried sanitation infrastructure using a 

variety of geospatial data. This work serves as a foundation upon which a national inventory of buried 

sanitation infrastructure can be built. Such a national inventory will aid in assessing risks to public 

health related to management of sanitation infrastructure and future policymaking relating to buried 

sanitation infrastructure in the United States.  

Civil engineers have a responsibility to aid society in its use and maintenance of 

infrastructure systems. The current “data revolution” provides several avenues through which the 

work of civil engineers be improved, including operating systems, planning, and maintaining existing 

systems. Here we demonstrated how applying skills in data science can improve the ways that water 

quality data for essential drinking water systems are collected and used in operations and planning. 

We also demonstrated how geospatial data can be processed and used with machine learning methods 

to predict presence of different types of buried sanitation infrastructure that may need to be 

maintained. As computing power continues to increase and ever greater quantities of data are 

collected and made available, the more engineers and scientists will be able to improve contributions 

focused on the greater good of human society. This dissertation presents a hopeful foretaste of the 

potential that data driven approaches have to offer in addressing challenges related to water and 

sanitation infrastructure for built and natural systems.  
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APPENDICES 

A: SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER 1 

Table A.1 Wilcoxon-rank sum test p-values for comparing the distributions of sampling program 

results when different numbers of samples (38 vs 56) are used for the BWSN Network. 

Case 
Timing 

7am-12pm 6am-4pm 24-h 
All  0.498 0.414 0.695 
GeoGrid 0.535 0.700 0.600 
BalStrata 0.392 0.313 0.069 
Far20 0.240 0.592 0.601 
Below50 <0.001 <0.001 0.001 
DeadEnds 0.432 0.970 0.803 
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Why do we see statistical difference for the Wilcoxon-rank sum test for Below50 cases?  
Many methods of statistical inference are not necessarily appropriate when the distribution of 

data is truncated, and further research is needed in that area (Cha and Cho, 2015). Permutation tests are 
an option that can be used that do not require the assumptions required by other methods of statistical 
inference such as an assumption of normality. It has been determined that the Wilcoxon-rank sum test 
can lose power when several of the observations are tied in the ranking process (McGee, 2018). 

We can test to see if there is a different result when we account for these two factors (truncated 
data and tied ranks) by performing a two-sample permutation test (to alleviate the truncated data issue) 
using a rank sum test statistic and ensuring that tied observations are removed (to increase test power).  

We ran permutation tests using 10000 iterations and a rank-sum test statistic. By accounting 
for these factors, the test statistic for the permutation test is >0.05 for all cases evaluated for statistical 
difference between number of samples for both the BWSN and MWSC base cases.  These results are 
in line with the conclusions we made using just the Wilcoxon-rank sum test with no alterations or 
permutations, except that now the Below50 case does not have a test statistic value that indicates 
statistical difference. Therefore, our conclusion in the main text that the number of samples does not 
strongly impact the results of the sampling program when relatively low numbers of sample are 
collected still holds.  

 
Table A.2 Values of the test statistic when comparing distributions when different numbers of 
samples are used for sampling programs (BWSN: 38 vs 56, MWSC: 5 vs 10). 
 
    test-statistic value 
Location Case Timing BWSN MWSC 
All  7am-12pm 0.821 0.771 
All  6am-4pm 0.910 0.762 
All  24-h 0.862 0.757 
GeoGrid 7am-12pm 0.766 1.000 
GeoGrid 6am-4pm 0.930 1.000 
GeoGrid 24-h 0.949 0.762 
BalStrata 7am-12pm 1.000 1.000 
BalStrata 6am-4pm 0.834 1.000 
BalStrata 24-h 1.000 1.000 
Far20 7am-12pm 0.405 1.000 
Far20 6am-4pm 0.946 1.000 
Far20 24-h 0.792 1.000 
Below50 7am-12pm 0.733 0.810 
Below50 6am-4pm 0.543 1.000 
Below50 24-h 0.967 0.797 
DeadEnds 7am-12pm 0.714 0.767 
DeadEnds 6am-4pm 0.894 0.772 
DeadEnds 24-h 0.988 0.556 
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Table A.3 Kruskal -Wallis test p-values comparing timing scenarios for each day for the BWSN 

network. * emphasizes p-values that show statistical difference (p<0.05). 

 

Day All  GeoGrid BalStrata Far20 Below50 DeadEnds 
1 0.910 0.466 0.670 0.597 0.820 0.532 
2 0.013* 0.506 0.867 0.977 0.022* 0.487 
3 0.182 0.399 0.389 0.045* 0.311 0.277 
4 0.661 0.697 0.214 0.440 0.987 0.950 
5 0.659 0.351 0.046* 0.443 0.592 0.916 
6 0.976 0.806 0.319 0.464 <0.001* 0.787 
7 0.327 0.611 0.427 0.432 0.995 0.672 

 
Table A.4 Kruskal -Wallis test p-values for comparing timing scenarios for each day in the 

scenario with a modeled chlorine dosing outage.  

Day All  GeoGrid BalStrata Far20 Below50 DeadEnds 
1 0.703 0.410 0.464 0.318 0.703 0.578 
2 0.015 0.451 0.828 0.957 0.014 0.430 
3 <0.001 0.003 <0.001 0.010 0.052 0.174 
4 0.471 0.196 0.035 0.056 0.697 0.408 
5 0.827 0.261 0.041 0.204 0.011 0.938 
6 0.972 0.796 0.344 0.419 <0.001 0.689 
7 0.489 0.559 0.659 0.394 0.623 0.693 
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Only 9 out of 72 sampling programs were not statistically different at 95% confidence 
���S�•�������������:�L�O�F�R�[�R�Q-rank sum) from corresponding Varying Location programs (Table A.4). Of the 
four Constant Location programs that were tested, the “Locked” method led to the most sampling 
�S�U�R�J�U�D�P���U�H�V�X�O�W�V���W�K�D�W���Z�H�U�H���Q�R�W���V�W�D�W�L�V�W�L�F�D�O�O�\���G�L�I�I�H�U�H�Q�W���D�W�����������F�R�Q�I�L�G�H�Q�F�H�����S�•�������������:�L�O�F�R�[�R�Q-rank sum) 
from corresponding Varying Location program results (4/18). Doubling the pool of possible sampling 
locations always resulted in a statistically different result (p<0.05, Wilcoxon-rank sum) from the 
corresponding Varying Location program results. Far20 yielded the most sampling programs that had 
comparable results to corresponding Varying Location programs. While attaining sampling program 
results using Constant Locations that are similar to the more ideal Varying Locations is elusive, 
attaining such results appears more likely to occur when worst quality location cases are used. 

Table A.5 Wilcoxon-rank sum test p-values comparing Varying Location sampling programs to 
Constant Location sampling programs.  
Location 
Selection 

Timing 
Scenarios 

Locked Unlock
ed 

Double Triple  

All  7am-12pm **  **  **  0.455 
6am-4pm **  **  **  0.019 
24-h **  **  **  0.032 

GeoGrid 7am-12pm **  **  **  **  
6am-4pm **  **  **  **  
24-h **  **  **  **  

BalStrata 7am-12pm **  **  **  **  
6am-4pm **  **  **  **  
24-h **  **  **  **  

Far20 7am-12pm 0.960 **  **  0.945 
6am-4pm 0.239 **  **  0.464 
24-h 0.079 **  0.028 0.020 

DeadEnds 7am-12pm **  **  **  **  
6am-4pm **  0.162 **  **  
24-h **  0.269 **  **  

Below50 7am-12pm 0.665 **  **  **  
6am-4pm **  **  **  **  
24-h 0.048 **  **  **  

** - p-values <0.001 
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Table A.6 Kruskal -Wallis tests p-values for constant sampling location selection programs for 
the BWSN network.  

Case Locked Unlocked Double Triple  
All  0.001 **  0.002 0.021 

GeoGrid **  0.301 0.027 0.017 
BalStrata **  **  0.099 0.002 

Far20 **  0.032 **  0.042 
Below50 **  **  **  0.001 
DeadEnds **  **  0.073 0.708 

** -  p-values <0.001 
 

Table A.7 Wilcoxon-rank sum test p-values for comparing the distributions of sampling 
program results when different numbers of samples (5 vs 10) are used for the MWSC Network.  
 

Case 
Timing 

7am-12pm 6am-4pm 24-h 
All  0.844 0.504 0.085 
GeoGrid 0.976 0.215 0.840 
BalStrata 0.568 0.733 0.234 
Far20 0.158 0.523 0.069 
Below50 **  **  **  
DeadEnds 0.226 0.322 0.034 

** -  p-values <0.001 
 

Table A.8 t-test p-values for constant sampling location programs using the “Locked” method 
for the MWSC network. 

Case 
Timing 

7am-12pm 6am-4pm 24-h 
All  **  **  **  

GeoGrid **  **  **  
BalStrata **  **  **  

Far20 0.001 **  **  
Below50 **  0.254 **  
DeadEnds NA NA NA 

** -  p-values <0.001 
 

 
  



 

113 

 

 
Fig. A.1 Histograms of BWSN -38 Sample Sampling Program PLT Results 
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Fig. A.2 Hourly EPANET Demand multipliers (i.e. demand patterns) for the a. BWSN and b. 

MWSC networks 

Fig. A.3 Boxplots showing weekly timescale evaluations for Varying Location sampling 
programs where a chlorine dosing outage was modeled to occur. Vertical lines represent PLTActual 
corresponding to that location case. p-values next to boxes are t-test results for statistical difference 
from PLTActual ���Q�V���L�P�S�O�L�H�V���S�•������������ Kruskal-Wallis (KW) test p-values show statistical difference 
between timing scenarios. 
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Fig. A.4 Overview of sampling selection techniques for MWSC (a) GeoGrid and (b) BalStrata 

Cases 

 

a. b. 
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Fig. A.5 Average daily PLT for each Varying Location sampling program for the MWSC network 

(5 samples). Black lines represent the daily PLTActual values corresponding to that location case. * 

represent daily sampling program results that are significantly different (p<0.05, t-test) from daily 

PLTActual. 

 
Fig. A.6 Average daily PLT for each Varying Location sampling program for the MWSC network 

(10 samples). Black lines represent the daily PLTActual values corresponding to that location case. * 

represent daily sampling program results that are significantly different (p<0.05, t-test) from daily 

PLTActual. 
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B: SUPPLEMENTAL TABLES AND FIGURES FOR CHAPTER 2 

 

Priority Table - Tributaries 
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Priority Table- Reservoir 
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Full Table - Tributaries 
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Full Table - Reservoirs 
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Nutrients Guidance 
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Spreadsheet References 
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Fig. B.1 Time series with linear trend line for each of 7 Quabbin Tributary monitoring sites for 

specific conductance 
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Fig. B.2 Seasonally grouped (biweekly sampling periods) data for specific conductance at 7 sites 

in the Quabbin watershed. The horizontal line crossing the boxplots represents the overall 

median for specific conductance at the site.  
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Fig. B.3 Time series with linear trend line for each of 7 Quabbin Tributary monitoring sites for 

turbidity  
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Fig. B.4 Seasonally grouped (biweekly sampling periods) data for turbidity at 7 sites in the 

Quabbin watershed. The horizontal line crossing the boxplots represents the overall median for 

turbidity  at the site.  
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Fig. B.5 Time series with linear trend line for each of 7 Quabbin Tribtuary monitoring sites for 

total coliform 
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Fig. B.6 Seasonally grouped (biweekly sampling periods) data for total coliform at 7 sites in the 

Quabbin watershed. The horizontal line crossing the boxplots represents the overall median for 

total coliform at the site.  
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Table B.1 Regulatory Case Monitoring Requirements Summary 

Parameter Requirement Summarized 

Dissolved 

Oxygen 

“Shall not be less than 6.0 mg/l in cold water fisheries and not less than 5.0 mg/l in warm water 

fisheries.” (314 CMR 4) 

Temperature “Shall not exceed 68° F (20° C) based on the mean of the daily maximum temperature over a seven day 

period in cold water fisheries, unless naturally occurring. There shall be no changes from natural 

background conditions that would impair any use assigned to this Class.” (314 CMR 4) 

pH “Shall be in the range of 6.5 through 8.3 standard units but not more than 0.5 units outside of the natural 

background range. There shall be no change from natural background conditions that would impair any 

use assigned to this Class.”  (314 CMR 4) 

Bacteria “At water supply intakes in unfiltered public water supplies: either fecal coliform shall not exceed 20 fecal 

coliform organisms per 100 ml in all samples taken in any six month period, or total coliform shall not 

exceed 100 organisms per 100 ml in 90% of the samples taken in any six month period, If both fecal 

coliform and total coliform are measured, then only the fecal coliform criterion must be met.” (314 CMR 

4) 

Solids “These waters shall be free from floating, suspended and settleable solids in concentrations or 

combinations that would impair any use assigned to this class, that would cause aesthetically 

objectionable conditions, or that would impair the benthic biota or degrade the chemical composition of 

the bottom.” (314 CMR 4) 

Color and 

Turbidity 

“These waters shall be free from color and turbidity in concentrations or combinations that are 

aesthetically objectionable or would impair any use assigned to this class.” (314 CMR 4) 

Oil and Grease “These waters shall be free from oil and grease, petrochemicals and other volatile or synthetic organic 

pollutants.” (314 CMR 4) 

Taste and Odor “None other than of natural origin.” (314 CMR 4) 

Aesthetics “All surface waters shall be free from pollutants in concentrations or combinations that settle to form 

objectionable deposits; float as debris, scum or other matter to form nuisances; produce objectionable 

odor, color, taste or turbidity; or produce undesirable or nuisance species of aquatic life.” (314 CMR 4) 
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Bottom Pollutants 

or Alterations 

“All surface waters shall be free from pollutants in concentrations or combinations or from alterations that 

adversely affect the physical or chemical nature of the bottom, interfere with the propagation of fish or 

shellfish, or adversely affect populations of non-mobile or sessile benthic organisms.” (314 CMR 4) 

Nutrients “Unless naturally occurring, all surface waters shall be free from nutrients in concentrations that would 

cause or contribute to impairment of existing or designated uses and shall not exceed the site specific 

criteria developed in a TMDL or as otherwise established by the Department pursuant to 314 CMR 4.00.” 

(314 CMR 4)  

Radioactivity “All surface waters shall be free from radioactive substances in concentrations or combinations that would 

be harmful to human, animal or aquatic life or the most sensitive designated use. (314 CMR 4) 

Toxic Pollutants All surface waters shall be free from pollutants in concentrations or combinations that are toxic to humans, 

aquatic life or wildlife. (314 CMR 4) 

Turbidity “The Turbidity level cannot exceed one NTU … in representative samples of the source water 

immediately prior to the first or only Point of Disinfectant Application…The Turbidity level cannot 

exceed five NTU (at any time)” (310 CMR 22) 

Note: Bolding added for emphasis.  

Table B.2 Absolute Error (%) for specific conductance sampling frequency reduction methods 

in terms of values for overall slope. Bolded items represent lowest absolute error for that 

category of sampling frequency reduction methods.  

  Monthly 15 Monthly 1st Quarterly Mar Quarterly Jan Quarterly Feb Average 

211 17.75 0.35 42.42 28.03 5.35 18.78 

212 2.49 2.35 1.33 1.41 8.58 3.23 

213 0.77 4.55 5.57 2.27 2.27 3.08 

215 1.10 0.63 11.43 18.85 4.91 7.38 

216 7.08 5.47 3.04 17.29 0.44 6.66 

BC 15.63 22.37 7.37 23.68 21.05 18.02 

GATE 0.19 2.31 6.63 1.19 6.25 3.31 

Average 6.43 5.43 11.11 13.25 6.98   
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Table B.3 Absolute Error (%) for turbidity sampling frequency reduction methods in terms of 

values for overall slope. Bolded items represent lowest absolute error for that category of 

sampling frequency reduction methods.  

Monthly 15 Monthly 1st Quarterly Mar Quarterly Jan Quarterly Feb Average 

211 3.57 13.99 44.94 22.46 24.86 21.96 

212 0.56 3.16 6.12 1.24 0.97 2.41 

213 5.08 2.22 2.22 29.09 10.32 9.79 

215 3.85 2.51 3.85 2.51 10.34 4.61 

216 12.50 5.55 32.00 9.44 22.50 16.40 

BC 5.30 20.93 0.00 4.11 13.10 8.69 

GATE 0.00 0.00 0.00 0.00 0.00 0.00 

Average 4.41 6.91 12.73 9.84 11.73 

Table B.4 Absolute Error (%) for total coliform sampling frequency reduction methods in 

terms of values for overall slope. Bolded items represent lowest absolute error for that category 

of sampling frequency reduction methods.  

Monthly 15 Monthly 1st Quarterly Mar Quarterly Jan Quarterly Feb Average 

211 62.65 96.90 202.71 290.84 149.40 160.50 

212 60.00 72.50 82.22 100.00 2.86 63.52 

213 51.25 71.67 0.54 100.00 52.50 55.19 

215 51.56 4.77 3.61 0.39 116.74 35.41 

216 60.95 195.00 60.65 133.33 168.52 123.69 

BC 261.73 25.23 100.00 682.31 100.19 233.89 

GATE 100.00 9.72 608.93 200.89 28.57 189.62 

Average 92.59 67.97 151.24 215.40 88.40 
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Table B.5 Potential Impacts on Water Quality due to Climate Change 
Impacts Details References 
Seasonal-
Winter 

Changing ice cover, higher DO because of less ice cover, decreased water 
shortage, increased conductivity due to increased road salting 

(Butcher et al., 2015; Marshall 
and Randhir, 2008) , in person 
communications with DCR 

Seasonal-
Summer 

Increased sediment loading from June to October, increased lake 
residence time for smaller lakes 

(Butcher et al., 2015; Delpla et 
al., 2009; Marshall and 
Randhir, 2008) 

Lake Mixing 
and Residence 
Time 

More energy required to mix due to increased stability, longer 
stratification periods, changing magnitude of stratification, larger 
epilimnion, deeper thermocline 

(Butcher et al., 2015; Delpla et 
al., 2009; Murdoch et al., 
2000) 

Dissolved 
Oxygen 

Increased rates of hypolimnetic oxygen depletion, decreasing dissolved 
oxygen, increased dissolved oxygen assimilation of biodegradable 
organic matter by microorganisms 

(Butcher et al., 2015; Delpla et 
al., 2009; Murdoch et al., 2000; 
Whitehead et al., 2009) 

Fisheries Increased 7-day max temperatures, change in fish species and amounts 
expected, effects on fish migration and emergence/abundance of insect 
populations, sensitivity of freshwater species to water temperature, abrupt 
water temperature increase effects on some aquatic organisms 

(Butcher et al., 2015; Delpla et 
al., 2009; Whitehead et al., 
2009) 

Runoff, 
Changing 
Precipitation, 
Extreme 
Events, 
Loading 

Increased sediment load and nutrients, increased rain leading to more 
pesticide flux, rain events leading to elevated turbidity and organic 
matter, changing surface runoff leading to reduced river flow during high 
demand periods, increased stormwater volume and variability, higher TSS 
in winter than summer, more pathogens likely to be detected after 
extreme rainfall, effects on nitrogen loading, reduced flows leading to 
increased BOD and P, lower summer flows 

(Butcher et al., 2015; Delpla et 
al., 2009; Dudula and Randhir, 
2016; Marshall and Randhir, 
2008; Tu, 2009; Wilson and 
Weng, 2011) 

Water 
Chemistry and 
Reactions 

Increased temperature leading to more favorable dissolution, 
solubilization, complexation, degradation, evaporation, etc., increased 
photolysis and phototransformation of compounds such as 
pharmaceuticals, remobilization of metals and persistent organic 
compounds, increased rates of chemical transformation and longer 
periods of biological activity, increased metal toxicity, increased pH 

(Delpla et al., 2009; Murdoch 
et al., 2000; Whitehead et al., 
2009) 

Nutrients Increased organic carbon content, decreased ammonia/increased nitrate 
due to nitrification, impacted nutrient cycling, changing N:P ratios, 
increased Total Phosphorous, increased TKN, higher temperature leading 
to increased mineralization of N, P, and C from soil organic matter 

(Delpla et al., 2009; Marshall 
and Randhir, 2008; Murdoch et 
al., 2000; Tong et al., 2012; 
Whitehead et al., 2009; Wilson 
and Weng, 2011) 

Algae Increased frequency and intensity of algal blooms, effects on growth rate 
of phytoplankton, macrophytes, and epiphytes, cyanobacteria  

(Murdoch et al., 2000; 
Whitehead et al., 2009) 

Organic 
Carbon 

Increases in DOC, POC, sediment, effects on water color, THMs in 
drinking water treatment 

(Delpla et al., 2009; Murdoch 
et al., 2000; Whitehead et al., 
2009) 
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C: SUPPLEMENTAL TABLE FOR CHAPTER 3 

Table C.1: Description of Demographic Indicators and Environmental Justice (EJ) Indices 
 
Parameter Description 
ACSTOTPOP Total population 
MINORPCT % people of color 
LOWINCPCT % low-income 
LESSHSPCT % less than high school 
LINGISOPCT % of households (interpreted as individuals) in linguistic isolation 
UNDER5PCT % under age 5 
OVER64PCT % over age 64 
VULEOPCT Demographic Index (based on 2 factors, % low-income and % people of color) 
D_LDPNT_2 EJ Index for % pre-1960 housing (lead paint indicator) 
D_DSLPM_2 EJ Index for Diesel particulate matter level in air 
D_CANCR_2 EJ Index for Air toxics cancer risk 
D_RESP_2 EJ Index for Air toxics respiratory hazard index 
D_PTRAF_2 EJ Index for Traffic proximity and volume 
D_PWDIS_2 EJ Index for Indicator for major direct dischargers to water 
D_PNPL_2 EJ Index for Proximity to National Priorities List (NPL) sites 
D_PRMP_2 EJ Index for Proximity to Risk Management Plan (RMP) facilities 
D_PTSDF_2 EJ Index for Proximity to Treatment Storage and Disposal (TSDF) facilities 
D_OZONE_2 EJ Index for Ozone level in air 
D_PM25_2 EJ Index for PM2.5 level in air 
PSewer % Sewer 
PSeptic %Septic 
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