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ABSTRACT

DEEP ENERGY-BASED MODELS FOR STRUCTURED
PREDICTION

SEPTEMBER 2017

DAVID BELANGER

B.A., HARVARD UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew K. McCallum

We introduce structured prediction energy networks (SPENs), a flexible frame-

work for structured prediction. A deep architecture is used to define an energy func-

tion over candidate outputs and predictions are produced by gradient-based energy

minimization. This deep energy captures dependencies between labels that would

lead to intractable graphical models, and allows us to automatically discover discrim-

inative features of the structured output. Furthermore, practitioners can explore a

wide variety of energy function architectures without having to hand-design predic-

tion and learning methods for each model. This is because all of our prediction and

learning methods interact with the energy only via the standard interface for deep

networks: forward and back-propagation. In a variety of applications, we find that

we can obtain better accuracy using approximate minimization of non-convex deep

energy functions than baseline models that employ simple energy functions for which

exact minimization is tractable.

vi



This thesis contributes methods for improving the speed, flexibility, and accuracy

of SPENs. These include convex relaxations for discrete labeling problems, end-to-

end training, where we back-propagate through the process of doing gradient-based

prediction, sampling-based training, which helps explore output space, methods for

regularizing SPENs such that gradient-based prediction converges quickly, and hybrid

models that combine conditional random fields and SPENs.
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CHAPTER 1

INTRODUCTION

1.1 Structured Prediction

In structured prediction, we seek to predict structured objects, which are essen-

tially anything other than a scalar or categorical quantity. For example, these may be

images, audio signals, sentences, sets of labels, database records, and graphs. In some

applications, the structured object may be an intermediate representation produced

by an artificial intelligence system when extracting information from observations.

For example, downstream reasoning about the content of a news article may require

predicting relational data about the individuals and events discussed in the text. In

other applications, the structured object may be the output of a content generation

system used as the interface between a computer and a user. For example, when a

dialogue system responds to a user query, it may produce its response as a sentence

containing multiple words, and this sentence may be further converted into an audio

signal for a simulated person speaking the sentence.

Throughout the thesis, we will employ x as the input to a prediction problem and y

as the structured output. In many applications, we could predict each subcomponent

of y independently given x. However, this may have substantially lower accuracy

than an approach that explicitly models the interactions among the subcomponents.

Joint prediction of y poses computational challenges, however, as we must search in

the exponentially-large space of candidate outputs. Structured prediction research

focuses on posing models that both capture the data well and provide for tractable

(approximate) search.
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In recent years, deep neural networks have provided impressive accuracy improve-

ments in a variety of applications. A particularly compelling aspect of deep networks

is that representation learning can be performed easily by gradient descent. This

replaces traditional methods where practitioners hand-design feature extraction func-

tions using prior knowledge about the problem domain. In many structured prediction

applications, deep networks are used to extract sophisticated representations for the

inputs x, but practitioners use traditional methods for representing the interactions

among components of the output y.

This thesis contributes methods for leveraging deep networks to learn representa-

tions for y. This provides a novel framework for structured prediction that supports

a wide variety of high-performance models.

1.2 Considerations and Tradeoffs in Structured Prediction

When choosing among structured prediction techniques, practitioners consider the

following factors:

1. Expressivity: The ability of the model to capture the underlying structure of

the data. Expressive models have low approximation error.

2. Parsimony: The number of degrees of freedom of the model. Parsimonious

models often generalize well, since they can be fit reliably on limited data.

3. Certifiability: Whether the method provides guarantees for either speed or

exactness of prediction.

4. Modularity: Whether the model is able to share reusable components with

other models, both in terms of learned parameters and software.

5. Simplicity: The ease of implementation and testing for the model.

6. Tractability: The computational complexity of prediction in the model.
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The final factor creates many challenges. Since there are typically exponentially-

many structured outputs, structured prediction is fundamentally a search problem,

and different models admit prediction algorithms with varying levels of tractability.

The model selection process is often framed in terms of trading off bias vs. vari-

ance. In other words, how well the model can describe the underlying data (ex-

pressivity) vs. how vulnerable the model is to overfitting (parsimony). However,

modularity and simplicity are extremely important factors in practice, to the point

that the availability of open-source packages for certain algorithms has shaped the

field in noticeable ways.

Performing model selection based on simplicity and modularity is not necessarily

detrimental, however, as these are good engineering principles that help create reli-

able systems. Furthermore, it is unclear how important certifiability is in practice.

For example, loopy belief propagation provides few guarantees for convergence or ap-

proximation error, but typically yields high-quality outputs. Namely, certifiability is

very different than practical reliability.

Furthermore, just because a machine learning method provides user-facing sim-

plicity and modularity does not mean that the method itself must be simplistic.

Many popular paradigms in machine learning enable black-box interaction with the

model: the user defines the model and sophisticated code handles learning and pre-

diction in it. These include black-box variational inference (Nguyen & Bonilla, 2014;

Ranganath et al., 2014; Kucukelbir et al., 2015; Mnih & Gregor, 2014; Rezende &

Mohamed, 2015; Salimans et al., 2015), probabilistic programming (McCallum et al.,

2009; Goodman et al., 2008; Goodman, 2013; Mansinghka et al., 2014; Tolpin et al.,

2015), and deep learning libraries (Bergstra et al., 2011; Collobert et al., 2011; Jia

et al., 2014; Abadi et al., 2016). Such approaches are attractive because practitioners

can easily prototype and evaluate a variety of different models.
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1.3 Approaches to Structured Prediction

A structured prediction technique has three components:

1. Representation: A definition of a model, which characterizes preferences for

distinct candidate outputs.

2. Learning: How the parameters of the model are estimated on labeled data.

3. Inference: How to perform prediction using the model.

Here, as in many machine learning contexts, we use ‘model’ quite liberally. It may

not be probabilistic, for example.

1.3.1 Feed-Forward Prediction

Suppose that our output y can be expressed as a collection of parts {y1, . . . , yn}.

The most simple structured prediction technique independently predicts each yi using

a separate model gi(x). Of course, this ignores the interactions among the different

parts of y. On the other hand, in many problems these parts may be nearly condi-

tionally independent given x. We can also share features across parts, such that each

prediction is given by gi(F (x)), where F (·) is shared. For example, when tagging to-

kens in a sentence with part of speech tags, we may extract features from the sentence

using a bidirectional long short-term memory network (LSTM) and then predict each

tag using a per-token logistic regression model with per-token features given by the

hidden states of the LSTM.

Training and prediction in such models is straightforward, even when each function

is expressed as a deep neural network. We refer to this approach as feed-forward

because it is typically fast and prediction can be done with a single forward evaluation

of F and each gi.
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1.3.2 Factorized Energy-Based Models

Alternatively, we can use an energy-based model (LeCun et al., 2006) to form

predictions. Here, we implicitly define our input-to-output mapping as

arg min
y

Ex(y). (1.1)

Ex(·) is a scoring function that depends on x and assigns different values to different

candidate structured outputs. As with feed-forward prediction, it can depend on x

via hand-designed features or through a deep architecture.

The principal advantage of energy-based prediction vs. feed-forward prediction

is that energy-based prediction explicitly models the interactions among the output

parts. This is important when there are strong correlations among output parts

that cannot be explained by x. An extreme example of this is when there are rigid

constraints in the outputs, such as for dependency parsing: we cannot predict every

dependency arc independently, since the task requires that the arcs form a tree. The

tree constraint can be accounted for in an energy-based formulation, by predicting

arg miny∈T Ex(y), where T is the set of directed trees.

In order to render either exact or approximate optimization of (1.1) tractable,

practitioners typically employ energy functions with some factorization structure that

can be exploited to design efficient algorithms. See Sec. 2.3 for more details. Factor

graphs assume that the energy decomposes as a sum of factors, terms that only depend

on a subset of the components:

Ex(y) =
∑
c∈C

Ec
x(yc) (1.2)

The factor structure provides opportunities for (approximate) energy minimization

using a variety of optimization techniques. Unfortunately, these models typically

exhibit poor tradeoffs between the size of the scope of the factor functions and the
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tractability of prediction, and prediction algorithms often need to be hand-designed

to account for the specific factorization structure of the energy.

An important sub-class of factor graphs is autoregressive energies (Sec. 2.3.1.3).

These assume a linear ordering on the N components of y such that

Ex(y) =
N∑
i=1

Ei
x(yi , y<i). (1.3)

Here, y<t is the history of predictions preceeding component yt. These energies

are often implemented using recurrent neural networks. The autoregressive structure

enables efficient approximate energy minimization by searching in the space of prefixes

of y using beam search or greedy search.

In these approaches, the ability to perform (approximate) energy minimization

relies crucially on the factorization structure of the energy. In response, practitioners

often use simple graph structures, but sophisticated deep features, since the functional

form of the features does not affect the tractability of energy minimization with

respect to y.

1.4 Structured Prediction Energy Networks

Deep learning has provided significant performance gains in a variety of applica-

tion domains, largely because it enables automatic learning of sophisticated feature

functions. To apply deep learning to structured prediction, prior work has mostly

employed a commonly-used energy function structure, such as a linear-chain or grid

factor graph (Sec. 2.3.1) and used a deep network for feature extraction. This is

easy to implement, as long as the architecture for feature extraction supports back-

propagation. On the other hand, it may impose an excessively strict inductive bias.

Namely, practitioners are unable to use deep architectures to perform structure learn-

ing, representation learning that discovers the interactions among components of y.
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In response, this thesis introduces introduces Structured Prediction Energy Net-

works (SPENs), where a deep architecture is used to extract features and also to

encode the dependence of the energy on y.

Definition 1.4.1. A SPEN is an energy-based model for predicting y, given x, where

y is continuous and we have an energy function Ex(y) defined by a feed-forward neural

network that takes both x and y as inputs and returns a scalar. To form predictions,

the energy is minimized only with respect to y. The network has trainable parameters

w and provides the following subroutines:

1. Forward Propagation: Given x and y, evaluate Ex(y).

2. Backward Propagation: Given x and y, evaluate d
dy
Ex(y) and d

dw
Ex(y).

This is an extremely general definition that encompasses many instances of the

models of the previous section. However, the focus of this thesis departs from the

previous section by employing prediction and learning algorithms that do not rely on

any factorization structure of the energy. Instead, we interact with it only via the

standard interface for a deep network: forward and back-propagation. With this, we

can perform energy minimization with respect to y using gradient descent.

Performing gradient-based prediction is advantageous because it is extremely

generic. By not relying on any such factorization when choosing learning and pre-

diction algorithms for SPENs, we can consider much broader families of deep energy

functions. We do not need to specify the interaction structure in advance, but instead

learn it automatically by fitting a deep network. This can capture sophisticated global

interactions among components of y that are difficult to represent using a factorized

energy. Essentially, much contemporary work applies deep networks to perform au-

tomatic feature learning for the input x to a prediction problem. Our work extends

this to also perform automatic structure learning for the outputs y.
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The SPEN energy function does not need to be a generic multi-layer perceptron.

Instead, its functional form can be chosen by the user to capture known properties of

the data. This can provide inductive bias that is particularly important in the limited

data regime. For example, we can define the energy as the sum of local and global

terms, where the global terms do not depend on x, and thus encode a learned prior

over y. Of course, the downside of SPENs vs. alternative factorized energy-based

models is that they provide few guarantees, particularly when employing non-convex

energies.

1.5 Summary of Contributions

This thesis explores learning and prediction for energy-based models where the

energy is given by a deep neural network. We focus on models where the energy is

a black box that only provides forward and back-propagation, and thus we perform

prediction by gradient descent. This generic approach enables exploration of a wide

variety of model architectures and differs notably from popular instances of energy-

based models such as factor graphs and autoregressive models, where tractability of

(approximate) energy minimization depends crucially on the structure of the energy

function. We explore a variety of training and prediction methods for a diverse

selection of applications, including those with discrete outputs, where the SPEN

is defined on the convex relaxation of the original problem. We hope to provide

practitioners with the tools and insight necessary to apply SPENs to future problems.

Thesis Statement: Accurate structured prediction can be achieved using gradient-

based optimization of a learned energy function parametrized by deep neural network.

1.5.1 Detailed Contributions

1. Definition of SPENs, example network architectures for a variety of applications

(Chapter 3).
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2. Gradient-based optimization algorithms for SPEN prediction (Chapter 4).

3. Structured SVM and end-to-end methods for training SPENs (Chapter 5).

4. Hybrid CRF-SPENs, where a SPEN predicts the clique marginals of a struc-

tured mean-field distribution. (Chapter 6).

5. Thorough discussion of related work (Chapter 7).

6. Investigation of SPEN properties and a comparison to CRFs on sequence and

grid data (Chapter 8).

7. Applications of SPENs to the NLP problems of semantic role labeling, multi-

label document classification, citation field extraction, and optical character

recognition (Chapter 9).

8. Application of SPENs to image denoising (Chapter 10).

9. Prediction and learning methods for SPENs that help capture multi-modal out-

put distributions. (Chapter 11).

10. Exploration of sampling-based large-margin methods with the goal of improving

exploration vs. exploitation and accelerating learning (Chapter 12).

11. Conclusion and discussion of future work (Chapter 13).

1.6 Declaration of Previous Work

1.6.1 SPEN Papers

We introduced SPENs in

Belanger, David and McCallum, Andrew. Structured Prediction Energy
Networks. International Conference on Machine Learning, 2016

Follow-on work introducing improved learning methods appears in
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Belanger, D., Yang, B., and McCallum, A. End-To-End Learning for
Structured Prediction Energy Networks. International Conference on Ma-
chine Learning, 2017

A special case of SPENs appeared first as

Vilnis, Luke, Belanger, David, Sheldon, Daniel, and McCallum, Andrew.
Bethe Projections for Non-Local Inference. Conference on Uncertainty in
Artificial Intelligence, 2015 (with equal contribution between the first two
authors)

1.6.2 Previous Work on Structured Prediction

Our development of SPENs builds on our prior work using convex and combi-

natorial optimization techniques to improve the speed and accuracy of strutured

prediction.

Belanger, David, Passos, Alexandre, Riedel, Sebastian, and McCallum,
Andrew. Map Inference in Chains Using Column Generation. Neural
Information Processing Systems, pp. 1844–1852, 2012

Anzaroot, Sam, Passos, Alexandre, Belanger, David, and McCallum, An-
drew. Learning Soft Linear Constraints with Application to Citation Field
Extraction. Association for Computational Linguistics, 2014

Belanger, David, Passos, Alexandre, Riedel, Sebastian, and McCallum,
Andrew. Message Passing for Soft Constraint Dual Decomposition. Con-
ference on Uncertainty in Artificial Intelligence, 2014 (with equal contri-
bution between the first two authors)

Tang, Kui, Ruozzi, Nicholas, Belanger, David, and Jebara, Tony. Bethe
Learning of Conditional Random Fields Via Map Decoding. Artificial
Intelligence and Statistics, 2015
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CHAPTER 2

BACKGROUND

This chapter surveys a range of background material necessary for understanding

the motivation and technical details of SPENs.

2.1 Notation

The following notation will be used throughout the thesis.

Symbol Meaning
x The input to a prediction problem.
y The output of a prediction problem.
y The continuous optimization variable for SPEN energy minimization.
w The trainable parameters of a model that we learn.

Ex(ȳ) An energy function of ȳ, where the shape of the energy depends implicitly on inputs x.
E(ȳ, F (x)) Explicit energy function of ȳ that depends on x by way of features F (x).

θ The natural parameters of an exponential family model.
µ The expected sufficient statistics of an exponential family distribution.

S(y) The sufficient statistics of an exponential family distribution.
Z The partition function of a Gibbs distribution.

H(P ) The entropy of the probability distribution P .
HB(µ) The Bethe entropy of a Markov random field with marginals µ.
η A step size employed in gradient descent.
〈·, ·〉 Standard inner product between vectors or tensors.

∆(·, ·) A cost function that measures the discrepancy between a prediction and the ground truth.

Table 2.1: Notation

2.2 Exponential Family Probability Distributions

An exponental family probability distribution takes the form

Pθ(y) =
1

Z
h(y) exp(θ>S(y)), (2.1)
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where S(y) is a vector-valued function that maps y to a set of sufficient statistics,

θ is a vector of natural parameters, h(y) is a base measure that does not depend on

θ, and Zθ is a normalizing constant such that P (y) sums to one. The normalizing

constant is often called the partition function. For discrete y, we have:

Zθ =
∑
y∈Y

h(y) exp(θ>S(y)). (2.2)

This is defined similarly, but with an integral, for continuous y. Going forward, we

will use a summation for the sake of notational simplicity. We will also often omit

the dependence of Pθ and Zθ on θ.

Many popular probability distributions are in the exponential family. See Tab. 2.2

for examples. Overall, this section focuses on uninvariate distributions, defined over

scalars, integers, or categories. An exponental family is a a set of distributions for a

given definition of h(y) and S(y).

Name Density/Mass Support Sufficient Statistics Natural Parameters

Gaussian 1√
2πσ2

exp
(
−(y−µ)2)

2σ2

)
R y, y2 µ

σ2 , −1
2σ2

Poisson
λy exp(−λ)

k!
N y log(λ)

Bernoulli py(1− p)1−y {0, 1} I[y = 1] log(p)

Categorical
∏K
k=1 p

I[y=k]
k {1, . . .K} {I[y = 1], . . . , I[y = K]} {log(p1), . . . , log(pK)}

Table 2.2: Examples of members of the exponential family. Here, I[·] is an indicator
function for a predicate.

In the minimal exponential family, there does not exist a linear constraint that

the sufficient statistics always satisfy. This is important for the identifiability of

the model. A model is non-identifiable if two different values of θ yield the same

distribution. In Tab. 2.2, all of the examples are minimal besides the categorical

distribution. In the form we present it, the categorical distribution is not minimal

because 1>S(y) = 1 for every possible y, where 1 is a vector of all ones. This would

be fixed by using only K − 1 sufficient statistics, where we reconstruct I[y = K] on

the fly as 1−
∑K−1

k=1 I[y = k].
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2.2.1 Marginal Inference

Marginal inference computes the expected sufficient statistics, often denoted as

µ:

µ := EP [S(y)] . (2.3)

=
∑
y

P(y)S(y) (2.4)

=
1

Z

∑
y

exp(θ>S(y))S(y) (2.5)

= ∇θ log

(∑
y

exp(θ>S(y))

)
(2.6)

= ∇θ logZ (2.7)

Note that logZ is a convex function of θ, since the log-sum-exp function is con-

vex (Wainwright & Jordan, 2008). As a consequence, for elements of the minimal

exponential family, there is a one-to-one correspondence between values of θ and

values of ∇θ logZ. In other words, there is a one-to-one correspondence between

the expected sufficient statistics of an exponential family distribution and its natural

parameters.

This correspondence is useful because certain properties of Pθ(y) are easier to

reason about in terms of µ. For example, define the entropy of a distribution P(y) as

H(P) = −
∑
y

P(y) logP(y) (2.8)

We use the shortandH(µ) to refer to the entropy of the distribution that has marginals

µ. With this, we can characterize marginal inference as the solution to an optimization

problem:

µ = arg max
µ′∈M

θ>µ′ +H(µ′). (2.9)
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This follows immediately from the conjugate duality between the log-sum-exp and

negative entropy functions (Wainwright & Jordan, 2008). The marginal polytope M

is defined as the set of all vectors of expected sufficient statistics µ that are realizable

from some set of natural parameters θ.

For simple univariate exponential family models, posing marginal inference as

an optimization problem may seem un-necessarily complex. However, for structured

distributions with exponentially-large support, exact marginal inference is intractable

and (2.9) provides a foundation for designing approximate inference algorithms based

on methods for approximate optimization.

Finally, throughout the thesis we will use the SoftMax function:

SoftMax(θ1, . . . , θn)[i] =
exp(θi)∑
j exp(θj)

(2.10)

It inputs n values and outputs n values. Here, we provide the value of the softmax

and a certain output index i. Note that SoftMax computes the expected sufficient

statistics of the categorical distribution with natural parameters θ1, . . . , θn. Here,

we do not employ the minimal parametrization for the distribution, and thus the

SoftMax is not one-to-one. Namely, the output of the SoftMax is invariant to adding

a constant to all of the inputs.

2.2.2 Maximum Likelihood Learning

A full discussion of methods for estimating the parameters of exponential family

models is beyond the scope of this thesis. Here, we briefly explain maximum likeli-

hood learning (MLE). Suppose we have M training examples y1, . . . , yM . We seek to

maximize the average log-likelihood of our data:
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LogLik(θ) =
1

M

M∑
i=1

logPθ(yi) (2.11)

=
1

M

M∑
i=1

log θ>S(yi)− logZθ. (2.12)

When optimizing our likelihood with gradient-based methods, we have:

∇θLogLik(θ) =
1

M

M∑
i=1

[S(yi)−∇θ logZθ] . (2.13)

= EP̃[S(y)]− µ. (2.14)

Here, we use P̃ to denote the data distribution. The gradient (2.14) is conceptually

attractive. It is the difference between the empirical expected sufficient statistics and

the expected sufficient statistics of the distribution defined by the current value of θ.

The gradient is zero when these expectations match. In fact, if we were to consider

all possible distributions where the empirical and expected sufficient statistics match,

and select the distribution with the maximum entropy, we would obtain exactly the

exponential family distribution with parameters given by the MLE solution (Berger

et al., 1996).

2.2.3 The Conditional Exponential Family

This thesis focuses on structured prediction, where we are given an x and seek to

predict a y. A probabilistic formulation of such a task reasons about a conditional

distribution P(y|x). A conditional exponential family distribution is simply a function

from x to the natural parameters of an exponential family distribution:

P(y|x) =
1

Zx,w
exp(θ(x)>S(y)) (2.15)

We assume that θ(x) = Gw(x) is a parametrized function with learned parameters

w. When Gw(x) is differentiable with respect to w, then it is easy to extend the
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MLE approach of Sec. 2.2.2 to the task of learning w. Given the gradient of the log

likelihood with respect to θ, we can obtain the gradient of the log-likelihood with

respect to w using the chain rule. We use the notation Zx,w to emphasize that the

partition function depends both on x and on the parameters of the mapping from x

to θ. Throughout the thesis, we will typically refer to the partition function simply

as Z, however.

2.2.4 Likelihood Functions vs. Loss Functions

Consider a dataset (x1, y1), . . . , (xn, yn) of training examples for a prediction prob-

lem and a prediction function ŷ = fw(x) with trainable parameters w. Let L(ŷ, y) be

a loss function that measures the discrepancy between a prediction and the ground

truth. In many machine learning tasks, we estimate w by minimizing the average

loss:

min
w

1

n

n∑
i=1

L(fw(xi), yi) (2.16)

For a regression task, it is natural to employ the squared error L(ŷ, y) = (ŷ− y)2.

We can interpret this as the negative log likelihood of a normal distribution with

mean given by ŷ and a fixed variance. Here, we interpret fw(·) as predicting the

natural parameters of a probabilistic model. Alternatively, we can interpret the loss

simply as a cost function that rewards ŷ that are close to the ground truth. Here,

fw(·) returns a point estimate, not a the parameters of a distribution.

Consider a discrete problem where y can take on one of K values. We can define

our loss function as the negative log-likelihood of a categorical distribution with a vec-

tor of natural parameters a = [a1, . . . , an] that are predicted by fw(·). The associated

loss is

L(a, y) = − log SoftMax(a)y, (2.17)
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where subscripting a vector by y refers to indexing a vector at the index given by

the value of y. Alternatively, we can assign a non-probabilistic interpretation to this

loss. Consider an arbitrary predictor that returns µ = [µ1, . . . , µn], a vector in the

probability simplex on K things. In other words, each µi is positive and
∑

i µi = 1.

Then, we can define a non-probabilistic loss function

L({µ1, . . . , µn}, y) = − log µy. (2.18)

This is often known as the cross entropy loss. This distinction is important to un-

derstand because at various points in the thesis we employ non-probabilistic methods

that directly predict elements of the K-simplex and use (2.18) as our training loss.

2.2.5 Model-Based Prediction

Given a conditional distribution P(y|x), there are mutiple ways to predict a value

ŷ. The first, sometimes known as MAP inference, is to predict

ŷ = arg max
y

P(y|x). (2.19)

MAP stands for maximum a-posteriori inference. However, it is often used as a de-

cision rule (2.19) even in contexts where posterior inference is not being performed

since no prior was imposed on y. It is also sometimes known as most probable expla-

nation (MPE) inference. Note that in distributions such as a Gaussian, the mode and

the mean are identical, so MAP inference can be seen as predicting the conditional

expectation for y.

There are contexts in which MAP inference may be unadvisable, or even danger-

ous. Consider a problem where P(y|x) estimates the probability that a patient has

a certain disease, given a set of lab results. Depending on the implications of false-

negatives and false-positives, a doctor may recommend that the patient is treated for
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the disease even if the most likely outcome under P(y|x) is that the patient does not

have it.

More generally, consider a risk function R(y, y∗) that computes the cost associated

with making prediction y when the true value is y∗. Since we do not know y∗, we

integrate it out, using our estimated model P(y|x) to capture our uncertainty about

its value. This leads to the following decision-theoretic objective:

ŷ = arg min
y

EP(y∗|x)R(y, y∗). (2.20)

Consider a discrete prediction task, where P(y|x) is a categorical distribution. Here,

we see that MAP inference corresponds to a choice of a 0-1 risk function, where we

receive a cost of 0 for correct predictions that are exactly correct and 1 otherwise. In

many structured predicition contexts, the 0-1 reward is undesirable because it does

not differentiate among predictions that are partially correct, and thus we should use

different prediction procedures.

Here, we have simplified the exposition by assuming that the output ŷ we seek

to predict and the distribution P(y∗|x) are over the same type of object. This does

not need to be true in general, however. For example, P(y∗|x) could be defined over

structured objects and we seek to predict a single scalar, as long as we have a risk

R(y, y∗) that accepts these types as arguments.

2.2.6 Gibbs Distributions

Exponential family distributions are instances of the broader family of Gibbs dis-

tributions, also known as Boltzmann distributions :

P(y) =
1

Z
exp(−E(y)). (2.21)

Here, E(y) is a general energy function. In a conditional Gibbs distribution, the

energy function would depend on x as well as y. Note that the energy minimum is
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the most likely value for y. Exponential family distributions can be written as Gibbs

distributions with energy −θ>S(y)− logZ.

Througout the thesis, we will use the notation

P(y) ∝ exp(−E(y)). (2.22)

This is a shorthand for (2.21), where we leave the partition function implicit. In

certain contexts, it is also useful to introduce a temperature parameter τ :

P(y) =
1

Z
exp(−1

τ
E(y)) (2.23)

As the temperature approaches zero, the distribution approaches a point mass on

the energy minimum, or energy minima in the case of an energy with multiple local

minima. As the temperature approaches infinity, the distribution approaches the

uniform distribution. Also, note that we should not characterize exponential families

as having linear energy functions. They are linear in the sufficient statistics, but the

sufficient statistics may be a non-linear function of y. This is true, for example, for a

Gaussian distribution.

2.3 Structured Energy Functions

We now turn to the case that y is a structured object. For example, it could be

a generated image, a parse tree, etc. We assume that y has a collection of subcom-

ponents, that we index as yi. These correspond to individual pixels, edges in a parse

tree, etc.

Factor graphs provide a useful formalism for representing energy functions over

structured objects (Kschischang et al., 2001). Let C be a collection of subsets of the

subcomponents of y. We have:
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E(y) =
∑
c∈C

Ec(yc), (2.24)

where each yc is the value of y restricted to the set c and Ec(yc) is an arbitrary

function. Each of the terms Ec(yc) is known as a factor.

Note that any energy function E(y) can be written as a factor graph that includes

a factor that is defined on all of y. However, generally practioners only refer to

energy functions as factor graphs when the graph has non-trivial structure that can

be exploited to perform efficient (approximate) energy minimization. In many cases,

the tractability of energy minimization can be understood in terms of the graph’s

treewidth (Koller & Friedman, 2009).

2.3.1 Examples

Next, we present a few popular instances of factor graphs.

2.3.1.1 Linear-Chain Factor Graphs

Consider a sequence of discrete labels y = y1, . . . , yT , where each yt can take on

one of K values. We define the energy for a chain-structured graph as:

E(y) =
T−1∑
t=1

At[yt, yt+1] (2.25)

Here, the brackets indicate indexing a matrix by row and column indices. Note that

the energy function only has terms that interact neighbors in the chain.

For this graph structure, exact energy minimization can be performed in O(TK2)

time using the Viterbi algorithm, which performs dynamic programming (Viterbi,

1967).
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For certain applications, it may be useful to reduce the number of free parameters

by assuming that each At decouples into a local factor just for yt and a pairwise

factor, where the values of pairwise factor do not depend on t.

T−1∑
t=1

Ut[yt] + A[yt, yt+1]. (2.26)

While (2.25) has (T − 1)K2 parameters, this only has KT +K2.

2.3.1.2 Grid Factor Graphs

Next, we consider an N ×M grid of labels indexed as yi,j. We define a simple

factor graph that interacts each label with its four immediate neighbors.

E(y) =
N∑
i=1

M−1∑
j=1

Ai,j[yi,j, yi,j+1] +
N−1∑
i=1

M∑
j=1

Bi,j[yi,j, yi+1,j]. (2.27)

Here, the A matrices contain scores for horizontal edges in the grid and the B matrices

are for vertical edges. For simplicity of notation, we ignore special indexing necessary

for properly handling the boundaries. Again, we could have added explicit local

factors, but these can be absorbed into the pairwise factors.

Energy minimization in graphs that have loops is NP-hard in general (Koller &

Friedman, 2009). In practice, though, high quality approximate energy minimization

can be often be performed using, for example, MCMC (Geman & Geman, 1984), mes-

sage passing (Pearl, 1982; Yedidia et al., 2003), or graph cuts (Boykov & Kolmogorov,

2004).

2.3.1.3 Autoregressive Energies

Next, we assume a partial ordering of the N subcomponents of y, and use y<i to

denote the set of subcomponents that are earlier than yi in the ordering. We define

an autoregressive energy as
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E(y) =
N∑
i=1

Ei(yi , y<i). (2.28)

Note that any probability distribution can factorized as follows:

P(y1, . . . , yN) =
N∏
i=1

P(yi|y<i). (2.29)

Consequently, autoregressive energies have been used for a number of successful deep

density estimators (Larochelle & Murray, 2011; Larochelle & Lauly, 2012; Uria et al.,

2014). Of course, the energy function does not need to be trained as a probabilistic

model, and each factor does not need to correspond to a locally-normalized distribu-

tion.

An autoregressive energy corresponds to a fully-connected factor graph, since the

final term in the sum above relies on all of y. As a result, exact energy minimization is

typically intractable. However, approximate energy minimization can be performed

using search in the space of prefixes of y. This has proven to be very useful, for

example, on a variety of text generation tasks (Sutskever et al., 2014; Vinyals et al.,

2014; Filippova et al., 2015; Venugopalan et al., 2015; Xu et al., 2015)

Given predicted values for a prefix, i.e., a set of subcomponents y<i for some i > 1,

we have the energy function Ei(yi , y<i). We assume that this can be minimized with

respect to yi. For example, for discrete prediction problems Ei(yi , y<i) can be

represented as a vector containing energy values for each of the values that yi can

take on. Minimizing the function can be done simply by scanning down the vector.

Once we have predicted a value for yi, we can iterate this process to predict yi+1.

This greedy search procedure can be extended to beam search, where we maintain a

set of candidate prefixes.

Note that the linear-chain factor graph (2.25) corresponds to a first-order Markov

model, where yi only directly interacts with its immediate neighbors. However, (2.28)
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can depend on an arbitrarily-long history. Recurrent neural networks are useful for

implementing autoregressive models, since they provide a compact means to summa-

rize a variable-length history into a fixed-size vector.

This autoregressive approach can be applied to problems beyond those where y

has a natural linear ordering. For example, we can define a partial ordering on pixels

arranged in a 2-dimensional grid that sweeps from the top left to bottom right corner.

Such an approach has been used for high-quality image generation (Theis & Bethge,

2015; van den Oord et al., 2016).

If we define our energy as the log of the factorized probability (2.29), then training

by maximimum likelihood is straightforward, since each P(yi|y<i) is a normalized

univariate density. On the other hand, it is very challenging to estimate (2.28) without

assuming that the corresponding Gibbs distribution is a product of locally-normalized

distributions, or when we have missing data.

Finally, note that we are using the term ‘autoregressive’ quite generally. In many

statistics applications, it refers to the case where the dependence of yi on y<i comes

by way of a linear function of a fixed-size window of y<i.

2.3.2 Linear Parametrization for Discrete y

Next, we show how to express the energy of a factor graph over discrete y as a

linear function of sufficient statistics of y. A similar approach could also be applied

for some energy functions over continuous y.

We assume that each yi can take on one of K values. Let yoi be a one-hot repre-

sentation for yi. In other words, it is a vector of length K that is zero except in the

coordinate corresponding to the value of yi where it is 1. The factor graph energy

can be written as
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∑
c∈C

Ec(yc) =
∑
c∈C

〈
θc,
⊗
i∈c

yoi

〉
(2.30)

=
∑
c∈C

vec(θc)
>vec(

⊗
i∈c

yoi ) (2.31)

Here,
⊗

i∈c y
o
i represents a repeated outer (tensor) product of the one-hot represen-

tations for each of the components yi in the set c, 〈·, ·〉 is the standard inner product

on multi-dimensional tensors, and vec(·) flattens a multi-dimensional tensor into a

vector. It is fully general to use (2.30), since any function over discrete inputs can be

defined as a lookup table with values for each of the possible inputs.

This linear parametrization is useful because it allows us to define exponential

family distributions over structured objects (Sec. 2.3.4). Linearity enables a variety

of non-probabilistic approaches as well, such as primal-dual methods for structured

SVM (SSVM) learning (Taskar et al., 2004; Tsochantaridis et al., 2004) and MAP

inference techniques based on LP relaxations (Globerson & Jaakkola, 2008; Rush

et al., 2010; Sontag et al., 2011).

2.3.3 Conditional Factor Graphs

As in Sec. 2.2.3, it is straightforward to define a conditional factor graph, where the

energy function is determined by some input variable x. For example, in our linear-

chain factor graph (2.25), each matrix At can depend arbitrarily on x. This does

not change the tractability of energy minimiztion with respect to y. In a variety of

structured prediction applications, it has been fruitful to parametrize the dependence

on x by way of a learned deep network. Throughout the thesis, we employ the notation

Ex(y) to refer to an energy function that conditions on x.

2.3.4 Markov Random Fields and Conditional Random Fields

Informally, a Markov random field (MRF) is defined as an exponential family

distribution with a factor graph energy that is a linear function of sufficient statistics,
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as in (2.31). Many of the concepts from Sec. 2.2 for univariate distributions can be

applied directly to MRFs. The main difference is that naive approaches to operations

like computing Z are intractable, since there are exponentially-many possible y. For

MRFs, the associated vector θ of natural parameters is often known as a vector of

log-potentials.

Above, we present a informal constructive definition of an MRF, by defining a

probabilistic model for a given energy function. The formal definition of an MRF

operates in the opposite direction. At a high level, an MRF is defined as any joint

distribution that obeys certain conditional independence relationships among sets of

the subcomponents of y (Koller & Friedman, 2009). The Hammersly Clifford theo-

rem guarantees that any positive distribution with such independence structure can

be represented as a Gibbs distribution with a certain factor graph energy, where the

factorization structure of the energy captures the conditional independence struc-

ture of the distribution. For the sake of this thesis, the informal definition above is

sufficient.

There are a few general principles that can be used to design efficient MAP and

marginal inference algorithms for MRFs. We recommend Koller & Friedman (2009)

for more details. The first principle is that the graph structure can be exploited to

efficiently perform variable elimination. Second, we can perform MCMC efficiently

when the computation necessary to sample new values only considers small neighbor-

hoods of the graph. Third, we can pose inference as constrained optimization problem

and perform approximate optimization. Techniques such as mean-field inference and

loopy belief propagation can be seen as approximate optimization algorithms for the

dual form of marginal inference (2.9). Again, these leverage the graphical structure

for efficiency.

A conditional random field (CRF) is simply a conditional MRF, i.e., a mapping

from some input x to an MRF over y (LeCun et al., 1998; Lafferty et al., 2001). In
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other words, the natural parameters θ are a function of x. Note we do not train θ.

We train the parameters of the function that map from x to θ.

In the exposition of Lafferty et al. (2001) and many follow-on papers, the energy

is written as a function of both x and y. This is a mistake, as it suggests that the

energy is used to define a joint distribution over x and y. It also often makes it

difficult to account for arbitrary neural network mappings from x to θ. Also, note

that CRFs are typically attributed to Lafferty et al. (2001), but many of the core

technical contributions of the paper appeared earlier in LeCun et al. (1998).

Posing conditional factor graphs as CRFs is useful because it is natural to learn the

parameters of the factor graph by maximizing the conditional likelihood of the data.

Throughout the thesis, CRFs are used as a conceptual and experimental baseline to

compare SPENs against. We do not present a full exposition on inference and learning

algorithms for CRFs here, as we generally use off-the-shelf methods. See Sec. 8.4.1

for details on particular methods for training chain and grid-structured models that

we have found to work well in practice. Also, as with the rest of the community, we

will occasionally refer to any model with a linear factor graph energy as a CRF, even

if it was not trained as a probabilistic model.

For structured models, the marginal polytope is the intersection exponentially-

many linear constraints on µ, except for tree-structured factor graphs, where it can be

described compactly. Various inference approaches perform constrained optimization

over relaxations of the marginal polytope.

2.4 Frameworks for Structured Prediction

Next, we discuss the general families of approaches to structured prediction that

are popular in the literature. For the sake of concreteness, we contrast approaches in

terms of how they would be applied to named entity recognition (NER). Along the way,
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we will point out details relevant for alternative applications. See, for example, Tjong

Kim Sang & De Meulder (2003) for a description of NER and how it is evaluated.

NER is an important preprocessing step for a variety of NLP tasks. Let x =

x1, . . . , xn be a sequence of n word tokens. We seek to predict spans of tokens that

correspond to named entities (people, locations, etc.). Each span can be one or more

tokens long.

Each token xi is associated with a discrete tag yi. Since we seek to predict multi-

word spans of tokens as named entities, we employ a set of possible per-token tags that

is more complicated than just {none, person, location, etc.}. Specifically, we employ

B-I-O tags (Ramshaw & Marcus, 1999). Here, if the set of entity types is {person,

location}, we consider the tag set {O, B-person, I-person, B-location, I-location}. B

stands for ‘begin,’ I stands for ‘inside,’ and O stands for ‘outside.’ For example, any

span of tokens that corresponds to a person should start with B-person, and any

subsequent tokens inside the span should be tagged as I-person. The O label is used

for tokens that do not belong to a named entity.

BIO tagging for NER is a useful example for contrasting structured prediction

approaches because not all methods will be able to enforce the constraint that an I

tag cannot be preceeded by an O.

In all of following models, we assume that we have per-token feature vectors

F (x) = F1(x), . . . , Fn(x). These could either depend on x via a hand-engineered set

of feature functions or by way of a learned deep network, such as a bi-directional

LSTM (Graves et al., 2005), which is a particular recurrent neural network (RNN)

architecture. For applications to NER, see, for example, Lample et al. (2016). By

using an RNN for feature extraction, the features Fi may depend on far broader

context than just the observation xi.
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We use the notation Ex(y) to represent a conditional energy function. In prac-

tice, this would be implemented as function of two arguments E(y, F (x)), where we

perform energy minimization only with respect to y.

2.4.1 Feed-Forward Prediction

A simple model for NER assumes that the energy factorizes as a sum of separate

energy terms for each tag:

Ex(y) =
∑
i

= W (yi, Fi(x)) (2.32)

Here, W is a function that is shared across the length of the sequence. It is useful to

use the same W everywhere, as this reduces the number of learned parameters and

also makes prediction invariant to certain transformations of the inputs. If we use

this energy to define a Gibbs distribution, then the tags are conditionally independent

given the features:

P(y|x) =
∏
i

P(yi|Fi(x)). (2.33)

Whether we assume a probabilistic interpretation or not, prediction in this model

is straightforward, as it decouples into the task of making independent per-tag pre-

dictions. It would be natural to predict each yi by performing MAP inference with

the energy − logP(yi|Fi(x)). This is a trivial operation that computes the argmax

of a vector. We call prediction in this model ‘feed-forward’ because it can be done

non-iteratively and in parallel across the length of the sequence.

The restriction that the energy decouples over tags may not diminish performance

much in practice, especially when we use sophisticated deep feature functions that

are trained end-to-end. On the other hand, a principal disadvantage of this approach

for NER is that we cannot guarantee that the outputs will be valid B-I-O when we
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perform independent predictions for each token, even though the model was trained

on valid B-I-O data.

To perform probabilistic training, it would be natural to parametrize the condi-

tional distribution as a multi-class logistic regression model P(yi|Fi) = SoftMax(AFi+

b). Here, AFi + b can be seen as the natural parameters of a categorical distribution.

MLE is easy because the loss decouples into the sum of negative log-likelihoods for

per-tag models. Any learned parameters for the function that produces F from x can

be updated using the chain rule. Alternatively, we could perform non-probabilistic

training, where we do not pose the conditional distribution (2.33), but instead train

a per-token multi-class classifier using, for example, a margin-based loss.

2.4.2 Energy-Based Prediction

In energy-based prediction, we first map from F (x) to an energy function Ex(y)

and then perform (approximate) energy minimization with respect to y to yield a

prediction.

Note that energy-based prediction is general enough to represent any possible

mapping from x to y. Let g(x) be an arbitrary prediction function. We can recover

the behavior of g by using:

Ex(y) =


0 if y = g(x)

1 otherwise

(2.34)

This may be a useless energy function in practice, though, since finding the energy

minimum will be intractable. Furthermore, the energy function does not have nice

neighborhood structure. Ideally, the energy Ex(y) would be correlated with the qual-

ity of predicting y. In general, we assume that Ex(y) is represented by a compact

functional form that admits some (approximate) energy minimization technique that

is faster and more reliable than random guessing.
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The energy function may provide a parsimonious means to reward statistical reg-

ularities in the structured output y. Rather than assuming that different parts of y

are conditionally-independent given f , we directly model correlations among them.

We can even include a ‘prior’ term in the energy that does not depend on x at all.

Overall, it is often easier for practitioners to specify domain knowledge about the

properties of typical outputs using energy-based models than feed-forward methods.

In addition, energy-based prediction provides a natural framework for enforcing

hard constraints by performing constrained energy minimization:

ŷ = arg min
y∈Y

Ex(y). (2.35)

For example, Y can be the set of valid B-I-O sequences.

The principal disadvantage of energy-based prediction is that it is often more com-

putationally expensive at test time than feed-forward approaches. Take, for example,

a linear-chain factor graph (2.25) for NER. Energy minimization by the Viterbi algo-

rithm is O(KT 2), whereas prediction using the feed-forward method of the previous

section requires T parallelizable operations that are each O(K). Viterbi can be easily

modified to guarantee that it always predicts valid B-I-O. For more complex factor

graphs, such as grids, exact energy minimization may be intractable, and approximate

minimization may still be expensive.

Of course, the feed-forward prediction process of the previous section can be in-

terpreted as being energy-based, since the final step of performing independent MAP

inference in each P(yi|Fi) can be seen as solving an energy minimization problem.

However, this is a trivial energy function that does not capture any direct interac-

tions among outputs. On the other hand, we could use this exact energy function,

but perform energy minimization using constrained Viterbi in order to output valid

B-I-O. This would lose the speed advantages of feed-forward prediction, though.
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There is a wide variety of techniques for training energy-based structured pre-

diction models, and this thesis touches only on some of them. In Sec. 2.3.4 we

briefly described how they can be trained to maximize the conditional likelihood. In

Sec. 11.2 we provide further details for approximate MLE methods based on MCMC.

In Sec. 7.11 we discuss alternative approaches to MLE for training Gibbs distributions,

such as score matching (Hyvärinen, 2005). In Sec. 5.3 we describe structured SSVM

learning. Finally, Sec. 2.4.3, Sec. 2.6 and Sec. 5.4 all explain methods for discrimi-

natively training the energy parameters such that a particular energy minimization

algorithm will work well.

2.4.3 Search-Based Prediction

Energy-based prediction can be seen as a search problem, where we search for

the value of y that obtains the minimum energy. In some cases, particularly for

autoregressive energies, it can be useful to employ classical search techniques, such as

greedy search, beam search, or A* search. Here, we can perform search in the space of

prefixes of y or local search in the space of complete outputs. This section highlights

training methods that are specifically tailored to the properties of the search algorithm

that will be used at test time.

As described in Sec. 2.3.1.3, many structured prediction tasks admit a natural

partial ordering on the outputs, for which we can pose an autogregressive energy

function. Here, the process of forming the structured output can be reduced to

a sequence of univariate predictions of yi given y<i. This corresponds to greedy

approximate energy minimization. At train time, it is easy to train this predictor,

since we have y<i available. However, at test time we may make a prediction mistake.

Since the model was trained only with correct predictions as y<i, it may behave

unreliably once a mistake has been made. A variety of training methods have been

proposed to help avoid this pitfall (Daumé III & Marcu, 2005; Bordes et al., 2008;
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Ross et al., 2011a; Chang et al., 2015; Ranzato et al., 2016; Gu et al., 2017; Bahdanau

et al., 2017).

There are additional methods for training with respect to beam search (Daumé III

& Marcu, 2005; Xu et al., 2007; Wiseman & Rush, 2016), A* search (Klein & Manning,

2003; Lewis et al., 2015; Lee et al., 2016) easy-first prediction (Stoyanov & Eisner,

2012), and search in the space of complete outputs (Doppa et al., 2014). In addition,

we can directly train models such that they will perform well when used to filter the

search space of other models (Weiss & Taskar, 2010; Rush & Petrov, 2012).

2.5 Deep Learning

Througout the thesis, we employ deep neural networks to perform feature extrac-

tion, to perform feed-forward prediction, and to define energy functions. See Bengio

et al. (2016) for a comprehensive overview of deep learning. Here, we provide a very

high-level overview mainly for the sake of establishing terminology.

In deep learning, we generally define sophisticated neural networks as the compo-

sition of simple, easy-to-test building blocks. Suppose we have a module that receives

h0 as input and returns h1 = fw(h0), where w are the trainable parameters of the

function f . Suppose h0 is m-dimensional and h1 is n-dimensional.

Define the n×m dimensional Jacobian matrix dh1
dh0

, where the i−jth entry is given

by
∂h

(i)
1

∂h
(j)
0

. Here, h
(i)
1 is the ith coordinate of the output h1 and h

(j)
0 is the jth coordinate

of the input h0. Throughout the thesis, all Jacobians will have this orientation, where

coordinates of the output index the rows. All gradients of a scalar-valued function

with respect to a vector-valued input will be column vectors. If we wrote them as row

vectors, our equations for gradient-based optimization throughout the thesis would

be covered in transposes. We will not use separate notation for Jacobians, gradients,

and scalar-valued derivatives, but the shape of the object will be able to be inferred

from context.
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Suppose we have a downstream scalar-valued loss L. In order to support both

forward evaluation and gradient-based learning, our neural network module needs to

implement the following:

1. Forward inputs h0 and returns h1 = f(h0).

2. GradInput inputs dL
dh1

and returns dL
dh0

= dL
dh1

> dh1
dh0

.

3. GradParameters inputs dL
dh1

and returns dL
dw

= dL
dh1

> dh1
dw

.

The GradInput and GradParameters methods are applications of the multi-variate

chain rule. Their specific implementation will depend on the functional form of fw.

If we construct a scalar-valued function g(x) by composing modules that all obey

this API, then we can evaluate it and differentiate it with respect to both x and its

learned parameters. We use forward-propagation to refer to the evaluation of g(x).

Generally, we use back-propagation to refer to process of evaluating both GradInput

and GradParameters. Typically it is more efficient to evaluate both of them jointly

than each of them in isolation. However, in some situations we may only compute

one of these. If g(x) is defined in terms of sub-functions, then calls to Forward

in g(x) will call Forward in these sub-functions. Similarly, calls to GradInput and

GradParameters will call these methods in the sub-functions.

In many cases, a neural network module will never actually instantiate the ma-

trix df(h0)
dh0

, but instead directly compute Jacobian-vector products such as dL
dh1

> df(h0)
dh0

directly. A simple example is when fv is a coordinate-wise function, in which case

df(h0)
dh0

is diagonal.

Back-propagation is an instance of reverse-mode automatic differentiation. This is

used for differentiating a scalar-valued function that depends on many input variables.

Forward-mode automatic differentiation is used to differentiate a function that inputs

a scalar and outputs a vector. See Baydin & Pearlmutter (2014) for a useful overview

of the history of automatic differentiation and its applications in machine learning.
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We use computation graph to refer to the graph of dependencies between the

sub-functions used to define a larger function. Say, for example, we have g(x) =

g3(g1(x), g2(x)). The computation graph is diamond-shaped. First, x is fed into both

g1 and g2. Then, the outputs of these functions are merged and fed as input into g3.

A good neural network library will execute g1 and g2 in parallel.

This modular approach to defining functions, evaluating functions, and differenti-

ating functions has helped accelerate deep learning research. Each of these reusable

modules can be unit tested in isolation. Furthermore, the user does not need to do

any calculations by hand in order to derive the high-level functions’ gradients.

2.6 End-to-End Training of Unrolled Algorithms

For many learning methods, such as MLE and SSVM, computing a single gradient

of the loss with respect to the parameters requires full energy minimization with re-

spect to y. For energy functions where exact energy minimization is intractable, one

could simply use the output of approximate energy minimization as a drop-in replace-

ment for the energy minimum. However, this may have undesirable, unpredictable

consquences for learning, since the relationship between the true energy minimum

and the value returned by approximate energy minimization is typically unknown.

Instead, it can be useful in practice to adopt the direct risk minimization princi-

ple (Stoyanov et al., 2011), also known as end-to-end training, where the procedure

to be used at test time is trained directly by gradient descent. Here, we choose a spe-

cific algorithm for approximate energy minimization and perform training such that

the particular algorithm produces high-quality predictions. This is doable whenever

the output of the algorithm is a differentiable function of its inputs (Tappen et al.,

2007; Stoyanov et al., 2011; Ross et al., 2011b; Domke, 2013a; Kunisch & Pock, 2013;

Hershey et al., 2014; Li & Zemel, 2014; on Uncertainty in Artificial Intelligence Zheng

et al., 2015)..
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These works perform end-to-end training for factor graph energies that are mini-

mized by known iterative inference algorithms, such as mean-field inference and belief

propagation. We use unrolling to refer to the process of taking an iterative proce-

dure that is performed for T iterations and implementing it as a long computation

graph with T blocks, where each block corresponds to a single inference iteration.

Overall, this deep network obeys the same interface as a feed-forward predictor, and

thus it can easily be trained by gradient descent, where we perform back-propagation

through the unrolled implementation of the algorithm.

Note that the inference algorithm may have hyperparameters such as a step size.

In practice, a significant benefit of end-to-end training is that it produces not just an

energy function, but also a prediction algorithm that has been automatically tuned

specifically to perform high-quality energy minimization. This contrasts with SSVM

or MLE training, where the user needs to separately tune a test-time optimization

procedure.

In Sec. 7.2, we discuss related work that unrolls gradient-based optimization of

generic energy functions. This contrasts with works described above, which unroll

inference algorithms that are carefully tailored to properties of the underlying factor

graph.

2.7 Hamiltonian Monte Carlo Sampling

In Chapters 11 and 12, we employ Hamiltonian Monte Carlo (Neal et al., 2011)

(HMC) sampling. This section provides general background on HMC.

HMC is a Markov chain Monte Carlo (MCMC) method for sampling from contin-

uous densities of the form:

P(y|x) ∝ exp(
−1

τ
Ex(y)), (2.36)
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Generally, it mixes very well, since it leverages gradients of the density. It also

permits the same black-box interaction with the energy function as gradient-based

optimization. HMC introduces an auxiliary ‘momentum’ variable p, of the same size

as y, and samples from the joint distribution over y and p by simulating Hamiltonian

dynamics.

We first define the Hamiltonian H(y, p) = U(y) + K(p), where U(y) = Ex(y) is

the potential energy and K(p) = 1
2
p>p is the kinetic energy. This corresponds to the

negative log density of the product distribution:

P (y, p|x) ∝ exp

(
−1

τ
Ex(y)

)
N(p; 0, I), (2.37)

where N(p; 0, I) is the density of a standard multivariate normal distribution.

The Hamiltonian dynamics are as follows:

dy

dt
=
dH

dy
(2.38)

dp

dt
= −dH

dp
. (2.39)

In other words,

dy

dt
= p (2.40)

dp

dt
= − d

dy
Ex(y). (2.41)

A key property of these dynamics is that they leave the value of the Hamiltonian

unchanged. As a result, it is very powerful to use Hamiltonian dynamics as the pro-

posal distribution for Metropolis-Hastings sampling, since the acceptance probability

will always be 1.

Of course, we cannot simulate Hamiltonian dynamics in continuous time on a

computer. Instead, we simulate them in discrete time using numerical simulation.
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Let p(t) and y(t) be our estimates of the variables at timestep t. Neal et al. (2011)

advocates using leapfrog integration:

p(t+
ε

2
) = p(t)− ε

2

d

dy
Ex(y(t)) (2.42)

y(t+ ε) = y(t) + p(t+
ε

2
ε) (2.43)

p(t+ ε) = p(t+
ε

2
)− ε

2

d

dy
Ex(y(t+

ε

2
)) (2.44)

Here, ε is a step size. This discretization introduces errors and is not guaranteed to

preserve the Hamiltonian. Therefore, the Metropolis-Hastings acceptance ratio may

be less than one.

HMC has two key hyperparamters: the step size ε and the number of leapfrog steps

T . Increasing ε or T will increase the mixing rate of sampling. However, it will increase

the discretization error of numerical integration, which will decrease the acceptance

rate. Conversely, we can achieve an acceptance rate of nearly 1.0 by taking a few small

steps, but the resulting Markov chain will have high autocorrelation. These tradeoffs

are notoriously difficult to tune, and they are worse for high-dimensional problems.

The ‘No-U-turn’ sampler of Hoffman & Gelman (2014) can improve performance, and

reduce the pain of tuning, by automatically setting T .

2.7.1 HMC Sampling for Simplex-Constrained Variables

Much of the focus of this thesis is on energy functions that are defined on the

convex relaxation of discrete labeling problems. Here, y is subject to simplex con-

straints. Namely, if each output label can take on one of D values, each coordinate

of y is an element of the probability simplex on D elements.

To sample these simplex-constrained variables, we reparametrize our distribu-

tion (2.36) such that it is defined over un-normalized logits l related to y by y =
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SoftMax(l). Using the change-of-variables formula for probability densities, this

yields:

P(l|x) ∝ exp

(
−1

τ
Ex(SoftMax(l))

)
|J(SoftMax(l))|−1, (2.45)

where |J(SoftMax(l))|−1 is the determinant Jacobian of the inverse SoftMax transfor-

mation. A naive implementation will yield a singular Jacobian, since SoftMax is not

invertible. To maintain invertibility, we need to represent the associated categorical

distribution as a minimal exponential family, as discussed at the end of Sec. 2.2. This

has D − 1 free variables.
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CHAPTER 3

STRUCTURED PREDICTION ENERGY NETWORKS

In developing SPENs, we have the following goals:

1. Develop learning and prediction algorithms that enable black-box interaction

with the energy function only by way of forward and back-propagation.

2. Use deep architectures to do structure learning, i.e., learn discriminative features

of the output variable y.

3. Achieve high performance on a variety of applications.

These lead to various research questions:

1. How reliable are SPENs with non-convex energy functions?

2. How can we use SPENs to perform discrete prediction?

3. How can we best learn SPENs such that gradient-based prediction works well

in practice?

4. How can we use SPENs for problems where there are hard constraints on out-

puts?

5. How can we ensure that SPEN prediction is fast and has low memory require-

ments?

6. How can we use SPENs to capture uncertainty in our predictions?
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3.1 SPENs for Discrete Prediction Problems

We achieve wide applicability of SPENs by employing gradient descent as our

energy minimization technique. By requiring gradients, however, the SPEN energy

must be defined on continuous inputs. Therefore, for tasks with discrete outputs we

apply SPENs to a convex relaxation of the problem.

Consider, for example, the problem

min
y

Ex(y) subject to y ∈ {0, . . . , D − 1}L. (3.1)

In other words, there are L labels, each of which can take on one of D values. Prob-

lem (3.1) could be rendered tractable by assuming certain structure (e.g., a tree-

structured factor graph) for the energy function Ex(·). Instead, we consider general

Ex(·), but optimize over the convex hull of feasible y:

min
ȳ

Ex(ȳ) subject to ȳ ∈ CL,D, (3.2)

where

CL,D := {ȳ | ȳ ∈ [0, 1]L×D,
∑
j

ȳij = 1 ∀i}. (3.3)

The distinction between y and ȳ is important, as obtaining a valid y from ȳ may

require rounding, or some other method for mapping onto the discrete set of feasible

output labelings. Most of our experiments using simple component-wise rounding.

However, our semantic role labeling experiments in Sec. 9.1 employ a combinatorial

solver to convert from a soft prediction ȳ to a discrete y that obeys various hard

constraints.

Remark 1. In the remainder of the thesis, we always use ȳ to denote the input to

a SPEN energy function. This is to emphasize that it is a continuous quantity. For
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discrete prediction problems, ȳ differs from the discrete output y that we ultimately

seek to predict.

In addition, the thesis presents various algorithms for discrete prediction with

SPENs in terms of a two-dimensional prediction variable ȳ ∈ CL,D that is normalized

in the second dimension. However, in various applications we employ prediction

variables that have a different shape in practice. For example, when tagging the

pixels of an image, we have 3-dimensional ȳ.

There are two main challenges when applying SPENs to discrete prediction prob-

lems with non-trivial combinatorial constraints on outputs. First, we need a method

for converting from continuous to discrete predictions that guarantees that the dis-

crete prediction is feasible. Second, we need to ensure that the combinatorial con-

strains are accounted for during the continuous optimization. Otherwise, the output

of continuous optimization may be far from any feasible discrete prediction. Account-

ing for the combinatorial constraints as soft energy terms is difficult, however, as these

may introduce energy barriers that prevent optimization from adequately traversing

to high-quality values of ȳ.

Finally, note that in some contexts, we may not need to convert to a discrete

output, even if the problem is defined over discrete objects. Following the general

decision-theoretic framework for prediction in (2.20), we may use our continuous

prediction as a vector of probabilities used to minimize expected risk.

3.2 Energy Function Subcomponents

In Def. 1.4.1, we define SPENs in their full generality, using a general energy func-

tion Ex(ȳ). In practice, we have found it very useful to define Ex(ȳ) as a collection

of differentiable subnetworks. This decomposition provides a variety of opportuni-

ties for improving statistical and computational efficiency of SPENs and delinates

abstraction barriers that are useful in a software implementation.
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At first glance, such a decomposition may seem to violate the perspective of a

‘black-box energy’ that we have used throughout the thesis to argue for the desirability

of SPENs. This is not true. When discussing the black-box nature of SPENs, we refer

to the fact that SPEN prediction and learning algorithms do not depend on model-

specific structure and only communicate with the energy function via forward and

back-propagation. This does not mean, however, that our energy function is defined

as a monolithic multi-layer perceptron. In fact, it may be defined as the sum of terms

that the practioner carefully designs to model known properties of the data. Such a

decomposition can provide important inductive bias for the model, allowing it to be

fit accurately on limited data.

3.2.1 Feature Network and Energy Network

Throughout the thesis, we assume that Ex(ȳ) is constructed using two sub-networks.

1. The feature network F (x) produces a feature representation for the input.

2. The energy network E(ȳ, F (x)) returns a scalar-valued energy value.

The energy network is a function of two inputs. At test time we minimize the

energy only with respect to the first argument.

Explicitly defining the features as the output of a separate network is useful in

practice for two reasons. First, we may pretrain F (x) using some auxiliary, perhaps

un-supervised, task. Second, at test time we only require the gradient of the energy

with respect to ȳ. Therefore, we can evaluate F (x) a single time, cache this value,

and avoid performing any back-propagation through this subnetwork.

3.2.2 Initialization Network

We initialize gradient-based prediction using an initialization network Init(·), that

we use to predict a feasible guess for ȳ = Init(F (x)). This could either be a network

with learned parameters or a trivial network that returns a constant value.
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3.2.3 Local and Global Energy Terms

In most of our experiments, the energy network sums global and local terms:

E(ȳ , F (x)) = Eg(ȳ , F (x)) +
∑
i

El(ȳi , F (x)). (3.4)

Here, i indexes the components of ȳ. Eg(ȳ , F (x)) is an arbitrary deep network

that provides a global function that couples components together. The local term is

analogous to the local factors in a factor graph. See Sec. 11.4.2 for a case where we

do not use this decoupling. For simplicity of notation (and our implementation) we

assume that the same features F (x) are used by both terms.

Since the global term is fully general, the local term could have been absorbed

into it, or we could have avoided using any local terms at all. However, explicitly

defining local terms is useful in practice for a few reasons:

1. We can pretrain the features network F (·) by using the local terms to define a

simple feed-forward predictor.

2. This feed-forward predictor can also be employed as an implementation of the

Init(·) network.

3. We can help stabilize learning by first clamping the local terms for a few epochs

while updating the global terms.

For general continuous output problems, we employ

El(ȳi, F (x)) = (ȳi −Gi(F (x))2 (3.5)

Initi(F (x)) = Gi(F (x)) (3.6)
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For relaxations of discrete problems, we employ

El(ȳi, F (x)) = ȳ>i Gi(F (x)) (3.7)

Initi(F (x)) = SoftMax(Gi(F (x)) (3.8)

Here, Initi(·) refers to the output of the initialization network for the i-the subcom-

ponent. Gi(·) may be a learned network with extra parameters. The functional forms

of the energy network and initialization network are based on exponential family dis-

tributions: Gaussian for general continuous problems and categorical for relaxations

of discrete problems. We can pretrain our features F (x) by training the feed-forward

predictor Init(F (x)).

3.2.4 Dropout

Dropout (Srivastava et al., 2014) is a popular method for reducing overfitting

in deep networks. Activations are randomly masked to 0 during the forward pass.

This prevents co-adaptation of hidden units. Dropout can be applied naturally to

our feature network. However, applying it to the energy network is more difficult.

Typically, in dropout a new random pattern of zeros is sampled during each forward

pass. However, with SPENs we call multiple forward-backward passes in the energy

network to perform energy minimization. Therefore, we would need to keep the

same random pattern for all of these evaluations. This presents implementation-level

difficulties, and thus none of our experiments use dropout. However, it may be worth

considering in future work.

3.3 Example Architectures for Particular Problems

We now provide concrete examples of SPEN architectures for various problems.

Along the way, we draw parallels between SPEN architectures and analogous factor

approaches to the problems.
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We denote matrices in upper case and vectors in lower case. We use g() to denote

a coordinate-wise non-linearity function, and may use different non-linearities, such

as sigmoids and rectified linear units (ReLUs), in different places.

3.3.1 Multi-Label Classification

Let x be an arbitrary input and let y = {y1, . . . , yL} be a collection of binary

labels. Multiple labels may be true for a given x.

x F (x)

ȳ local energy 

global energy 

sum 

Figure 3.1: SPEN for Multi-Label Classification

Figure 3.1 depicts a SPEN architecture for this problem. For our feature network,

we employ a simple multi-layer perceptron:

F (x) = g(A2g(A1x)). (3.9)

The features are f -dimensional.

Our energy network is the sum of two terms. First, the local energy network scores

ȳ as the sum of L independent linear models for each label:

Elocal
x (ȳ) =

L∑
i=1

ȳib
>
i F (x). (3.10)

Here, each bi is an f -dimensional vector of parameters for each label.
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This score is added to the output of the global energy network, which scores con-

figurations of ȳ independent of x:

Elabel
x (ȳ) = c>2 g(C1ȳ). (3.11)

In general, there is a tradeoff between using increasingly expressive energy net-

works and being more vulnerable to overfitting. In some of our experiments, we add

another layer of depth to (3.11). It is also natural to use a global energy network that

conditions on x, such as:

Econd
x (ȳ) = c>2 g(C1[ȳ, F (x)]). (3.12)

For the sake of comparison, consider a fully-connected binary pairwise factor graph

for multi-label classification. Again, we assume that the local factors depend on x,

but that the values of the pairwise factors are independent of the x. Suppose that we

were to apply Ex(·) directly to y ∈ {0, 1}L, rather than to the relaxation ȳ. Then, the

factor graph’s energy function could be expressed as the sum of a local term identical

in functional form to (3.10) and a global term:

Ecrf
x (y) = y>S1y. (3.13)

3.3.2 Sequence Labeling

Consider an input sequence x = {x1, . . . , xn} of length L. We assume F (x) returns

an L× f matrix of per-timestep features. These can be computed using an arbitrary

neural network, such as a convolutional network or a recurrent neural network.
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Linear-chain factor graphs are popular models for sequence labeling. Since they

are often trained to maximize the conditional log-likelihood, we will refer to them as

CRFs. As in (2.26), the energy is:

L∑
i=1

ψ
F (x)
i (yi) + ψ

F (x)
i,i+1(yi, yi+1) (3.14)

Here, ψi and ψi,i+1 are represented by tables of values that depend on F (x). This

notation is implicit in the notation going forward.

If we were to perform the y → ȳ convex relaxation we do for SPENs, then the

CRF energy could be approximated as:

L∑
i=1

ψ>i ȳi + ȳ>i ψi,i+1ȳi+1 (3.15)

This is an approximation because it performs a ‘mean-field’ approximation, where we

do not explicitly reason about joint values of yi and yi+1.

With SPENs, we can extend (3.14) to be more general:

L∑
i=1

Elocal
i (ȳi) + Epairwise

i (ȳi, ȳi+1) (3.16)

This provides limited utility, however, as the tabular representation in (3.14) is also

very general.

The difference between SPENs and CRFs is more important when we seek to

represent energy functions with higher-order interactions, such as:

L∑
i=1

Elocal
i (ȳi) + Ei(ȳi−2, ȳi−1, ȳi, ȳi+1, ȳi+2) (3.17)

Each Ei could be an arbitrary deep network.
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An analogous high-order CRF is rarely used in practice because inference is dif-

ficult to implement, and the models are hard to fit with limited data. On the other

hand, gradient-based SPEN inference is agnostic to the structure of the energy func-

tion: switching from (3.16) to (3.17) requires no change to the inference code and

very minimal changes to the definition of the energy network. Of course, this comes

at a price of losing guarantees of exact inference. As we increase the expressivity of

the SPEN energy, it may become increasingly difficult to perform high-quality energy

minimization in practice. Furthermore, a CRF is a proper probabilistic model that

provides the opportunity to compute marginals for y, sample y, etc. using dynamic

programming.

Finally, note that parameter tying provides an important source of inductive

bias for linear-chain CRFs. Here, ψi and ψi,i+1 depend on a window of features

F (x)[i−c : i+c] around index i and this functional dependence does not depend on the

value of i. It is easy to inject similar inductive bias in a SPEN for sequence label-

ing by sharing parameters across the Ei functions by employing deep convolutional

networks.

In Chap. 6 we discuss an extensions SPENs for chain-structured problems where

the optimization variable explicitly represents pairwise relationships among adjacent

tags.

3.3.3 Image Segmentation

Let x be a height × width × 3 input color image. We seek to predict an array of

discrete pixel labels y ∈ {0, . . . , D − 1}height×width.

This problem can be posed easily as energy minimization in a grid-structured

factor graph, where the dependence on x comes by way of deep convolutional network.

These features may have broad receptive fields. However, the factor graph, i.e., the

energy function over y, can only model local interactions between adjacent pixels.

48



Pracitioners have used more complex graphical models, but these require substantially

more complex inference algorithms.

With SPENs, on the other hand, it is very easy to experiment with SPENs

that capture sophisticated interactions between output labels at various lengthscales.

Namely we can use a deep convolutional network for the energy function. This is a

generalization of the architecture in the previous section, where the energy applies

2-dimensional convolutions to ȳ. No new algorithms need to be derived in order to

accomodate these sophisticated models, as we can still interact with the energy as a

black box that provides back-propagation.

3.3.4 Image Denoising

In contrast with image segmentation, image denoising can be posed as a problem

with continuous output variables. For example, both x and ȳ are height × width

grayscale images. Here, the a similar approach as Section 3.3.3 can be employed.

The principal difference is that we output continuous values ȳ and do not need to

perform any rounding.

It is interesting to choose a more model-based architecture, however. If we assume

that the observed image x is a corrupted version of a latent image ȳ, where the noise

is white with a known variance, then we can estimate ȳ using MAP inference:

ȳ∗ = max
ȳ

logP (ȳ|x) = max
ȳ

logP (ȳ) + logP (x|ȳ) (3.18)

Let λ be the inverse noise variance. Then, we use the SPEN to encode the MAP

objective:

E(ȳ) + λ‖x− ȳ‖2. (3.19)
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Here, E(ȳ) is a deep network that does not depend on x and returns the log prior

likelihood of an image. The second term arises from the Gaussian noise model. E(ȳ)

can be constructed in various ways. One advantage of using a SPEN over other

approaches such as Markov Random Fields (Geman & Geman, 1984) or Fields of

Experts (Roth & Black, 2005) is that we have the freedom to experiment with very

sophisticated multi-resolution architectures for E(ȳ).

3.3.5 Link Prediction in a Graph

Let x = {x1, . . . , xn} be a collection of nodes with per-node feature vectors g =

{g1, . . . , gn}. We seek to predict edges among x. This can be formulated as an energy-

based structured prediction with a matrix of binary output labels yij, where yij = 1

denotes that there is an edge (perhaps directed) from node i to node j.

We assume that F (x) outputs an n × n × f tensor containing an f -dimensional

feature vector Fij(x) for every i-j pair, where Fij is a function of gi and gj. We also

assume that the functional dependence of Fij on gi and gj is independent of i and j,

such that the behavior of the model is invariant to permutation of the indices of the

nodes.

Independent per-edge predictions can be made using a local energy:

Elocal
x (ȳ) =

n∑
i=1

n∑
j=1

w>Fij(x). (3.20)

Here, the parameter vector w does not depend on i or j. Again, this is to maintain

permutation invariance.

To tie all of the predictions together, we define a feature vector Ri for each node

i that depends on the presence (or absence) of predicted edges incident to i:

Ri(ȳ, F (x), gi) = R (SelectRow(ȳ, i), SelectRow(F (x), i)) . (3.21)
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SelectRow(·, i) slices the ith row of a matrix. Here, SelectRow(ȳ, i) returns a vector

in [0, 1]n denoting the soft prediction that each edge incident to node i is on and

SelectRow(F(x),i) returns an n × f matrix of features for every edge incident to i.

The function R is an arbitrary deep network. This is capable of modeling non-linear

interactions among the edges incident to a node. For example, we may have that two

edges are mutually exclusive.

3.4 Representational Capacity

For MRFs, the interplay between the graph structure and the set of representable

conditional distributions is well-understood (Koller & Friedman, 2009). However,

characterizing the representational capacity of SPENs is more complex, as it depends

on the general representational capacity of the deep architecture chosen.

Take, for example, our SPEN architecture for multi-label classification. In (3.11)

and (3.12) , the product C1ȳ is a set of learned affine (linear + bias) measurements

of the output. These capture salient features of the labels used to model their depen-

dencies. By learning the measurement matrix C1 from data, the practitioner imposes

minimal assumptions a-priori on the interaction structure between the labels, but can

model sophisticated interactions by feeding C1ȳ through a non-linear function. This

has the additional benefit that the number of parameters to estimate grows linearly

in L. This parsimony allows us to fit expressive models on limited data.

A quadratic dependence on L is unavoidable for factor graph approaches to the

problem, unless we make strict assumptions about the interactions among the la-

bels. In terms of statistical efficiency, the dependence of factor graphs on L is more

complicated. A naive factor graph would have O(L2) parameters to estimate, which

is prohibitive for small data and large L. On ther other hand, these issues can be

circumvented using various parameter-tying schemes, such as a low-rank assumption

(Srikumar & Manning, 2014; Jernite et al., 2015). While these may provide the op-
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portunity to fit models on limited data, the expressivity of the interactions among

the labels that these models can capture is fundamentally limited.

In the applications considered in this thesis, we build the SPEN on top of a high-

performance feed-forward predictor implemented as a neural network. This predictor

is used to pretrain our features, to initialize gradient-based energy minimization, and

to provide the local energy terms for our energy network. Overall, our deep global

energy terms provide a small, but complementary, contribution. It is unclear whether

SPENs would fail in tasks where a high-quality local predictor is not available or

where a SPEN energy that describes the data well has steep barriers that prevent

gradient-based prediction from adequately exploring output space.

3.5 Speed

In general, we expect that feed-forward approaches for a given structured predic-

tion problem will be faster than SPEN approaches. Of course, this may not be true.

If the feed-forward network is extremely deep, then it will be slow. If the network

for the SPEN energy is shallow and we only perform a few steps of iterative energy

minimization, SPEN prediction will be fast. Often, the width of a network, i.e., the

dimensionality of hidden layers, has a substantially lower impact on prediction speed

than the depth, since associated operations, such as matrix multiplication, can often

be parallelized across this dimension. Along these lines, one principal advantage of

SPENs is that much of the computation may be parallelizable across the shape of

the output (e.g., using convolutions for an image processing problem). Therefore, the

scaling of prediction on a multi-core processor such as a GPU may be nearly constant.

See Sec. 8.4.2.2 for experiments regarding this.

Finally, significant speed improvements can often be achieved using good low-level

code. This has been instrumental to make RNNs feasible for production tasks such
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as machine translation (Wu et al., 2016). It is possible that SPEN speed could be

improved, for example, by performing more arithmetic operations in place.

3.6 Input-Convex Neural Networks

Direct follow-on work to Belanger & McCallum (2016) appears in Amos et al.

(2017), which introduces input-convex neural networks (ICNN). These are identical

to SPENs, except that Ex(ȳ) is a convex function of ȳ, but not necessarily of x. All of

the SPEN architectures considered in this thesis stack matrix matrix multiplications

and non-decreasing coordinate-wise non-linearities. In Amos et al. (2017), the authors

employ the same general energy function architecture, and achieve convexity with

respect to ȳ by constraining every learned parameter of the energy network to be

positive. This sufficient condition is a consequence of the simple fact that “non-

negative sums of convex functions are also convex and that the composition of a

convex and convex non-decreasing function is also convex” (Boyd & Vandenberghe,

2004; Amos et al., 2017). Not every parameter needs to be positive. We only need

to constrain any parameter that directly interacts with ȳ or any of its descendents in

the computation graph defined by the architecture. For example, like in our work,

ICNNs express the dependence of the energy on x by way of an arbitrary feature

network. This is not constrained, as computation of the features is upstream from ȳ

in the computation graph.

Convexity with respect to ȳ is useful because global optimization of the energy

function is feasible. This is useful at test time. It is also important at train time

for structured SVM learning (Sec. 5.3), where prediction is used in the inner loop of

learning. Amos et al. (2017) also demonstrate that exact inference can be performed

using a linear program, if all of the non-linearities in the energy network are ReLUs.

This is slow in practice, since it does not exploit the specific structure of the linear

program. Instead they use a fast ‘bundle entropy method’ which converges very
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quickly in practice. We do not employ the bundle entropy method in our experiments,

however, because it requires sophisticated custom code that prevents the black-box

interaction with the energy function. It may be worth considering in future work,

however, as it performs well in their experiments.

Many of our experiments contrast the performance of models trained with and

without the ICNN constraint. While convexity of the energy is attractive, achieving

convexity using the authors’ particular ICNN constraint may be undesirable. For

example, we find that enforcing positivity of the parameters severely hinders image

denoising performance in Sec. 10.3. In these experiments, we can employ a particular

energy network architecture that is always convex, regardless of the values of the pa-

rameters. That model performs well, but clamping the parameters of this architecture

to be positive results in very poor performance.

If convexity can be achieved for certain values of the parameters, and convexity

may be useful for achieving high-quality predictions, then why does fitting an un-

constrained energy not automatically learn a convex energy whenever it would be

useful? Unfortunately, this will likely not be true in practice due to the nature of

the double-loop learning methods explored in this thesis. In all of them, some sort of

(approximate) energy minimization is performed in order to obtain a single gradient

of the loss with respect to the parameters. If this inner energy minimization is low-

quality, then the learning signal used to update the parameters may be ineffective.

Creating a framework that can reliably learn whether it is worth performing exact

vs. approximate inference would be an interesting venue for future work.
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CHAPTER 4

PREDICTION USING SPENS

This chapter presents a variety of optimization techniques and implementation-

level details for energy minimization for SPENs. SPENs are flexible because (approx-

imate) energy minimization can be performed using only a single subroutine from the

energy function: evaluating d
dȳ
Ex(ȳ). SPEN prediction is ‘easy’ in the sense that prac-

tioners do not need to hand design specialized inference techniques for each model.

We do not make any claims about the computational complexity of the overall gra-

dient descent procedure, which may take many iterations to converge. Similarly, it is

difficult to analyze the approximation error resulting from inexact minimization of a

non-convex energy.

4.1 Gradient-Based Energy Minimization

Fig. 4.1 depicts a general computation graph for first-order gradient-based en-

ergy minimization. This employs the feature extraction and initialization networks

introduced in the previous chapter.

A straightforward instance of Fig. 4.1 corresponds to performing T iterations of

gradient descent with a per-iteration learning rate ηt:

ȳT = ȳ0 −
T−1∑
t=0

ηt
dE

dȳ
(ȳt) (4.1)

Since this chapter is focused on minimization of the energy with respect to ȳ, our

notation in various places removes the dependence of the energy on x and uses E(ȳ).
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Figure 4.1: Computation Graph for Gradient-Based Prediction

Provided that we use a small enough step size and T is large enough, we will be

able to reach a stationary point of the energy with respect to ȳ. In Sec. 4.3 we discuss

extensions to (4.1).

The ComputeGradient module, given in Alg. 1, returns dE
dȳ

(ȳ) evaluated at the

point yt. Here, we use the explicit notation E(ȳ, F (x)) for the energy network intro-

duced in Sec. 3.2.1. ComputeGradient only returns the derivative with respect to the

first argument of the energy.

Using the ComputeGradient module requires non-standard interaction with a neu-

ral network library, as we compute derivatives in the forward pass of the network.

This is defined in terms of the energy function’s GradInput module, as defined at the

end of Sec. 2.5.
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Algorithm 1 Forward Pass of the ComputeGradient Module

Input: Differentiable Function E(ȳ, f), Location {ȳ0, f0}
back grad = 1
dE
dȳ

, dE
df

= E.GradInput({ȳ0, f0},back grad)

Return: dE
dȳ

We can either always run T optimization iterations or we can check for a con-

vergence criterion at every iteration and terminate if it is satisfied. An example

termination criterion is:

‖ȳt − ȳt−1‖
‖ȳt‖

< tolerance. (4.2)

Note that gradient descent is a ‘synchronous’ algorithm: all coordinates of ȳ

are updated simultaneously, where the updates are computed with respect to the

previous value of ȳ. For both belief propagation and mean-field inference in graphical

models, synchronous updates yield worse results in practice. Instead, it is common to

use a update schedule that sweeps across the graph, which can improve the speed of

information flow. The analogue for gradient-based inference would be to do coordinate

descent, or block-coordinate descent on the energy function. We do not consider this

approach in our work, as it is not amenable to GPU-based computation. Section 4.4

discusses the computational complexity of SPEN prediction.

4.2 Discrete Prediction Problems

For SPENs defined on the convex relaxation of a discrete labeling problem, energy

minimization requires optimization over the set CL,D defined in (3.3). Here,
∑

j ȳij =

1 ∀j and each entry of ȳ is non-negative. Once we perform this optimization, we need

to convert our continuous prediction ȳ to a discrete value y.

If the discrete structured output is subject to no more hard constraints than those

defining CL,D, we can form predictions using simple rounding, which takes the argmax

along each row. We discuss handling additional constraints in Sec. 4.2.2.
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Of course, there are perhaps better ways to obtain a value for y. We could, for

example, perform branch-and-bound. Alternatively, we could employ a reranking

approach to selecting y. Some process would produce a list of hypothesized y values.

We would evaluate the SPEN energy on each of these, and take the configuration with

the minimum energy. We do not investigate these extensions in this thesis, though

they may be interesting venues for future work.

4.2.1 Optimization for Simplex-Constrained Objectives

The following subsections describe a variety of methods for performing a single

step of a first-order optimization over CL,D . In other words, each of the methods

corresponds to a possible implementation of the gray boxes at the right of Figure 4.1.

In all of these, we use the notation gt = dE
dȳ

(ȳt)

See Sec. 5.4.3 for a discussion of the pros and cons of each of these methods when

used in the inner loop of SPEN learning. We present experiments contrasting the

approaches in Sec. 8.3.4.

4.2.1.1 Projected Gradient Descent

For D = 2, i.e., binary labeling problems, we can easily optimize directly over

[0, 1]L using projected gradient descent:

ȳt+1 = Clip0,1 (ȳt − ηtgt) , (4.3)

where Clip0,1(x) = max(min(x, 1), 0). There are related methods for simplex-constrained

projected gradient descent when D > 2 (Duchi et al., 2008).

4.2.1.2 Entropic Mirror Descent

We can directly optimize over CL,D using a version of entropic mirror descent that

normalizes over each coordinate (Beck & Teboulle, 2003):
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ȳt+1 = SoftMax (ȳt − ηtgt) . (4.4)

Note that (4.4) maintains iterates that are strictly in the interior of CL,D, i.e., no

coordinate of ȳt will ever be exactly 0 or exactly 1. This is useful because it allows

to train using the cross entropy loss (2.18), which diverges for incorrect predictions

that are exactly 0 or 1. Note that entropic mirror descent corresponds to projected

gradient descent where distances are measured using the KL-divergence (Beck &

Teboulle, 2003).

For binary problems (D = 2), we can represent elements of the probability simplex

using a single number. Here, the updates have a particularly simple form:

ȳt+1 = σ (log(ȳt)− log(1− ȳt)− 2ηtgt) , (4.5)

where σ(·) is the sigmoid function.

4.2.1.3 Unconstrained Gradient Descent by Reparametrization

Rather than performing constrained optimization over CL,D, we can perform un-

constrained optimization by optimizing ‘logits’ l, such that ȳ = SoftMax(l), where

the softmax is taken over the second dimension. To do this, we simply add a Soft-

Max layer to the bottom of the energy network, so that we minimize Ex(SoftMax(l))

with respect to l. This is analogous to the reparametrization method described in

Sec. 2.7.1 for HMC sampling of simplex-constrained variables. Reparametrization

simplifies optimization, since it does not require projection onto the constraint set.

4.2.2 Discrete Prediction Problems with Non-Local Constraints

For some structured prediction problems, the set of permissible outputs is more

restrictive than {0, . . . , D − 1}L. For example, in dependency parsing, the predicted

edges must form a tree and in Sec. 2.4 we must predict valid BIO sequences for NER.

59



We have two possible options to account for these constraints. First, we could

modify the energy function defined over ȳ such that it imposes very high energy

to invalid configurations. We could use, for example, a log barrier function for the

constraints. However, this will likely prevent gradient-based optimization from being

able to traverse to high-quality values of ȳ. Alternatively, we could ignore this hard

constraint, perform optimization, and then map back onto the constraint set post-hoc.

Consioder, for example, the case of dependency parsing. For a sentence of length

n, there are n possible parse parents for each token (accounting for the root). We

can optimize ȳ ∈ Cn,n, where all configurations are given finite energy. However,

rounding from ȳ to a valid tree is non-trivial. To account for the tree constraints,

we can use some auxiliary post-processing to obtain y. For example, given ȳ ∈ Cn,n,

we can run a maximum spanning tree (MST) algorithm to obtain a valid tree. Here,

the MST algorithm would interpret ȳ as a weighted adjacency matrix. A similar

technique has been employed when performing minimum Bayes risk parsing (Titov &

Henderson, 2006). First, marginal inference is performed to get a matrix of pairwise

marginals. Next, an MST algorithm is run on the graph with edge weights given by

the marginals.

Ideally, such a post-hoc projection would be largely unnecessary if we fit our

model well. If the data always obeys certain constraints, and the energy function is

expressive enough, then perhaps low energy ȳ will always obey the constraints, or be

very close to a vertex that does obey the constraints, such that simple rounding is

sufficient. Of course this may not be true in practice.

See our semantic role labeling experiments (Sec. 9.1) for an exploration of these

considerations. We perform rounding subject to various non-local constraints on

outputs by solving a linear program. We find that many of these constraints were by

energy minimization of a SPEN with a sophisticated global energy, and did not need

to be fixed by post-processing.
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4.3 Optimization Improvements

4.3.1 Momentum

In practice, many first-order optimization applications can be sped up using gra-

dient descent with momentum (Polyak, 1964; Sutskever et al., 2013):

vt = (1− γ)gt + γvt−1 (4.6)

ȳt = ȳt−1 − ηtvt. (4.7)

Here, the momentum variable vt is similar to the momentum used in the Hamiltonian

dynamics described in Sec. 2.7.

The use of vt rather than gt in (4.7) extends to the approaches of Section 4.2.1:

we simply replace gt in the various update formulae with vt.

Momentum is very popular for optimizing the parameters of deep networks dur-

ing training, but this presents a very different optimization problem than test-time

inference in a SPEN. First, SPEN inference does not perform stochastic optimization:

we compute exact gradients at every iteration. Second, we run SPEN inference for

orders of magnitude fewer gradient steps than what is necessary to fit a deep net-

work. For deep networks, it is popular to use γ > 0.9. We have found it useful to use

substantially smaller values, such as 0.5.

4.3.2 Line Search

Rather than using a fixed step size ηt, we can adaptively choose the step size

to guarantee that the objective decreases. Namely, we performing backtracking line

search, where we pose an initial guess for ηt and then update ηt = 0.5ηt until the step

is satisfactory (Boyd & Vandenberghe, 2004). The most simple criterion is to check

that the objective will be decreased:

61



E(ȳt − ηtgt) < E(ȳt). (4.8)

There are additional available criteria, for example the Armijo or Wolfe conditions,

that depend on gradients of the energy. These may result in superior performance,

and typically do not require much tuning.

Also, note that ideally our prediction procedure would not be sensitive to the scale

of the energy. Namely, if we uniformly double E(·), then the energy minimum should

be the same. However, doing so will interfere with optimization if we have a fixed

step size. Using line search makes us more robust to changes in the scale of the energy

function. Of course, this will not be entirely true in practice, since the line search

method will have hyperparameters such as an initial step, a convergence threshold,

etc. that may depend on the scale. In addition, we will encounter numerical errors if

the scale is very small or very large.

4.3.3 Entropy Smoothing

When performing simplex-constrained optimization, we can smooth the objective

with an entropy term:

min
ȳ
Ex(ȳ) + λH(ȳ). (4.9)

Here, we treat each row of ȳ ∈ CL,D as an independent categorical distribution, and

thus H(ȳ) is the sum of the entropies for each row.

There are multiple reasons that using λ > 0 is desirable. First, for convex energy

functions it provides a source of extra strong convexity, which improves the conver-

gence rate of first-order methods (Bubeck, 2015). It is reasonable to expect that this

would improve convergence for non-convex energies as well, since the basin of attrac-

tion around each local minimum is effectively defined by a convex function. Second,

it can provide better-calibrated ‘soft’ predictions, which are useful when training with

the cross entropy loss (2.18), or when we seek to threshold based on confidence values
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in downstream applications. Third, it is an ad-hoc way to make energy minimization

behave like ‘marginal inference:’ in the exponential family, the objectives for MAP

inference and marginal inference differ by an entropy term (Sec. 2.2).

Entropy smoothing is particularly easy when performing mirror descent, as we do

not need to actually instantiate this entropy term. Instead, the update rule (4.4) can

be modified to account for it analytically, using the update equation:

ȳt+1 = RowNormalize

(
1

1 + ηtλ
exp(ȳt − ηtgt)

)
. (4.10)

Here, the RowNormalize function re-normalizes the rows of a matrix to sum to one.

In other words, we have SoftMax(ȳ) = RowNormalize (exp(ȳ)). We can derive (4.10)

by modifying the steps in Beck & Teboulle (2003) that derive (4.4) in terms of KL-

projected gradient descent to analytically handle the extra entropy term.

4.4 Computational Complexity

Comparing the computational complexity of gradient-based SPEN prediction to

energy-based alternatives such as belief propagation (BP) in a factor graph is difficult,

since both may take an unknown number of iterations to converge. On the other

hand, it is natural to compare SPEN prediction to BP in terms of the computational

complexity of a single iteration.

Consider the multi-label classification SPEN in Section 3.3.1. In the architec-

tures (3.11) and (3.12), the energy first projects from ȳ to a dense vector using the

matrix C1, where the number of rows is a hyperparameter. Therefore, the complexity

of evaluating the energy function and its gradient is linear in L and D, and the user

has a simple tuning parameter for choosing the expressivity of the model. When

using a CRF for the problem, the user either needs to impose strict a-priori inde-

pendence assumptions between labels or use a fully-connected graph with pairwise
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factors (Ghamrawi & McCallum, 2005; Finley & Joachims, 2008). Here, the cost of

an inference algorithm such as BP is O(L2), as there are L2 edges. Modeling higher-

order interactions would result in extremely slow BP. On the other hand, the O(L)

SPEN can capture interactions of arbitrary arity among the labels in the deep energy

applied to C1ȳ.

Note that it is unreliable to analyze these algorithms in terms of their big-O be-

havior. First of all, many of the terms we consider for common structured prediction

applications, such as the length of a sentence, are fairly small. Second, algorithms

should be evaluated in terms of how parallelizable they are. This is especially im-

portant given the availability of GPUs, which have thousands of cores. Consider, for

example, prediction using a chain-structured factor graph vs. prediction using the

SPEN (3.17) with a convolutional energy network. The computational complexity of

the Viterbi algorithm for the factor graph is O(LD2), where D is the cardinality of

each tag, and L is the length of the sequence. The algorithm scans serially across the

sequence. On the other hand, all operations for energy minimization in the SPEN can

be parallelized across the length of the sentence. Therefore, even though the Viterbi

algorithm only requires two passes along the sequence to do exact optimization, it

might be slower than a SPEN. Of course, the Viterbi algorithm performs exact energy

minimization, whereas gradient-based SPEN inference would not.

Overall, iterative SPEN prediction will almost certainly be slower than feed-

forward structured prediction approaches. The only way that feed-forward approaches

are slower is if they require substantially more sophisticated feature computation.
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CHAPTER 5

LEARNING SPENS

Now we discuss a collection of techniques for learning the parameters of the net-

work Ex(ȳ). Note that Chapters 11 and 12 explore additional learning methods that

are based on sampling.

5.1 General Setup

All of the learning methods discussed in this chapter return a gradient dL
dw

, where

w is a vector of the parameters of the energy and feature networks and L is some loss

function. The outer optimization over w can be done using any popular technique

for stochastic optimization of deep networks. We recommend Adam (Kingma & Ba,

2015b).

It may be useful to initialize the parameters of the feature network by first train-

ing them using a simple local classification loss, ignoring any interactions between

components of y. Furthermore, for problems with very limited training data, we have

found that overfitting can be lessened by keeping the feature network’s parameters

fixed when training the energy network parameters.

5.2 Learning using the Implicit Function Theorem

The implicit function theorem offers a framework for directly differentiatiang the

loss with respect to the energy function’s parameters (Foo et al., 2008; Samuel &

Tappen, 2009). See Domke (2012) for an overview.
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Let w be the trained parameters of the energy function. For a given ground truth

output ȳg define L(ȳ, ȳg) to be the loss associated with predicting ȳ. Let ȳo be the

output of energy minimization. For a given training example (x, ȳg) we have:

dL

dw
= − ∂2Ex

∂w∂ȳ>

(
∂2Ex
∂ȳ∂ȳ>

)−1
dL

dȳ

∣∣∣
ȳ=ȳo

(5.1)

While a naive implementation requires inverting Hessians, one can solve the prod-

uct of an inverse Hessian and a vector using conjugate gradients, which can leverage

the techniques discussed in Sec. 5.4.1 for approximating a Hessian-vector product.

Our experiments do not consider the method, as prior work has suggested that

high performance requires exact energy minimization and many conjugate gradient

iterations (Domke, 2012). On the other hand, the approach is conceptually appealing,

and should be considered for future research.

5.3 Structured SVM Learning

For many energy-based structured prediction models, the practitioner is able to

interact with the model in only two ways: (1) evaluate the model’s energy on a given

value of y, and (2) minimize the energy with respect to the y. This occurs, for

example, when predicting combinatorial structures such as bipartite matchings and

graph cuts. A popular technique in these settings is the structured support vector

machine (SSVM) (Taskar et al., 2004; Tsochantaridis et al., 2004).

If we assume (incorrectly) that our SPEN energy minimization is not subject

to optimization errors, then (1) and (2) apply to SPENs and it is straightforward

to train using an SSVM loss. This ignores errors resulting from the potential non-

convexity of Ex(ȳ) or the relaxation from y to ȳ for discrete problems. However, such

an assumption is a reasonable way to construct an approximate learning procedure.

Define ∆(ȳo, ȳg) to be an error function between a prediction ȳo and the ground

truth ȳg. We assume that it is non-negative and that ∆(ȳg, ȳg) = 0.
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Let [·]+ = max(0, ·). For a given training example (x, ȳg), the SSVM loss is:

LSSVM = max
ȳ

[∆(ȳ, ȳg)− Ex(ȳ) + Ex(ȳg)]+ . (5.2)

Here, the [·]+ function is redundant when performing exact energy minimization. We

require it, however, because gradient descent only performs approximate minimization

of the non-convex energy. Note that the signs in (5.2) differ from the convention

employed in many other papers, since we pose prediction as minimizing Ex(·).

We seek to differentiate LSSVM with respect to the trainable parameters w of the

energy function. Due to both the max and [·]+ operators, the loss is not differen-

tiable. However, we can obtain a subgradient of the loss and perform stochastic

subgradient descent. Subgradients are defined only for convex functions. However,

many deep learning practitioners have successfully used locally-defined subgradients

for non-convex loss functions. Danskin’s theorem states that the subgradient of a

max of convex functions is the convex hull of the set of subgradients of all of the

convex functions that achieve the maximum. See Boyd & Vandenberghe (2004) for a

useful overview of subgradient descent.

For subgradient descent, it is sufficient to choose a single element of the set of

subgradients of the loss and treat this as if it was a gradient of the loss. We employ:

dLSSVM

w
= I [−Ex(ȳo) + Ex(ȳg) ≥ Ex(ȳo)−∆(ȳo, ȳg)]

(
d

dw
Ex(ȳg)−

d

dw
Ex(ȳo)

)
,

(5.3)

where I[·] is the indicator function for a predicate and ȳo is the output of loss-

augmented inference:

ȳo = arg min
ȳ

(−∆(yi, y) + Ex(y)) . (5.4)

If multiple values of ȳ take on the minimum value in (5.4), we select ȳo by simply

sampling from among these at random.
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Note that the parameter gradient is zero whenever −Ex(ȳ) + Ex(ȳg) ≤ Ex(ȳ) −

∆(ȳ, ȳg) ∀ȳ 6= ȳg, i.e., the energy of the ground truth is separated from the energy

of all other possible configurations by a sufficient margin. Otherwise, the parameter

gradient update (which steps in the negative gradient direction) has a simple form:

it pushes up on the energy of yo and pushes down on the energy of the ground truth.

We require that ∆ is not a discrete function such as the Hamming loss, but instead

a differentiable surrogate loss, such as the squared loss or cross entropy loss (2.18),

that we can define on continuous ȳ. Since ∆ is differentiable, it is straightforward to

perform loss-augmented inference using the same gradient-based energy minimization

techniques we employ for test-time prediction.

Overall, we have found SSVM training to be unreliable in situations where exact

energy minimization is intractable. If loss augmented inference is performed poorly,

then we may fail to discover margin violations that exist. When no margin violations

are discovered, the model parameters are not updated, even if they are low quality.

On the other hand, training factor graphs using an SSVM loss is conceptually

more attractive than training SPENs. In loopy graphical models, it is tractable

to solve the LP relaxation of MAP inference using graph-cuts or message passing

techniques, e.g., (Boykov & Kolmogorov, 2004; Globerson & Jaakkola, 2008). Using

the LP relaxation instead of exact MAP inference in the inner loop of CRF SSVM

learning is fairly benign, since it is guaranteed to over-generate margin violations

in (5.2) (Kulesza & Pereira, 2007; Finley & Joachims, 2008).

Structured perceptron learning (SP) (Collins, 2002) is an alternative to SSVM

learning that is popular among NLP practitioners. It can be obtained simply by

setting ∆ to zero above. This is attractive because we can perform standard energy

minimization, not loss-augmented energy minimization during training. The associ-

ated loss seeks to ensure that the ground truth has the lowest energy configuration,

but it does not enforce that configurations’ energies are separated by a margin. We
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found it difficiult to apply SP training to SPENs. With SSVM learning, the energy

function takes on a characteristic scale, due to the scale defined by ∆. This not true

for SP. As a result, tuning gradient-based energy minimization is difficult in prac-

tice. Typically SP training is applied to models such as linear-chain factor graphs

where hyperparameter-free algorithms based on dynamic programming exist for exact

energy minimization.

5.4 End-to-End Learning

Next, we apply the direct risk minimization principle of Sec. 2.6 to SPENs. In

other words, we train SPENs ‘end-to-end.’ Here, we construct the predicted value

ȳp as a differentiable function of x. We perform gradient-based learning by using

a standard differentiable loss function L(ȳp, ȳg), where yg is the ground truth value

for y. With this, we can do learning by back-propagating through the process of

doing gradient-based prediction. Such an approach was introduced in Domke (2012).

Previously, it was applied to time series imputation in Brakel et al. (2013).

Even though L has the same semantics as the ∆ function used above, we use

different notation in order to emphasize their different roles. In this section, L is

used as a differentiable loss for penalizing discrepancies between predictions and the

ground tuth. For SSVM learning, a more complicated loss function is defined by

wrapping ∆ in a hinge loss term that enforces soft margin constraints between all

configurations in the ground truth.

For discrete prediction problems, where the SPEN is defined on a convex relax-

ation, our test-time procedure rounds from ȳ to y. However, during train time our

loss is imposed on a predicted soft value ȳp. This is analogous to many other models

in machine learning, such as logistic regression, where the decision rule (ie to output

a 0 or a 1) is different than the model output (a probability estimate between 0 and

1). See Sec. 2.2.4 for further discussion. Though we may train with the cross entropy
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loss (2.18), we do not appeal to any interpretation as a probabilistic model. In other

words, we do not maximize the likelihood of our data; we are simply penalizing a

convex surrogate for the 0-1 loss.

To apply the direct risk minimization principle to SPENs, we need to express

SPEN inference as a differentiable computation graph. This is presented in Fig. 4.1,

where the implementation of the ‘gradient step’ module depends on which optimiza-

tion algorithm from Sec. 4.2.1 is employed. By unrolling the iterative procedure over

time, we observe that prediction is very similar to a recurrent neural network (RNN).

In both, the update function from one timestep to the next is shared across timesteps.

For the SPEN, the energy network provides this sharing, as the same energy network

is used at all steps of gradient descent.

Fig. 5.1 presents the backwards computation graph for differentiating gradient-

based SPEN inference. This simply reverses the arrows from Fig. 4.1. This computa-

tion graph is a graphical representation for the dependencies between modules for the

back-propagation method introduced in Sec. 2.5. It takes as input the gradient of the

loss L with respect to the output of the network (here, y2) and outputs the gradient

of the loss with respect to the parameters of each of the modules in the network.

Computing this requires calling back-propagation in each of the boxes in the figure

with the topological order defined by the arrows. Many of these boxes are defined

compositionally in terms of smaller building blocks, so back-propagation in each box

may require a number of back-propagation calls in sub-modules.

Consider simple gradient descent with a fixed learning rate η. The associated

gradient step module takes ȳt and gt = dEx(ȳt)
dȳt

as input and returns ȳt − ηgt. Given

dL
dyt+1

, the GradInput step of back-propagation in the gradient step module returns

dL
dyt

= dL
dyt+1

and dL
dgt

= −η dL
dgt+1

. If we treat η as a trainable parameter, the Grad-

Parameters step returns dL
dη

= − dL
dgt+1

. If η is not a trainable parameter, then the

GradParameters method is empty.
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Figure 5.1: Backwards Graph for End-to-End Learning. See Sec. 5.4.1 for details on
how to back-propagate through the ComputeGradient module. The other modules
are built in terms of elementary operations in a neural network libarary, and thus
back-propagation is straightforward.

Note that each ComputeGradient module has a pointer to the same energy net-

work. This energy network has trainable parameters that we would like to compute

the gradient of the loss with respect to. Since the same energy network appears in

multiple places, it is important to maintain an accumulator that aggregates all of

these contributions to the parameter gradient.

All of the energy minimization algorithms in Sec. 4.2.1 involve simple operations

native to a deep learning library, and thus we can back-propagate easily through the

gradient step modules using automatic differentiation. Of the optimization improve-

ments listed in Sec. 4.3, entropy smoothing and momentum are simple differentiable
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operations. Sec. 5.4.1 demonstrates how to back-propagation through the Compute-

Gradient module module. In the backwards pass, the ‘cached features’ module adds

up all of the gradients of the loss with respect to the features from the different evalu-

ations of the energy network. This total gradient is then fed into the features network

for further back-propagation.

Gradient-based optimization is differentiable with respect to the parametrization

of the energy function if the energy function is twice differentiable with respect to ȳ,

i.e., its partial derivative with respect to ȳ differentiable. For this reason, we avoid

using ReLU units in our energy functions and instead use the SoftPlus function, which

is a smoothed version of ReLU without a kink at 0. We use a temperature of 25 for

the SoftPlus, so that its shape is very similar to a ReLU. With temperature τ , this

takes the form SoftPlusτ (s) = 1
τ

log (1 + exp(τx)).

Overall, end-to-end learning provides a number of opportunities that are unavail-

able for SSVM learning:

1. We can train a parametrized initialization network.

2. We can directly train for the scenario where we only have the budget for a

small number of gradient steps at test time (Sec. 5.4.5). This will hopefully

help learn an energy surface such that gradient descent arrives in a high-quality

region quickly.

3. SPEN prediction is differentiable with respect to many of the inference hyper-

parameters, such as the learning rate and momentum constant. Therefore, we

can treat these as learned parameters that are tuned jointly with the learned

energy function (for Computational Linguisticsaurin et al., 2015).

5.4.1 Differentiating the ComputeGradient Module

This section describes how to differentiate the ComputeGradient module. Here,

it is useful to we write the energy as an explicit function E(ȳ, f) of two inputs. The
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GradInput and GradParameters methods for the module are given in Algorithms 2

and 3 respectively.

Let z be the output of ComputeGradient computed in the forward pass evaluated

at the location {ȳ0, f0} (Alg. 1). In other words, z = dE
dȳ

evaluated at f = f0 and

ȳ = ȳ0.

During back-propagation, the GradInput method for the ComputeGradient mod-

ule receives the column vector dL
dz

, where L is the downstream loss, and it seeks to

compute dL
dz

> dz
df0

and dL
dz

> dz
dȳ0

. Similarly, the GradParameters method computes dL
dz

> dz
dw

,

where w is the parameter vector for E(f, ȳ). Note that here, and the rest of the thesis,

we abuse notation slightly by writing ∂E
∂ȳ

as dE
dȳ

, even when treating E as an explicit

function E(ȳ, f) of two variables. We use the notation dE
dȳ

to be consistent with other

parts of the thesis focused on test-time energy minimization, where the energy is

treated as a function Ex(ȳ) of a single input.

Next, we derive a method for efficiently approximating the vector-Jacobian prod-

uct dL
dz

> dz
dw

. The other back-propagation terms can be computed similarly. We seek

to compute

dL

dz

> dz

dw
=
dL

dz

>( d

dw
z

)
=
dL

dz

> d

dw

dE

dȳ
, (5.5)

A naive approach would instantiate the Hessian matrix H = dE
dwdȳ

. Here, and going

forward, we adopt the convention for Hessians thatHij = dE
dwjdȳi

. Explicitly computing

this matrix would unmanageable in terms of size, and it also violates our black-box

interaction with the energy, where we only assume a gradient subroutine. There are

a few ways to compute Hessian-vector products without instantiating the Hessian.

First, the technique of Pearlmutter (1994) provides exact computation, but it requires

non-trivial changes to code for back-propagation in E. Alternatively, we can use a

neural network library where the gradient is itself computed using a computation

graph that supports forward and back-propagation. This is only doable when certain

functions are used to define the energy. Finally, we can use the finite difference
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approximation employed by Domke (2012). This is easy to implement and allows

us to maintain black-box interaction with the energy. Our experiments use finite

differences, since the neural network library we use does not naturally support the

first two options.

Next, we derive the finite-difference method of Domke (2012) in terms of an energy

function that takes two arguments {ȳ, f}. Recall from Sec. 2.5 that back-propagation

computes Jacobian-vector products. In this derivation, we leverage the fact that a

Jacobian-vector product is equivalent to a directional derivative. Let h be an arbitrary

differentiable function from Rm → Rn and let v ∈ Rm be the direction we seek to

take the directional derivative in. Then,

dh(ȳ0)

dȳ
v = lim

r→0

1

r
(h(ȳ0 + rv)− h(ȳ0)) . (5.6)

Here, the Jacobian matrix dh(ȳ0)
dȳ

is n × m. Next, we extend this expression to a

function h(ȳ, f) of two variables (and again abuse notation for partial derivatives).

The first input ȳ is m-dimensional. We do not differentiate with respect to the second

argument.

dh(ȳ0, f0)

dȳ
v = lim

r→0

1

r
(h(ȳ0 + rv, f0)− h(ȳ0, f0)) . (5.7)

Finally, set h to dE
dw

, a function that returns a column vector, and v = dL
dz

. Then,

d
dȳ

dE(ȳ0,f0)
dw

is a matrix where the rows index coordinates of w and the columns index

coordinates of ȳ. We have:

(
d

dȳ

dE(ȳ0, f0)

dw

)
dL

dz
= lim

r→0

1

r

(
dE(ȳ0 + r dL

dz
, f0)

dw
− dE(ȳ0, f0)

dw

)
. (5.8)

The left hand side is precisely the transpose of (5.5). The approximation’s ac-

curacy is O(r), and we can make r as small as we want. However, this is subject
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to numerical underflow considerations. An improved O(r2) approximation can be

obtained using

d

dȳ

dE

dw
(ȳ0, f0)

dL

dz
= lim

r→0

1

2r

(
dE(ȳ0 + r dL

dz
, f0)

dw
−
dE(ȳ0 − r dLdz , f0)

dw

)
. (5.9)

Algorithm 2 GradInput Method for the ComputeGradient Module

Input: Function E(ȳ, f), Inputs {ȳ0, f0} to E, backwards gradient b0, finite dif-
ference step size ε
l = ‖b0‖
bn = (1/l)b
ȳ+ = ȳ0 + εbn
dE
df+

, dE
dȳ+

= E.GradInput({ȳ+, f0}, bn)
ȳ = ȳ0 − εbn
dE
df

, dE
dȳ

= E.GradInput({ȳ , f0}, bn)

Return: l
2ε

(
dE
dȳ+
− dE

dȳ

)
, l

2ε

(
dE
df+
− dE

df

)

Algorithm 3 GradParameters Method for the ComputeGradient Module

Input: Function E(ȳ, f), Inputs {ȳ0, f0 } to E, backwards gradient b0, finite
difference step size ε
l = ‖b0‖
bn = (1/l)b
ȳ+ = ȳ0 + εbn
dE
dw+

, dE
dȳ+

= E.GradParameters({ȳ+, f0}, bn)
ȳ = ȳ0 − εbn
dE
dw

, dE
dȳ

= E.GradParameters({ȳ , f0}, bn)

Return: l
2ε

(
dE
dw+
− dE

dw

)

5.4.2 Line Search

We have performed experiments where we employ backtracking line search, as

shown in Algorithm 4, in our unrolled optimizer. Here, the step length α is a function

of y0, the direction g and the parameters of the function E. We seek to design this

function to be differentiable in its arguments.
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Note that the α returned by line search is a piece-wise constant function of these

inputs. In other words, for infinitesimal changes in the inputs, the return value does

not change. At these points, the gradient of α with respect to everything is 0. At the

discontinuities, which occur where E(y0) = E(y + αg), we choose to set the gradient

equal to 0 as well.

This heuristic method works well in practice, but may have strange failure modes.

None of our experimental results in later chapters use it. However, we think it would

be worth exploring in future work. We expect there is some variant of line search

that would be actually differentiable (or at least sub-differentiable).

Algorithm 4 Basic Backtracking Line Search

Input: Function E(y), point ȳ0, direction g, initial step α0

Output: Step length α such that E(ȳ0 + αg) < E(y0).
α = α0

while E(ȳ0) > E(ȳ0 + αg) do
α← α

2

end while
return α

5.4.3 Avoiding Vanishing Gradients

Our unrolled optimization algorithm is a deep network that is subject to the

vanishing gradient problem (Hochreiter et al., 2001a). Here, the gradient of the loss

with respect to early layers of the network is extremely weak during learning. This

is a consequence of saturating non-linearities. Consider a sigmoid non-linearity. For

inputs that are large in magnitude, the output of the sigmoid is nearly exactly 0 or 1,

and small changes in the input yields essentially no change in the output. Therefore,

gradient-based optimization will fail to update the weights for layers below a saturated

sigmoid.

In Sec. 4.2.1 we discuss a variety of methods for performing energy minimiza-

tion subject to simplex constraints, which arises for SPENs defined on the convex

relaxation of a discrete prediction problem. In the context of end-to-end learning it
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is important to understand whether unrolling these optimization methods will yield

a network that is vulnerable to vanishing gradients. For notational simplicity, this

section considers an optimization problem defined over the simple binary probability

simplex.

For Euclidean projected gradient descent (Sec. 4.2.1.1), we have:

ȳt+1 = Clip0,1 [ȳt − ηt∇Ex(ȳt)] . (5.10)

This will yield extreme vanishing gradients, since back-propagation through the pro-

jection will yield 0 gradients whenever yt − ηt∇Ex(yt) /∈ [0, 1], i.e., whenever the

gradient step takes the iterate outside of the constraint set.

For entropic mirror descent (Sec. 4.2.1.2), the updates resemble a vanilla RNN:

ȳt+1 = σ (log(ȳt)− log(1− ȳt)− 2ηtgt) . (5.11)

While such models are known for suffering from vanishing gradients, practioners are

often able to successfully train them in practice. Therefore, we should consider un-

rolled entropic mirror descent in practice.

When we reparametrize the optimization to be unconstrained (Sec. 4.2.1.3), our

updates are of the form:

lt+1 = lt − ηt∇Ex (SoftMax(lt)) . (5.12)

Here, the update from lt to lt+1 is the identity plus a correction term. Consequently,

the gradient of the loss with respect to lt will be as least as strong as the gradient of

the loss with respect to lt+1. Deep architectures that use additive updates, such as

LSTMs (Hochreiter & Schmidhuber, 1997), highway networks (Srivastava et al., 2015)

and residual networks (He et al., 2016) have proven to be very high-performance in
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practice, in part because they are easy to train because they suffer less from vanishing

gradients.

5.4.4 Dynamically-Unrolled Inference

In Fig. 1, we unroll gradient-based inference for 3 iterations. In general, we can

unroll for T iterations. Alternatively, we can run inference until gradient descent

converges, i.e., when condition (4.2) is satisfied. Here, the computation graph is

dynamically shaped, since the number of iterations varies across data cases. However,

we can still perform back-propagation through this graph by lazily unrolling it on a

per-case basis. This may be useful when performing end-to-end learning because we

know that the inner optimization reaches a fixed point. On the other hand, if we give

the unrolled optimizer an unlimited budget of iterations to converge, we may learn a

model such that optimization is extremely slow in practice.

5.4.5 Training to Make Inference Converge Quickly

One advantage of training with a fixed number of iterations T is that we learn

to accommodate a limited computational budget. On the other hand, it is hard for

the user to know a-priori what an appropriate choice of T is. If T is too large, the

training may produce a model where test-time prediction takes longer to converge

than it needed to.

In response, it may be helpful to choose a large T and change the training objective

such that prediction is explicitly encouraged to converge quickly. We can add the

following term to our training objective:

λ
T∑
t=1

‖ȳt+1 − ȳt‖. (5.13)
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When using dynamic unrolling, we terminate prediction whenever ‖yt+1 − yt‖ is less

than a threshold. Thus, by encouraging this quantity to be small in (5.13), we

encourage it to converge quickly.

Though some of our experiments use this method, it may be superior in future

work to instead explicitly encourage the gradients to be small:

λ

T∑
t=1

‖gt‖., (5.14)

where gt = d
dȳ
Ex(ȳt).

An alternative way to encourage rapid optimization is to define our loss function

as a sum of losses on every iterate ȳt, rather than only the final one. Let L(ȳt, ȳg) be

a differentiable loss between an iterate and the ground truth. We employ

L =
1

T

T∑
t=1

wtL(ȳt, ȳg), (5.15)

where wt = 1
T−t+1

. This encourages the model to achieve high-quality predictions

early. It has the additional benefit that it reduces vanishing gradients, since a new

loss term is introduced at every timestep. It is not strictly necessary to use the weights

wt. However, we have found it useful in practice.

5.4.6 Untying Energy Networks Across Iterations

Unrolling gradient descent produces a recurrent neural network. The update at

each timestep is parametrized by the energy function, since each timestep’s update

corresponds to a step in the direction of the energy function gradient. Like most

RNNs, the network for unrolled gradient descent has tied parameters across time,

since the same energy function is used at each iteration of gradient descent.

One natural extension of a SPEN would be to use a different energy function at

each step in the RNN. This does not correspond to gradient-based optimization, as
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it would be iterative optimization of a changing objective function. However, it may

provide a convenient source of modeling flexibility. Untying parameters across time

has been shown to improve performance for deep unrolling of belief propagation and

mean-field inference (Hershey et al., 2014). In the early steps, the model may make

simple local updates to ȳ that are ‘obvious’ given x. Then, a different energy function

is used to reconcile non-local interactions.

5.4.7 Reducing Memory Overhead

Basic implementations of end-to-end learning with unrolled gradient descent re-

quire substantially more memory than an implementation of gradient-based energy

minimization to be used at test time. This is because we need to store the intermediate

state of computation performed in the forward pass in order to do back-propagation

for learning.

Consider the update rule ȳt = ȳt−1 − η∇E(ȳt−1). At test time, this can be done

in place, using ȳ ← ȳ − η∇E(ȳ). On the other hand, at train time we need to

save each ȳt separately, since these will be necessary in the backwards pass. A naive

implementation would also save the intermediate state obtained inside the energy

function when evaluating ∇E(ȳt−1).

For T steps of unrolled gradient descent, the memory requirements are not just

T times worse, but cT , where c is some constant that depends on the particular

optimization algorithm used. For example, if we perform the simple updates ȳt =

ȳt−1 − η∇E(ȳt−1), then c = 2 because we need to store the values of both ȳt−1 and

∇E(ȳt−1). Depending on details of the implementation, c will be at least 3 if we use

momentum.

One method for reducing memory overhead is to use an optimization algorithm

that supports ‘reversible dynamics’ (for Computational Linguisticsaurin et al., 2015).

Here, given the optimization state at timestep t + 1, we can reconstruct the opti-
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mization state at timestep t. Therefore, during back-propagation we can construct

the required intermediate state on-the-fly and then delete it. This is available for

gradient descent with momentum (but not simple gradient descent) (for Computa-

tional Linguisticsaurin et al., 2015). It also can be applied to mean-field and belief

propagation inference in MRFs (Domke, 2013a). Optimization is fundamentally an

information destroying process, as many initialization points will get mapped to the

same optimum. See for Computational Linguisticsaurin et al. (2015) for a discussion

of how to avoid numerical underflow when reversing the dynamics.

An alternative, more generic, approach to reducing memory overhead is to recon-

struct the intermediate state on-the-fly during back-propagation by performing extra

forward-evaluations of parts of the network (Zweig & Padmanabhan, 2000; Lewis,

2003; Chen et al., 2016; Gruslys et al., 2016). Say, for example, that we only store ȳt

for t ≤ T
2
. Whenever we require a value of ȳt at t > T

2
during back-propagation, we

can recompute it by performing forward-propagation in the sub-network that defines

the relationship between ȳT
2

and ȳt for t ≥ T
2

+1. This trick can be applied recursively

using divide-and-conquer. Overall we only require O(
√
T ) more memory than an im-

plementation of forward-propagation that does all computations in place and does

not save any intermediate state. It introduces a factor of 2 in terms of computational

cost.

In our experiments, we do not employ these tricks. Instead, we use a simple

implementation detail that is good enough to allow our models to fit on large GPUs

for reasonable values of T . We interact with the energy network ‘statelessly.’ Namely,

we checkpoint all inputs and outputs to forward and back-propagation in the energy

network, but throw away its internal state whenever we use it. The internal state

is reconstructed on the fly during back-propagation. This allows us to use a single

instance of the energy network, where all ComputeGradient modules have a pointer

to it. A naive implementation would have required T copies of the energy network for
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each of the T ComputeGradient modules, where the T copies have different memory

allocations for storing their internal state, but share parameters.

This final detail is the primary reason we use the Torch library (Collobert et al.,

2011) rather than better-tested alternatives such as Tensorflow (Abadi et al., 2016).

Torch allows for lower-level interaction with the computation graph, where it is easy

to manage custom rules, such as our stateless use of the energy network, to be used

in forward and back-propagation.

5.5 End-to-End vs. SSVM Learning

Overall, we have found end-to-end learning much more user-friendly than SSVM

learning. Often, particularly for non-convex energies, it also results in better perfor-

mance. There are many reasons why this may be true, however, and it is difficult to

disentangle them. In general, it is difficult to characterize the inherent performance

of a learning method when the method depends on many hyperparameters and de-

sign decisions. If the method performs well, but only for very specific values of these

choices, is it good or bad?

With SSVM learning, the energy function is an independent object from the al-

gorithm used to minimize it. This means that it is important to hand-tune the

optimization method such that it works well for a given energy function. However,

over the course of learning the shape and scale of the energy function may be changing

dramatically. Consequently, choosing good hyperparameters for energy minimization

is difficult. This makes model selection difficult, as our ability to even accurately

estimate the quality of a given energy function requires a grid search over multiple

hyperparameters. In contrast end-to-end learning yields both an energy function and

a specific energy minimization algorithm.

It is worth noting, however, that the set of available energy minimization methods

for SSVM learning is much broader than those we can unroll for end-to-end learning,
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since we do not require differentiability. Furthermore, the optimization algorithm’s

updates can be done in-place during SSVM learning, since we do not require the

intermediate optimization iterates. In future work, it is possible that SSVM learn-

ing could be greatly improved by using more sophisticated optimization methods,

including those that use random restarts for non-conved energies.

An additional advantage of SSVM learning is that it evaluates the energy function

at the ground truth and explicitly enforces that the ground truth has low energy. In

chapters 11 and 12 we explore additional learning methods that have this property.

In contrast, end-to-end learning only interacts with the ground truth by way of the

loss function L and the energy is only evaluated at the iterates traversed by unrolled

optimization. This seems like a wasted opportunity to inject very specific supervision

about how the energy function should be shaped. On the other hand, the updates

that SSVM learning performs simply push its values up and down, whereas end-to-

end learning shapes gradients of the energy to point in certain directions. In Sec. 12.6,

we further juxtapose these updates.

End-to-end learning is useful because we can always obtain a valid gradient of the

training loss with respect to the parameters. Even when the unrolled optimization

performs low-quality energy minimization, back-propagation still gives an exact pa-

rameter gradient of our surrogate loss. However, for SSVM learning, the gradients

may be extremely low quality approximations when inexact energy minimization is

performed. In addition, for similar reasons, end-to-end learning can recover better

from bad choices of the hyperparameters chosen for the unrolled optimizer since we

can treat these as learnable parameters.

Finally, suppose that we had a magical subroutine that always returned the exact

energy minimum. Should we train the energy with end-to-end or SSVM learning?

Many of the issues with SSVM training, e.g., that it does not give a test-time predic-

tion procedure, would not be present in this scenario. Both objectives are optimized
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when the ground truth is the energy minimum. However, the energy function may

not be expressive enough to guarantee that the ground truth for all of the training

instances is the energy minumym. In fact, to prevent overfitting we would likely

want to avoid this regime. It is unclear which method would perform best given a

limit-capacity energy.
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CHAPTER 6

HYBRID CRF-SPENS

For SPENs defined on the convex relaxation of a discrete prediction problem,

prediction is similar to fully-factored mean-field inference in an MRF, since in both

we maintain a probability vector for each output variable. This chapter explores an

extension of SPENs where prediction is analogous to structured mean field (Saul &

Jordan, 1996). Here, energy function is defined over a set of variables that explictly

represent pairwise probabilities of outputs.

The subject of this chapter first appeared, with equal contribution from first two

authors, as Vilnis et al. (2015).

Going forward, we will call the structured prediction technique of Vilnis et al.

(2015) a CRF-SPEN, for reasons that will become apparent in the next section.

The key contribution of the paper is a proximal-gradient technique for performing

energy minimization over the structured mean field constraint set. Specifically, we

use the Bethe entropy as a distance generating function for non-Euclidean proximal

gradient descent. This is useful because the associated proximal step can be computed

efficiently using the sum-product algorithm for a chain-structured MRF.

Experiments applying SPEN-CRFs to citation field extraction and optical char-

acter recognition can be found in Sec. 9.3.

6.1 Background

See Sec. 2.2 for background on exponential family probability distributions. Let

y be the discrete output we seek to predict. Recall that the marginal polytope of a
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distribution is defined as the convex hull of the set of all vectors of sufficient statistics

S(y) that are realizable for some y. Marginal inference in an MRF computes the

expected sufficient statistics. In keeping with MRF terminology, we refer to the

scope of subcomponents of y in a given factor as a clique.

We define our energy function over a continuous variable µ that is constrained to be

in the marginal polytopeM of a chain-structured MRF of length L. In other words, µ

is the vector of expected sufficient statistics for the linear parametrization of the factor

graph energy (2.25). Specifically, µ is a concatenation of a set of clique marginals

µt,t+1 ∈ [0, 1]D×D that are subject to the following normalization and marginalization

constraints:

∑
i,j

µt,t+1(i, j) = 1 ∀t (6.1)

∑
i

µt,t+1(i, j) =
∑
k

µt+1,t+2(j, k) ∀t, j. (6.2)

The first constraint ensures that the pairwise marginals are normalized. The second

constraint enforces that marginals for neighboring cliques agree on their overlap.

Rather than using the notation ȳ for these, as we have in previous chapters, we

employ µ, in keeping with conventions employed in the MRF inference literature.

The vector of node marginals is an element of the set CL,D, as defined in (3.3), and

is related to the pairwise marginals by the identity:

µt(i) =
∑
j

µt,t+1(i, j). (6.3)

In (2.9), we establish that marginal inference can be performed by solving an

optimization problem:

min
µ∈M
−θ(x)>µ−H(µ). (6.4)
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Here, θ(·) is a mapping from x to the log-potentials of a chain-structured MRF

(Sec. 2.3.1.1 and Sec. 2.3.4). We use H(µ) as shorthand notation for the entropy

of the joint distribution over y with marginals µ (and µ has been flattened into a

vector). For our chain-structured MRF, however, this entropy can be written as an

explicit function of µ:

HB(µ) =
L∑
t=1

H0(µt,t+1)−
L−1∑
t=2

H0(µt), (6.5)

where H0 is the standard entropy of a probability vector: H0(p) = −
∑

i p[i] log p[i].

Going forward, we use the subscript B for our entropy to emphasize that we are

treating it as an explicit function of µ and because (6.5) is an instance of the Bethe

Entropy (Bethe, 1935; Yedidia et al., 2003).

6.2 CRF-SPENs

In the SPEN architecture 3.16 for sequence data, we use a combination of local

terms and a global energy term that couples all of the labels together. In a CRF-

SPEN, we also use a global energy term, but replace the local terms with the energy

associated with marginal inference in a chain-structured CRF:

Ex(µ) = −θ(x)>µ−HB(µ) +Gx(µ). (6.6)

The global scoring function Gx(·) may depend on x arbitrarily. Going forward, our

notation sometimes omits the dependence of θ and G on x. Note that if we omit

the G term, this energy function corresponds to marginal inference in an MRF with

log-potentials −θ. We refer to this MRF as the base model.
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As with the other SPEN models of this thesis, we assume that the only available

interaction with the energy function G(·) is via forward and back propagation. In

response, our goal is to design energy minimization methods for solving

µ∗ = arg min
µ∈M

−θ(x)>µ−HB(µ) +G(µ) (6.7)

by leveraging our ability to solve (6.4) efficiently and our ability to obtain gradients

of G(µ).

6.3 Variational Inference Interpretation

This section provides two complementary interpretations of (6.7) as performing

variational inference in certain classes of probability distributions over y. They yield

precisely the same variational expression. However, one is useful because it helps

motivate a principled test-time prediction procedure (Sec. 6.4.1), while the second

helps characterize our proposed learning algorithm as variational EM (Sec. 6.4.2).

6.3.1 Dual Representation for µ∗

Proposition 1. For fixed θ and G, the output µ∗ of minimizing the SPEN-CRF

objective (6.7) is equivalent to the output of standard inference (6.4) in an MRF with

the same clique structure as our base model, but with shifted log-potentials:

θ̃ = θ −∇G(µ∗). (6.8)

Proof. Forming a Lagrangian for (6.7), the stationarity conditions with respect to the

variable µ are:

0 = −(θ −∇G(µ∗))−∇HB(µ∗) +∇µC(µ, λ), (6.9)
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where C(µ, λ) are collected terms relating to the marginal polytope constraints. The

proposition follows because (6.9) is the same as the stationarity conditions for

µ∗ = arg min
µ∈M

−〈θ −∇G(µ∗), µ〉 −HB(µ). � (6.10)

Therefore, after obtaining the solution µ∗ to the structured mean-field problem

(6.7), we can either reason about properties of µ∗ directly, or we can reason about

properties of the joint distribution over y given by an MRF with parameters θ̃ given

by (6.8).

6.3.2 Energy Minimization as Variational Inference

Next, we characterize µ∗, the solution to (6.7), as a structured mean-field approx-

imation to a complex joint distribution:

Pc(y) = (1/Zθ,G)Pθ(y)PG(y). (6.11)

We assume that isolated marginal inference in Pθ(y) is tractable, as this is our

base distribution. However, PG(y) is an alternative structured distribution over y for

which we do not have an efficient inference algorithm. Like Pθ(y), it depends on y

by way of the sufficient statistics S(y). However, this dependence may be non-linear.

In particular, we assume PG(y) ∝ exp (G(S(y))), where G(·) is a convex function.

Above, Zθ,G is the normalizing constant of the combined distribution. Note that if G

was linear, inference in both PG(y) and Pc(y) would be tractable, since the distribution

would decompose over the same cliques as Pθ(y). Since (6.11) is intractable to reason

about in general, we approximate it with a variational Q(y).
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We select Q(y) by minimizing an approximation to its KL divergence to the true

distribution. We have:

KL(Q(y)||Pc(y)) = −H(Q)− EQ[〈θ, S(y)〉] + EQ[G(S(y))] (6.12)

≈ −H(Q)− 〈θ, µ(Q)〉+G(µ(Q)). (6.13)

Here, for the distribution Q(y), we define its expected sufficient statistics as µ(Q) =

EQ(y)S(y).

Note that (6.13) is equivalent to (6.7). Note that the surrogate we minimize

is a lower bound to (6.12), as EQ[G(S(y))] ≥ G(µ(Q)), by Jensen’s inequality the

convexity of G, and the linearity of the term with θ. This differs from many variational

inference approaches that minimize an upper bound. Minimizing a lower bound of

course provides no guarantees.

So far, we have made no assumptions about the parametrization or factorization

structure of the distribution Q. However, we can prove that the minimizing (6.13)

yields a distribution with convenient structure.

Proposition 2. Minimizing (6.13) over the set of all possible distributions Q(y),

yields an MRF with exactly the same clique structure as Pθ and parameters θ̃ =

θ −∇G(µ∗), as in Prop. 1.

Proof. Let qy denote the probability under Q of a given joint configuration y. There

are exponentially many such qy. DefineH(Q) as the entropy on the simplex−
∑

y qy log(qy).

Since Q minimizes (6.13), we have the following stationarity conditions for every qy:

d

dqy
[−H(Q)− 〈θ, µ(Q)〉+G(µ(Q))] + λ = 0 (6.14)

1 + log(qy)− 〈θ, S(y)〉+
d

dqy
G(µ(Q)) + λ = 0. (6.15)
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Here, λ is a dual variable for the constraint
∑

y qy = 1. For the middle term, we

invoked the identity 〈θ, µ(Q)〉 =
∑

y qy 〈θ, S(y)〉.

Rearranging and applying the chain rule for the third term, we have:

qy = (1/Z)Pθ(y) exp

(〈
−∇G(µ(Q)),

d

dqy
µ(Q)

〉)
, (6.16)

= (1/Z)Pθ(y) exp (〈−∇G(µ(Q)), S(y)〉) (6.17)

where Z is a normalizing constant obtained from the stationarity conditions for λ.

At optimality, we have µ(Q) = µ∗.

Often, structured mean-field inference is derived in terms of posing a constraint set

for distributions Q, and minimizing the KL divergence between the true distribution

and this constraint set. Here, we arrive at structured mean field using an alternative

perspective. We approximate the KL divergence in such a way that performing un-

constrained optimization over all possible distributions Q yields the same result as if

we had done constrained ourselves to the set of distributions represented by an MRF

with the sufficient statistics of the base distribution.

6.4 Prediction and Learning

The results of the previous section provide a means to design model-based pre-

diction and learning algorithms. These methods assume a subroutine for solving the

energy minimization problem (6.7). Optimization approaches are provided in Sec. 6.5.

6.4.1 Prediction

Proposition 1 suggests a simple model-based method for transforming from a ‘soft’

output µ to a discrete prediction y. First, we find the variational distribution over

y parametrized as an MRF with parameter θ̃. Then, we perform MAP inference

in this MRF. MAP could be performed, for example, using the Viterbi algorithm.
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Conveniently, our inference technique in Section 6.5 iteratively estimates θ̃ on the fly,

namely via the dual iterate θt in Alg. 6. The approach is summarized in Alg. 5.

This model-based approach contrasts with the rounding approach we use in other

chapters, where we obtain y by locally maximizing nodes’ marginals. For prob-

lems with rigid constraints on feasible sequences of outputs, such as for BIO tagging

(Sec. 2.4), node-wise rounding would not guarantee valid predictions. On the other

hand, these can be enforced when we do MAP in the base model.

Algorithm 5 Predicting discrete outputs using a SPEN-CRF.

Input: x
θ ← θ(x) # Condition base distribution on x
G(·)← Gx(·) # Condition global energy function on x

µ∗ ← arg minµ∈M θ(x)>µ−HB(µ) +G(µ) # Energy minimization (e.g., Alg. 6)

θ̃ ← θ −∇G(µ∗) # Dual view on µ∗ (Prop. 1)

y∗ ← MAP
(
θ̃
)

# e.g., Viterbi algorithm

Return: y∗

6.4.2 Learning

Above, we condition on a given value of x and employ θ = θ(x) and G(·) = Gx(·).

Next, we assume that this conditioning comes by way of differentiable functions of x,

with trainable parameters wb and wg, respectively, and provide methods for learning

these parameters.

Consider a set of training examples (yi, xi). We would like to learn our parameters

by maximizing the conditional likelihood of our data under the model (6.11):

Pc(yi|xi) = (1/Zθ,G)Pθ(y)PG(y). (6.18)

However, evaluating this likelihood is intractable. Instead we maximize a surrogate

likelihood obtained from a variational approximation of (6.18).
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Let µi be the output of energy minimization (6.7) with θ = θ(xi) and G(·) = Gxi(·)

and define Q(yi;µi) to be the distribution over yi resulting from applying Prop.1.

Namely, Q(yi;µi) is an MRF with parameters

θ̃i = θ(xi)−∇µGxi(µi). (6.19)

From Prop. 2, we have that Q(yi;µi) is an approximation of (6.18). With this, we

have the surrogate likelihood:

L(wb, wg;µi) = logQ(yi;µi). (6.20)

We employ the notation Q(yi;µi) to highlight the role of µi: for a given (yi, xi) pair,

the family of variational distributions over yi is indexed by possible values of µi. Our

overall training objective is obtained by summing (6.20) over our training examples.

There are two principal methods for minimizing a surrogate likelihood of the

form (6.20). First, we can perform a version of variational EM, where we alternate

between updating µi for each element of our training set and updating the parameters

wb and wg. Second, we can express each µi as a differentiable function of wb and wg

and directly differentiate the right hand size of (6.20).

The second approach is doable using similar methods to what we use for end-to-

end learning of SPENs, since µi is obtained by gradient-based energy minimization.

However, our experiments instead employ the first approach because it is simple,

works well, and is easy to implement.

At each iteration of learning, we sample a single xi, yi pair, obtain the optimal

µi using energy minimization (E step), and update our parameters using the gra-

dient of the surrogate likelihood (M step). In variational EM, the M step often

performs full maximization. Here, this would consist of multiple gradient steps with

respect to the parameters. We avoid this, however, as this will break the property
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that µ (Q(y;µi)) = µi, which is necessary when obtaining gradients of the surrogate

likelihood with respect to the parameters.

Since Q(y;µi) is an MRF with log-potentials θ̃i = θ(xi)−∇µGxi , the gradient of

the surrogate likelihood with respect to wb is the standard CRF likelihood gradient:

d

dwb
L(wb, wg;µi) =

d

dθ̃i
L(wb, wg;µi)

dθ̃i
dθi

dθi
dwb

(6.21)

= (S(yi)− µi)
dθi
dwb

(6.22)

Similarly, for wg, the parameters of Gx(·), We have:

d

dwg
L(wb, wg;µi) = − d

dθ̃i
L(wb, wg;µi)

d

dwg

d

dµ
Gxi(µi) (6.23)

= (S(yi)− µi)
d

dwg

d

dµ
Gxi(µi). (6.24)

The experiments of Vilnis et al. (2015) consider architectures for G that are simple

enough such that this second order derivative can be computed symbolically.

Finally, in general this learning algorithm is not guaranteed to converge, since we

use alternating updates and each update does not guarantee monotonic improvements

to the surrogate likelihood. In practice, however, terminating after a fixed number of

iterations yields models that generalize well.

6.5 Energy Minimization

This section focuse on the case that Gx(µ) is convex in µ, in order to establish

guarantees of exactness and convergence rates for gradient-based energy minimization.

However, the method can be applied naturally to non-convex energies, and doing so

provides performance improvements in some of our experiments.

We now present an approach to solving (6.7) using non-Euclidean projected gra-

dient methods, which require access to a procedure for marginal inference in the base
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distribution (which we term the marginal oracle), as well as access to the gradient of

the energy function G.

6.5.1 Convex Optimization Background

Before presenting our algorithms, we review several definitions from convex anal-

ysis (Rockafellar, 1997).

We call a function ϕ σ-strongly convex with respect to a norm ‖ · ‖P , if for all

x, y ∈ dom(ϕ),

ϕ(y) ≥ ϕ(x) +∇ϕ(x)T (y − x) +
σ

2
‖y − x‖2

P .

Proposition 3 (e.g. Beck & Teboulle (2003)). The negative entropy function −H(x) =∑
i xi log xi is 1-strongly convex with respect to the 1-norm ‖ · ‖1 over the interior of

the probability simplex (restricting dom(H) to the interior of the simplex).

Given a smooth and strongly convex function ϕ, we can also define an associated

generalized (asymmetric) distance measure called the Bregman divergence (Bregman,

1967) generated by ϕ,

Bϕ(x, x0) = ϕ(x)− ϕ(x0)− 〈∇ϕ(x0), x− x0〉 .

For example, the KL divergence is the Bregman divergence associated to the negative

entropy function, and the squared Euclidean distance is its own associated divergence.

Composite minimization (Passty, 1979) is a family of techniques for minimizing

functions of the form h = f +R, where we have an oracle that allows us to compute

minimizations over R in closed form. Problems of this form are often solved using

proximal gradient descent, which minimize h(x) over some convex set X using:

xt+1 = arg min
x∈X

〈∇f(xt), x〉+
1

2ηt
‖x− xt‖2

2 +R(x),
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Algorithm 6 Bethe-RDA

Input: parameters θ, energy function G(µ)
set θ0 = θ
set µ0 to prox-center MARGINAL-ORACLE(θ0)
ḡ0 = 0
repeat
βt = constant ≥ 0
ḡt = t−1

t
ḡt−1 + 1

t
∇L(µt)

θt = θ − t
t+βt

ḡt
µt = MARGINAL-ORACLE(θt)

until CONVERGED(µt, µt−1)

for some decreasing sequence of learning rates ηt. Note that because of the require-

ment x ∈ X, proximal gradient generalizes projected gradient descent – since un-

constrained minimization might take us out of the feasible region X, computing the

update requires projecting onto X.

However, there is no reason to use the squared Euclidean distance when computing

our updates and performing the projection. In fact, the squared term can be replaced

by any Bregman divergence. This family of algorithms includes the mirror descent

and dual averaging algorithms (Beck & Teboulle, 2003; Nesterov, 2009).

We base our projected inference algorithms on regularized dual averaging (RDA)

(Xiao, 2010). The updates are:

xt+1 = arg min
x∈X

〈ḡt, x〉+
βt
t
ϕ(x) +R(x), (6.25)

where ḡt = 1
t

∑t
k∇f(xk) is the average gradient of f encountered so far. One benefit

of RDA is that it does not require the use of a learning rate parameter (βt = 0) when

R is strongly convex. RDA can be interpreted as doing a projection onto X using

the Bregman divergence generated by the strongly convex function ϕ+R.
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6.5.2 Minimizing the CRF-SPEN Energy

These non-Euclidean proximal algorithms are especially helpful when we are un-

able to compute a projection in terms of Euclidean distance, but can do so using a

different Bregman divergence. We will show that this is exactly the case for SPEN-

CRFs: the marginal oracle allows us to project in terms of KL divergence. It remains

to show that Bethe entropy −HB is strongly convex, so we can use it in RDA.

Proposition 4. For trees with n nodes, the negative Bethe entropy function −HB

is 1
2
(2n − 1)−2-strongly convex with respect to the 2-norm over the interior of the

marginal polytope M.

Proof. Consequence of Lemma 1 in Fu & Banerjee (2013).

With these definitions in hand, we present Bethe-RDA projected inference Algo-

rithm 6. This algorithm corresponds to instantiating (6.25) with R = −HB − 〈θ, µ〉

and ϕ = −HB. Note the simplicity of the algorithm when choosing βt = 0. It is in-

tuitively appealing that the algorithm amounts to no more than calling our marginal

inference oracle with iteratively modified natural parameters.

Proposition 5. For convex energy functions and convex −HB, the sequence of primal

averages of Algorithm 6 converges to the optimum of the variational objective (6.7)

with suboptimality of O( ln(t)
t

) at time t.

Proof. This follows from Theorem 3 of Xiao (2010) along with the strong convexity

of −HB.

If we have more structure in G, specifically a Lipschitz-continuous gradient, we

can modify the algorithm to use Nesterov’s acceleration technique and achieve a

convergence of O( 1
t2

). Additionally, in practice these problems need not be solved

to optimality at test time, since small the MAP output will be insensitive to small

differences in the predicted µ.
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6.6 Discussion

Since the CRF-SPEN has terms that explicitly model joint configurations of yt

and yt+1, it may be better at modeling data with very strong correlations between

adjacent timesteps than a SPEN that makes a fully-factorized mean-field assump-

tion. In problems subject to rigid constraints on outputs, such as those employed

when performing text chunking as B-I-O tagging Ramshaw & Marcus (1999), our

MAP inference-based approach for converting the output of energy minimization to

a discrete output can also guarantee that all outputs are valid B-I-O sequences.

On the other hand, CRF-SPENs introduce computational overhead, since the

forward-backward algorithm is used in the inner loop of energy minimization. This

step cannot be parallelized across the length of the sequence. Overall, it is unclear if

the extra computational cost and extra cost of implementation for CRF-SPENs may

not be worth the expressivity they provide.

CRF-SPENs build a SPEN on top of a probabilistic model for which we have an

efficient marginal inference routine, as marginal inference is required for our proximal-

gradient method. Besides chain-structured graphical models, there a variety of other

models where we can perform exact marginal inference in polynomial time. These

include, for example, first-order arc-factored dependency parses (McDonald & Satta,

2007; Koo et al., 2007), first-order arc-factored projective dependency parses (Eisner,

1996), and determinental point processes (Kulesza & Taskar, 2011).

In future work, it may be worth considering extensions of CRF-SPENs to problems

where exact marginal inference is intractable, such as for grids. A key modeling

advantage of CRF-SPENs is that the energy function is defined over optimization

variables that capture pairwise relationships. This is challenging, however, since these

optimization variables are constrained to be consistent on variables in their overlap.

One way to avoid these issues would be to maintain pairwise marginals for non-
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overlapping cliques. Here, optimization would only be subject to local normalization

constraints.

Optimization of a loopy CRF-SPEN with overlapping cliques would be challeng-

ing, but doable. Many approximate inference methods for loopy models, especially

those based on message passing, attack the associated dual problem, where messages

correspond to dual variables for consistency constraints. We would need to use a

primal-dual method, based on Lagrangian relaxation, that maintains both clique-

wise primal iterates and dual variables for the consistency constraints. An ad-hoc

approach to this saddle-point problem would be to take alternating steps to update

the primal variables and the dual variables. An additional challenge of CRF-SPENs

for loopy models is that we would need a reliable MAP method for doing model-based

rounding.

99



CHAPTER 7

RELATED WORK

7.1 Gradient-Based Prediction of Neural Network Energies

Our use of back-progation to perform gradient-based prediction differs from most

deep learning applications, where it is used to update the network parameters. How-

ever, gradient-based prediction has been useful in a variety of deep learning appli-

cations, including siamese networks (Bromley et al., 1993), methods for generating

adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015), methods for em-

bedding documents as dense vectors (Le & Mikolov, 2014), and successful techniques

for image generation and texture synthesis (Mordvintsev et al., 2015; Gatys et al.,

2015a,b).

7.2 Meta-Learning and Learning to Optimize

When we estimate the parameters of SPENs, we are learning how to parametrize

an optimization problem: given x, we construct an optimization problem over ȳ.

Essentially, SPEN learning learns a function that predicts what to optimize.

End-to-end learning for gradient-based optimization first appeared in Domke (2012).

The method was applied for time series imputation in Brakel et al. (2013). It was

used for training generative adversarial networks in Metz et al. (2017) and for hy-

perparameter tuning in for Computational Linguisticsaurin et al. (2015). See Greff

et al. (2017) and Gregor & LeCun (2010) for a discussion regarding the connections

between network architectures and certain unrolled iterative estimation algorithms.
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An alternative line of work learns a function that predicts how to optimize (Hochre-

iter et al., 2001b; Andrychowicz et al., 2016; Chen et al., 2017; Wichrowska et al.,

2017). Here, each ‘training example’ is a collection of input-output pairs that have

been split into a train set and a test set. The goal is to learn a meta model that esti-

mates parameters of a task-specific model on the train set, such that the task-specific

model performs well on the test set. The meta model is a parametrized learning algo-

rithm. The simplest example would be gradient descent where the step size is treated

as a learned parameter. These works consider more sophisticated learning algorithms,

however, that model the iterative learning procedure using a long-short term memory

network (Hochreiter & Schmidhuber, 1997). They demonstrate a certain degree of

generalization: the meta learner can successfully learn on new datasets that have

different charactersitics than the datasets that the meta learner was trained on. For

example, it can learn task-specific models that have substantially more parameters

than the task-specific models used when training the meta learner (Andrychowicz

et al., 2016).

Note that this distinction between what to optimize and how to optimize becomes

substantially less clear in Section 5.4, where we pose a method for jointly learning the

parameters of the energy function and the hyperparameters used for gradient-based

optimization used at test time.

A related line of work considers end-to-end learning for tasks that consist of two

stages: (a) fit a model to data, and (b) use the model to perform further decision

making and planning. A traditional approach would be to perform (a) using classical

approaches such as maximum-likelihood learning, and then do (b). It may be useful,

however, to instead directly estimate the model such that it is most helpful for the

downstream use-case (b). This is possible when we have annotation for what the

output of (b) should be and both (a) and (b) are differentiable (Chen et al., 2015;

Tamar et al., 2016; Silver et al., 2017; Donti et al., 2017; Amos & Zico Kolter, 2017).
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7.3 Neural Networks with Additive Updates

Deep architectures that use additive updates, such as LSTMs (Hochreiter &

Schmidhuber, 1997), highway networks (Srivastava et al., 2015), gated recurrent

units (Chung et al., 2014), and residual networks (He et al., 2016) are very pop-

ular in deep learning applications. They incrementally build up a representation

additively. The decision of what to add is a complicated non-linear function, but the

actual updates to the hidden state are linear. This is useful because it reduces van-

ishing gradients at train time. For recurrent networks it also helps the model capture

long term dependencies between inputs and outputs.

Gradient descent is an additive operation: the final iterate is a weighted sum of

the initial iterate and gradients of the energy. In practice, we often only unroll a few

steps of gradient descent. Here, it is unlikely that the unrolled optimizer is actually

doing full energy minimization. With this in mind, it may be useful to view SPENs

as a residual network with a very specific parameter tying scheme.

7.4 Mean-Field Inference

Mean field variational inference approximates a complex joint distribution P (y) by

using a tractable distribution Q(y). Q(y) may be a product of univariate distributions

or a structured distribution, such as a chain-structured MRF (Jordan et al., 1999).

Typically, Q is selected by minimizing KL(Q||P ).

Consider fully-factored mean-field for a problem where each of the L components

yi is binary. Q can be represented in terms of a vector of per-component marginals

µ1, . . . , µL. Here, µi is analogous to the ȳi variable used for SPENs defined on the

convex relaxation of a discrete problem.

Under the fully-factored Q distribution, we assume that components yi and yj are

independent. Therefore, the 2×2 matrix representing their joint distribution is given
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by the rank-one matrix µiµ
>
j . This applies to higher-order factors as well. Let yoi be

a one-hot representation for yi. Consider a general factor graph with energy:

−
∑
c∈C

〈
θc,
⊗
i∈c

yoi

〉
. (7.1)

Here,
⊗

i∈c y
o
i represents a repeated outer (tensor) product of the one-hot represen-

tations for each of the components yi in the factor with scope c. Then, under Q, the

expected energy is

−
∑
c∈C

〈
θc,
⊗
i∈c

µi

〉
. (7.2)

Note that if each factor was of size 1 or 2, then (7.2) would be a (not-necessarily

convex) quadratic form.

The user does not directly choose to construct the mean-field energy as a multi-

linear form (7.2). Instead, this functional form is a consequence of decisions that he

or she made about the structures of the distributions Q and P . With SPENs, we

take an alternative, more pragmatic approach: the user specifically parametrizes the

functional form of the energy minimization problem, instead of posing a probabilis-

tic model for which energy minimization corresponds to variational inference. This

provides the opportunity to employ a substantially broader family of energy functions.

7.5 Black-Box Variational Inference

Lately, the community has embraced ‘black box’ inference in probabilistic models.

Here, generic tools are provided such that the user can explore a wide range of mod-

els while maintaining the ability to do inference. Furthermore, many model-specific

details for how to perform inference are addressed under the hood. This allows the

user to focus on model selection. Such techniques are available for variational infer-

ence in directed graphical models (Nguyen & Bonilla, 2014; Ranganath et al., 2014;
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Kucukelbir et al., 2015) and also ‘deep generative models,’ where transformations

between latent variables and from latent variables to observations are given by deep

networks (Mnih & Gregor, 2014; Rezende & Mohamed, 2015; Salimans et al., 2015).

Black-box interaction with the model is possible because of certain restrictions on

acceptable models, on the functional form of variational approximations to the pos-

terior, and by using the ‘reparametrization trick,’ where randomness in the model is

decomposed into model-independent white noise and parametrized deterministic func-

tions (Williams, 1992), or the score function estimator, which directly differentiates

an expectation with respect to a parametrized distribution (Williams, 1992). Like

SPENs, they also often interface with the model only via a gradient routine (gradient

of the likelihood). HMC-based inference in the popular STAN package (Carpenter

et al., 2016) relies on a similar reparametrization as our transformation in Sec. 4.2.1.3

to un-constrained optimization of logits.

7.6 Dual Decomposition

Dual decomposition is a popular method for performing MAP inference in complex

factor graphs by leveraging repeated calls to MAP in tractable submodels (Komodakis

et al., 2007; Rush et al., 2010; Sontag et al., 2011). The family of models solvable with

dual decomposition is limited, however, because the terms that link the submodels

must be expressible as linear constraints that factorize in the same way as the sub-

models in which MAP is tractable. Dual decomposition can also be used to derive

MPLP, a convergent alternative to max-product belief propagation for solving the LP

relaxation for MAP inference (Globerson & Jaakkola, 2008).

Similar techniques based on the alternating direction method of multipliers can be

adapted for marginal inference, in problems where marginal inference in submodels is

tractable (Ravikumar et al., 2010; Domke, 2011; Martins et al., 2011a; Fu & Banerjee,

2013).
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7.7 Directly Learning Models that Iteratively Refine Out-

puts

Many of the above structured prediction methods start with an initial guesses

for a prediction and then iteratively refine it in order to make the final prediction.

For example, in mean-field inference we use a factorized probability distribution over

outputs that is iteratively updated using coordinate descent on the mean field energy.

In gradient-based prediction, we represent the output as a single continuous vector and

update it using gradients of a differentiable energy function. In dual decomposition,

we maintain primal variables (predictions), but update these by shifting our dual

variables and redoing MAP. In all of these cases, the updates are derived from an

iterative optimization method for an associated energy function.

An alternative line of work directly learns an iterative method, without an asso-

ciated energy function. Here, for example, we have some update rule ȳt+1 = gw(ȳt, x)

with trainable parameters w. A natural way to train this is to minimize the total

loss
∑T

t=1 L(ȳt, ȳ
∗), as in (5.15), where ȳ∗ is the ground truth and L is a loss func-

tion (Newell et al., 2016; Li et al., 2016; Belagiannis & Zisserman, 2016; Strubell

et al., 2017). This assumes that the target for each intermediate iterate should be the

ground truth. In Carreira et al. (2016), the g network is trained as a multi-variate

regression task, by defining a trajectory for intermediate ȳt using linear interpolation

between a starting position and the ground truth. In Sec. 7.12, we interpret this

method as an instance of imitation learning.

The difference between the update rule ȳt+1 = gw(ȳt, x) above and the gradient

descent update rule ȳt+1 = ȳt − η∇Ex(ȳt) is subtle, especially if gw is implemented

using a residual architecture (Sec. 7.3). In one, we learn a displacement field directly.

In the other, the displacement field is defined as the gradient of an energy. It is

unclear whether this distinction is important, but our suspicion is that the latter ap-

proach is more parsimonious and better able to handle constrained problems. Better
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understanding the relationship between these approaches is an important topic for

future work.

7.8 Posterior Regularization

Posterior regularization (PR) (Ganchev et al., 2010), learning from measurements

(LFM) Liang et al. (2009) , and generalized expectations (GE) (Mann & McCallum,

2010), are a family of closely-related techniques for performing unsupervised or semi-

supervised learning of a conditional distribution Pθ(y|x) or a generative model Pθ(x|y)

using expectation-maximization (EM), where the E-step for latent variables y does

not come directly from inference in the model, but instead from projection onto a set

of expectations obeying global regularity properties. In PR and GE, this yields a pro-

jection objective of the same general form (6.7) as we use for SPEN-CRFs. Here, the

G terms come from a Lagrangian relaxation of regularity constraints, with paramters

that correspond to dual variables for the constraints. Originally, PR employed linear

constraints on marginals, but He et al. (2013) extend the framework to arbitrary

convex differentiable functions. Similarly, in LFM such an inference problem arises

because we perform posterior inference assuming that the observations y have been

corrupted under some noise model. Tarlow & Zemel (2012) also present a method for

learning with certain forms of non-local losses in a max-margin framework.

Our goals are very different than the above learning methods. We do not impose

non-local terms in order to regularize our learning process or allow it to cope with

minimal annotation. Instead, we use them to increase the expressivity of our model.

7.9 Graphical Models with Global Factors

Often, the complexity of inference in factor graphs scales exponentially in the

graph’s treewidth (Koller & Friedman, 2009). This may prevent practitioners from

using global factors that couple many output variables together. One of our principal
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motivations for developing SPENs is to provide models where the cost of prediction

scales better with the expressivity of the global interactions. See Sec. 3.4, for example,

for a discussion of the differences in the dependence of prediction cost on the problem

size for SPENs vs. factor graphs applied to multi-label classification.

An alternative to SPENs for using global scoring functions is to constrain the

global factors to have specific combinatorial structure that can be exploited to design

efficient algorithms. For example, consider a factor that enforces the constraint that

only one of N variables is true (Martins et al., 2015), or that K of N variables are

true (Swersky et al., 2012). In this case the messages passed by belief propagation in

and out of the factor can be computed efficiently, in time that is not exponential in the

number of variables. Such a technique can be applied for factors that impose bipartite

matchings (Duchi et al., 2007), enforce tree structures (Smith & Eisner, 2008; Martins

et al., 2015), interact large segments of pixels (Kohli et al., 2008; Russell et al., 2009),

or enforce cardinalities and orderings among outputs (Tarlow et al., 2010).

In these methods, only certain global factor structures can be used. On the other

hand, these factors can be handled efficiently and analytically. With SPENs, we are

much more flexible in defining global terms, but we can only use generic gradient-

based methods. It is possible that gradient descent will not be able to traverse a

jagged energy landscape defined by complex global factors.

7.10 Deep Boltzmann Machines and Deep Belief Networks

A probabilistic interpretation of SPENs is that we fit the conditional distribution

P(ȳ|x) ∝ exp(−Ex(ȳ)). For the purposes of this section, it is sufficient to assume

that that the energy network has a single hidden layer h and ȳ is written as a one-

dimensional vector. In addition, the dependence on x is unimportant, and thus we

consider the un-conditional distribution
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P(ȳ) ∝ exp(−E(ȳ)). (7.3)

Deep Boltzmann machines (DBM) are instances of a family of deep un-directed

graphical models (Smolensky, 1986; Freund & Haussler, 1992; Marks & Movellan,

2001; Hinton, 2002; Welling et al., 2004). A DBM consists of multiple stacked re-

stricted Boltzmann machines (RBMs). Like the simple SPEN architecture described

above, an RBM has a vector of hidden activations h. However, here h is a latent

random variable. The joint distribution over ȳ and h is given by:

P(ȳ, h) ∝ exp(ȳ>Ah). (7.4)

This corresponds to an MRF where the associated factor graph has connections be-

tween the components of ȳ and h and vice-versa, but no direct connections among

the components of ȳ or among h.

We have the following marginal distribution over ȳ:

P(ȳ) ∝
∫
dh exp(ȳ>Ah). (7.5)

Typically, reasoning directly about the marginal distribution is intractable. Instead,

its properties are approximated by approximate inference in the joint distribution,

often using mean-field inference or MCMC. Due to the bipartite graph structure,

block Gibbs sampling is particularly convenient.

The roles of the hidden layers h in RBMs and SPENs are qualitatively different.

In RBMs, h is an explicit random variable that is coupled to ȳ by way of a joint

distribution. On the other hand, in SPENs h is a deterministic function of ȳ. For

an RBM, the joint (7.4) may have a significantly more parsimonious parametrization

than a model that directly parametrizes the marginal distribution (7.5). In addition,
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by treating h as a random variable, it may be easier to capture multi-modal distribu-

tions over ȳ. For SPENs, on the other hand, evaluating the marginal probability is

significantly more straightforward. In DBMs, it is procedurally easy to sample ȳ using

Gibbs sampling. However, perhaps this won’t mix as well as HMC-based sampling

for SPENs energies. On the other hand, HMC is often difficult to tune.

Learning both DBMs and SPENs with maximum-likelihood is difficult, due to

the intractability of their distributions’ partition functions. In Sec. 11.2 we discuss

methods for sampling-based approximate maximum-likelihood learning. The methods

are typically applied to models with discrete ȳ, but can be adapted to continuous

ȳ (Mnih & Hinton, 2005; Hinton et al., 2006a; Ngiam et al., 2011).

It is important to contrast DBMs with deep belief networks (DBNs), which are

directed graphical models (Neal, 1992; Dayan et al., 1995). Again, we assume here

that the model has a single hidden layer h, but in practice it may be much deeper.

The joint distribution is given by:

P(ȳ, h) = P(ȳ|h)P(h). (7.6)

In a sigmoid belief network (Neal, 1992), for example, each component ȳi is binary

and has conditional distribution

P(ȳi = 1|h) = σ(w>i h) (7.7)

In deeper DBNs, each hidden layer is a vector-valued random variable where each

coordinate is either 0 or 1 and is sampled given the layer above it using a distribution

of the form (7.6). The distribution over the top layer is either some tractable dis-

tribution, or it could be given by an RBM (Hinton et al., 2006b). Many of the first

applications of variational inference in machine learning were for performing approx-

imate learning in DBNs (Saul et al., 1996; Jaakkola et al., 1996; Bishop et al., 1998).
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DBNs have been successfully used to perform unsupervised pretraining for deep fea-

ture extraction in domains such as image recognition (Lee et al., 2009) and speech

recogniton (Hinton et al., 2012). DBNs do not pose an explicit energy function and

computing the marginal probability of ȳ is intractable. On the other hand, sampling

is straightforward.

To achieve high performance with DBMs and DBNs, it is often important to

perform layer-wise training (Hinton et al., 2006b; Ranzato et al., 2006; Torralba et al.,

2008; Salakhutdinov & Hinton, 2009; Nair & Hinton, 2009). Here, the depth of

the model is successfully increased, where all parameters besides the most recently

introduced are held fixed.

7.11 Avoiding the Partition Function when Training Proba-

bilistic Energy-Based Models

This section presents a variety of alternatives to MLE for estimating probabilis-

tic energy-based models. MLE has optimal statistical efficiency, in the sense that

its estimates are unbiased and achieve the minimum obtainable variance about the

true data-generating parameters (Cramér, 1947; Rao, 1945). However, MLE is often

unobtainable for structured distributions because the partition function involves an

intractable sum or integral. Therefore, it is often necessary to trade off statistical

efficiency with computational efficiency.

Consider ȳ to be a length-m vector. If it is not a vector, we can reshape it such that

it is. For probability distribution P(ȳ), the score function is defined as d log P(ȳ)
dȳ

. Let

P̃(ȳ) be the data distribution and let Pw(ȳ) ∝ exp(−E(y)) be a learned distribution

with parameters w.

Score matching (Hyvärinen, 2005) seeks to minimize:
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J(w) = EP̃(ȳ)

∥∥∥∥∥d log P̃(ȳ)

dȳ
− d logPw(ȳ)

dȳ

∥∥∥∥∥
2

. (7.8)

This is the expected squared distance between the score functions of the data distri-

bution and the model distribution, where the expectation is taken with respect to the

data distribution. The expectation with respect to P̃(ȳ) can be approximated using

a sample average. Unfortunately, the objective is intractable, however, since we do

not have functional form for the data distribution that allows us to compute d log P̃(ȳ)
dȳ

.

Subject to various technical conditions, minimizing this objective is equivalent to

minimizing:

J(w) = EPw(ȳ)

[∥∥∥∥d logPw(ȳ)

dȳ

∥∥∥∥2

+
m∑
i=1

d logPw(ȳ)

dȳi

]
. (7.9)

This can be optimized in practice, as it only involves the score function for the model

distribution. In most applications, the gradient terms in (7.9) can be obtained in

closed form. For an energy-based model with an arbitrary neural-network energy,

we can differentiate (7.9) using the methods discussed in Sec. 5.4.1 for efficiently

computing Hessian-vector products.

It may be useful to perform score matching between the model distribution and

a smoothed version of the data distribution (Kingma & LeCun, 2010; Vincent, 2011;

Swersky et al., 2011). Consider a Gaussian Parzen density estimator with bandwidth

λ:

P̃λ(ȳ) =

∫
dȳ′N(ȳ; ȳ′, λ2)P̃(ȳ′). (7.10)

For a finite dataset, this distribution corresponds to a Gaussian mixture, with centers

at each of the datapoints.

For the case that the model distribution Pw(ȳ) is given by an energy-based model

with a certain 2-layer energy function, it can be shown that learning this distribution
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by score matching is equivalent to learning a denoising autoencoder (Vincent, 2011).

Let G(ȳ) be a feed-forward network that maps ȳ to a hidden representation and then

back out to a reconstruction of the input. We penalize reconstructions using their

mean-squared-error from the input. For a given input ȳ, the denoising autoencoder

loss is

Eε∼N(0,λ) ‖G(ȳ + ε)− ȳ‖2 . (7.11)

Using the score-matching perspective, we see that G is the score function a learned

distribution. In other words G is the gradient of the log-density with respect to the

inputs. This provides an interesting perspective on denoising autoencoder learning:

rather than learning an energy function and differentiating it, we can define the

energy function implicitly, by way of a feed-forward network that directly computes

the gradient of the log-density. This approach was recently applied to learning deep

energy-based models for anomaly detection (Zhai et al., 2016). Finally, with this

implicit definition, it is natural to sample from the density using MCMC, which is

employed by generative stochastic networks (Bengio et al., 2014).

The technical conditions required by score matching may not apply in prac-

tice (Hyvärinen, 2005). Furthermore, the method is statistically consistent, but this

does not guarantee that it will perform reliably for finite-sized small training sets.

We have not experimented with score matching for training SPENs, but it may be a

fruitful opportunity for future research.

Noise Contrastive Estimation (Gutmann & Hyvärinen, 2010) (NCE) provides an-

other alternative to MLE for training probabilistic models. Let Pn(ȳ) be a noise

distribution that we can efficiently sample from and evaluate the density of. Consider

a mixture distribution defined by sampling from the data distribution P̃(ȳ) with prob-

ability 1
K

and from the noise distribution with probability K−1
K

. Define the binary

112



random variable D to be equal to 1 if if ȳ was sampled from the data distribution.

For a given value of ȳ, we have the posterior probability:

P(D = 1|ȳ) =
P̃(ȳ)

P̃(ȳ) +KPn(ȳ)
. (7.12)

Next, we replace P̃(ȳ) with the learned model distribution:

P(D = 1|ȳ) =
Pw(ȳ)

Pw(ȳ) +KPn(ȳ)
= σ(logPw(ȳ)− logKPn(ȳ)). (7.13)

So far, the likelihood (7.13) is still intractable, as evaluating Pw(ȳ) requires eval-

uating its partition function. However, it is shown in Gutmann & Hyvärinen (2010)

that it is sufficient to pose Pw(ȳ) as an un-normalized density, as the optimal density

will in fact be normalized. This is true whenever the true data generating distribution

is in the model family, i.e., there exists a w∗ such that the data was generated by

Pw∗(ȳ). Therefore, we can approximate our likelihood as σ(E(ȳ)− logKPn(ȳ)). This

trick has been useful for speeding up learning for energy-based language models (Mnih

& Teh, 2012; Mnih & Kavukcuoglu, 2013).

NCE is statistically consistent and asymptotically normal. It also approaches

the MLE objective as K −→ ∞ (Gutmann & Hyvärinen, 2010). Negative sam-

pling (Mikolov et al., 2013) is a simple special case of NCE that is not necessarily

statistically consistent (Dyer, 2014).

Pseudolikelihood (Besag, 1975) approximates MLE of the joint distribution Pw(ȳ)

by instead performing MLE for a collection of univariate conditional distributions.

We assume that ȳ is a collection of components ȳ1, . . . , ȳN and use ȳ¬i to be the set

of all components besides ȳi. For a given observed ȳ we have the pseudolikelihood:

∏
i

Pw(ȳi|ȳ¬i) (7.14)
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Each conditional distribution Pw(ȳi|ȳ¬i) is assumed to have a tractable partition func-

tion, since it requires summing only over the support of the single component ȳi.

The factor graph structure defines a set of conditional independence relationships

among the components. Therefore, in factor graphs with small factors, Pw(ȳi|ȳ¬i) can

be evaluated using a small subset of ȳ¬i. For SPENs, however, we do not assume any

such factorization structure, and thus evaluating (7.14) would require many complete

forward evaluations of E(y).

Finally, suppose that the partition function was guaranteed to be 1, and thus

Pw(ȳ) = exp(−E(y)). Maximizing the likelihood of this distribution is straightfor-

ward. An interesting line of work poses a probabilistic model Pw(ȳ) = 1
Z

exp(−E(y))

and interleaves two types of gradient updates: updates that ignore the partition

function and seek to maximize the likelihood of Pw(ȳ) = exp(−E(y)), and updates

that penalize (Z − 1)2 (Devlin et al., 2014; Andreas et al., 2015). Learning can be

accelerated by performing the second set of updates less frequently than the first.

7.12 Value-Based Reinforcement Learning

At various points in this thesis, we assign different semantics to the energy function

Ex(ȳ). For example, it can be the specification of a probabilistic model P(y|x) ∝

exp(−Ex(y)) or the specification of a decision rule ȳ∗ = arg miny Ex(y). These lead

to different learning algorithms. Next, we discusses how the energy function could

also be interpreted as a value function in reinforcement learning (RL). This provides

an interesting direction for future work.

RL is broad family of methods for learning policies for sequential decision making,

where an agent performs a sequence of actions. The agent collects rewards as it inter-

acts with an environment that is potentially stochastic and only partially observable.

A full exposition on the fundamentals of RL is beyond the scope of this thesis. We

recommend Sutton & Barto (1998) for an approachable introduction.
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Let π(a|s) be our policy, which is a distribution of actions at a given state. A

value function Vπ(s) computes the expected future reward obtained by starting in

state s and taking actions according to π. The state-action value function Qπ(s, a)

computes the expected future reward conditional on taking action a in state s, and

then following π. In many cases, the optimal policy π∗ is deterministic, and thus

has the property that π∗(s) = arg maxaQπ∗(s, a). Often, learning is based on some

generalization of policy iteration, where we alternate between updating Q and π.

The policy π can either be defined implicitly, by way of greedy maximization of the

Q function at a given state, or it can be defined directly as a parametrized distribution

πθ(a|s) with learned parameters. For the second approach, we can learn θ to maximize

the expected future reward using actor-critic methods (Barto et al., 1983; Konda &

Borkar, 1999). Here, the Q function, which estimates expected future reward, is used

as an auxiliary function (the critic) simply to guide the policy (the actor) towards

choosing high-quality actions When expected future reward is not estimated by a

critic, but instead by a Monte-Carlo approximation obtained by executing the policy,

we obtain methods such as REINFORCE (Williams, 1992).

In future work, it may be useful to treat iterative optimization of the SPEN energy

as a sequential decision making problem. Here, the energy function would obey the

semantics of a negative value function, i.e., that it estimates expected future cost.

With this, it would be natural to define our policy as taking a single gradient step

on the value function. It would be unnecessary to estimate a state-action function

Q(s, a), since we can locally maximize expected future reward using a single gradient

step.

One of the core considerations of RL is balancing exploration and exploitation.

Using RL methods would provide a easier methods for incorporating exploration than

end-to-end learning. Using RL to train SPENs would be similar to how discrete factor

graphs are trained using RL in Rohanimanesh et al. (2009).
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Steps in this direction were recently taken by Gygli et al. (2017). They identify

the parallel between SPENs and value functions, but they do not estimate the energy

using RL methods. Instead, they estimate the energy using a regression criterion. For

a given training instance xi, ȳi let ∆(ȳ, ȳi) be the discrepancy between an arbitrary

prediction ȳ and the ground truth. Let Q(ȳ) be an arbitrary distribution. They seek

to minimize EQ[(Exi(ȳ)−∆(ȳ, ȳi))
2]. This is useful because ∆(ȳ, ȳi) is minimized at

ȳ = ȳi.

Finally, note that RL is not the only technique to solve such problems. For

example, when we have examples available for high-quality sequences of actions, we

can perform imitation learning (Schaal, 1999; Abbeel & Ng, 2004; Ratliff et al., 2006;

Silver et al., 2008; Argall et al., 2009; Chernova & Veloso, 2009; Ross & Bagnell,

2010). The method of Carreira et al. (2016), described at the end of Sec. 7.1 can

be seen as an instance of imitation learning. Here, the example sequences are not

explicitly annotated, but are generated synthetically by linearly interpolating between

the initial guess ȳ0 and the ground truth.
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CHAPTER 8

EMPIRICAL EXPLORATION OF SPEN PROPERTIES

This chapter presents experiments designed to provide some intuition for the gen-

eral properties of SPENs, which will hopefully help future practitioners when devel-

oping new SPEN applications. Our experiments are divided into four categories:

1. (Sec. 8.3) Experiments used for analyzing the impact of certain SPEN design

decisions for end-to-end learning. These helped us select configurations that

were used in other chapters in this thesis.

2. (Section 8.4) Experiments that contrast SPENs with CRFs and feed-forward

predictors in terms of speed and accuracy.

3. (Section 8.5) Experiments that analyze the performance and reliability of SSVM

vs. end-to-end training for SPENs.

4. (Section 8.6) Experiments demonstrating that SPENs could be used to provide

interpretable structured learning.

All of the experiments consider discrete labeling problems, where the SPEN is

defined on a convex relaxation of the original problem. Since this approach reduces

discrete prediction to continuous optimization, the analysis of this chapter would also

apply to problems with continuous outputs.

8.1 Data

First, we describe the data used for the experiments in this chapter.
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8.1.1 Sequences

We consider a sequence of observations x = {x1, . . . , xL}, where each xi is drawn

from a 6-dimensional spherical Gaussian with unit variance. To generate a sequence

of observations y = {y1, . . . , yL}, we first construct a linear-chain CRF model, which

yields a joint distribution over y, given x. We can efficiently draw exact samples from

this distribution by forward filtering and backward sampling in the model.

With our model, we form predictions by minimum Bayes risk decoding (MBR

decoding), with respect to the Hamming error Goel & Byrne (2000). This is a

decision-theoretically optimal method for forming predictions if our risk function is

the Hamming error (Sec. 2.2.5). MBR decoding first peforms marginal inference in

the model using the forward-backward algorithm, and then assigns each variable to

the value that maximizes its marginals. For a given set of model parameters and

test data drawn from the model with those parameters, we define the Bayes accu-

racy of the data as the Hamming accuracy of MBR decoding. This acts as a useful

performance upper bound, and we generally evaluate other methods in terms of their

relative Bayes accuracy, the relative difference between the Bayes accuracy and their

accuracy. Specifically, if the Bayes accuracy is a and the alternative method’s accu-

racy is b, we compute 1− a−b
a

.

To stress test SPENs, we intentionally design the parameters of our CRFs such

that SPENs will struggle to fit the data. We hand-tune various hyperparameters,

such as the relative scales of the local and pairwise factors, such that our random

CRF models have two key properties:

• First, we want a local classifier to have low relative Bayes accuracy when fit

to data drawn from the model. Otherwise, we may obtain good performance

simply by using an expressive local energy, rather than exploiting a global energy

network. This is achieved in part by generating models with large-magnitude

pairwise factors relative to the local factors. We further restrict the power of
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our local factors, both in the CRFs used to generate the data and any models

we fit to the data by using a convolution width of 1 in our feature networks.

Across our 20 random problems, we find that the relative Bayes accuracy of a

local classifier is 65%.

• Second, we want approximate mean-field marginal inference in the CRF to yield

a low-quality approximation of the exact marginals. Since SPEN inference

resembles mean-field inference, data drawn from a model with this property

may be hard to fit with a SPEN. Across our 20 problems, we find that MBR

prediction with mean-field marginals differs on 38% of the predicted labels vs.

MBR prediction with exact marginals.

The CRF extracts features from x using a width-1 convolution that is passed

through a ReLU. While these features could of course be more expressive, using a

width of 1 helps achieve the first desideratum above. The weights of the local factors

and the pairwise factors of the model are a linear function of these localized per-

timestep features. For both of these linear functions, we tie parameters across the

length of the sequence. Each yi has a domain size of 8 and the sequences are of length

12. We create 20 distinct datasets consisting of a train set of 5K sequences and a test

set of 10K sequences.

In Sec. 8.4.2.1, we directly contrast the performance of SPENs and CRFs on this

data. Since the data is drawn from a CRF and the factors were designed such that

mean-field inference may perform poorly, this presents a very challenging baseline.

However, it provides useful controlled experiments where we can isolate the effects

of various design decisions, such as the energy minimization method used vs. the

parametrization of the energy function.
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8.1.2 Grids

A classic application of grid-shaped structured prediction problems is when we

have an input RGB image x ∈ [0, 1]h×w×3 and seek to assign binary per-pixel labels y ∈

0, 1h×w. We perform image segmentation on the Weizmann horses dataset (Borenstein

& Ullman, 2008). This isn’t synthetic data, but it is considered a toy dataset by the

vision community. On the other hand, it has been used as a benchmark problem in a

large number of papers on graphical models. Our results are not directly comparable

to previously-published results on the dataset. First, the raw images are not all the

same size. In order to support GPU-based computation, we downsample them to

all be 64 pixels high and 80 pixels wide. Furthermore, the original dataset does not

provide a proper validation set for tuning hyperparameters. We use 150 images for

training and 88 each for validation and testing. Sec. 8.4.3 provides empirical results

demonstrating that our results using CRFs on the modified dataset are very similar

to published results on the original dataset.

8.2 SPEN Architectures and Training

8.2.1 Sequences

Our feature network is identical to that of the CRF introduced in Sec. 8.1.1, and

our local energy terms are identical to the local factors of the CRF.

Our global energy network concatenates the 25 per-timestep features from the

feature network and concatenates these with the per-timestep soft predictions ȳ. We

then apply a width-k temporal convolution that maps to h hidden features, feed the

output through a SoftPlus at temperature 25, and then produce a per-timestep energy

using a local linear transformation for each timestep. The total global energy is the

sum of these terms. We can vary k, the kernel width of the first convolution. With

k = 2, the expressivity of the model is similar to a linear-chain CRF. However, it is

easy to consider much higher-order interactions simply by increasing k.
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8.2.2 Grids

Our feature network consists of a 7× 7 convolution that maps from 3 input chan-

nels to 25 hidden features, a ReLU, a 1 × 1 convolution that maps from 25 hidden

features to 25 new hidden features, and then finally a ReLU. Here, a 1×1 convolution

applies a linear transformation independently at grid location. Overall, this archtec-

ture produces a 25-dimensional feature vector for each grid location. We first train

this network to optimize the performance of a feed-forward predictor, which applies

a linear classifier to these features. The feature network for all other configurations

are initialized using these parameters.

The global energy network of our SPEN first extracts h k×k convolutional features

of the output ȳ. It then feeds these through a SoftPlus layer, and then concatenates

them with the per-pixel features of x computed by the feature network. This per-pixel

representation is then mapped to a per-pixel energy using a linear transformation.

The final image-level energy is defined as the sum of the per-pixel energies. The

SoftPlus is at temperature 25. For most experiments, we use h = 25.

Note that if k = 3, the receptive field of the SPEN energy is similar to a grid-

structured CRF with pairwise factors: the energy function only explicitly captures

the interactions between a pixel and its immediate neighbors. They have different

expressivity, however, as the SPEN has one term that jointly scores 9 pixels (the

center pixel and its eight neighbors), whereas the CRF captures their interactions

using the sum of 4 separate edge factors. Here, the CRF also fails to explicitly

capture interactions between pixels that are diagonal neighbors. Also, while the

SPEN easily supports using larger k, inference in a CRF with high-order factors is

very cumbersome.
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8.2.3 Training

All models are trained using the Adam optimizer (Kingma & Ba, 2015a) with a

learning rate of 0.001. For instances where gradients are particularly noisy, we set

Adam’s ε parameter to 1e-6. Otherwise, we use default settings. The weights for all

convolutions are initialized using the method of Glorot & Bengio (2010). We typically

clip our gradients to have norm no greater than 1.0.

We have found that the easiest way to avoid overfitting is to perform early stop-

ping, where we select a snapshot from training that performed best on held-out data.

An alternative approach would be to tune the expressivity of the feature and en-

ergy networks, by varying the dimensionality of their hidden states. This introduces

two new hyperparameters to perform a grid search over, whereas early stopping does

not introduce any new hyperparameters. When performing end-to-end learning, we

always minimize the average cross entropy loss of the soft predictions output by

gradient-based energy minimization.

8.3 Experiments for Engineering End-to-End SPENs

8.3.1 The Unreasonable Effectiveness of End-to-End Learning

As a warmup, we first demonstrate a simple case where end-to-end learning is a

very effective way to discriminatively train the parameters of an unrolled prediction

procedure. This experiment trains a CRF, not a SPEN. This is because it is easy to

generate data from the conditional distribution defined by a CRF, but not a SPEN.

We expect the general conclusions from this experiment apply to SPENs as well.

For each of the 20 models used to generate our sequence tagging data, we contrast

the relative Bayes accuracy of two different prediction approaches. The True-MF

approach performs approximate MBR decoding in the true CRF model, where ap-

proximate marginals are obtained using 15 iterations of mean-field inference. The

E2E-MF approach unrolls the same mean-field inference method used before, but
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this time it is applied to a new CRF with parameters that we train from scratch.

Here, the parameters are directly trained (on the training data) to minimize the

cross entropy loss of the approximate marginals output by mean-field. Details of the

mean-field method and how to learn it end-to-end are provided in Sec. 8.4.1.

The results of our experiment are summarized in Table. 8.1. Remarkably, sub-

stantially better performance can be obtained using E2E-MF, which trains a model

from scratch, despite the fact that the True-MF utilizes the true parameters that

were used to generate the data.

True-MF E2E-MF
relative Bayes accuracy 79.1 ± 7.3 91.6 ± 2.6

Table 8.1: Contrasting the performance of approximate MBR prediction using mean-
field inference with the parameters of the true CRF used to generate the data vs. a
new CRF that is trained end-to-end to optimize the performance of the same infer-
ence procedure. Surprisingly, we find that substantially better performance can be
achieved using the second method.

8.3.2 Gradient-Based Energy Minimization

In Fig. 8.1, we plot the objective functions for test time SPEN energy minimization

for a few different examples in the horses test set. We append the energy of the ground

truth as the rightmost point in each curve.

For curves where the curve jumps up at the last step, this corresponds to the

case where the predicted energy is lower than the ground truth energy. This is a

modeling error. For curves that turn down at the end, this corresponds to the case

that the predicted energy was higher than the ground truth energy. This is a test-time

optimization error. In (a), we unroll for 18 gradient steps. In (b), we only employ

3 gradient steps. Truncating (a) to only 3 steps would result in poor performance.

However, (b) is able to achieve good performance because the model is explicitly

trained such that 3 steps of gradient descent will perform well.
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Figure 8.1: Test-time energy minimization for test examples in the horses dataset.
The optimization trajectory is appended by a final point containing the value of the
energy at the ground truth configuration.

Next, in Figure 8.2 we contrast how peaked a SPEN’s predictions are. Since the

SPEN is not a proper probabilistic model, it may over-estimate its confidence, yielding

soft predictions ȳ that are nearly 0-1. On the horses data we compute the ‘peakedness’

of the model’s soft prediction. This is 1.0 minus the average distance from each ȳi to

the boundary of [0, 1]. Peakedness of 1.0 means that the model always predicts either 0

or 1. The peakedness would be 0.75 if the predictions were distributed uniformly. We

contrast the peakedness of the SPEN with the peakedness of BP marginal inference

in a CRF model trained on the data. Note that the SPEN was trained end-to-end

and includes an entropy smoothing term that rewards high-entropy outputs. Overall,

we are surprised to find that they have extremely similar peakedness. Perhaps the
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difference in the approaches and energy functions and unrolled optimization is less

important than the loss used to train the model, which was the same for both.

SPEN CRF w/ BP
Peakedness % 97.1 97.2

Table 8.2: Contrasting how peaked the predictions are with gradient-based prediction
from a SPEN vs. BP inference in a CRF on the horses data.

8.3.3 Learning to Optimize Quickly

Next, we present experiments evaluating the methods introduced in Sec. 5.4.5

for explicitly regularizing the model such that gradient-based prediction converges

quickly. We can either employ the term (5.13) that penalizes the distance between

consecutive iterates or we can use the loss function (5.15) that computes a weighted

average of the loss at all of the intermediate iterates of optimzation.

These methods are applied to the horses data in Fig. 8.2. On the left, we plot test-

time energy minimization curves for our baseline system, which does not use (5.13)

or (5.15). In the middle, we use (5.13), but not (5.15). The energy is flat until the

very end, where it is minimized quickly. This exposes a weakness of the regular-

izer (5.13): it encourages the iterates to move quickly from their initialization point

to the final prediction, but it doesn’t actually encourage this to happen at the begin-

ning of optimization. On the right, we combine both (5.13) and (5.15). This yields

the desired optimization behavior. Note that the difference in test accuracy between

these systems is small, but non-trivial. From left to right, we have 92.4, 92.2, and

91.1. This is because we placed an a large weight on the regularizer (5.13) in order

to magnify the effect of these methods.

Overall, we do not encourage practitioners to use the methods discussed in this

section. A significantly easier way to achieve fast, high-quality test time optimization

is to simply choose a smaller value of T . There is also a confounding factor when
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using larger T : these models are harder to train end-to-end. This phenomenon is

explored in the next section.
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Figure 8.2: Exploring methods for explicitly training such that gradient-based energy
minimization converges quickly. Left: baseline end-to-end training on the horses
data. Middle: penalize the distance between consecutive iterates using (5.13). Right:
penalize consecutive iterates and minimize the average loss of all optimization iterates,
rather than the final iterate, using the technique in (5.15).

8.3.4 Depth of the Unrolled Network, Vanishing Gradients, Exploding

Gradients, and Gradient Clipping

Next, we empirically validate our claim from Sec. 5.4.3 that unrolling mirror de-

scent for simplex-constrained optimization produces vanishing gradients, while un-

rolling unconstrained optimization of logits does not. See Fig. 8.3 and its caption for

an explanation.

Define gt as ∇Ex(ȳt). Since we use a single energy network with tied parameters

for all t, the gradient of the loss with respect to the parameters of the energy network

will be a weighted sum of gradients evaluated at each t, with weights given by ‖dLoss
dgt
‖.

This means that our parameter gradients will be influenced substantially more by later

iterations of unrolled optimizations that earlier optimization.
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Figure 8.3: Demonstrating that unrolling entropic mirror descent yields severe vanish-
ing gradients. On the chain data, we train SPENs with 20 unrolled iterations of either
simplex-constrained optimization or unconstrained optimization of logits. Let ȳt be
the intermediate iterate at step t and gt be the gradient of the energy with respect
to yt. We compute the average norm of dLoss

dgt
, and average across the iterations of

training. We find that mirror descent yields yields gradients that decay significantly
faster. In other words, the gradient of the loss with respect to gt is significantly higher
for large t. This may prevent us from learning a high-quality energy function, since it
fails to account for the impact of the energy on the early steps of energy minimization.

In other applications of RNNs, such as for training language models, the vanishing

gradient problem is detrimental because it prevents a model from learning long-term

dependencies. However, here the uneven weighting between early and later iterations
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may actually be desirable. Note that the early iterations of unrolled optimization

simply need to point in the general direction of the ground truth, whereas later

iterations may be used to resolve more fine-grained details of the structured output.

This may explain why we have found that high-quality models can be trained by

unrolling either optimization method.
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Figure 8.4: Analyzing the effect of unrolling unconstrained gradient descent on logits
vs. simplex-constrained optimization using mirror descent. In (a) and (b) we plot a
sliding window average of the norm of the gradient with respect to the parameters
over the course of training a model. Error bars (in blue and red) are for a single
standard deviation. In some cases, they are extremely large, denoting gradients with
very high variance. Fig. (a) unrolls for 3 iterations, while (b) unrolls for 18 itera-
tions. In (a), unconstrained optimization has larger gradients, but the noisiness of
the gradients is on the same scale as for constrained optimizaton. In (b), the un-
constrained optimization has gradient norms that are both large on average and very
high variance. I

Fig. 8.3 establishes that we may encounter vanishing gradients. However, explod-

ing gradients, may pose a larger threat to training. In Fig. 8.4 and Fig. 8.5, we

find that unrolling for a large number of iterations results in more violatile gradients,
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Figure 8.5: Relative Bayes accuracy vs. the number of unrolled iterations. We find
that unconstrained optimization is unstable when unrolled for many iterations.

employing unconstrained logit iterates results in higher-variance gradient norms, and

high-variance gradients result in lower-quality models. See the figures’ captions for

details. All of our experiments were done with single-precision floats. It’s possible

that some of this instability results from numerical overflow, which could perhaps be

alleviated by using new GPU kernels that support double precision. Unfortunately

these are not compatible with the deep learning library we use.
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The left of Fig. 8.6 displays the impact of gradient clipping on training a model

with k = 3 on the horses data. Here, during training each parameter gradient is

renormalized such that its norm is no bigger than c (if the norm is less than c, the

gradient is left unchanged). We consider c = 1.0, 5.0, 10.0. Overall, clipping to 1.0

yields both faster optimization and a better final value. This is counterintuitive to

us because when using 1.0, 100% of the parameter gradients have norm greater than

1.0. This means that learning places equal weight on each gradient, since they are all

renormalized to unit norm. Of course, performance on held-out data is not perfectly

correlated with train-time loss, especially when we are susceptible to overfitting. We

find that using gradient clipping of 10.0 yields superior test accuracy.

Overall, gradient clipping is a poorly-understood element of the deep learning

practitioner’s bag of tricks. It corresponds to trust-region optimization: gradient

descent is restricted from moving too far in a given iteration, since each gradient is

restricted in norm. However, it is very ad-hoc to uniformly scale the entire parameter

gradient to be within a certain ball. This is because the gradient norm depends

on the number of parameters, and different coordinates of the gradient correspond

to qualitatively different parameters (e.g., bias terms vs. elements of a convolution

kernel). We encourage future work that more systematically applies trust region

methods to deep learning training.

Next, we consider the impact of automatically learning a separate step size for

each iteration of gradient-based energy minimization. This improves the expressivity

of the model and eliminates the need to select step sizes using an expensive outer loop

of grid search. The learned step sizes are given on the right of Fig. 8.6 for a model

trained on the horses data with 20 unrolled iterations. When we unroll unconstrained

optimization of logits, the learned learning rates are nearly monotonically increasing.

For unrolled mirror descent, the learning rates also increase at the end, but are more

flat overall. For both, there are various reasons why the model may place more
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Figure 8.6: Left: Effect of gradient clipping on the dynamics of learning. Right:
Learned per-iteration step sizes for unrolled energy minimization.

weight on later iterations of gradient descent. First, as the iterates get closer to the

the energy minimum, the norm of the gradients gets smaller. Using a larger step size

may be necessary to overcome this.

Finally, note that we do not perform any experiments where we perform test-time

energy minimization using a different number of gradient descent iterations than

were used during end-to-end learning. Such an approach was shown to be useful, for

example, in Domke (2013a). Overall, we have found it useful to learn per-iteration

step sizes. In this case, it is difficult to choose what the step size should be for

iterations not used during training. One of the principal advantages in practice of

end-to-end learning is that it directly provides a test-time prediction procedure with

no hyperparameters than need to be tuned.
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8.3.5 Input-Convex Neural Networks

As described in Sec. 3.6, we can constrain our energy to be convex with respect

to ȳ by restricting all weights in the energy that interact with ȳ to be positive. We

place no restrictions on bias terms. We use ICNN to refer to this constraint imposed

on a SPEN.

Recall that the ICNN constraint is a particular method for achieving convexity.

Positivity of the parameters is not a necessary condition, however. Positivity may

impose an excessively strong restriction that hinders the expressivity of the model

and the dynamics of gradient-based learning.

In Table 8.3 we contrast the performance of a SPEN trained with and without

the ICNN constraint on our sequence tagging data. We find that the constraint

substantially reduces performance. Table 8.4 presents a similar phenomenon for our

grid data. Here, we find that imposing the ICNN constraint eliminates situations

where the predicted energy is greater than the energy at the ground truth. However,

the model is low quality.

In Fig. 8.7, we plot test-time energy minimization curves for SPENs with and

without the ICNN constraint. We find that the curves for the ICNN are extremely

flat. This suggests that the model is not learning particularly well. There are two

regimes in which we may not learn well. First, all of the SoftPlus non-linearities of the

energy could saturate, so gradients of the energy are nearly zero. Second, all of the

inputs to the SoftPlus could be large and positive, such that it behaves as the identity

function. In this case, the energy network is a linear function, which provides limited

expressivity in addition to the local energy network. Perhaps performance could be

improved by changing the parameter initialization scheme such that we better avoid

these regimes.
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See the ends of Sec. 9.1.3 and Sec. 10.3 for discussions of the impact of the ICNN

constraint on the performance of SPENs for semantic role labeling and image denois-

ing, respectively. Overall, we find that enforcing convexity never helps.

ICNN yes no
Relative Bayes Accuracy 68.3 ± 8.6 80.1 ± 5.4

Table 8.3: Average relative Bayes accuracy for SPENs trained with and without the
ICNN constraint on our 20 sequence tagging problems.

ICNN no yes
Test Accuracy 91.8 90.1

Opt Error Rate 33.7 0

Table 8.4: Effect of the ICNN constraint on performance on the horses data for a
SPEN with kernel width 3 in the energy network. A test-time optimization error
occurs when the ground truth has a lower energy than the predicted value. ICNN
prevents these errors, but it results in low-quality predictions.

8.4 SPENs vs. CRFs

We consider the following CRF prediction methods.

1. Exact Maximum Likelihood (MLE) is available for chain-structured CRFs,

where the partition function is computed using dynamic programming. Predic-

tion is performed using exact MBR decoding.

2. Mean Field (MF) uses unrolled synchronous mean-field inference. The pre-

dictor is unrolled into a computation graph and trained end-to-end, as discussed

in Section 2.6.

3. Gradient-Based Mean Field (GMF) is the same as MF, but we back-

propagate through unrolled gradient-based optimization of the mean-field ob-

jective using the same techniques used for optimizing SPEN energies.
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Figure 8.7: Test-time energy minimization for SPENs trained with and without the
restriction that they are input-convex. As before, we append the energy of the ground
truth as the rightmost point in each curve. In (a), we find that energy minimization
for non-convex energies sometimes returns a value greater than the energy of the
ground truth. In (b), this never occurs. However, the energy barely changes between
the beginning and the end.

4. Belief Propagation (BP) As discussed in Section 2.6, we can unroll belief

propagation and perform end-to-end learning. We only use this for grids, as it

is identical to the exact maximum likelihood method for chains.

As alternatives, we consider

1. Structured Prediction Energy Network (SPEN)

2. Feed-Forward (FF) uses the same features as the other models, but applies

independent logistic regression models for each label.

Going forward, we will employ configuration to refer to the combination of a model

(e.g., a SPEN or a CRF), coupled with a method for training it (e.g., MF). The above

configurations can be compared along multiple axes:
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1. FF vs. Energy-Based Approaches considers whether joint prediction of y

is actually useful, or high accuracy can be achieved simply by predictions that

are conditionally independent using high-quality features.

2. MF vs. GMF considers whether end-to-end learning using gradient-based

mean-field is comparable to end-to-end learning using synchronous mean field

for a CRF. This isolates the first of the two differences between CRFs and

SPENs: the form of the end-to-end learning vs. the form of the energy function.

3. SPEN vs. {BP,MF} considers the importance of the expressivity of the en-

ergy function. For SPENs, our energy terms can directly couple together large

sets of output variables, by using wide convolutions in the energy network. The

analogous receptive field is smaller for the CRFs we consider.

4. BP vs. {MF,SPEN} considers the importance maintaining intermediate val-

ues for pairs of output variables vs. maintaining only node-wise quantities. This

comparison can also be used to evaluate the impact of inference with a mes-

sage passing schedule, rather than the synchronously updating all prediction

variables at once.

Details of our training procedure for the CRF models are given for grids in the

next section. These can be adopted to chains in a straightforward manner.

8.4.1 End-to-End CRF Learning

We next describe concrete methods for training grid CRFs using the principal of

direct risk minimization from Section 2.6. We consider unrolled mean-field and loopy

belief propagation. The mean-field method can be specialized to chain-structured

problems easily. Exact belief propagation is straightforward for chains, so one would

not use the method of this section for chains.
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The MF configuration unrolls synchronous coordinate descent mean field inference

into a feed forward computation graph. For each pixel i, j, iteration t of inference

maintains a vector ȳ
(t)
i,j ∈ [0, 1]2 that sums to one. The coordinates of this vector

contain the beliefs that pixel i, j takes on states 0 and 1, respectively. One update of

mean-field is as follows:

ȳ
(t+1)
i,j = SoftMax

(
ψleft
ij ȳ

(t)
(i,j−1) + ψright

ij ȳ
(t)
(i,j+1) + ψabove

ij ȳ
(t)
(i−1,j) + ψbelow

ij ȳ
(t)
(i+1,j)

)
(8.1)

Here, ψleft
ij is the 2× 2 matrix of log potentials for the horizontal edge between pixel

i, j and the pixel to the left of it. The other potentials are define similarly. We assume

the matrices in (8.1) are properly transposed such that it is appropriate to always

perform right multiplication. The energy from all local factors has been absorbed into

the values of the edge potentials. This update consists of basic linear algebra and a

per-pixel softmax. Therefore, it can be accelerated easily on a GPU if we perform

updates to all pixels synchronously in parallel. In practice, our implementation differs

slightly from (8.1) because we do all computation in log space.

The GMF configuration unrolls gradient-based prediction of the same mean-field

energy function that MF minimizes. This employs the same training method as

SPEN.

The BP configuration unrolls loopy belief propagation into a fixed computation

graph that supports backprop. The implementation is more complex, as it does not

update beliefs for the entire image in parallel, but instead employs a schedule. Each

pixel has four messages entering it: above, below, left, and right. Each iteration

t of inference updates all of the above messages, and then all of the below messages,

and so on. Each set of messages is updated in a recurrent fashion. For example, the

above messages are updated for the topmost row of pixels first, and then updated

for the second row of pixels, and so on. This is a non-traditional message passing

schedule that is designed to exploit vectorized computation.
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We next describe how we update the above messages. The others are updated

analogously. Here, w distinct messages, corresponding to a single row, are updated

in parallel for the h× w image. Additionally, these updates are parallelized across a

minibatch of images. The update equation is:

above
(t+1)
i+1,j = SoftMax

(
ψleft
ij left

(t)
i,j + ψright

i,j right
(t)
i,j + ψabove

i,j above
(t+1)
i,j

)
(8.2)

Here, the above
(t+1)
i+1,j message is the downwards message from i, j to (i+1), j. It enters

i + 1 from above. The appearance of above
(t+1)
i+1,j on the right hand side, rather than

above
(t)
i+1,j, is the reason that the updates are done in sweeps across the grid rather

than in parallel. Again, in practice the computation is done in log space. We do not

use any message damping.

Note that we train all of our CRFs by minimizing the cross entropy loss of pre-

dicted node marginals, but we could have performed alternative methods that more

explicitly cast the CRF as probabilistic model. For example, we could treat the node

and edge marginals computed by BP as the gradient of the Bethe approximation to

the partition function (Yedidia et al., 2003). However, we only consider the node-

level cross entropy, as this was shown to perform the best on the Weizmann horses

in Domke (2013a). Furthermore, this is a reasonable way to directly train for the

accuracy of our models, since we evaluate with node-level Hamming loss.

Next, we provide experiments designed to validate that the above CRF configu-

rations provide a strong baseline for comparing against SPENs. First in Table 8.5 we

justify that our inference implementation is correct and that it performs similarly to

alternative methods with different message passing schedules. Second, in Table 8.6

we compare the results on the Weizmann horses from Domke (2013a) to the outputs

of our methods to demonstrate that end-to-end learning with our particular inference

algorithms can yield high-quality CRFs. A direct comparison to Domke (2013a) is

not possible, since the experiments differ in details of the unrolled inference, the size
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of the images considered, and the functional form of the features used, but the overall

results are similar. See the figures’ captions for more details.

Method # iters BP Junction Tree
MF 5 0.055 0.054
MF 25 0.051 0.051
BP 5 0.00013 0.0014
BP 25 1.7e-07 0.0014

Table 8.5: Justifying our choice of update schedules for MF and BP inference by
comparing accuracy to the outputs of the widely-used libDAI library (Mooij, 2010),
which employs alternative updates. Accuracy is computed as the `∞ norm between
node marginals (smaller is better). We report average accuracy on 18 5 × 5 grid
MRFs, where each value of the potentials is drawn independently from N(0, 2). Rows
indicate the method we use. The final two columns indicate which libDAI method was
employed. Junction Tree computes the true marginals. BP are marginals computed
using loopy belief propagation, but with a different schedule than ours. Overall, our
inference is very accurate.

FF MF BP
Train 90.5 92.2 93.6
Test 87.5 89.4 90.7

FF MF BP
Train 92.2 95.8 97.9
Dev 88.0 90.1 93.0
Test 88.2 89.6 91.9

Table 8.6: Justifying our choice of CRF inference algorithms and our modifications of
the Weizmann horses dataset by comparing end-to-end learning results from Domke
(2013a) (left) to our methods (right). The Domke (2013a) results unroll 40 iterations,
but obtain similar results with 10, and are trained with the same loss as our methods.
Unlike us, they unroll TRW message passing for BP. We report Hamming accuracy.
The improved performance of our methods over those of Domke (2013a) is likely due
to the use of deep convolutional features.

Finally, note that our mean-field approach differs from convention, in that it up-

dates all beliefs in parallel. This is to provide enhanced performance on a GPU.

Such updates may perform low quality energy minimization, however, and may not

even be convergent. To understand the performance effect of such updates, we con-

trast MF and GMF on our synthetic sequence tagging data. GMF performs proper
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gradient-based minimization of the mean-field energy, whereas MF performs fixed

point iteration that is not even guaranteed to converge. For each of the 20 test prob-

lems, we run each inference method using the model used to generate the data. We

compute the average difference between the outputs of MF and GMF, averaged

across 125 examples per test problem. We find that the mean absolute difference

between node marginals is only 0.06 on average.

8.4.2 Chain-Structured Problems

8.4.2.1 Accuracy

Most of this thesis focuses on situations where SPENs outperform baseline models,

including the next section on grid-structured CRFs. In many of those cases, it is

difficult to identify what accounts for SPENs’ superior performance. By evaluating

on data drawn from linear-chain CRFs in this section, we are able to isolate the

importance of various SPEN details. This comes with the cost that the results of this

section are largely negative for SPENs. Unsurprisingly, SPENs are outperformed by

various CRF methods, since the data is generated by CRFs.

MLE FF MF GMF SPEN
95.8 ± 1.6 65.1± 9.4 91.6 ± 2.6 89.6 ± 2.9 80.1 ± 5.4

Table 8.7: Relative Bayes accuracy percentage for various methods on the synthetic
data drawn from a CRF. Performance is averaged over 20 different learning problems.

Our results are presented in Table 8.7. First, observe that the relative Bayes

accuracy for MLE is 95.8%, not 100%. This is because we fit the model on limited

samples from the true underlying distribution. This provides a upper bound for

achievable performance using CRFs on this data. Next, note that the performance of

FF is poor. This is by construction: we generate data with strong coupling between

output variables, and we restrict the feature network to use width-1 convolutions.

Since the exact FF architecture acts as the local terms for the other models, any

139



performance improvement of the other structured prediction techniques must have

been achieved by capturing the interactions among outputs. Next, MF performs

worse than MLE. This is because MLE performs MBR decoding with exact marginal

inference, whereas MF employs approximate marginal inference. Note that GMF

performs similarly to MF. It seems that the use of a mean-field energy function is

more damaging than the particular optimization algorithm used to minimize it.

Finally, unfortunately SPEN performs worse than the other methods, but better

than FF. We found that the SPEN performance was fairly robust to various hyperpa-

rameters, such as whether we optimize simplex-constrained iterates or unconstrained

logit iterates.

The controlled experiments established in the previous section illuminate the

source of SPENs’ poor performance on this data:

• In MF vs. GMF, the configurations are identical except for the unrolled op-

timization method they train end-to-end. This suggests that both coordinate

descent and gradient descent are similarly effective optimization methods for the

mean field energy, and that both of these are similarly easy to learn end-to-end.

In other words, the effects of vanishing/exploding gradients are similar.

• In GMF vs. SPEN, we unroll the same optimization method, but employ a

different functional form for the non-local terms in the energy network. The

considerable accuracy difference suggests that this choice of architecture is cru-

cial. Consider a sequence of length 2 and domain size D, where the prediction

variable is broken into ȳ1 and ȳ2. Both are elements of the probability simplex

on D elements. The global energy network of the SPEN is:

c>SoftPlus (BSoftPlus (A1ȳ1 + A2ȳ2)) , (8.3)

for appropriately sized matrices and vectors. The analogous term for MF is:
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ȳ>1 Aȳ2. (8.4)

Perhaps GMF outperforms SPEN because (8.4) is a more parsimonious or

easier-to-train approximation of the energy function of the CRF that generated

the data. It has terms that explicitly interact components of ȳ1 and ȳ2, whereas

in (8.3) relies on mapping ȳ1 and ȳ2 to a feature representation, adding these

features, and scoring this using a non-linear function. The additive, rather than

multiplicative, interaction in the first layer may be problematic.

Note that we experimented with a simpler version of (8.3) that removes the

intermediate hidden layer, but the performance was worse.

Overall, we would need to perform similar controlled experiments on more problem

domains in order to draw general conclusions about the importance of these various

factors for SPEN performance.

8.4.2.2 Speed

Next we compare the speed of inference in a chain-structured CRF vs. a SPEN.

For a CRF, the computational complexity of the Viterbi and sum-product algorithms

is linear in L, the length of the sequence. On the other hand, the per-iteration

complexity of MF prediction in a CRF or prediction in a SPEN does not depend on

L, since the updates can be parallelized. However, we need to perform T iterations

of the updates.

In Figure 8.8 we vary L and plot the average number of seconds required to predict

on a single batch. For MF, we employ T = 10 iterations and for SPEN we employ

T = 15. These are typical values used in a variety of experiments. All computations

were performed on a GPU.

We find that that the time cost of Viterbi and sum-product is linear in L, but cost

of SPEN prediction does not depend on L. Unfortunately, in our implementation
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the time cost of MF also increases linearly with L. This is a symptom of software-

level issues. The torch bindings to the modern CUDNN libraries are limited, and one

of the operations necessary for MF (a batch matrix multiply) is not yet available.

We do not use any matrix multiplication library calls in our log-space sum-product

implementation.

Overall, various implementation-level details can have a tremendous impact on

the speed of prediction. For example, we perform sum-product in log space in order

to avoid numerical underflow. However, this introduces considerable overhead, as we

need to exponentiate many values in the inner loop. In many situations, it would

have been numerically safe to avoid log space entirely.

8.4.3 Grid-Structured Problems

It is important to contrast SPENs and CRFs on problems where exact inference in

CRFs is intractable. We consider a grid-structured CRF with data-dependent factors

between every pixel and its immediate neighbors. Each factor is parametrized by is

a 2 × 2 table of values, where each entry is a linear function of the concatenation

of the feature vectors for the two pixels involved. We separately tie the parameters

of these linear functions for all horizontal edges and for all vertical edges. All CRF

configurations can be used to produce a ‘soft prediction’ between 0 and 1 for every

pixel. As with our SPENs, we train all CRFs by minimizing the average pixel-level

cross entropy. We also pretrain our features by maximizing the performance of a local

classifier.

In order to avoid tremendous memory overhead when unrolling MF and BP for

many iterations, Domke (2013a) avoids storing values of the messages and beliefs at

intermediate iterations of backprop. Instead, these are reconstructed on the fly during

back-propagation. We have found that this is unnecessary for our application because

high quality predictions can be obtained using fewer than 10 inference iterations.
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Figure 8.8: Comparison of the average per-batch runtime of prediction in a linear-
chain CRF vs. a SPEN, as a function of the length of the sequence. Each step
of SPEN inference is easily parallelized across the length of the sequence, whereas
the forward-backward and Viterbi algorithms require sequential computation. Mean-
field inference in a CRF should have constant runtime, like a SPEN, but details of
the libraries used in our implementation prevent this.

Table 8.8 compares the performance of SPEN, MF, and BP on the horses data.

SPEN-k uses a receptive field size of k for the first convolutional layer in the energy

network. All hyperparameters were selected to maximize the performance on the Dev

data.
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SPEN-3 SPEN-5 SPEN-7 MF BP
Train 97.4 97.8 97.8 95.8 97.6
Dev 92.8 93.1 93.8 90.8 93.0
Test 91.8 91.9 92.3 89.6 91.9

Table 8.8: Comparing ther performance of SPENs and CRFs on the Weizmann horses
dataset. SPEN-k uses a filter width of k in the first layer of the energy network.

EXACT LP BP MF SPEN
0.798 ± 0.05 0.795 ± 0.05 0.757 ± 0.06 0.77 ± 0.02 0.8 ± 0.03

Table 8.9: Hamming accuracy for different prediction methods, which are used both
during SSVM training and at test time, using the setup of Finley & Joachims (2008)
on the Yeast dataset. SPENs perform comparably to EXACT and LP, which provide
stronger guarantees for SSVM training.

Here, a SPEN and a CRF can differ in two key ways. First, for SPEN-5 and

SPEN-7, the energy function is more expressive than the CRF. For SPEN-3, it is

similar. Second, the configurations maintain different representations when reason-

ing about candidate outputs. Both SPEN and MF maintain node-wise quantities.

However, BP maintains quantities between pairs of nodes. For image segmenta-

tion, explicitly reasoning about joint configurations between adjacent pixels may be

important because the problem relies crucially on edge detection.

We find that SPEN-3 outperforms MF, despite having similar representational

capacity. On the other hand, BP outperforms SPEN-3. We hypothesize that this is

because BP maintains edge-wise quantities during inference.

We find that increasing the receptive field of the SPEN energy network yields

small improvements in performance, since the higher-capacity energy networks are

vulnerable to overfitting. The horses dataset isn’t large enough to use these expressive

networks to their full potential.
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8.4.4 Multi-Label Classification

Due to scalability considerations, most prior applications of CRFs to multi-label

classification have been restricted to problems with substantially fewer output labels

than those considered in Belanger & McCallum (2016). In Table 8.9, we consider

the 14-label yeast dataset (Elisseeff & Weston, 2001), which is the largest problem fit

using a CRF in Finley & Joachims (2008) and Meshi et al. (2010).

Finley & Joachims (2008) analyze the effects of inexact prediction on SSVM

training and on test-time prediction. Table 8.9 considers exact prediction using an

ILP solver (EXACT, loopy belief propagation BP, solving the LP relaxation (LP),

an adaptation of the end-to-end MF approach described in the previous section, and

SPEN, where the same prediction technique is used at train and test time. Note that

here BP is not trained end-to-end. Instead max-product BP is used within SSVM

learning. All results, besides SPEN and MF, are from Finley & Joachims (2008).

The SPEN and MF use linear feature networks. We report Hamming accuracy,

using 10-fold cross validation.

We use Table 8.9 to make two arguments. First, it demonstrates that training MF

end-to-end can be a high-quality alternative to other CRF methods. Second, a key

argument of Finley & Joachims (2008) is that SSVM training is more effective when

the train-time inference method will not under-generate margin violations. Here, BP

and SPEN, which both approximately minimize a non-convex inference objective,

have such a vulnerability, whereas LP does not, since solving the LP relaxation pro-

vides a lower bound on the true solution to the value of (5.4). Since SPEN performs

similarly to EXACT and LP, this suggests that perhaps the effect of inexact pre-

diction is more benign for SPEN than for BP. However, SPEN exhibits alternative

expressive power to pairwise CRFs, and thus it is difficult to fully isolate the effect

of SSVM training on accuracy.
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8.5 SSVM vs. End-to-End Learning

All of the experiments in Belanger & McCallum (2016) employ SSVM learning.

Overall, we have found that the method behaves unreliably when loss-augmented

inference is intractable, and this has motivated our exploration of alternative training

techniques. On the other hand, SSVM learning is conceptually straightforward, is

easy to implement, and requires less memory overhead than end-to-end learning.

This section provides a couple of experiments using SSVM training. Additional

relevant experiments are provided in Chap. 12.

Method E2E E2E SSVM SSVM
ICNN no yes no yes
Train 97.4 95.6 93.0 95.5
Dev 92.8 91.0 89.3 91.1
Test 91.7 90.1 89.2 89.9

Table 8.10: Comparing end-to-end and SSVM learning for SPEN-3 and ICNN-3
configurations.

Table 8.10 compares end-to-end and SSVM learning on the horses dataset. We

train the SPEN-3 configuration, along with ICNN-3. These are identical, except

for the fact that the energy function of ICNN-3 is convex with respect to ȳ. We find

that end-to-end training outperforms SSVM training, enforcing convexity hurts the

performance of the model, and SSVM training performs poorly with a non-convex

energy.

Figure 8.9 plots an approximation of the SSVM train loss for SPEN-3 and ICNN-

3. It is an approximation because we evaluate the loss not using the global optimum

of loss-augmented inference, but instead the output of our approximate energy mini-

mization procedure. See the caption for additional discussion.
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Figure 8.9: Approximate SSVM training loss when training SPEN-3 and ICNN-3,
i.e., when using with non-convex and convex energies. The true SSVM loss is defined
in terms of a potentially intractable energy minimization problem. Here, we define the
approximate SSVM loss by using the output of approximate energy minimization as
a drop-in replacement for the actual energy minimum. As a consequence, the SSVM
loss may be zero, even if there are margin violations, when the energy minimization
procedure fails to find them. Here, this happens when we have a non-convex loss. The
SSVM loss quickly reaches zero, despite the fact that the learned model is low-quality.

8.6 Structure Learning Using SPENs

With SPENs, we can pose structure learning as feature learning in a deep network.

This section presents experiments on synthetic multi-label classification data designed

to illuminate the potential for SPENs to provide interpretable structure learning.
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Namely, we demonstrate that the label measurement matrix, C1 in the global energy

network (3.11), provides a useful tool for analyzing the structure of the dependencies

among the labels. The experiments also highlight that SPENs can excel in regimes of

limited training data, due to their superior parsimony compared to analogous feed-

forward approaches.

To generate data, we first draw a data matrix X with 64 features, with each

entry drawn from N(0, 1). Then, we generate a 64 x 16 weights matrix A, again from

N(0, 1). Then, we construct Z = XA and split the 16 columns of Z into 4 consecutive

blocks. For each block, we set Yij = 1 if Zij is the maximum entry in its row-wise

block, and 0 otherwise. We seek a model with predictions that reliably obey these

within-block exclusivity constraints.

Our architecture uses a global energy network that does not depend on x and a

linear function for the feature network. The global energy network has 2 layers and

4 hidden units.

Figure 8.10 depicts block structure in the learned measurement matrix. Measure-

ments that place equal weight on every element in a block can be used to detect

violations of the mutual exclusivity constraints characteristic of the data generating

process. The choice of network architecture can significantly affect the interpretability

of the measurement matrix, however. When using ReLU, which acts as the identity

for positive activations, violations of the data constraints can be detected by taking

linear combinations of the measurements (a), since multiple hidden units place large

weight on some labels. On the other hand, since applying HardTanh to measurements

saturates from above, the network learns to utilize each measurement individually.

This yields slightly more distinct block structure in (b) than in (a).

Next, in Table 8.11 we compare: a linear classifier, a 3-Layer ReLU MLP with

hidden units of size 64 and 16, and our SPEN (with HardTanh activations). Using

fewer hidden units in the MLP results in substantially poorer performance.
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# train examples Linear 3-Layer MLP SPEN
1.5k 80.0 81.6 91.5
15k 81.8 96.3 96.7

Table 8.11: Comparing performance (F1) on the synthetic task with block-structured
mutual exclusivity between labels. Due to its parsimonious parametrization, the
SPEN succeeds with limited data. With more data, the MLP performs comparably,
suggesting that even rigid constraints among labels can be predicted in a feed-forward
fashion using a sufficiently expressive architecture.

(a) ReLU (b) HardTanh

Figure 8.10: Learned SPEN measurement matrices on synthetic data containing mu-
tual exclusivity of labels within size-4 blocks, for two different choices of nonlinearity
in the global energy network. 16 Labels on horizontal axis and 4 hidden units on
vertical axis.

We find that the SPEN consistently outperforms the MLP, particularly when

training on only 1.5k examples. In the limited data regime, their difference is because

the MLP has 5x more parameters, since we use a simple linear feature network in

the SPEN. We also inject domain knowledge about the constraint structure when

designing the global energy network’s architecture.

Next, observe that for 15k examples the performance of the MLP and SPEN are

comparable. Initially, we hypothesized that the mutual exclusivity constraints of the

labels could not be satisfied by a feed-forward predictor, and that reconciling their

interactions would require an iterative procedure. However, it seems that a large,
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expressive MLP can learn an accurate predictor for this data when presented with

lots of examples.
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CHAPTER 9

SPENS FOR NATURAL LANGUAGE PROCESSING

This chapter presents a collection of experiments on various NLP tasks where we

seek to predict discrete output. They are chosen to highlight different aspects of

SPENs’ strengths and weaknesses. In all tasks, SPEN performance either achieves

the state of the art or is competitive with it.

First, Sec. 9.1 considers semantic role labeling (SRL). The task is challenging

for SPENs because the outputs are subject to rigid, non-local constraints. On the

other hand, it is clear that there are interesting statistical regularities of outputs that

cannot be captured by popular baseline models but could be captured by a global

SPEN energy.

After that, Sec. 9.2 considers multi-label classification for tagging documents.

Here, we are given no structure a-priori for the interactions among output labels.

This is a natural use-case for SPENs because we can perform automatic structure

learning by fitting a global energy. We are able to scale to problems with a large

number of labels, where existing factor graph approaches would be intractable.

Sec. 9.3 presents applications of SPEN-CRFs to the task of citation field extrac-

tion. We are given a string corresponding to a citation in the references or bibliog-

raphy section of a research paper and need to segment it into fields corresponding to

authors, title, venue, date, etc. This is a useful task for evaluating SPEN-CRFs be-

cause the outputs are subject to hard constraints on allowed label sequences, similar

to the BIO tags explained in Sec. 2.4. There are also global regularities of outputs.

For example, author fields tend to occur before title fields.
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Finally, Sec. 9.4 contrasts the performance of SPEN-CRFs with high-order CRFs

on a popular optical character recognition benchmark. These experiments demon-

strate the importance of design decisions for the energy function architecture.

9.1 Semantic Role Labeling

SRL predicts the semantic structure of predicates and arguments in sentences (Gildea

& Jurafsky, 2002). For example, in the sentence “I want to buy a car,” the verbs

“want” and “buy” are two predicates, and “I” is an argument that refers to the wan-

ter and buyer, “to buy a car” is the thing wanted, and “a car” is the thing bought.

Formally, given a set of predicates p in a sentence x and a set of candidate argu-

ment spans a, we assign a discrete semantic role y to each pair of a predicate and an

argument, where y can be either a pre-defined role label or an empty label.

Existing work imposes hard constraints on y. The objective is to minimize the

energy:

min
y
E(y ;x, p, a) s.t. y ∈ Y(x, p, a), (9.1)

where Y(x, p, a) is set of feasible joint role assignments. This constrained optimization

problem can be solved using integer linear programming (ILP) (Punyakanok et al.,

2008) or its LP relaxation (Das et al., 2012). These methods rely on the output of

local classifiers that were trained without regard for the structural constraints. More

recently, Täckström et al. (2015) account for the constraint structure using dynamic

programming at train time. FitzGerald et al. (2015) extends this using neural network

features and show improved results.

There are two principal families of hard constraints describing the set Y(x, p, a).

First, for a given predicate the arguments that attach to it cannot overlap. Second,

for a given predicate, at most one argument can be take on each of the available ‘core

roles’ (Punyakanok et al., 2008). Core roles are basic relations, like the relationships

between the agent and an action or a patient and an action.
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9.1.1 Data and Preprocessing and Baselines

We consider the CoNLL 2005 shared task data (Carreras & Màrquez, 2005), with

standard data splits and official evaluation scripts. We apply similar preprocessing

as Täckström et al. (2015). This includes part-of-speech tagging, dependency parsing,

and using the parse to generate candidate arguments.

Our baseline is an arc-factored model for the conditional probability of the predicate-

argument arc labels:

P(y|x, p, a) = ΠiP(yi|x, p, a). (9.2)

where P(yi|x, p, a) ∝ exp
(
g(yi, x, p, a)

)
. Here, each conditional distribution is given

by a logistic regression model. We compute g(yi, x, p, a) using a multi-layer perceptron

(MLP) similar to FitzGerald et al. (2015). Its inputs are discrete features extracted

from the argument span and the predicate (including words, pos tags, and syntactic

dependents), and the dependency path and distance between the argument and the

predicate. These features are transformed to a 300-dimensional representation lin-

early, where the embeddings of word types are initialized using newswire embeddings

from Mikolov et al. (2013). We map from 300 dimensions to 250 to 47 (the number

of semantic roles in CoNLL) using linear transformations separated by tanh layers.

We apply dropout to the embedding layer with rate 0.5, and train using Adam with

default settings (Kingma & Ba, 2015a) to minimize the per-arc cross entropy loss.

When using the negative log of (9.2) as an energy in (9.1), there are variety of

methods for finding the optimal y ∈ Y(x, p, a). First, we can employ simple heuristics

for locally resolving constraint violation. The Local + H configuration uses (9.2)

and these. We can instead use the AD3 message passing algorithm (Martins et al.,

2011b) to solve the LP relaxation of this constrained problem. We use Local + AD3

to refer to this configuration. Since the LP relaxation does not guarantee feasible

outputs, we post-process the AD3 output using the same heuristics as Local + H.
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9.1.2 SPEN Model

We employ a pretrained version of (9.2) to provide the local energy term of a

SPEN. This is augmented with global terms that couple the outputs together.

The SPEN performs continuous optimization over the relaxed set ȳi ∈ SD for each

discrete label yi, where D is the number of possible roles and Sd is the probability

simplex on D elements. The preprocessing generates sparse predicate-argument can-

didates, but we optimize over the complete bipartite graph between predicates and

arguments to support vectorization. We have ȳ ∈ Sn×mD , where n and m are the max

number of predicates and arguments. Invalid arcs, i.e, those that were filtered by

preprocessing, are constrained to the empty label.

9.1.2.1 Global Energy Terms

From the pre-trained model (9.2), we define fr as the predicate-argument arc

features, We also have predicate features fp and argument feature fa, given by the

average word embedding of the token spans. The hidden layers of any MLP described

below are 50-dimensional. Each MLP is two layers, with a SoftPlus in the middle.

Let ȳp ∈ SmD be the sub-tensor of ȳ for a given predicate p and let zp =
∑

k ȳp[:

, k] ∈ [0, 1]m, where zp[a] is the total amount of mass assigned to the arc between

predicate p and argument a, obtained by summing over possible labels. We also

define mp =
∑

k ȳp[k, :] ∈ RA
+. This is a length-A vector containing how much total

mass of each arc label is assigned to predicate p. Finally, define sr =
∑

k ȳ[:, :, k].

This is the total mass assigned to arc r, obtained by summing over the possible labels

that the arc can take on.

The global energy is defined by the sum of the following terms. The first energy

term scores the set of arguments attached to each predicate. It computes a weighted

average of the features fa for the arguments assigned to predicate p, with weights

given by zp. It then concatenates this with fp, and passes the result through an MLP
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that returns a single number. The total energy is the sum of the MLP output for

every predicate. The second energy term scores the labels of the arcs attached to

each predicate. We concatenate fp with mp and pass this through an MLP as above.

The third energy term models how many arguments a predicate should take on. For

each predicate, we predict how many arguments should attach to it, using a linear

function applied to fp. The energy is set to the squared difference between this and

the total mass attached to the predicate under ȳ, which is given by
∑

kmp[k]. The

fourth energy term averages mp over all p and applies an MLP to the result. The

fifth term computes a weighted average of the arc features fr, with weights given by

sr and also applies an MLP to the result. The last two terms capture general topical

coherence of the prediction.

9.1.2.2 Constraint Enforcement

As with Täckström et al. (2015), we seek to account for constraints Y(x, p, a) dur-

ing both inference and learning, rather than only imposing them via post-processing.

Therefore, we include additional energy terms that encourages membership in Y(x, p, a)

using twice-differentiable soft constraints that can be applied to ȳ. All of the con-

straints in Y(x, p, a) express that certain arcs cannot co-occur. For example, two

arguments cannot attach to the same predicate if the arguments correspond to spans

of tokens that overlap. Consider general binary variables a and b with corresponding

relaxations ā, b̄ ∈ [0, 1]. We convert the constraint ¬(a ∧ b) into an energy function

αSoftPlus(ā+ b̄− 1), where α is a learned parameter.

We consider SPEN + H and SPEN + AD3, which employ heuristics or AD3 to

enforce the output constraints. Rather than applying these methods to the continuous

probabilities output by the model (9.2), we use the output of energy minimization.
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Dev Test Test
Model (WSJ) (WSJ) (Brown)

Local + H 78.0 79.7 69.7
Local + AD3 78.2 80.0 69.9
SPEN + H 79.0 80.7 69.3

SPEN + AD3 79.0 80.7 69.4

Täckström (Local) 77.9 79.3 70.2
Täckström (Structured) 78.6 79.9 71.3

FitzGerald (Local) 78.4 79.4 70.9
FitzGerald (Structured) 78.3 79.4 71.2

Table 9.1: SRL Results (F1)

9.1.3 Results and Discussion

Table 9.1 contains results on the CoNLL 2005 WSJ dev and test sets and the

Brown test set. We compare the SPEN systems and Local systems and the best

non-ensemble systems of Täckström et al. (2015) and FitzGerald et al. (2015), which

have similar overall setups as us. Note that Zhou & Xu (2015) obtain slightly better

performance using alternative methods.

For these, ‘Local’ refers to fitting (9.2) without regard for the output constraints,

whereas ‘Structured’ explicitly considers them during training. We select our SPEN

configuration by maximizing performance of SPEN + AD3 on the dev data. Our

best system unrolls for 10 iterations, trains per-iteration learning rates, uses no mo-

mentum, and unrolls (5.12).

Overall, SPEN + AD3 performs the best of all systems on the WSJ test data. We

expect our diminished performance on the Brown test set is due to overfitting. The

Brown set is not from the same source as the train, dev, and test WSJ data. SPENs

are more susceptible to overfitting because the expressive global term introduces many

parameters.

Note that SPEN + AD3 and SPEN + H performs identically, whereas LOCAL

+ AD3 and LOCAL + H do not. This is because our learned global energy

encourages constraint satisfaction during gradient-based optimization of y. Using
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the method of Amos et al. (2017) for restricting the energy to be convex wrt y, we

obtain 80.3 on the test set. When taking so few gradient steps, it is hard to understand

the impact of convex energies.

9.2 Multi-Label Document Classification

In multi-label classification (MLC), we are given an arbitrary input x and seek

to predict a collection of labels y ∈ {0, 1}L. Often, we are given no topology among

the labels in advance. This contrasts, for example, with a time series, where yi is

typically more correlated with yi+1 than yi+10.

When using a factor graph for MLC, we need to either make a strict assumption

about the labels’ interactions, or model at least L2 terms (Ghamrawi & McCallum,

2005; Finley & Joachims, 2008; Meshi et al., 2010; Petterson & Caetano, 2011) ,

unless we make strict assumptions about labels’ dependencies (Read et al., 2011;

Niculescu-Mizil & Abbasnejad, 2015). This is prohibitive for large L. In contrast,

the general SPEN architecture for MLC given in Section 3.3.1 provides linear scaling

in L. Specifically, the per-iteration computational complexity of prediction is linear

in L, as is the number of parameters to estimate.

The experiments in Belanger & McCallum (2016) are all on MLC. The problem

is well-suited to demonstrating the capabilities of SPENs, since it requires structure

learning, which we can do automatically when fitting the SPEN.

9.2.1 Related Work

The most simple multi-label classification approach is to independently predict

each label yi using a separate classifier. This can perform poorly, particularly when

certain labels are rare or some are highly correlated. Modeling improvements use max-

margin or ranking losses that directly address the multi-label structure (Elisseeff &

Weston, 2001; Godbole & Sarawagi, 2004; Bucak et al., 2009).
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Correlations between labels can be modeled explicitly using models with low-

dimensional embeddings of labels (Ji & Ye, 2009; Cabral et al., 2011; Yu et al., 2014;

Bhatia et al., 2015). This can be achieved, for example, by using low-rank parameter

matrices. In the SPEN framework, such a model would consist of a linear feature

network (3.9) of the form F (x) = A1x, where A1 has fewer rows than there are target

labels, and no global energy network. While the prediction cost of such methods

grows linearly with L, these models have limited expressivity, and cannot capture

strict structural constraints among labels, such as mutual exclusivity and implicature.

By using a non-linear multi-layer perceptron (MLP) for the feature network with

hidden layers of lower dimensionality than the input, we are able to capture similar

low-dimensional structure, but also capture interactions between outputs. In our

experiments, MLP is a competitive baseline that has been under-explored in prior

work.

Our parametrization of the global energy network (3.11) in terms of linear mea-

surements of the labels is inspired by prior approaches using compressed sensing and

error-correcting codes for multi-label classification (Hsu et al., 2009; Hariharan et al.,

2010; Kapoor et al., 2012). However, these rely on assumptions about the sparsity

of the true labels or prior knowledge about label interactions, and often do not learn

the measurement matrix from data. We do not assume that the labels are sparse.

Instead, we assume their interaction can be parametrized by a deep network applied

to a set of linear measurements of the labels.

9.2.2 Experiments

Table 9.3 compares SPENs to a variety of high-performing baselines on a selection

of standard multi-label classification tasks. The experiments in this section are pre-

sented as they appear in Belanger & McCallum (2016). They all use SSVM learning.
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#labels #features # train % true labels
Bibtex 159 1836 4880 2.40

Delicious 983 500 12920 19.02
Bookmarks 208 2150 60000 2.03

Table 9.2: Properties of the datasets.

BR LR MLP DMF SPEN
Bibtex 37.2 39.0 38.9 40.0 42.2

Bookmarks 30.7 31.0 33.8 33.1 34.4
Delicious 26.5 35.3 37.8 34.2 37.5

Table 9.3: Comparison of various methods on 3 standard datasets in terms of F1
(larger is better).

Dataset sizes, etc. are described in Table 9.2. We contrast SPENs with BR: in-

dependent per-label logistic regression (a.k.a. the ‘binary relevance model’); MLP:

multi-layer perceptron with ReLU non-linearities trained with per-label logistic loss,

i.e., the feature network equation (3.9) coupled with the local energy network equa-

tion (3.10); and LR: the low-rank-weights method of Yu et al. (2014). BR and LR

results, are from Lin et al. (2014). The local energy of the SPEN is identical to the

MLP.

We also compare to deep mean field (DMF) (Sec. 8.4.1). We consider 5 iterations of

mean-field inference in a fully connected pairwise CRF with data-dependent pairwise

factors, and perform end-to-end maximum training to minimize the cross entropy loss

of the predicted node marginals. Local factors are identical to the MLP classifier, and

their parameters are clamped to reduce overfitting (unlike any of the other methods,

the DMF has L2 parameters). Note that we only obtained high performance by using

pretrained unary factors from the MLP. Without this, accuracy was about half that

of Table 9.3.
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We report the example averaged (macro average) F1 measure. For Bibtex and

Delicious, we tune hyperparameters by pooling the train and test data and sampling

without replacement to make a split of the same size as the original. For Bookmarks,

we use the same train-dev-test split as Lin et al. (2014).We seleced 15 linear mea-

surements (rows of C1 in (3.11)) for Bookmarks and Bibtex, and 5 for Delicious. For

SPENs, we obtain predictions by rounding ȳi above a threshold tuned on held-out

data.

There are multiple key results in Table 9.3. First, SPENs are competitive com-

pared to all of the other methods, including DMF, a structured prediction technique.

While DMF scales computationally to moderate scales, since it is vectorized and can

be run efficiently on a GPU, it cannot scale statistically, since the pairwise factors

have so many parameters. As a result, we found it difficult to avoid overfitting with

DMF on the Bookmarks and Delicious datasets. In fact, the best performance is

obtained by using the MLP unary factors and ignoring pairwise terms. Second, MLP,

a technique that has not been treated as a baseline in recent literature, is surprisingly

accurate as well. Finally, the MLP outperformed SPEN on the Delicious dataset.

Here, we found that accurate prediction requires well-calibrated soft predictions to

be combined with a confidence threshold. The MLP, which is trained with logistic

regression, is better at predicting soft predictions than SPENs, which are trained

with a margin loss. To obtain the SPEN result for Delicious in Table 9.3, we need to

smooth the test-time prediction problem with extra entropy terms to obtain softer

predictions.

Many multi-label classification methods approach learning as a missing data prob-

lem. Here, the training labels y are assumed to be correct only when yi = 1. When

yi = 0, they are treated as missing data, whose values can be imputed using assump-

tions about the rank (Lin et al., 2014) or sparsity (Bucak et al., 2011; Agrawal et al.,

2013) of the matrix of training labels. For certain multi-label tasks, such modeling is
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useful because only positive labels are annotated. For example, the approach of (Lin

et al., 2014) achieves 44.2 on the Bibtex dataset, outperforming our method, but only

33.3 on Delicious, substantially worse than the MLP or SPEN. Missing data modeling

is orthogonal to the modeling of SPENs, and future work could combine missing data

techniques with SPENs.

9.3 SPEN-CRFs for Sequence Tagging

9.3.1 Citation Extraction

Model F1
Our Baseline CRF 94.47

CRF-SPEN 95.47
Baseline CRF of Anzaroot et al. (2014) 94.41

Soft-DD (Anzaroot et al., 2014) 95.39

Table 9.4: Comparison of F1 scores on Citation Extraction dataset for a CRF-SPEN
vs. the specialized global factor graph of Anzaroot et al. (2014) (Soft-DD). Both vari-
ants learn global regularities that significantly improve performance. The difference
between the performance of Soft-DD and CRF-SPEN ois insignificant.

We next apply SPEN-CRFs to the NLP task of performing text field segmenta-

tion on the UMass citation dataset (Anzaroot & McCallum, 2013). It contains 1456

training, 366 testing, and 659 development strings of citations from research papers,

segmented into fields (author, title, etc.).

Our modeling approach, closely follows Anzaroot et al. (2014), who extract seg-

mentations using a linear-chain segmentation model, to which they add a large set of

‘soft’ linear global regularity constraints. Let y be a candidate discrete labeling and

let S(y) be the sufficient statistics for a linear-chain factor graph (Sec. 2.3.2).

Imagine, for example, that we constrain predicted segmentations to have no more

predicted last names than first names. The numbers of first and last names can

be computed by linear measurements a>firstS(y) and a>lastS(y), respectively. A hard
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constraint on y would enforce a>firstS(y) − a>lastS(y) = 0. This is relaxed in Anzaroot

et al. (2014) to a penalty term

c`h
(
a>firstS(ȳ)− a>lastS(ȳ)

)
(9.3)

that is added to the MAP inference objective for the chain-structured base model,

where `h(x) = max(1 − x, 0) is a hinge function. For multiple soft constraints, the

overall prediction problem is

arg min
y
〈θ, S(y)〉+

∑
j

cj`h
(
a>j S(y)

)
, (9.4)

where θ are the natural parameters of the underlying linear-chain MRF (θ depends on

x). In Anzaroot et al. (2014), the authors use a dual decomposition style algorithm

for solving (9.4), that crucially relies on the specific structure of the hinge terms `h.

They learn the cj for hundreds of ‘soft constraints’ using a perceptron-style algorithm.

To adapt this model as a SPEN-CRF, we consider the same set of measurement

vectors aj, but impose non-local terms that act on marginals µ rather than on the

sufficient statistics S(y) of a discrete prediction. Further, we use smoothed hinge

functions, aka a SoftPlus, which improve the convergence rate of energy minimiza-

tion (Rennie, 2005). We find the variational distribution by solving the marginal

inference version of (9.4), an instance of a SPEN-CRF energy (6.6):

arg min
µ
〈θ, µ〉 −HB(µ) +

∑
j

cj`h
(
a>j µ

)
, (9.5)

As in Anzaroot et al. (2014), we first learn chain the parameters for the functional

dependence of θ on x on the training set. Then, we learn the cj parameters on

the development set, using the method of Sec. 6.4.2, and tune hyperparameters for
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development set performance. At both train and test time, we ignore any terms

in (9.5) for which cj < 0.

We present our results in Tab. 9.4, measuring segment-level F1. We can see

that our baseline chain has slightly higher accuracy than the baseline approach of

Anzaroot et al. (2014), possibly due to optimization differences. Our SPEN-CRF

matches and very slightly beats their soft dual decomposition (Soft-DD) procedure.

This is especially impressive because they employ a specialized linear-programming

solver and learning algorithm adapted to the task of MAP inference under hinge-

loss soft constraints, whereas we simply plug in our general learning and inference

algorithms for CRF-SPENs – applicable to any set of energy functions.

Our comparable performance provides experimental evidence for our intuition that

preferences about MAP configurations can be expressed as functions of expectations.

Anzaroot et al. (2014) solve a penalized MAP problem directly, while our prediction

algorithm first finds a distribution satisfying these preferences, and then performs

standard MAP inference in that distribution.

9.4 Handwriting Recognition

We next apply CRF-SPENs to the widely-used handwriting recognition dataset

of Taskar et al. (2004). It contains images of 6877 handwritten words with an average

length of 8 characters per word. Each character is represented as a 16-by-8 binary

image. We follow the setup of Weiss & Taskar (2010), splitting the data into 10 equally

sized folds, using 9 for training and one to test. We report the cross-validation results

across all 10 folds.

The structured prediction cascades method of Weiss & Taskar (2010) achieves high

performance on this dataset by using a factor graph that models extremely high-order

factors of characters (up to 6-grams). Inference in such a model would typically be

intractably slow, but their cascadr method prunes the search space for the high-order
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model using confidence scores from low-order models. Their results are reproduced

in Tab. 9.5. The excellent performance of these high-order models is consequence of

the fact that the data contains only 55 unique words, written by 150 different people.

Once the model has access to enough higher-order context, the problem becomes

much easier to solve.

With this in mind, we design two non-convex, non-local energy functions. These

energies are intended to regularize our predictions to lie close to known elements of

the vocabulary. Our base model is a standard linear-chain CRF with image features

on the nodes, and data-independent bigram edge factors. Let U(µ) =
∑

n µn be a

function that takes the concatenated vector of node and edge marginals and sums

up all of the node marginals, giving the global unigram expected sufficient statistics.

Let {ui} = {U(µ(yi))} indicate the set of all such unique vectors when applying U

to the train set empirical sufficient statistics for each data case yi. Simply, this gives

55 vectors ui of length 26 containing the unigram counts for each unique word in the

train set.

Our intuition is that we would like to be able to “nudge” the results of inference

in our chain model by pulling the inferred U(µ) to be close to one of these global

statistics vectors. In response, we add the following non-convex non-local energy

function to the model:

Gu
x(µ) = a(x) min

i
‖ui − U(µ)‖1. (9.6)

We learn two variants of this model, which differently parametrize the depen-

dence of the scaling factor a(x) on x. The first does not depend on x and treats a

as a constant. The second applies a linear function to a global representation f(x):

concretely, we approximate the radial basis function kernel mean map (MM) (Smola

et al., 2007) using random Fourier features (RFF) (Rahimi & Recht, 2007). This sim-

ply involves multiplying each image feature vector in the sequence by a random matrix
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with 1000 rows, applying a pointwise non-linearity, and setting f(x) to the average of

these vectors. In essence, this corresponds to a one-layer multi-layer perceptron with

non-learned weights.

N-Grams 2 3 4 5 6
Accuracy 85.02 96.20 97.21 98.27 98.54

Table 9.5: Character-wise accuracy of Structured Prediction Cascades (Weiss &
Taskar, 2010) on OCR dataset.

Model Accuracy
2-gram factor graph (base model) 84.93

Gu
x 94.01

Gu
x (MM) 94.96
Gw
x 98.26

Gw
x (MM) 98.83

55-Class Classifier (MM) 86.06

Table 9.6: Character-wise accuracy of our baselines, and models using learned non-
local energies on Handwriting Recognition dataset.

Results of these experiments can be seen in Table 9.6. Adding the non-local energy

brings our performance well above the baseline bigram chain model, and our training

procedure is able to give substantially better performance using the Gu
x (MM) energy,

where the scale of the global energy depends on x.

Note that energy Gu
x, based on unigram sufficient statistics, is not able to cap-

ture the relative ordering of letters in the vocabulary words, which the structured

prediction cascades models do capture. This motivates us to consider another energy

function that is sensitive to order. Let {wi} = {µn(yi)} be the set of unique vectors

of concatenated node marginal statistics for the train set. This gives 55 vectors of

length li ∗ 26, where li is the length of the ith distinct train word. Next, we define a

different energy function to add to our base chain model:
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Lwx (µ) = a(x) min
i
‖wi − µ‖1. (9.7)

Once again we implement versions of a(x) that are either a constant or depend on

x via MM features. As noted in Weiss & Taskar (2010), giving the model access to

this level of high-order structure in the data makes the inference problem extremely

easy. Our model outperforms the best structured prediction cascades results, and we

note again an improvement from using the featurized over the non-featurized global

energy function.

Of course, since the dataset has only 55 actual labels, and some of those are

not valid for different input sequences due to length mismatches, this is arguably a

classification problem as much as a structured prediction problem. To address this,

we create another baseline, which is a constrained 55-class logistic regression classifier

(constrained to only allow choosing output classes with appropriate lengths given the

input). We use our same global mean-map features from the G∗x (MM) variants of

the structured model and report these results in Tab. 9.6. We also tune the number of

random Fourier features as a hyperparameter to give the classifier as much expressive

power as possible. As we can see, the performance is still significantly below the best

structured models, indicating that the interplay between local and global structure is

important. ‘
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CHAPTER 10

SPENS FOR IMAGE DENOSING

In this chapter, we use SPENs to denoise grayscale images. The task is a natural

application of SPENs because the output is fundamentally continuous, and thus we

do not need to convert the output of energy minimization to a discrete prediction.

Our experiments compare methods along two axes: the expressivity of the energy

function employed and the sophistication of the unrolled optimizer that is trained

end-to-end. Specifically, we contrast energies that are simple and convex with general

energies given by a deep network. We also contrast an optimization method that is

specifically designed to efficiently leverage the factorization structure of the simple

energy with a generic first-order optimization method. For our particular task, we

find that it is more effective in practice to use an expressive deep energy, even if this

prevents us from using sophisticated optimizers.

10.1 Denoising by MAP Inference

Let x ∈ [0, 1]w×h be an observed grayscale image. We assume that it is a noisy

realization of a latent clean image ȳ ∈ [0, 1]w×h, which we estimate using MAP in-

ference. Consider a Gaussian noise model with variance σ2 and a prior P(ȳ). The

associated energy function is:

Ex(ȳ) = ‖ȳ − x‖2
2 − σ2 logP(ȳ). (10.1)

Here, the feature network is the identity. The first term corresponds to a local energy

term and second is a global energy that depends on ȳ but not x. Depending on how we
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evaluate predictions, it may actually be optimal to predict the posterior mean, rather

than the MAP value. However, this chapter focuses on the framework of MAP-based

prediction as it yields more natural approximation algorithms for SPENs. In addition,

the two approaches may be very similar if the posterior is highly concentrated.

There are three general families for the prior. First, it can be hard-coded, using

assumptions about the smoothness of images. Second, it can be learned by approx-

imate density estimation. Third, given a collection of {x, ȳ} pairs, we can perform

supervised learning, where the prior’s parameters are discriminatively trained such

that the output of a particular algorithm for mimimizing (10.1) is high-quality. End-

to-end learning has proven to be highly succesful for the third approach (Tappen

et al., 2007; Barbu, 2009; Schmidt et al., 2010; Sun & Tappen, 2011; Domke, 2012;

Wang et al., 2016), and thus it is important to evaluate the methods of this paper on

the task.

Much of the existing work on end-to-end training for denoising considers some

form of a field-of-experts (FOE) prior (Roth & Black, 2005). We consider an `1

version, which assigns high probability to images with sparse activations from K

learned filters:

P(ȳ) ∝ exp

(
−
∑
k

‖(fk ∗ ȳ)‖1

)
. (10.2)

Wang et al. (2016) perform end-to-end learning for (10.2), by unrolling proximal gra-

dient methods that analytically handle the non-differentiable `1 term. Note that (10.2)

is convex with respect to ȳ.

This paper assumes we only have black-box interaction with the energy. In re-

sponse, we alter (10.2) such that it is twice differentiable, so that we can unroll

generic first-order optimization methods. The non-differentiability of (10.2) results

from the ‖·‖1 term, which is a sum of terms passed through absolute value functions.

We approximate (10.2) by leveraging a SoftPlus with a temperature of 25, replacing

the absolute value function |s| with:
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SoftAbs(s) = 0.5 SoftPlus(s) + 0.5 SoftPlus(−s). (10.3)

The principal advantage of learning algorithms that are not hand-crafted to the

problem structure is that they provide the opportunity to employ more expressive

energies. In response, we also consider a deeper prior, given by:

P(ȳ) ∝ exp (−DNN(ȳ)) . (10.4)

Here, DNN(ȳ) is a general deep convolutional network that takes an image and returns

a number. The architecture in our experiments consists of a 7× 7× 32 convolution,

a SoftPlus, another 7× 7× 32 convolution, a SoftPlus, a 1× 1× 1 convolution, and

finally spatial average pooling. A 1×1×1 convolution is identical to applying a linear

transformation to the features at each pixel that maps each pixel to a single number.

The method of Wang et al. (2016) cannot handle this prior.

10.2 Experimental Setup

We evaluate on the 7-Scenes dataset (Newcombe et al., 2011), where we seek to

denoise depth measurements from a Kinect sensor. Our data processing and hyperpa-

rameters are designed to replicate the setup of Wang et al. (2016), who demonstrate

state-of-the art results for energy-minimization-based denoising on the dataset. Ta-

ble 10.1 summarizes our results for a selection of configurations. Example outputs

are given in Figure 10.1. We train using random 96 × 128 crops from 200 images of

one scene. We report PSNR for 5500 images from the other 6 scenes.

We expect that the conclusions of our depth denoising experiments would carry

over to the task of denoising 3-channel natural images. In Wang et al. (2016), the

authors successfully use the same architecture for both tasks.
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10.3 Results and Discussion

Our experiments here focus on end-to-end learning. See Sec. 12.4 for additional

experiments on the 7-Scenes data using alternative SPEN learning methods, including

SSVM.

The first row of Table 10.1 presents various baselines. BM3D is a widely-used

non-parametric method (Dabov et al., 2007). FilterForest adaptively selects de-

noising filters for each location (Fanello et al., 2014). ProximalNet is the system

of Wang et al. (2016). FOE-20 is an attempt to replicate ProximalNet using end-

to-end SPEN learning. We unroll 20 steps of gradient descent with momentum 0.75

and use the modification in (10.3). Note it performs similarly to ProximalNet,

which unrolls 5 iterations of sophisticated optimization. If we train a feed-forward

convnet, using the same architecture as our DNN prior, but without spatial pooling,

we obtain 37.0.

The next set of results considers improved instances of the FOE model. First,

FOE-20+ is identical to FOE-20, except that it employs the average loss (5.15), uses

a momentum constant of 0.25, and treats the learning rates ηt as trainable parameters.

We find that this results in both better performance and faster convergence. Of

course, we could achieve fast convergence by simply setting T to be small. In response,

we consider FOE-3. This only unrolls for T = 3 iterations and obtains superior

performance.

The final two results are with the DNN prior (10.4). DeepPrior-20 unrolls 20

steps of gradient descent with a momentum constant of 0.25. The gain in performance

is substantial, especially considering that a PSNR of 30 can be obtained with elemen-

tary signal processing. Similar to FOE-3 vs. FOE-20+, we experience a modest

performance gain using DeepPrior-3, which only unrolls for 3 gradient steps but is

otherwise identical.
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BM3D FilterForest ProximalNet FOE-20
35.46 35.63 36.31 36.41

FOE-20+ FOE-3 DeepPrior-20 DeepPrior-3
37.34 37.65 40.3 40.4

Table 10.1: Denoising Results (PSNR)

In general, it is superior to only unroll for a few iterations. One possible reason

is that the shallow depth of the unrolled architecture is easier to train. Truncated

optimization with respect to ȳ may also provide an interesting prior over outputs (Du-

venaud et al., 2016), which can be particularly useful because the Gaussian noise

model assumed in (10.1) is not characteristic of the data collection process (Wang

et al., 2016). This is consistent with the observation of (Wang et al., 2014) that

better energy minimization for FOE models may not improve PSNR. Also, note that

unrolling for 20 iterations often results in over-smoothed outputs for all of the con-

figurations. This performance is also well-motivated by theory if we only unroll for a

single iteration, due to connections between denoising autoencoders, score matching,

and energy-based models (Sec. 7.11).

Finally, note that we were unable to achieve reasonable performance when en-

forcing the ICNN constraint (Sec. 3.6), which restricts all of the parameters of the

convolutions to be positive. Unfortuately, this condition prevents the filters in the

low levels of the SPEN energy to act as edge detectors and as filters that encour-

age pixels’ values to be close to the average of their neighbors. Both of these are

important for high-quality denoising. The FOE energy is convex, even if we do not

constraint the parameters to be positive. We can achieve good performance with an

FOE, but not with a ICNN-constrained FOE. In future work, it may be fruitful to

employ alternative methods to the ICNN constraint for enforcing convexity.
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Ground Truth Noisy Input

FOE-20 FOE-20+

DeepPrior-20 DeepPrior-3

Figure 10.1: Example Denoising Outputs
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CHAPTER 11

CAPTURING UNCERTAINTY WITH SPENS

When learning SPENs, there are multiple sources of uncertainty we need to ac-

count for:

• Uncertainty during Learning: Our energy function might not capture the

data well, especially at the beginning of learning. Therefore, deterministically

following gradients of the energy may not efficiently explore high-quality output

regions.

• Uncertainty about Predictions: Our prediction problem may be funda-

mentally multi-modal, where there are multiple values of ȳ that are likely given

x. In many applications, it can be useful to predict multiple values, rather than

a single point, in order to account for the diversity of likely values.

To address both of these sources of uncertainty, it is important to use randomized

methods at train and test time that explicitly explore the space of outputs and to

train using a loss function that rewards models that capture the multiple modes.

In the previous chapters, we always predict a single output ȳ using SPEN energy

minimization. Furthermore, when we train end-to-end using a loss function such as

the mean squared error (MSE), our loss is minimized when we predict the condi-

tional expectation of P(ȳ|x). This may be inappropriate when the data’s conditional

distribution P(ȳ|x) is multi-modal.

Consider, for example, the 2-dimensional distribution in Fig. 11.1. We assume

that this contains draws from the data’s true conditional distribution P(ȳ|x) for some
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Figure 11.1: Example data drawn from a GMM (blue), cluster centers (black), and
point that minimizes the mean-squared error to the data (red).

x. Here, the data is clustered around two modes, and the top right cluster is more

likely than the bottom left one. The MSE will be minimized if we predict the red star,

even though this value has low density under the data distribution. This is because

fitting a model with the MSE implicitly assumes a uni-modal Gaussian distribution

for the data.

See Sec. 2.2.4 for a discussion regarding the distinction between training to maxi-

mize the conditional likelihood of the data vs. training to minimize the loss of predic-

tions. In the first, the model takes x and returns the parameters θ for a parametrized

conditional distribution Pθ(ȳ|x). In the second, the model takes x and predicts a point

estimate for ȳ. The distinction is particularly important when Pθ(ȳ|x) integrates out

latent variables. Note that we could capture the data quite accurately in Fig. 11.1 if

given x we predicted the parameters of a Gaussian mixture model (GMM).

Conditional density estimation of Pθ(ȳ|x) is often intractable, but it may also be

unnecessary. In many applications, the practitioner does not require access to the full

conditional distribution. Instead, he or she is only interested in the values of ȳ that
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are likely. For Fig. 11.1, for example, it would be sufficient to only return the cluster

centers (in black). With this, he or she would not be able to make an accurate point

estimate of ȳ, but would be able to conclude with confidence that ȳ is close to either

c1 = [0.25, 0.25] or c2 = [0.75, 0.75]. Therefore, we could view this is a prediction

problem where the predictor returns the set {c1, c2}.

Predictors that return sets of diverse predictions appear in a variety of machine

learning contexts. For example, in information retrieval it is often important to return

a list of results. Say the query is ‘jaguar.’ It is useful to return results both about

cars and jungle cats in order to ensure that at least one relevant document is provided

to the user.

We need to take care when training SPENs so that we are able to use the energy

to accurately predict diverse sets of outputs, as the available training methods either

employ the conditional likelihood perspective or the loss minimization perpective.

For example, in end-to-end learning we use the energy function to define a prediction

procedure, and train this procedure to minimize the loss of a point estimate. If we

use end-to-end training with the MSE to fit the data in Fig. 11.1, it will return an

energy function that has its minimum at the red star. As a result, this energy is

useless if we seek to predict diverse sets of likely outputs. On the other hand, we can

directly maximize the conditional likelihood of the Gibbs distribution

P(ȳ|x) ∝ exp(−Ex(ȳ)). (11.1)

The resulting energy will have multiple local minima whenever the data is multi-

modal.

The goal of this chapter is to bridge the gap between conditional likelihood max-

imization and end-to-end approaches for training SPENs. Likelihood maximization

is undesirable because exact approaches are typically intractable and approximations

often require MCMC methods that are slow and difficult to tune. End-to-end learning
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is attractive because it returns not just an energy function, but also an automatically

tuned prediction algorithm tailored to the properties of the energy.

In response, we develop a method for end-to-end training of a randomized predic-

tor that returns diverse sets of likely outputs. This adapts the approach of (Guzman-

Rivera et al., 2012) for training a fixed ensemble of independent predictors and can

also be seen as a non-probabilistic method for fitting the randomized optimum model

of Tarlow et al. (2012). Our experiments contrast the end-to-end approach with

conditional density estimation of (11.1) using MCMC-based approximate maximum

likelihood training. We find that the first approach is more straightforward, is sub-

stantially easier to tune, and may be a useful modeling technique for future SPEN

applications.

11.1 Evaluating Set-Valued Predictors

Our experiments in Sec 11.4.1 evaluate our models in terms of their ability to

identify the multiple modes of the data. Consider a predictor that inputs x and

returns a set of predictions ȳ1, . . . , ȳK . Let ȳ∗ be the ground truth. Let ∆(ȳ, ȳ∗) be a

cost function that measures the difference between a prediction and the ground truth.

We define the K-oracle cost (Guzman-Rivera et al., 2012) of the samples as:

∆K(ȳ1, . . . , ȳK , ȳ
∗) = min

k
∆(ȳk, ȳ

∗). (11.2)

This is low whenever any of the predictors is close to ȳ∗. When P(ȳ|x) is multi-modal,

the loss will be low only when the set of predictions is diverse and covers the high-

density regions of P(ȳ|x). In many applications, (11.2) is precisely the quantity of

interest when evaluating test-time performance. For example in information retrieval,

we may be interested in recall at K.

In future work, it may be interesting to employ loss functions that explicitly

encouraging diversity among the predictions (Kulesza & Taskar, 2010; Guzman-Rivera
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et al., 2014). Our approach could also be used as a way to train the scoring model

and sampler used for approximate minimum Bayes risk prediction (Premachandran

et al., 2014).

11.2 Sampling-Based Approximate Maximum Likelihood

First, we consider approximate conditional likelihood estimation of the Gibbs

distribution (11.1). For the sake of notational simplicity, this section considers the

un-conditional Gibbs distribution:

P(ȳ) ∝ exp(−E(ȳ)). (11.3)

The negative log likelihood of a given training sample ȳi under (11.3) is:

L(ȳi) = −E(ȳi) + log

∫
Y
dȳ exp (−E(ȳ)) (11.4)

Here, the integral is taken over the set Y of permissible ȳ, and we assume the

integral, also known as the partition function, to be finite. Unfortunately, this integral

is intractable for all but the simplest models.

The contrastive divergence (CD) learning method (Hinton, 2002) uses a single

sample ȳs to provide a Monte Carlo approximation of the contribution of the second

term to the maximum likelihood gradient:

∇L(ȳi) ≈ −∇E(ȳi) +∇E(ȳs) (11.5)

In CD, we do not seek independent samples from (11.1), but instead samples that are

both likely under (11.1) and in the neighborhood of the ground truth ȳi. Random

exploration of this neighborhood is performed using just a couple steps of MCMC

on (11.3), where the sampling is initialized at the ground truth. Performance may
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be improved by collecting multiple ȳs using parallel MCMC chains. When samples

are collected using HMC, and the energy function is parametrized by a deep network,

contrastive divergence is also known as contrastive back-propagation (Mnih & Hinton,

2005; Hinton et al., 2006a; Ngiam et al., 2011).

Since each MCMC trajectory for CD is reset to the ground truth, it does not

explore far from the observed data. Therefore, training may make small holes for the

observed data points and do nothing to shape the overall energy function. In general,

CD is not a valid stochastic approximation method for minimizing (11.4).

Instead of CD, we can perform actual stochastic MLE training (Younes, 1989).

This is also known as persistent contrastive divergence (Tieleman, 2008). It is very

similar to CD, except that we do not reset the MCMC chain at the ground truth

every time a sample is collected. As long as the parameters of E(·) are updated

using a sufficently small step size, ȳs can be regarded as a sample from (11.3). With

this, (11.5) is a valid stochastic gradient (i.e., it’s correct in expectation). When

E(·) is convex in its learned parameters, this method will converge to the true MLE

solution, subject to various conditions on the choice of step size schedule and how

well-behaved E(·) is (Swersky et al., 2010).

Alternatively, we can directly approximate the log partition function using a few

particles:

log

∫
Y
dȳ exp (−Exi(ȳ)) ≈ log

N∑
k=1

exp (−E(ȳk)) . (11.6)

This may be a reasonable assumption when the density is highly concentrated in a

small region. The approach is popular in many NLP applications, such as semantic

parsing (Liang et al., 2011), where low-energy samples are gathered using approxi-

mate k-best MAP inference methods such as beam search. Applying this method to

continuous problems presents a variety of challenges, however. For example, it is diffi-

cult to guarantee that the set of low-energy particles is diverse and not infinitessimally

close to each other.
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Overall, MLE updates have a simple form: they push down the energy of the

ground truth and pull up the energy of configurations other than the ground truth.

One potential issue with this approach is that it may not properly shape the energy

landscape in regions away from the ground truth such that they can be traversed by

gradient-based prediction. In particular, if the energy network is very high capacity,

the global optimum will be obtained when the energy is flat for all values of ȳ that

are not observed and very small for ground truth configurations.

This thesis focuses on the regime where the energy function is a black box that only

provides subroutines for forward and back-propagation. Here, it is natural to sample

from (11.3) using HMC. However, when the energy function has known structure, it

may be preferrable to employ fast-mixing alternatives such as slice sampling (Neal,

2003).

After learning the energy function using MLE, we can predict diverse sets of likely

outputs by by sampling from (11.1) at a low temperature.

11.3 End-to-End Learning for Randomized Set-Valued Pre-

dictors

While density estimation is conceptually attractive, it may not yield good K-oracle

cost (11.2) in practice. First of all, it does not directly provide a test-time prediction

procedure, and thus we will need to separately tune our prediction procedure. Second,

the energy function has limited expressivity, and its capacity may be wasted fitting

the distribution in low-density regions.

This section proposes an alternative approach, where we directly minimize the

K-oracle cost (11.2) end-to-end. Given an energy function Ex(·), let PR(ȳ;E) be

a distribution over randomized predictions. This distribution may be completely

different than the Gibbs distribution (11.1) induced by the energy.
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Furthermore, we assume that PR(ȳ;E) supports the reparametrization trick (Kingma

& Welling, 2014), where samples can be obtained by evaluating a differentiable, de-

terministic function M(x, ε) that depends on x and an external source of randomness

ε ∼ Pε. The advantage of the reparametrization trick is that the distribution Pε we

take an expectation with respect to his not part of our learned model. As a result,

we can use straightforward stochastic gradient training.

With this, the expected K-oracle cost (11.2) can be written as:

Eȳk∼PR(ȳ E)∆K(ȳ1, . . . , ȳK , ȳ
∗) = Eε1,...,εK∼Pε∆(M(x, ε1), . . . ,M(x, ε1), ȳ∗) (11.7)

It is straightforward to compute a stochastic subgradient of the right hand side.

We first sample K random values εk and evaluate the loss ∆(M(x, εk), ȳ
∗) for each.

Then, we set ε to whichever εk yielded the lowest loss and peform back-propagation

in ∆(M(x, ε), ȳ∗). It may seem that this approach wastes lots of computation, since

only one of the K forward evaluations is used to actually update the parameters.

However, it would introduce considerable overhead to use a loss function that places

non-zero gradients on all samples, as we would need to back-propagate K separate

times.

For a given energy function, there are many ways to define a randomized sampling

procedure that supports the reparametrization trick. First, we can unroll a fixed

number of steps of HMC for the distribution (11.1), where we ignore the accept-

reject step (Salimans et al., 2015). Similarly, we could unroll sampling by Langevin

dynamics (Welling & Teh, 2011). Our experiments consider an even more simple

randomized predictor: we randomly sample the location for ȳ where deterministic

gradient-based energy minimization is initialized. Here, we can use the exact code

used for end-to-end learning in previous chapters. Such learning seeks to shape the

energy function such that it has multiple basins of attraction, with a local optimum

at each of the data’s modes.
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11.4 Experiments

11.4.1 Experimental Setup

We evaluate our methods on synthetic low-dimensional data with distinct cluster

structure. We use synthetic data, rather than the real-world problems of other chap-

ters, for a few reasons: (a) by using 2-dimensional outputs, we can easily visualize

all learned energy functions and inspect whether they have multiple local minima,

(b) to create a regime where baseline end-to-end learning trained to minimize MSE

would perform very poorly, and (c) stochastic maximum likelihood will be competi-

tive. Since HMC is very difficult to tune in high dimensions, MLE will be a stronger

baseline for low-dimensional problems.

Our data is sampled from a GMM with 2 components:

P(ȳ|x) =
1

2
N(ȳ;µ1, σ

2) +
1

2
N(ȳ;µ2, σ

2), (11.8)

where N(ȳ;µ, σ2) is a the density for a multi-variate Gaussian with mean vector µ and

covariance σ2I. We employµ1 = A1x and µ2 = A2x. We generate data by sampling

a 5-dimensional x from N(0, 1) and then sampling ȳ. We generate our data set such

that for each x we include 25 (x, ȳ) pairs, where ȳ is drawn from P(ȳ|x). This is useful

because for a given x we can visualize both the data associated with it and also the

conditional energy function Ex(ȳ).

We choose the data-generating parameters such that samples nearly always occur

within [0, 1]2. When performing MCMC-based learning, we explicitly constrain the

HMC iterates to this set using the reparametrization method of Sec. 2.7.1. For end-

to-end learning, we do not constrain the iterates. At test time, we perform un-

constrained optimization over R2 for all configurations.

We use MLE to refer to a training configuration that performs stochastic maximum

likelihood (persistent contrastive divergence). We have found this to be substantially

more reliable than the alternative approximate methods discussed in Sec. 11.2. For
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energies fit using MLE, we form predictions at test time using the same sampling

approach used by the randomized unrolled optimizer we train end-to-end. Here, we

sample an initial point, and then proceed with deterministic gradient descent. For

the MLE energies, we find that the predictive performance is slightly improvded by

using backtracking line search during test-time energy minimization.

For MLE training, we first burn in HMC using 25 leapfrog trajectories for each

x-y pair. Then, we take 10 additional leapfrog trajectories, where each consists of 5

steps. For each sample, we compute a gradient with respect to the model parameters.

Our HMC step size is incremented/decremented on the fly such that proposals are

accepted approximately 75% of the time. For end-to-end learning, we unroll for 10

gradient steps and treat our per-step learning rates as trainable parameters.

We use E2E-8 to refer to an application of the end-to-end method of Sec. 11.3

with 8 random samples. We unroll 10 steps of optimization with no momentum and

treat our per-step learning rate as a trainable parameter.

11.4.2 SPEN Architectures

We employ two different architectures when fitting our GMM data. The first,

which we refer to as a GMM energy hard-codes the functional form of the conditional

density of the true data-generating process:

Ex(y) = log
∑
i=1,2

1

2
N(ȳ;µi, σ

2
i ) (11.9)

µi = Aix+ bi (11.10)

Here, the trainable parameters are weights Ai, biases bi, and σi. This architecture

can be seen as a mixture density network (Bishop, 1994). Note that we are not

actually doing density estimation for a GMM: since sampling is constrained to [0, 1]L,

the density we learn is actually a GMM density multiplied by an indicator function
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for whether ȳ is in [0, 1]L. We found that the learning dynamics for this energy

are vulnerable in practice to collapsing modes: if the two mixture components ever

coincide, learning will not be able to tease them apart afterwards. When this happens,

gradient-based learning will not be able to learn a model that fits the data well. We

avoid this by initializing the biases bi such that the two components are well-separated

at the start of learning.

Second, we employ a generic deep network energy, which we refer to as the MLP

energy. First, consider an MLP defined just on y.

E(y) = a>3 g(A2g(A1y + b1) + b2). (11.11)

Here, g is a coordinate-wise non-linearity. When training by MLE, we use a ReLU, and

when performing end-to-end learning, we use a SoftPlus. Let h be a hyperparameter

governing the size of our hidden states. Then, A1 is a h× 2 matrix, b1 b2 are length-h

vectors of biases, A2 is a h× h matrix, and a3 is a length-h vector.

We have found that (11.11) works well for un-conditional estimation of data drawn

from a GMM. To extend this to be a a conditional energy function, we have a few

options. First, we can concatenate y and x as inputs to (11.11). We have found that

this does not work particularly well in practice.

Instead, we have found it significantly better to employ a hypernetwork, where

a subnetwork predicts the weights to be used in the main network. See Ha et al.

(2017) for a thorough overview of the history of architectures and learning methods

for hypernetworks. We employ an architecture that is identical to (11.11), except

that the weights and biases in the first layer of the MLP are a function of x.

Ex(y) = a>3 g(A2g(A1(x)y + b1(x)) + b2), (11.12)

(11.13)
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where A1(x) is a matrix defined by contracting a learned 3-dimensional tensor with

x. Similarly, b1(x) is a vector obtained by contracting a learned 2-dimensional tensor

with x.

11.4.3 Results

First, in Fig. 11.2 we plot energy functions learned by MLE. The columns cor-

respond to different values of x. For each x, our dataset contains multiple samples

for ȳ. These samples are red dots in the figures. The color scale of the figures is

such that yellow is high energy and dark blue is low energy. In the top row, we fit

a GMM energy function and in the bottom row we fit an MLP energy. In general,

we found our learned MLP energies to be uni-modal. They generally capture the

envelope of the data, but incorrectly assign low energy to the entire region between

the two clusters of data.

Next, in Fig. 11.3 we perform the same experiment, but estimate our energy

function using end-to-end minimization of the 8-oracle loss. The black lines are

trajectories taken by our learned randomized optimizer. For both the GMM and

MLP energies, the trajectories reliably go to each of the two modes. Note that the

unrolled optimizer never performs exact energy minimization. It seems that it is

actually beneficial to perfom inexact minimization, since this provides more diversity

in the set of 8 samples, which will lead to a lower 8-oracle loss. Otherwise, all of the

samples would be at one of the two energy minima.

In Tab. 11.1 we evaluate our methods in terms of their 8-Oracle performance. We

contrast MLE vs. E2E-8 training and MLP vs. GMM energy functions. Remarkably,

our best performance is obtained using an MLP energy with E2E-8 training. We

struggle to achieve reasonable performance using an MLP energy with MLE training,

as the learned energy is typically unimodal (see bottom row of Tab. 11.2). As a

result, randomized prediction always predicts a point that is mid-way between the two
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Figure 11.2: Learned energy functions from stochastic MLE training. Each column
uses a different value of x, from which we draw multiple samples of y from a conditional
GMM. Top row: GMM energy function. Bottom row: MLP energy function.

clusters. In general, we found E2E-8 training substantially easier to tune than HMC-

based stochastic MLE. We are unsure why we generally achieve worse performance

with the GMM energy vs. the MLP energy. Perhaps the quadratic GMM energy is

too steep, and this hinders adequate exploration.

Next, we include one final experiment that highlights the sensitivity of end-to-end

learning to hyperparameters of the unrolled optimizer. In Fig. 11.4, we consider the

performance of E2E-5 training for the GMM energy function. On the left, we unroll

gradient descent with momentum. The learned energy is a low-quality approximation

of the true energy. We include only a single example optimization trajectory, as they

are in general quite long and complex. Note that the final iterate is remarkably close

to one of the cluster centers, despite the fact that the iterate is not remotely close to

the energy minimum. This is because the energy minimization procedure is learned
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Figure 11.3: Energy functions learned by end-to-end minimization of 8-Oracle loss.
Each column uses a different value of x, from which we draw multiple samples of y
from a conditional GMM. Top row: GMM energy function. Bottom row: MLP energy
function. Black lines are trajectories taken by our learned randomized optimizer.

end-to-end: the model incurs low loss if the final iterate is far from a mode, not if the

energy minimum is far from a mode.

On the right, we apply the same procedure, but do not use any momentum in the

unrolled optimizer. We find that energy function much more reliably fits the data

and that GD trajectories end in local optima. We include this not as experimental

evidence suggesting that momentum is bad in general, but to emphasize that learning

can be extremely sensitive to hyperparameters.

11.5 Discussion

This chapter presents multiple methods for capturing uncertainty with energy-

based prediction. Ideally, we would apply these every time we train a SPEN, not just

for applications where we evaluate in terms of K-oracle or where we know in advance
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Figure 11.4: E2E-5 training of a GMM energy function. Left: unrolled optimization
includes a momentum constant of 0.8. Right: no momentum used in unrolled opti-
mization. Black: trajectory taken by the learned gradient-based optimizer. On the
left, a high-quality prediction is made even though the learned energy function does
not describe the true energy of the underlying data-generation process.

Training Method MLE MLE E2E-8 E2E-8
Architecture GMM MLP GMM MLP
8-Oracle cost 0.007 0.040 0.004 0.002

Table 11.1: 8-Oracle cost using various training methods and energy function archi-
tectures.

that the output distribution has well-separated modes. However, it would require

additional work to be able to reliably apply these methods to high-dimensional prob-

lems. Stochastic MLE is challenging because sampling is difficult for high-dimensional

problems, especially when we simultaneously consider many energy functions, corre-

sponding to different x. It may be useful to use better adaptive HMC methods (Giro-
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lami & Calderhead, 2011; Hoffman & Gelman, 2014). E2E-K has the undesirable

property that the energy does not get penalized when some, but not all, trajectories

lead to low quality outputs. We expect performance could be improved by employing

reinforcement learning methods for training. See Sec. 7.12 for further discussion.

Some of the visualizations of this chapter reveal important general properties of

SPENs. For example, on the left of Fig. 11.2 non-convergent GD with too big of a

step size leads to a good final point, but the trajectory is chaotic. It certainly does not

correspond to energy minimization. We expect the gradient of the GD trajectory with

respect to the learned parameters is more unreliable here than for a GD trajectory

that is convergent. This pathology may affect many of the experiments of this thesis,

but we are not able to identify this issue by visual inspection. In future work, it may

be important to better ensure that the unrolled optimizer is tuned to the shape and

scale of the energy function at hand. One solution would be to use a deep network

to predict for each x the hyperparameters for an optimizer. These could include step

sizes as well as a preconditioner.
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CHAPTER 12

SAMPLING-BASED LARGE-MARGIN LEARNING FOR
SPENS

It may appear that the end-to-end learning is the gold standard for learning

SPENs, since it directly optimizes the performance of gradient-based prediction. It

has a few noteworthy drawbacks, however:

1. Exploration-Exploitation: The unrolled optimization of end-to-end learning

always seeks to minimize the current estimate of the energy function. How-

ever, the energy function may not describe the data well, and gradient-based

optimization may not efficiently explore high-quality regions of output space.

Exploration may be important even for problems without the multi-modal struc-

ture explored in the previous chapter.

2. Memory: End-to-end learning requires saving the intermediate state for all

computations in the forward pass during unrolled optimization, so that we can

perform back-propagation. This introduces significant memory overhead, unless

we use sophisticated back-propagation tricks that are either problem-structure-

specific or introduce additional computation (Sec. 5.4.7).

3. Speed: End-to-end learning is an expensive double-loop approach: we must

perform repeated steps of optimization with respect to ȳ in order to obtain a

single gradient of the loss with respect to the energy function’s parameters.

This chapter explores the viability of using sampling-based large-margin training

with SSVM and SampleRank (Wick et al., 2011) losses to adress these drawbacks.
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We choose these methods because they naturally provide for exploration and because

sampling can be done with limited memory overhead. An additional motivation is

that SampleRank was developed in our research group, and we would like to extend

it to new models.

Overall, our primary challenge is to design methods that both learn quickly

and achieve high-accuracy predictions. The computational bottleneck for our meth-

ods is sampling. This is true for both gradient-based sampling using Hamiltonian

Monte Carlo (HMC) and deterministic ‘sampling’ using gradient descent (GD). In

response, we employ a method for accelerating learning that uses a single trajectory

of GD/HMC to define multiple training examples that we use to update our model’s

parameters.

Our experiments provide some successes and some failures. We have one key

success: a simple modification to SSVM training that significantly improves its per-

formance, such that it rivals end-to-end learning on some problems. Standard SSVM

training defines a parameter gradient using a hinge loss applied to the ground truth

and the output of loss-augmented inference. We instead define our loss as the sum

of hinge losses at all of the points along the trajectory taken by gradient-based loss-

augmented inference.

On the other hand, we find it difficult to tune HMC such that it is both stable and

performs adequate exploration. This is a consequence of the fact that we consider

high dimensional problems and treat the energy function as a black box, despite the

fact that its shape and scale is changing over the course of learning.

In addition, we struggle to achieve a learning method that is both faster than

end-to-end learning and achieves comparable performance. In Sec. 12.6, we dis-

cuss the qualitative differences between the updates that end-to-end learning and

SSVM/SampleRank learning provide to the energy function. One reason that end-

to-end learning may be faster is that it provides richer feedback to the energy function,
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by pushing the gradient of the energy to point in a certain direction. This contrasts

with SSVM/SampleRank learning which only pushes up and down on the values of

the energy.

12.1 Problem Formulation

In Sec. 5.3 we introduce the SSVM loss:

∑
{xi,ȳi}

max
ȳ

[∆(ȳi, ȳ)− Exi(ȳ) + Exi(ȳi)]+ . (12.1)

Here, ∆(ȳi, ȳ) is a user-defined task-specific cost function.

We can interpret [∆(ȳi, ȳ)− Exi(ȳ) + Exi(ȳi)]+ as a convex relaxation of the con-

straint Exi(ȳ) > Exi(ȳi) + ∆(ȳi, ȳ), i.e., that the energy of configuration ȳ is greater

than the energy of the ground truth configuration ȳi by a margin ∆(ȳi, ȳ).

If all of the constraints are satisfiable, then minimizing the maximum constraint

violation (12.1) is equivalent to minimizing the average constraint violation:

∑
{xi,ȳi}

1

|Y|
∑
ȳ

[∆(ȳi, ȳ)− Exi(ȳ) + Exi(ȳi)]+ . (12.2)

Of course, if the constraints are not satisfiable, then these formulations will have

different optima. Here, ȳ is continuous for SPENs, and thus we should employ an

integral rather than a sum. We use summation notation going forward, however, for

simplicity. Here, |Y| is a normalizing constant equal to the size of the set of feasible

ȳ.

The principal advantage of the max-violation formulation (12.1) is that evalu-

ating a subgradient of the loss can be performed by solving an inner optimization

problem, whereas computing a subgradient of the averge-violation formulation (12.2)

requires a potentially-intractable sum. On the other hand, solving the inner prob-

lem for (12.1) may be difficult, especially for non-convex energy functions, while the
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average-violation formulation can be minimized using inexpensive stochastic approx-

imation. A stochastic sub gradient of (12.2) can be obtained simply by sampling a

configuration ȳ uniformly at random.

Unfortunately, uniform sampling may be extremely inefficient for learning, since

the subgradient is 0 at any point ȳ where the margin constraint is satisfied. Alterna-

tively, we can change the actual objective function (12.2) to be an expectation with

respect to a non-uniform distribution:

∑
{xi,ȳi}

Eȳ∼PL(ȳ|xi) [∆(ȳi, ȳ)− Exi(ȳ) + Exi(ȳi)]+ . (12.3)

Here, PL(ȳ|xi) is our non-uniform sampling distribution, and (12.3) can be minimized

easily using stochastic subgradient descent. We assume that PL(ȳ|xi) does not depend

on the parameters of the model that we are training. Otherwise, differentiating (12.3)

would be complicated. In many of the approaches below, PL(ȳ|xi) is defined in terms

of the current energy function, however. We simply ignore this dependence when

deriving our gradients.

Changing the loss function to be with respect to some PL(ȳ|xi) may actually

be advantageous. For example, in many situations the constraints will not actually

be satisfiable, given the limited capacity of the network parameterizing the energy

function. Therefore, by constructing PL(ȳ|xi), the user specifies which constraints are

most important. For example, it may be useful to focus on satisfying constraints in

the region that would be explored by gradient-based prediction.

We can recover traditional SSVM training if we employ

PL(ȳ|x) = I

[
ȳ = arg min

ȳ′
(∆(ȳi, ȳ

′)− Exi(ȳ′))
]

(12.4)
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Here, I [·] is the indicator function for an event. In cases where the argmin function

returns a set, we would replace the indicator function with the uniform distribution

over this set.

Alternatively, we can sample from the Gibbs distribution:

PL(ȳ|x) ∝ exp(
−1

τ
Ex(ȳ)), (12.5)

where τ is a temperature parameter. By decreasing τ , we encourage our samples to

concentrate around energy minima. Note that (12.4) is the zero-temperature limit of

the loss-augmented Gibbs distribution

PL(ȳ|x) ∝ exp(
−1

τ
(Ex(ȳ) + ∆(ȳi, ȳ

′))). (12.6)

Sampling from this distribution at a non-zero temperature may help discover mar-

gin violations when employing non-convex energies. Such a distribution was first

employed for softmax-margin training (Gimpel & Smith, 2010), which focused on

problems where sampling is not necessary, since exact marginal inference is tractable.

Besides varying the sampling distribution, we can also alter the overall set of

constraints we seek to enforce. The SampleRank loss of Wick et al. (2011) is similar

to the SSVM loss, but it seeks to enforce margin constraints between all pairs of

configurations, rather than between a single configuration and the ground truth. See

Sec. 12.2.2 for more details.

12.2 Efficient Learning

A principal goal of this chapter is to obtain learning procedures that are more

computationally efficient than end-to-end training. One must be careful when de-

signing sampling-based learning methods, however, as the cost of collecting a sample

may rival the cost of the inner energy minimization step in end-to-end learning.
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SPENs are defined over continuous inputs, and thus we must sample from contin-

uous densities. Here, it is natural to sample using Hamiltonian Monte Carlo (HMC).

Unfortunately, the complexity of HMC sampling from a distribution like (12.5) is

similar to the complexity of gradient-based energy maximization of the distribution’s

log-density. This is not surprising, as both techniques use gradient methods to tra-

verse to high-probability, i.e., low-energy, regions. Overall, sampling in SPENs is

fundamentally different than sampling in popular instances of factor graphs, where

the conditional independence structure provides for efficient MCMC steps that do not

need to recompute the energy of ȳ from scratch.

Note that HMC can be done with limited memory overhead, by performing all

updates to the sampled variables in place. This is analogous to how test-time energy

minimization by GD can be done with less memory overhead than an unrolled GD

predictor that supports back-propagation (Sec. 5.4.7).

To alleviate the the computational limitation of continuous sampling, we propose

gathering multiple correlated samples ȳ(1), . . . , ȳ(N), such as from consecutive steps of

MCMC. Then, we define a margin-based loss at each of these points. This is similar

to how stochastic MLE (Sec. 11.2) constructs multiple parameter gradients using a

single MCMC chain.

Overall, our learning method has the following modules:

1. Sec. 12.2.1: A procedure for collecting a set of samples {ȳ(1), . . . , ȳ(N)} from

some distribution PL(ȳ|xi).

2. Sec. 12.2.2: A loss function that takes individual samples, or pairs of samples,

and computes the value and gradient of a margin-based training loss.

3. Sec. 12.2.1: A method for aggregating the gradients of the loss at each of the

samples and updating the parameters of the energy function.
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12.2.1 Gathering Trajectories of Samples

As identified in the previous section, we can decrease the cost of training by

obtaining a set {ȳ(1), . . . , ȳ(N)} of correlated samples from our distribution PL(ȳ|xi)

at once. To do this, we propose constructing a trajectory, e.g., an MCMC chain, in

the space of ȳ, and returning N evenly-spaced points along this trajectory.

For the determinstic distribution (12.4) defined by loss-augmented energy mini-

mization, we define the trajectory as the path taken by gradient-based optimization.

Similarly, for HMC-based sampling from distributions such as (12.5), we use a single

trajectory of leapfrog integration. See Sec. 2.7 for details.

Finally, we can perform loss-rewarded sampling. This employs a distribution

obtained by flipping the sign of the cost term in (12.6). In SSVM training, loss-

augmented inference rewards bad predictions, since it is used to discover margin

violations. With loss-rewarded sampling, we reward good predictions. This can be

seen as a form of imitation learning, where training employs sampling that is guided

by information about the ground truth that is unavailable at test time. As with many

applications of imitation learning, it is natural to use this extra guidance only at the

beginning of learning.

Overall, we do not consider alternative methods for inexpensive sampling, such

as a random walk, as it is unclear that the samples will ever traverse to high-quality

regions for our high-dimensional problems of interest.

For discrete prediction problems, we could have performed MCMC on the dis-

crete representation directly, and avoided any convex relaxation. However, it would

be very difficult to achieve efficient MCMC for such a problem. Gibbs sampling is

intractable, as multiple forward evaluations of the energy network would be necessary

to obtain the conditional distribution used to flip a single output variable. HMC is

an instance of Metropolis-Hastings sampling, where the proposals are produced by

simulating Hamiltonian dynamics. We could instead perform Metropolis-Hastings
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with a proposal distribution that is cheap to evaluate and works for discrete vari-

ables. However, it would be difficult to design a proposal distribution such that the

acceptance ratio is reasonable for high-dimensional problems. In addition, computing

each acceptance ratio would still require a forward evaluation of the energy network.

This contrasts with a sparse factor graph, where we can leverage the factorization

structure to compute the acceptance ratio by only evaluating a few local terms.

12.2.2 Loss Functions

We define SampleSVM training as the proposed sampling-based method for min-

imizing (12.3).

We also consider the SampleRank loss, which defines margin constraints on pairs

of configurations (Wick et al., 2011). For a given xi, let ȳ0 and ȳ1 be arbitrary

configurations and let ȳi be the ground truth associated with xi. We define the

asymmetric discrepancy function

Di(ȳ0, ȳ1) = ∆(ȳ0, ȳi)−∆(ȳ1, ȳi). (12.7)

This measures how much closer ȳ0 is to the ground truth than ȳ1. SampleRank

enforces the constraint that the energy difference between ȳ0 and ȳ1 is greater than

their discrepancy. Given two samples ȳ0 and ȳ1, we assume without loss of generality

that ∆(ȳ0, ȳi) ≥ ∆(ȳ1, ȳi). In other words, ȳ1 is a more accurate output than ȳ0.

With this, we define the max-violation formulation of the SampleRank loss as:

∑
{xi,ȳi}

max
ȳ0,ȳ1

[Di(ȳ0, ȳ1) + Exi(ȳ1)− Exi(ȳ0)]+ . (12.8)

Similarly, the non-uniform average-violation version of SampleRank is:

∑
{xi,ȳi}

Eȳ0,ȳ1∼PL(ȳ|xi) [Di(ȳ0, ȳ1) + Exi(ȳ1)− Exi(ȳ0)]+ . (12.9)
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Note that the SampleRank authors derive their method in terms of the objective

function (12.8), rather than (12.9). However, their objective is minimized with

stochastic approximation, where ȳ0 and ȳ1 are sampled from some distribution. This

does not make any sense. The authors should have introduced an objective function

of the form (12.9) that explicitly identifies the distribution from which constraints

are sampled.

SampleRank was originally developed for large, sparse factor graphs, where the

conditional independence structure of the model allows for efficient MCMC sampling.

In Wick et al. (2011), ȳ0 and ȳ1 are consecutive states of a Markov chain that only

differ in the settings of a few variables. Given the model’s factorization structure,

evaluation of Di(ȳ0, ȳ1), and evaluation of the gradient of the loss with respect to the

energy function’s parameters requires information only from a small neighborhood

around variables that have changed. This is not available when training SPENs with

SampleRank, however, as the energy function is a black-box object with no known

factorization structure.

To maintain the similarity between our use of SampleRank and how it is employed

by Wick et al. (2011), we choose ȳ0 and ȳ1 to be consecutive samples from a trajectory

obtained using the methods of the previous section. If our trajectory is of length N ,

our loss is defined on N − 1 pairs. We also propose a novel approach, SampleRank-G

that introduces N additional pairs, where each new pair consists of a sample from the

trajectory and the ground truth. Note that when comparing a point to the ground

truth, the SampleRank loss is identical to the SampleSVM loss. SampleRank-G would

have been inefficient for Wick et al. (2011), since much of the efficiency of the method

relies on ȳ0 and ȳ1 being consecutive MCMC states. For SPENs, however, none of

these tricks are available, so comparing to the ground truth has the same cost as

comparing consecutive samples.
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Finally, note that in Wick et al. (2011) the authors do not use the discrepancy

function during sampling. This differs significantly from SSVM training, where loss-

augmented inference solves an optimization problem with an objective that is shifted

by ∆(·, ·). For SampleRank training of SPENs, we require that the discrepancy

function is defined on the domain of for the continuous variable ȳ. We do not require

that it is differentiable, however.

12.2.3 Interleaving Inference and Learning

In Sec. 12.2, we advocate for using trajectories of correlated samples as a way

to circumvent the computational cost of sampling. This provides N points that can

be used to define a large-margin loss. For SampleSVM, we compute the gradient

of the loss with respect to the parameters of the energy function at N points. For

SampleRank, we have N − 1 gradients, and for SampleRank-G we have 2N − 1

gradients.

We propose two general methods for updating the parameters of our energy func-

tion. The Avg-Grad method obtains a single parameter gradient by averaging over

all gradients from the trajectory. In contrast, the Interleave-Grad method updates

the parameters on the fly while sampling a trajectory, like we do for stochastic MLE

(Sec. 11.2). As soon as we have a new ȳ(t) available, we compute the gradient of

the relevant terms for our large-margin loss and update the parameters with a small

learning rate. Here, HMC sampling, or gradient-based energy minimization, is inter-

acting with an evolving energy function. This interleaving approach was employed

in Wick et al. (2011).

Avg-Grad may accelerate training because we obtain a lower-variance stochastic

gradient by averaging. Interleave-Grad may accelerate training because we perform

more parameter updates. We consider both in our experiments.
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As described in Def. 1.4.1, the dependence of our energy network on x comes

by way of features F (x). When performing sampling with respect to ȳ, F (x) only

needs to be computed once. However, when employing Interleave-Grad, we need to

recompute the features at every step, since the parameters of F (x) have been updated.

Similarly, for loss functions that evaluate the energy at the ground truth, we need to

recompute the ground truth energy at every step. Depending on complexity of the

architectures of the feature and energy networks, this extra computational overhead

may diminish any speed gains available from interleaving inference and learning for

SPENs.

12.3 Details

• One of our primary goals is to achieve faster learning than end-to-end learn-

ing. Rather than measuring accuracy vs. wall-clock time, we measure ac-

curacy vs. the number of training examples considered. This avoids various

implementation-level details that would confound the comparison. Using the

number of training examples considered is different than the number of gradi-

ent steps taken, since for Interleave-Grad we take N gradient steps for a given

training example.

• We always accept HMC proposals, rather than evaluating an acceptance ratio.

Acceptance probabilities less than one occur because approximate leapfrog inte-

gration only appromiates the true Hamiltonian dynamics. This approximation

is worse in high dimensions and for large step sizes. We have found it extremely

challenging to achieve reasonable acceptance probabilities for real-world prob-

lems that are higher-dimensional than the synthetic GMM problems in the

previous section. An alternative approach would have been to use an extremely

small step size, but this would require using a large number of computationally-

expensive leapfrog steps.
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• Before performing learning with HMC-based trajectories, we first perform learn-

ing with GD trajectories and select a step size that yields the best performance.

Let ηG be the step size that works well for GD and let ητ be the step size

we use for HMC sampling at temperature τ . We set ητ =
√
τηG, so that the

characteristic scale of the per-sep updates to ȳ for HMC is equal to that of GD.

• When sampling on the probability simplex using the method of Sec. 2.7.1 we

include the Jacobian term in the energy for sampling, but do not employ it at

test time. This is because we seek to find the most likely normalized iterate,

not the most likely un-normalized logit.

• It is extremely important to appropriately set the scales of various terms. Con-

sider a problem where Ex(ȳ) is a composed of a sum L terms. This occurs, for

example, in our image denoising application, where the final layer of both the

local and global energy terms is a summation of per-pixel energy values. Here,

the total energy should be set to the sum of these per-pixel energies, rather

than the average, so that the general per-pixel dynamics of test-time gradient

descent will not be effected by the size of the image. With this, it is important

that any cost function ∆ used with our large-margin methods is also computed

as a sum, instead of an average, such that the energy and the cost are on the

same scale. Third, the overall margin-based loss function, should be divided by

L. This ensures that the scale of the gradient of the loss with respect to the

parameters will not depend on L.

12.4 Image Denoising Experiments

First, we consider the performance of our methods for image denoising on the

7-Scenes dataset (Newcombe et al., 2011), using the same SPEN architectures em-

ployed in the experiments of Chapter 10. The goal of these experiments is to provide
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controlled experiments that demonstrate the impact of the various design decisions

discussed for sampling-based large-margin learning. Overall, we have found that

different tasks may require very different settings of these hyperparameters. When

prototyping new applications with SPENs, practitioners should explore the questions

put forth in the following experiments on their own data. In general, these learn-

ing methods are substantially more brittle than end-to-end learning, and need to be

tuned carefully.

Denoising presents a few key challenges for using our methods. First, noise-less

images lay on a low-dimensional manifold, and the performance of our learning meth-

ods may be sensitive to our ability to sample on or near this manifold. Second, as

our experiments in Sec. 10.3 suggest, the particular parametrization of our energy

function (which corresponds to MAP inference) has an undesirable characteristic: a

few steps of energy minimization can yield high-quality predictions, but taking many

steps may yield over-smoothed outputs. This presents a conceptual hurdle, as it is

unclear whether we should perform full energy minimization in the inner loop of large-

margin learning, or instead employ truncated optimization at train time. Overall, we

have found that the latter approach is signficantly better. However, this means that

some of the conclusions of this section may not generalize to other problems where

full energy minimization is best.

12.4.1 SampleSVM training of Field-of-Experts Model

First, we consider learning the `1 field-of-experts prior introduced in (10.2). This

is a useful application for evaluating SSVM-based learning methods, since the energy

function is convex with respect to ȳ. We consider using either HMC or GD-based

trajectories, where both methods employ the loss-augmented energy function (12.6).

We have found it most effective to use the same number of gradient steps at test

time as employed when collecting trajectories at train time. All of our experiments

201



use 5 steps. Therefore, if we perform Avg-Grad with N = 5, this means that each

sample is separated by a single gradient step.

In Table 12.1, we compare the performance of using N = 1 vs. N = 5 with either

Avg-Grad or Interleave-Grad updates. Note that using N = 1 with GD trajectories is

equivalent to standard SSVM learning (except for the fact that we perform truncated

optimization with respect to ȳ). We find that N = 5 with Avg-Grad is best, and

performs at the same level as our best field-of-experts model trained using end-to-end

learning (see Tab. 10.1).

These results are further investigated in the left figure of Fig. 12.1, where we

contrast the curves of the training objective and test accuracy over the course of

training for the N = 1 and N = 5 w/ AvgGrad configurations. We find that the

gradient averaging provides faster, more stable learning. We expect this is due to

two reasons: (a) averaging produces lower-variance stochastic gradients, and (b) the

effective size of the gradients decreases over time for Avg-Grad. This is because the

Avg-Grad gradient is the average of gradients computed along the trajectory of loss-

augmented inference. As training progresses and the model gets better, points at the

end of the trajectory may become more likely to violate the margin constraints than

points at the beginning. Therefore, the number of terms in the average that contribute

non-zero gradients may get smaller. Perhaps we could close the gap between these

two configurations if we carefully tuned a learning rate decay schedule for N = 1

training.

In the right figure of Fig. 12.1, we consider how test-time performance increases

over time for N = 1 and N = 5 with AvgGrad training, and compare this to end-to-

end training. Unfortunately, we find that end-to-end training learns faster (in terms

of the number of training examples considered) and is more stable. Using N = 5 is

superior to N = 1, though. Next, in Tab. 12.2 we compare training with trajectories

collected with GD vs. HMC. We struggle overall to achieve high performance using
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HMC-based trajectories, since the scale and shape of the energy changes dramatically

over the course of learning. In future work, it may be useful to pursue methods that

adaptively tune HMC on the fly (Girolami & Calderhead, 2011; Hoffman & Gelman,

2014).

Finally, we consider whether Interleave-Grad can be used to provide a useful

speedup for training. Due to the noise introduced by updating the energy function

on the fly, it is necessary to use a smaller learning rate for Interleave-Grad than for

Avg-Grad. In Fig. 12.2, we contrast the performance of Avg-Grad with a learning

rate of 10e-4 with Interleave-Grad with a learning rate of either 0.5e-4 or 2.5e-4.

We find that using 0.5e-4 with Interleave-Grad produces performance and training

stability that rivals that of Avg-Grad. However, in order to achieve this we must use

a learning rate that is so small that any potential speedup to learning from updating

the energy on the fly is eliminated.

Num Samples 1 5 5
Grad Accumulation n/a Avg-Grad Interleave-Grad

PSNR 37.1 37.7 37.2

Table 12.1: Comparing the performance of various SampleSVM training configura-
tions with trajectories collected using deterministic loss-augmented inference. For
comparison, we achieve 37.7 using end-to-end training.

Sampling GD HMC-0.001 HMC-0.01
PSNR 37.6 36.5 33.5

Table 12.2: Performance of N = 5 Avg-Grad training using different methods to col-
lect trajectories. They also employ the same loss-augmented energy function. HMC-τ
employs a single trajectory of leapfrog integration at a temperature of τ .
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Figure 12.1: Left: train loss for SampleSVM training using N = 1 vs. N = 5. Right:
Test PSNR over the course of learning for SampleSVM training with N = 1 and
N = 5 vs. end-to-end learning.

Sampling GD GD HMC-0.1 HMC-0.1
Grad Accumulation Avg-Grad Interleave-Grad Avg-Grad Interleave-Grad

PSNR 36.8 36.0 35.9 36.0

Table 12.3: Performance of SampleRank-G using a field-of-experts model with various
methods for collecting trajectories and accumulating gradients.

12.4.2 SampleRank training of Field-of-Experts Model

Next, we evaluate the performance of SampleRank-based training on the denoising

data. In Tab. 12.3, we vary the method for collecting trajectories (GD vs. HMC) and

the method for accumulating gradients (Avg-Grad vs. Interleave Grad). As before,

we find that using GD-based trajectories with Avg-Grad performs best.
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Figure 12.2: Test PSNR for N = 5 the course of training for Avg-Grad and Interleave-
Grad with two different learning rates. In order to achieve stable learning with
Interleave-Grad, we must use such a small learning rate that any potential speed
advantages vs. Avg-Grad are eliminated.

Note these results employ the Samplerank-G loss, as defined in Sec. 12.2.2, and

that we could not get competitive results using the original version of SampleRank

presented in Wick et al. (2011), where no margin constraints between samples and

the ground truth are imposed. Our best performance was 35.4. Whenever a pairwise

margin constraint is violated between samples, SampleRank and SampleRank-G push

down the energy of one of the samples. Unfortunately, this sample may not be on the

image manifold. With SampleRank-G, we also push down the energy of the ground

truth, which is on the image manifold, and this may be crucial for performance.

In fact, if we ignore all margin constraints besides between points and the ground

truth, we recover the SampleSVM method explored in the previous section, which

outperforms SampleRank-G.
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In the left figure of Fig. 12.3 we compare the loss for SampleRank-G vs. SampleR-

ank over the course of training. Overall, the loss for SampleRank is much noisier.

When SampleRank has low loss, this is not because it is necessarily a high-quality

model. Since the samples are collected by traversing the current energy function,

there is no guarantee that the sampling explores high-quality outputs. Even in these

low-quality regions, the margin constraints between pairs of samples could be satis-

fied.
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Figure 12.3: Left: Loss curves for SampleRank vs. SampleRank-G. Right: loss curves
for SampleRank-G training when using loss-rewarded sampling or not.

Finally, in the right figure of Fig. 12.3 we consider the impact of using loss-

rewarded sampling, which we introduce at the end of Sec. 12.2.1. Given ground truth

ȳi, at training iteration t we employ the energy function −wt∆(ȳi, ȳ)−Exi(ȳ), where

wt = max(0, 1 − t
TH

). Here, TH is a time horizon over which we decay wt. Our

experiment uses TH = 2000. We find that the SampleRank-G loss decreases more
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quickly if we use loss-rewarded sampling than if we do not. However, this reduction

in loss seems to come because of how we bias our samples, not because we learn a

good model quicker. It provides no better test-set performance overall, or in the early

iterations of training.

12.4.3 Sampling-Based Training of DeepPrior Model

Now, we use our methods to train the DeepPrior SPEN introduced in Sec. 10.3.

Here, the energy function is non-convex with respect to ȳ.

In Tab. 12.4, we apply SampleSVM learning. We vary the technique used for

gathering trajectories, along with the number of samples N per trajectory to use.

GD with N = 1 corresponds to traditional SSVM learning. We find that using N = 5

with GD performs significantly better than N = 1, achieving performance comparable

to end-to-end training. We were not able to achieve reasonable performance using

HMC-based trajectories except at a low temperature. For deep, non-convex energies,

it may be particularly important to tune the HMC hyperparameters on the fly.

Num Samples 1 5 5 5 n/a
Sampling GD GD HMC-0.001 HMC-0.01 End-to-End

PSNR 38.7 40.2 40.1 34.0 40.4

Table 12.4: Performance of SampleSVM learning DeepPrior.

In Tab. 12.5 we consider the performance of Samplerank-G. As with the field-of-

experts model, samplerank does not perform as well as SampleSVM learning. We also

struggle to achieve high-quality models when using HMC-based trajectories, except

if we use an extremely low temperature for sampling.
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Sampling GD HMC-0.001 HMC-0.01 End-to-End
PSNR 38.5 38.2 36.5 40.4

Table 12.5: Performance of SampleRank-G using a DeepPrior model with various
methods for collecting trajectories.

12.5 Image Segmentation Experiments

Next, we apply our sampling-based large-margin learning methods to the Weiz-

mann horses dataset (Borenstein & Ullman, 2008), using the SPEN architectures

introduced in Chapter 8. We evaluate development set accuracy using a SPEN with

a kernel width of 5 in the energy network. See Sec. 8.2.2 for a discussion of our

architecture. We employ the squared-loss between ȳ and a one-hot representation for

the ground truth ȳ∗ as ∆.

Num Samples 5 5 5 n/a
Sampling GD HMC-0.01 HMC-0.1 End-to-End
Accuracy 91.6 93.2 92.2 93.1

Table 12.6: Performance of SampleSVM on the Weizmann horses data.

In Tab. 12.6, we consider the performance of SampleSVM learning. Here, we find

that we can achieve performance that is comparable to to end-to-end learning using

HMC-based trajectories. It is unclear why sampling-based learning works well for

this problem and not for denoising in the previous section. We expect part of the

reason is that the sampling for denoising does not reliably sample on or near the

image manifold. However, for the horses data, there is no clear manifold structure

for ȳ.

Next, in Tab. 12.7 we consider the performance of SampleRank on the same data.

The table contrasts multiple methods for collecting trajectories. Overall, we find that

HMC generally performs better, and that we can match the performance of end-to-
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end learning. Note that the best performance we can achieve with SampleRank-G is

90.7. We are unsure why this is true.

Sampling GD HMC-0.01 HMC-0.1 End-to-End
Accuracy 91.7 93.2 92.2 93.1

Table 12.7: Performance of SampleRank on the Weizmann horses data.

12.6 Discussion

This chapter explores the viability of using sampling-based large-margin meth-

ods for fast, accurate training SPENs. We introduce a collection of methods that

make certain configurations of SampleSSVM and SampleRank training achieve sim-

ilar performance to end-to-end learning. However, we are not able to achieve our

goals of faster training or better performance. Faster training is difficult because

sampling continuous variables with arbitrary deep energy functions requires similar

computation as gradient-based energy minimization. We experiment with a method

to interleave sampling and updates to the model parameters, but this is only stable

when we use a small enough step size that it is slower than end-to-end learning. Our

goal of achieving better accuracy by using sampling to do better exploration is also

not attained. This is because adaptively tuning HMC on the fly to perform well for

high-dimensional black-box energy functions is very difficult.

Ironically, the easiest-to-implement and most-reliable approach does not require

random sampling at all: we simply define our SSVM loss not just between the ground

truth and the solution to loss-augmented inference, but between the ground truth and

every point along the trajectory taken by gradient-based loss-augmented inference.

This is easy to implement and may of future interest for SPEN applications.

Above, we mention computational challenges for getting SSVM and SampleRank

learning to be faster than end-to-end learning. The remainder of this section is
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devoted to discussing a key qualitative difference between these training methods that

might also dictate how fast they can train. Specifically, SampleSVM and SampleRank

learning may require lots of gradient steps because the quality of the feedback that

the training loss provides is lower-quality than that of end-to-end learning.

First, we consider SSVM learning. Let ŷ be the output of loss-augmented infer-

ence, let y∗ be the ground truth, let ∆(ŷ, y∗) be a cost function, and let w be the

trainable parameters of the energy function. We assume that a margin violation oc-

curs between ŷ and y∗, ie E(ŷ) < E(y∗) + ∆(ŷ, y∗). Otherwise, the gradient of the

loss with respect to w would be zero. The parameter gradient takes the simple form

of pushing the energy up for the incorrect prediction ŷ and pushing the energy down

for the ground truth:

dL

dw
=
dE(y)

dw

∣∣∣∣
y=ŷ

− dE(y)

dw

∣∣∣∣
y=y∗

. (12.10)

Consider the special case that the energy function is linear in sufficient statistics

S(y) (Sec. 2.3.2), as it would be in a CRF. Here, we have E(y) = w>S(y) and

dL
dw

= S(ŷ)− S(y∗). Any term that is identical between ŷ and y∗ will cancel out, and

thus the parameter gradient will focus on the specific mistakes made by ŷ.

However, this property does not hold for arbitrary energy functions E(·). Conse-

quently, the parameter gradient will not explicitly target which aspects of the struc-

tured output ŷ need to be fixed. With such limited feedback, large-margin learning

for SPENs may require many parameter updates.

Next, we consider end-to-end learning. For simplicity, we assume that our cost is

the squared error L(ŷ, y∗) = 1
2
‖ŷ − y∗‖2 and that our unrolled predictor performs a

single step of gradient descent:

ŷ = y0 − η∇E(y0). (12.11)
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Define g as ∇E(y0). With this, we have:

dL

dw
=
dL

dŷ

dŷ

dg

d2E(y)

dydw
(12.12)

dL

dw
= −ηdL

dŷ

d2E(y)

dydw
(12.13)

dL

dw
= −η(ŷ − y∗) d

2E(y)

dydw

∣∣∣∣
y=ŷ

(12.14)

Here, ŷ − y∗ is the displacement vector between the prediction and the ground

truth. As a result, the parameter gradient (12.14) updates the energy function such

that its gradient with respect to y is more in line with this displacement. This provides

substantially different feedback to the energy function than SSVM learning. Here, we

directly shape the gradient field of the energy such that it points in the right direction,

whereas SSVM learning only pushes up and down on values of the nergy. This may

be very important for fast learning and for supporting high-quality gradient-based

prediction.

Finally, note that end-to-end learning never evaluates the energy function at the

ground truth. It instead evaluates a loss function that compares the output of energy

minimization to the ground truth and uses this for back-propagation. This seems like

a wasted opportunity, as know where the ground truth is, and could directly ensure

that it has low energy. On the other hand, SSVM learning does exactly this. In

future work, it may important to design a learning method for SPENs that has the

benefits of both approaches.
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CHAPTER 13

CONCLUSION

13.1 Summary of Contributions

This thesis explores a wide variety of training methods and applications for SPENs.

Our goal has been to advocate for the general usefulness of deep energy-based models

and to expose important design decisions necessary to get SPENs to work well in

practice. Hopefully, SPENs will become a useful contribution to the dialog on how

to best incorporate deep networks in structured prediction.

We depart from many previous structured prediction works by treating our energy

function as a black-box that only provides forward and back-propagation. This allows

us to employ a broad range of energy functions and to use general-purpose learning

and prediction code. In addition, while our prediction and learning methods interact

with the energy function as a black-box, the practitioner is free to design the functional

form of the energy to capture prior knowledge about the problem domain.

We select the applications for our experiments primarily because they allow us

to perform controlled experiments that isolate the effects of various factors on SPEN

performance. These include the loss function used for training the energy, the op-

timization algorithm used for energy minimization, the functional form of the en-

ergy, the method used for rounding from a continuous to discrete prediction, and the

convexity of the energy. These reveal informative details for designing new SPEN

applications.
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13.2 Future Work

SPENs are a novel framework for structured prediction that present a variety

of desirable properties. On the other hand, their speed and accuracy need to be

improved before they can be deployed in large-scale applications. The first section

below emphasizes a few details of our work that are generally useful and should be

maintained in further research. After that, we provide a list of specific suggestions

for improving SPENs.

13.2.1 SPENs Details to Retain for Future Work

End-to-end SPEN learning (Sec. 5.4), i.e., unrolling a particular energy minimiza-

tion algorithm and training it by gradient descent, is very effective in practice. Not

only can it provide high-quality models, but it is substantially more user-friendly,

since learning directly returns a prediction algorithm. Otherwise, we have to sepa-

rately tune an optimization procedure to be used at test time. This has the added

benefit that it is easy to learn an energy function such that it can be optimized quickly

at test time.

The general principal of using deep network to do representation learning for the

outputs of a structured prediction problem is good. On the other hand, it is difficult

to fully utilize the capability of deep global energy functions, since labeled datasets

for structured prediction are often quite small, and thus SPENs are vulnerable to

overfitting. The architecture in our SRL experiments (Sec. 9.1) hard-codes prior

knowledge about constraints the data must satisfy and about important interactions

among components of ȳ. Such an approach may be useful in many applications going

forward.

It can be useful to perform stage-wise training of different parts of a SPEN. Our

decomposition of the energy into local and global terms (Sec. 3.2.3) is useful because

it enables us to pre-train our features F (x) using a feed-forward predictor defined by
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the local terms. By explicitly defining F (x), instead of absorbing it into the energy

network, we are also able to achieve fast energy minimization with respect to y by

caching the features.

Our method for capturing multi-modal output distributions using end-to-end

training of a randomized predictor (Sec. 11.3) is easier to implement and tune than

methods that perform multi-modal density estimation. Being able to capture uncer-

tainty in predictions is very useful in a variety of applications. By defining a random-

ized predictor simply by selecting a random initial point, we also avoid introducing

any new hyperparameters.

Finally, we have found it very helpful to inspect the various diagnostics employed

in Sec. 8.3 for tuning SPENs. Plotting the curves for test-time energy minimiza-

tion helps us identify problems where the energy minimization is non-convergent or

low-quality. Plotting the norm of the gradient over the course of learning helps us

understand if we should be clipping our gradients differently. Plotting the the loss

function over the course of learning helps us tune our learning rate.

13.2.2 Concrete Suggestions for Future Work

This section enumerates a collection of methods that would be good projects for

future structured prediction research. Many of these are in response to characteristics

of SPENs that we have found disappointing in practice.

Overall, using a deep network to score candidate outputs is a good idea. However,

it may be useful to employ such a scoring function in alternative prediction procedures

that avoid gradient-based energy minimization. First of all, gradient-based prediction

is often slow for us in practice. It is unclear how much SPEN prediction could be

sped up using carefully optimized code. In addition, it is difficult to apply to discrete

prediction problems, as we must first optimize a continuous relaxation, and then

convert this to a discrete ouput. A simple alternative approach would be to use the
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SPEN to score a relatively small list of candidate outputs that are generated by some

auxiliary model. Here, prediction would simply return the element of the list with the

lowest energy. In addition, there may be methods where we could employ the deep

SPEN energy only at train time, as a differentiable loss function used for training a

fast feed-forward predictor.

In addition, future work should unroll optimization methods that better adapt to

the geometry of the specific energy function to be minimized. Two different values of

x may yield energy functions Ex(·) that are qualitatively different. Furthermore, we

have found that the general scale of the energy changes dramatically over the course

of learning. When we employ an optimization method that is not properly tuned to

the energy, gradient descent may be chaotic (Fig. 11.2), in which case the learning

signal provided by end-to-end learning would be unreliable. It would be interesting,

for example, to use a learned model that directly predicts the optimizer’s hyperpa-

rameters as a function of x. One could also develop a differentiable approximation

of line search (Sec. 4.3.2). In addition, it may be useful to develop regularization

methods that enforce that the energy always has the same general scale or that it is

well-behaved (strongly-convex, low condition number, etc.). It may also be useful to

design alternatives to the ICNN constraint that enforce convexity, but are less restric-

tive. Alternatively, we could employ a regularization method that enforces convexity

as a soft constraint.

In designing our energy network architectures, it is often clear what a reasonable

functional form for the dependence of Ex(ȳ) on ȳ should be. However, it is less

clear how this should depend on x. For example, in many architectures, we simply

concatenate ȳ and the features F (x). Going forward, it may be useful to further

explore the hypernetwork approach discussed in Sec. 11.4.2. Here, we employ an

architecture only over ȳ, but the parameters of the network depend on x. This is
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conceptually similar to how a CRF is defined as a mapping from x to the natural

parameters of an MRF.

Traditional approaches to learning loopy factor graphs are often double-loop algo-

rithms, where an iterative method for MAP or marginal inference needs to be called

in order to compute a single gradient of the loss with respect to the parameters. This

is slow in practice and also sensitive to truncated optimization of the inner problem.

An attractive line of work flattens these updates, such that alternating steps can

be taken on the parameters and the optimization variables for the inference prob-

lem (Meshi et al., 2010; Domke, 2013b; Bach et al., 2015; Hazan et al., 2016). This

is typically obtained by dualizing the inner inference problem such that learning is

a joint minimization problem of parameters and messages, i.e., dual variables. The

sampling-based learning methods in Chapters 11 and 12 also interleave parameter

updates and updates to ȳ. However, the overall learning problem is not a joint op-

timization of trainable parameters w and ȳ. In future work, it may be fruitful to

develop alternative SPEN learning methods that are not based on sampling but do

have this interleaving property.

In Sec. 7.12, we outline how SPENs could be trained using reinforcement learning.

This would allow us to directly optimize the performance of gradient-based prediction,

while avoiding the pitfalls of end-to-end learning, which is vulnerable to vanishing

gradients, has high memory requirements, and can not accomodate non-differentiable

loss functions.

SPENs perform representation learning for ȳ, but the iterative energy minimiza-

tion is done with respect to y itself. It may be preferrable to instead perform the

optimization in a different representation that is directly learned such that gradient-

based optimization is well-behaved. The challenge of such an approach is that we

need a differentiable method for converting the optimized abstract representation to
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a value of ȳ. On the other hand, this technique may improve our ability to explore a

diverse set of candidate outputs.

Finally, SPENs seem most important in the limited data regime, as the practi-

tioner can introduce useful inductive bias by choosing the architecture of the energy

network. Overall, though, it is unclear why a feedforward network cannot match the

parsimony of a SPEN. Similarly, it is unclear what constraints on outputs can and

cannot be enforced by simple feed-forward prediction. In addition, feed-forward and

energy-based approaches admit different loss functions, each of which may have dif-

ferent associated sample complexity. We should pursue a better understanding of the

regimes where energy-based prediction is most effective vs. alternative approaches,

as this would help the community direct its research efforts.

217



BIBLIOGRAPHY

Abadi, Martın, Agarwal, Ashish, Barham, Paul, Brevdo, Eugene, Chen, Zhifeng,
Citro, Craig, Corrado, Greg S, Davis, Andy, Dean, Jeffrey, Devin, Matthieu, et al.
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
arXiv preprint arXiv:1603.04467, 2016.

Abbeel, Pieter and Ng, Andrew Y. Apprenticeship Learning Via Inverse Reinforce-
ment Learning. International Conference on Machine Learning, pp. 1, 2004.

Agrawal, Rahul, Gupta, Archit, Prabhu, Yashoteja, and Varma, Manik. Multi-Label
Learning with Millions of Labels: Recommending Advertiser Bid Phrases for Web
Pages. International Conference on World Wide Web, 2013.

Amos, B. and Zico Kolter, J. OptNet: Differentiable Optimization As a Layer in
Neural Networks. International Conference on Machine Learning, 2017.

Amos, Brandon, Xu, Lei, and Kolter, J Zico. Input-Convex Deep Networks. Inter-
national Conference on Machine Learning, 2017.

Andreas, Jacob, Rabinovich, Maxim, Klein, Dan, and Jordan, Michael I. On the
Accuracy of Self-Normalized Log-Linear Models. Neural Information Processing
Systems, 2015.

Andrychowicz, Marcin, Denil, Misha, Gomez, Sergio, Hoffman, Matthew W, Pfau,
David, Schaul, Tom, and de Freitas, Nando. Learning to Learn by Gradient Descent
by Gradient Descent. Neural Information Processing Systems, 2016.

Anzaroot, Sam and McCallum, Andrew. A New Dataset for Fine-Grained Citation
Field Extraction. International Conference on Machine Learning Workshop on
Peer Reviewing and Publishing Models, 2013.

Anzaroot, Sam, Passos, Alexandre, Belanger, David, and McCallum, Andrew. Learn-
ing Soft Linear Constraints with Application to Citation Field Extraction. Associ-
ation for Computational Linguistics, 2014.

Argall, Brenna D, Chernova, Sonia, Veloso, Manuela, and Browning, Brett. A Survey
of Robot Learning from Demonstration. Robotics and autonomous systems, 57(5):
469–483, 2009.

Bach, Stephen H., Huang, Bert, Boyd-Graber, Jordan, and Getoor, Lise. Paired-Dual
Learning for Fast Training of Latent Variable Hinge-Loss MRFs. International
Conference on Machine Learning, 2015.

218



Bahdanau, Dzmitry, Brakel, Philemon, Xu, Kelvin, Goyal, Anirudh, Lowe, Ryan,
Pineau, Joelle, Courville, Aaron, and Bengio, Yoshua. An Actor-Critic Algorithm
for Sequence Prediction. International Conference on Learning Representations,
2017.

Barbu, Adrian. Training an Active Random Field for Real-Time Image Denoising.
IEEE Transactions on Image Processing, 18(11):2451–2462, 2009.

Barto, Andrew G, Sutton, Richard S, and Anderson, Charles W. Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems. IEEE transactions
on systems, man, and cybernetics, pp. 834–846, 1983.

Baydin, Atilim Gunes and Pearlmutter, Barak A. Automatic Differentiation of Algo-
rithms for Machine Learning. arXiv preprint arXiv:1404.7456, 2014.

Beck, Amir and Teboulle, Marc. Mirror Descent and Nonlinear Projected Subgradient
Methods for Convex Optimization. Operations Research Letters, 31(3), 2003.

Belagiannis, Vasileios and Zisserman, Andrew. Recurrent human pose estimation.
arXiv preprint arXiv:1605.02914, 2016.

Belanger, D., Yang, B., and McCallum, A. End-To-End Learning for Structured
Prediction Energy Networks. International Conference on Machine Learning, 2017.

Belanger, David and McCallum, Andrew. Structured Prediction Energy Networks.
International Conference on Machine Learning, 2016.

Belanger, David, Passos, Alexandre, Riedel, Sebastian, and McCallum, Andrew. Map
Inference in Chains Using Column Generation. Neural Information Processing
Systems, pp. 1844–1852, 2012.

Belanger, David, Passos, Alexandre, Riedel, Sebastian, and McCallum, Andrew. Mes-
sage Passing for Soft Constraint Dual Decomposition. Conference on Uncertainty
in Artificial Intelligence, 2014.

Bengio, Yoshua, Laufer, Eric, Alain, Guillaume, and Yosinski, Jason. Deep Generative
Stochastic Networks Trainable by Backprop. International Conference on Machine
Learning, pp. 226–234, 2014.

Bengio, Yoshua, Goodfellow, Ian J, and Courville, Aaron. Deep Learning. MIT Press,
2016.

Berger, Adam L, Pietra, Vincent J Della, and Pietra, Stephen A Della. A Maximum
Entropy Approach to Natural Language Processing. Computational linguistics, 22
(1):39–71, 1996.

219



Bergstra, James, Bastien, Frédéric, Breuleux, Olivier, Lamblin, Pascal, Pascanu, Raz-
van, Delalleau, Olivier, Desjardins, Guillaume, Warde-Farley, David, Goodfellow,
Ian, Bergeron, Arnaud, et al. Theano: Deep Learning on Gpus with Python. Neu-
ral Information Processing Systems 2011, BigLearning Workshop, Granada, Spain,
2011.

Besag, Julian. Statistical Analysis of Non-Lattice Data. The statistician, pp. 179–195,
1975.

Bethe, Hans A. Statistical Theory of Superlattices. Proceedings of the Royal Society
of London. Series A, Mathematical and Physical Sciences, 150(871):552–575, 1935.

Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Jain, Prateek, and Varma,
Manik. Locally Non-Linear Embeddings for Extreme Multi-Label Learning. CoRR,
abs/1507.02743, 2015.

Bishop, Christopher M. Mixture Density Networks. Tech. Rep. NCRG/94/004, Neu-
ral Computing Research Group, 1994.

Bishop, Christopher M, Lawrence, Neil, Jaakkola, Tommi, and Jordan, Michael I.
Approximating Posterior Distributions in Belief Networks Using Mixtures. Neural
Information Processing Systems, pp. 416–422, 1998.

Bordes, Antoine, Usunier, Nicolas, and Bottou, Léon. Sequence Labelling SVMs
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FitzGerald, Nicholas, Täckström, Oscar, Ganchev, Kuzman, and Das, Dipanjan. Se-
mantic Role Labeling with Neural Network Factors. Empirical Methods in Natural
Language Processing, pp. 960–970, 2015.

Foo, Chuan-sheng, Do, Chuong B, and Ng, Andrew Y. Efficient Multiple Hyperpa-
rameter Learning for Log-Linear Models. Neural Information Processing Systems,
pp. 377–384, 2008.

for Computational Linguisticsaurin, Dougal MAssociation, Duvenaud, David, and
Adams, Ryan P. Gradient-Based Hyperparameter Optimization Through Re-
versible Learning. International Conference on Machine Learning, July 2015.

Freund, Yoav and Haussler, David. Unsupervised Learning of Distributions of Binary
Vectors Using Two Layer Networks. Neural Information Processing Systems, 1992.

223



Fu, Qiang and Banerjee, Huahua Wang Arindam. Bethe-ADMM for Tree Decom-
position Based Parallel MAP Inference. Conference on Uncertainty in Artificial
Intelligence, 2013.

Ganchev, Kuzman, Graça, Joao, Gillenwater, Jennifer, and Taskar, Ben. Posterior
Regularization for Structured Latent Variable Models. Journal of Machine Learning
Research, 99:2001–2049, 2010.

Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. A Neural Algorithm of
Artistic Style. CoRR, abs/1508.06576, 2015a.

Gatys, Leon A., Ecker, Alexander S., and Bethge, Matthias. Texture Synthesis Using
Convolutional Neural Networks. Neural Information Processing Systems, 2015b.

Geman, Stuart and Geman, Donald. Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images. IEEE Transactions on pattern analysis and
machine intelligence, pp. 721–741, 1984.

Ghamrawi, Nadia and McCallum, Andrew. Collective Multi-Label Classification.
ACM International Conference on Information and Knowledge Management, 2005.

Gildea, Daniel and Jurafsky, Daniel. Automatic Labeling of Semantic Roles. Com-
putational linguistics, 28(3):245–288, 2002.

Gimpel, Kevin and Smith, Noah A. Softmax-Margin CRFs: Training Log-Linear
Models with Cost Functions. Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 733–736, 2010.

Girolami, Mark and Calderhead, Ben. Riemann Manifold Langevin and Hamiltonian
Monte Carlo Methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

Globerson, Amir and Jaakkola, Tommi S. Fixing Max-Product: Convergent Mes-
sage Passing Algorithms for MAP LP-Relaxations. Neural Information Processing
Systems, 2008.

Glorot, Xavier and Bengio, Yoshua. Understanding the Difficulty of Training Deep
Feedforward Neural Networks. International Conference on Artificial Intelligence
and Statistics, 9:249–256, 2010.

Godbole, Shantanu and Sarawagi, Sunita. Discriminative Methods for Multi-Labeled
Classification. In Advances in Knowledge Discovery and Data Mining, pp. 22–30.
Springer, 2004.

Goel, Vaibhava and Byrne, William J. Minimum Bayes-Risk Automatic Speech
Recognition. Computer Speech & Language, 14(2):115–135, 2000.

224



Goodfellow, Ian J, Shlens, Jonathon, and Szegedy, Christian. Explaining and Harness-
ing Adversarial Examples. International Conference on Learning Representations,
2015.

Goodman, Noah, Mansinghka, Vikash, Roy, Daniel M, Bonawitz, Keith, and Tenen-
baum, Joshua B. Church: A Language for Generative Models. Uncertainty in
Artificial Intelligence, 2008.

Goodman, Noah D. The Principles and Practice of Probabilistic Programming. ACM
SIGPLAN Notices, 48(1):399–402, 2013.

Graves, Alex, Fernández, Santiago, and Schmidhuber, Jürgen. Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition. Artificial Neural
Networks: Formal Models and Their Applications–ICANN 2005, pp. 753–753, 2005.

Greff, Klaus, Srivastava, Rupesh K, and Schmidhuber, Jürgen. Highway and Resid-
ual Networks Learn Unrolled Iterative Estimation. International Conference on
Learning Representations, 2017.

Gregor, Karol and LeCun, Yann. Learning Fast Approximations of Sparse Coding.
International Conference on Machine Learning, 2010.

Gruslys, Audrunas, Munos, Remi, Danihelka, Ivo, Lanctot, Marc, and Graves, Alex.
Memory-Efficient Backpropagation Through Time. Neural Information Processing
Systems, pp. 4125–4133, 2016.

Gu, Jiatao, Cho, Kyunghyun, and Li, Victor OK. Trainable Greedy Decoding for
Neural Machine Translation. arXiv preprint arXiv:1702.02429, 2017.

Gutmann, Michael and Hyvärinen, Aapo. Noise-Contrastive Estimation: A New Es-
timation Principle for Unnormalized Statistical Models. International Conference
on Artificial Intelligence and Statistics, 2010.

Guzman-Rivera, Abner, Batra, Dhruv, and Kohli, Pushmeet. Multiple Choice Learn-
ing: Learning to Produce Multiple Structured Outputs. Neural Information Pro-
cessing Systems, pp. 1799–1807, 2012.

Guzman-Rivera, Abner, Kohli, Pushmeet, Batra, Dhruv, and Rutenbar, Rob. Effi-
ciently Enforcing Diversity in Multi-Output Structured Prediction. Artificial In-
telligence and Statistics, pp. 284–292, 2014.

Gygli, Michael, Norouzi, Mohammad, and Angelova, Anelia. Deep Value Networks
Learn to Evaluate and Iteratively Refine Structured Outputs. International Con-
ference on Machine Learning, 2017.

Ha, David, Dai, Andrew, and Le, Quoc. HyperNetworks. International Conference
on Learning Representations, 2017.

225



Hariharan, Bharath, Zelnik-Manor, Lihi, Varma, Manik, and Vishwanathan, Svn.
Large Scale Max-Margin Multi-Label Classification with Priors. International Con-
ference on Machine Learning, 2010.

Hazan, Tamir, Schwing, Alexander G, and Urtasun, Raquel. Blending Learning and
Inference in Conditional Random Fields. Journal of Machine Learning Research,
17:1–22, 2016.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep Residual Learning
for Image Recognition. Computer Vision and Pattern Recognition, 2016.

He, L., Gillenwater, J., and Taskar, B. Graph-Based Posterior Regularization for
Semi-Supervised Structured Prediction. CoNLL, 2013.

Hershey, John R, Roux, Jonathan Le, and Weninger, Felix. Deep Unfolding: Model-
Based Inspiration of Novel Deep Architectures. arXiv preprint arXiv:1409.2574,
2014.

Hinton, Geoffrey, Osindero, Simon, Welling, Max, and Teh, Yee-Whye. Unsupervised
Discovery of Nonlinear Structure Using Contrastive Backpropagation. Cognitive
science, 30(4):725–731, 2006a.

Hinton, Geoffrey, Deng, Li, Yu, Dong, Dahl, George E, Mohamed, Abdel-rahman,
Jaitly, Navdeep, Senior, Andrew, Vanhoucke, Vincent, Nguyen, Patrick, Sainath,
Tara N, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29
(6):82–97, 2012.

Hinton, Geoffrey E. Training Products of Experts by Minimizing Contrastive Diver-
gence. Neural computation, 14(8):1771–1800, 2002.

Hinton, Geoffrey E, Osindero, Simon, and Teh, Yee-Whye. A Fast Learning Algorithm
for Deep Belief Nets. Neural computation, 18(7):1527–1554, 2006b.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-Term Memory. Neural com-
putation, 1997.

Hochreiter, Sepp, Bengio, Yoshua, Frasconi, Paolo, and Schmidhuber, Jürgen. Gradi-
ent Flow in Recurrent Nets: The Difficulty of Learning Long-Term Dependencies,
2001a.

Hochreiter, Sepp, Younger, A Steven, and Conwell, Peter R. Learning to Learn
Using Gradient Descent. International Conference on Artificial Neural Networks,
pp. 87–94, 2001b.

Hoffman, Matthew D and Gelman, Andrew. The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, 15(1):1593–1623, 2014.

226



Hsu, Daniel, Kakade, Sham, Langford, John, and Zhang, Tong. Multi-Label Predic-
tion Via Compressed Sensing. Neural Information Processing Systems, 2009.

Hyvärinen, Aapo. Estimation of Non-Normalized Statistical Models by Score Match-
ing. Journal of Machine Learning Research, 6(Apr):695–709, 2005.

Jaakkola, Tommi, Saul, Lawrence K, and Jordan, Michael I. Fast Learning by Bound-
ing Likelihoods in Sigmoid Type Belief Networks. Neural Information Processing
Systems, pp. 528–534, 1996.

Jernite, Yacine, Rush, Alexander M., and Sontag, David. A Fast Variational Approach
for Learning Markov Random Field Language Models. International Conference
on Machine Learning, 2015.

Ji, Shuiwang and Ye, Jieping. Linear Dimensionality Reduction for Multi-Label Clas-
sification. IJCAI, 9:1077–1082, 2009.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan,
Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional Ar-
chitecture for Fast Feature Embedding. Proceedings of the 22nd ACM International
Conference on Multimedia, pp. 675–678, 2014.

Jordan, Michael I, Ghahramani, Zoubin, Jaakkola, Tommi S, and Saul, Lawrence K.
An Introduction to Variational Methods for Graphical Models. Machine learning,
37(2):183–233, 1999.

Kapoor, Ashish, Viswanathan, Raajay, and Jain, Prateek. Multilabel Classification
Using Bayesian Compressed Sensing. Neural Information Processing Systems, 2012.

Kingma, Diederik and Ba, Jimmy. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, 2015a.

Kingma, Diederik P. and Ba, Jimmy. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations, 2015b.

Kingma, Diederik P and Welling, Max. Auto-Encoding Variational Bayes. Interna-
tional Conference on Learning Representations, 2014.

Kingma, D.P. and LeCun, Yann. Regularized Estimation of Image Statistics by Score
Matching. Neural Information Processing Systems, 23:1126–1134, 2010.

Klein, Dan and Manning, Christopher D. A Parsing: Fast Exact Viterbi Parse Se-
lection. Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology-Volume
1, pp. 40–47, 2003.

Kohli, Pushmeet, Ladicky, L’ubor, and Torr, Philip HS. Robust Higher Order Poten-
tials for Enforcing Label Consistency. Computer Vision and Pattern Recognition,
pp. 1–8, 2008.

227



Koller, Daphne and Friedman, Nir. Probabilistic Graphical Models: Principles and
Techniques. MIT press, 2009.

Komodakis, Nikos, Paragios, Nikos, and Tziritas, Georgios. MRF Optimization Via
Dual Decomposition: Message-Passing Revisited. IEEE ICCV, 2007.

Konda, Vijaymohan R and Borkar, Vivek S. Actor-Critic–Type Learning Algorithms
for Markov Decision Processes. SIAM Journal on control and Optimization, 38(1):
94–123, 1999.
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