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ABSTRACT 

.MECHANICS AND ENERGETICS OF FOOTFALL PATTERNS IN RUNNING 

SEPTEMBER 2012 

ALLISON H. GRUBER 

B.S., EXERCISE SCIENCE, UNIVERSITY OF MASSACHUSETTS AMHERST 

M.A., EXERCISE & SPORT SCIENCE, EAST CAROLINA UNIVERSITY 

P.h.D., KINESIOLOGY, UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Joseph Hamill 
 
 

The forefoot (FF) running pattern has been recently advocated to improve running 
economy and prevent overuse injuries compared to the rearfoot (RF) pattern.  However, 
these claims have not been supported by empirical evidence.  The purpose of this 
dissertation was to investigate the potential advantages of RF and FF patterns to improve 
running economy and reduce injury risk in 20 natural RF and 20 natural FF runners. 

The first study found that the RF group was more economical when performing 
the RF pattern at a slow, medium, and fast speed vs. FF running.  Only running at the fast 
speed resulted in a difference in economy between footfall patterns in the FF group in 
which RF running was more economical. Therefore, there is no advantage of FF running 
for improving running economy. 

The results of the second study indicated that there was a weak to moderate 
relationship between Achilles tendon (AT) moment arm length and running with either 
RF or FF patterns.  AT force was greater during FF running, which may increase the risk 
of developing tendon injury. 

The third study used a modeling approach to find that FF running resulted in 
greater elastic energy recoil in the gastrocnemius (GA) and the soleus (SO).  However, 
greater mechanical work overall with FF running resulted in no difference in metabolic 
cost of the GA between footfall patterns but greater metabolic cost of the SO compared to 
RF running. 

The fourth study found that shock attenuation was greater during RF running 
compared to FF running.  Greater shock attenuation during RF running was a result of an 
increased load imposed on the system.  Decomposing the vertical ground reaction force 
in the frequency domain revealed that RF running may have a greater reliance on passive 
shock attenuation mechanism whereas the FF pattern may have a greater reliance on 
active shock attenuation mechanisms. 

These results suggest that previous speculation that the FF running pattern is more 
economical was not substantiated.  It is likely that each footfall pattern exposes a runner 
to different types of injuries, rather than one footfall pattern being more injurious than 
another. 
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CHAPTER 1  

INTRODUCTION 

 

General Introduction 

Runners employ one of three distinct footfall patterns: forefoot (FF), midfoot 

(MF), or rearfoot (RF).  The patterns are named by the location of the center of pressure 

at the instant of ground contact.  The whole foot ultimately contacts the ground in both 

the RF and MF patterns whereas the heel does not make contact with the FF pattern.  The 

MF pattern may be an intermediate between the RF and FF patterns in that initial contact 

is made on the anterior portion of the foot but the rest of the foot makes contact nearly at 

the same time.  Recreational and competitive runners predominately employ the RF 

pattern whereas only about 25% use the MF or FF pattern (Hasegawa et al., 2007). 

Since the fastest runners in short, middle, and long distance events are FF or MF 

runners (Hasegawa et al., 2007; Kerr et al., 1983; Payne, 1983), it is easy to suggest that 

these footfall patterns may enhance performance by improving running economy or 

running speed (Bonacci et al., 2010; Hasegawa et al., 2007).  Additionally, the FF pattern 

has been advocated to reduce the risk of running injuries because of the absence of the 

initial impact peak of the vertical ground reaction force (GRF) component (Cavanagh and 

Lafortune, 1980; Daoud et al., 2012; Davis et al., 2010; Lieberman et al., 2010; Oakley 

and Pratt, 1988).  However, these claims have not been substantiated in the literature and 

the mechanisms of these benefits are currently speculative. 
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Relationship Between Running Mechanics and Economy 

The relationship between running mechanics and performance is typically 

assessed by measuring running economy, or sub-maximal rate of oxygen consumption 

(VO2) (Williams and Cavanagh, 1987).  An improvement in running economy, and 

thereby performance, will be accomplished if some physiological or biomechanical 

change results in a reduction of VO2 over a range of running speeds (Williams, 1990).   

Several biomechanical features of running have been identified in more 

economical runners including longer ground contact time, lower vertical GRF peaks, 

decreased vertical oscillation, greater trunk angle, greater maximum knee flexion in the 

stance phase and a more extended leg at touchdown (Williams and Cavanagh, 1987).  

Interestingly, several of these features are characteristic of those who run with the RF 

pattern.  However, only one previous study found RF running to require a lower rate of 

oxygen consumption, but this relationship was not found at all speeds examined or for all 

metabolic variables (Slavin, 1992).  Other studies have not found a difference in oxygen 

consumption between footfall patterns but only assessed runners of one habitual footfall 

type performing both the RF and FF patterns (Ardigo et al., 1995; Cunningham et al., 

2010; Perl et al., 2012).  However, a forward dynamics modeling study found RF running 

required a lower metabolic rate than FF running (Miller and Hamill, 2012). 

Not assessing running economy in both natural RF and natural FF runners, in 

addition to small sample sizes may have contributed to the lack of significant differences 

between footfall patterns in previous studies.  The addition of a natural FF runners group 

would allow for a direct comparison of running economy between patterns.  Comparing 

both groups performing their natural footfall pattern will eliminate the potential for 
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differences to be masked due to the novelty of performing the alternate pattern.  

Additionally, a natural FF runners group can represent the effect of long term training of 

the FF pattern in natural RF runners. 

Since running economy is dependent on biomechanics, physiology and 

anthropometry (Daniels, 1985; Morgan et al., 1994a), it is possible that each footfall 

pattern incorporates a combination of factors that do not bring about a net reduction in 

metabolic cost.  Therefore, the possible factors that may affect running economy within 

each footfall pattern need to be identified in order to determine the advantage of altering 

footfall pattern to improve performance.  

 

Achilles Tendon Moment Arm and Running Economy 

An anthropometric factor that has been shown to affect running economy is the 

length of the Achilles tendon moment arm.  Runners with shorter Achilles tendon 

moment arms tend to have greater economy than those with longer Achilles tendon 

moment arms (Scholz et al., 2008).  A shorter Achilles tendon moment arm may increase 

the storage and release of elastic energy due to the increased force required to maintain a 

given joint moment.  Despite the increased force necessary to produce a given joint 

moment, an increase in the storage and release of elastic energy has been suggested to be 

an energy saving mechanism (Albracht and Arampatzis, 2006; Biewener and Roberts, 

2000; Roberts, 2002).  Although muscle moment arm length is an anthropometric 

measure, it does change with joint position and it may be possible to manipulate joint 

position during running to improve economy.  Magnetic resonance imaging studies have 

indicated the Achilles tendon moment arm is shorter in dorsiflexion positions compared 
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to plantar flexion positions (Maganaris et al., 1998; Maganaris et al., 2000).  These 

findings suggest the RF running pattern may involve a shorter Achilles tendon moment 

arm during early stance which may result in greater economy over FF running.   

A consequence of using an ankle joint position that decreases the Achilles tendon 

moment arm is that larger muscle forces would be required to produce a given joint 

moment.  Therefore, larger muscle forces may be produced during RF running if a shorter 

Achilles tendon moment arm results from a dorsiflexed position at impact.  However, the 

FF pattern results in greater plantar flexion ankle joint moments compared to RF running 

which may result in larger triceps surae muscle forces (Williams et al., 2000).  The larger 

muscle forces required to maintain a plantar flexed position throughout the stance phase 

in FF running may be large enough to counteract the effect of having a longer Achilles 

tendon moment arm.  Together, the combined effects of having a longer moment arm 

during stance and producing greater triceps surae muscle forces provide support for FF 

running being less economical than RF running.   

In addition to negatively effecting running economy (Biewener and Roberts, 

2000; Roberts et al., 1998), greater muscle forces will increase the stress placed on the 

Achilles tendon which may increase the risk of injury.  Previous studies have also 

suggested that FF running may increase the risk of AT injury as a result of increased 

eccentric work of the plantar flexors and greater dorsiflexion velocity compared to RF 

running (Nilsson and Thorstensson, 1989; Oakley and Pratt, 1988; Williams et al., 2000).  

However, if RF running decreases the Achilles tendon moment arm, RF running may also 

cause high Achilles tendon stress due to the greater force required to generate a given 

joint moment.  The combination of high muscle forces with a small moment arm may 
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compromise the safety factor of the tendon, increasing the risk of a tendon overuse injury 

or rupture (Biewener, 2005; Scholz et al., 2008).  Therefore, a trade-off may exist 

between performance and injury concerning the potential differences of Achilles tendon 

moment arm length between running patterns. 

 

Muscle Function and Elastic Energy Utilization in Running 

As previously mentioned, the economical benefit of a shorter Achilles tendon 

moment arm may result from an increase of elastic energy storage and release (Scholz et 

al., 2008) which may be a mechanism for greater running economy with RF running.  

However, those that argue FF running is more economical speculate the improvement is 

due to increased elastic energy utilization compared to RF running (Ardigo et al., 1995; 

Hasegawa et al., 2007; Perl et al., 2012).  Increased storage and release of elastic energy 

decreases the metabolic cost of running by contributing positive mechanical work that 

does not need to be produced by the muscle fibers (Cavagna, 1977a; Cavagna et al., 

1977b; Lichtwark and Wilson, 2005b; Roberts, 2002; Williams and Cavanagh, 1987).   

RF running has been shown to utilize this mechanism by maintaining small changes in 

muscle fascicle length at near optimal shortening velocities while the elastic elements are 

responsible for producing the majority of positive work (Biewener and Roberts, 2000; 

Fenn, 1924; Huxley, 1974; Rall, 1985; Roberts et al., 1997).   

Although not explicitly comparing footfall patterns, Hof et al. (2002) showed that 

a MF runner generated triceps surae muscle force when the fibers remained isometric at 

near optimum length of the force-length relationship.  This allowed the shortening and 

lengthening of the whole muscle-tendon complex of the gastrocnemius and soleus to be 
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accomplished by passive elements.  Since the MF runner produced substantially less 

positive work by the muscle fibers than a RF runner, MF running may require less muscle 

energy expenditure than RF running.   If the MF running pattern is a true intermediate, 

the metabolic benefits of FF running may result from isometric muscle force 

development and utilization of elastic energy.  However, a forward dynamics running 

simulation by Miller and Hamill (2012) exhibited a distinct RF running pattern when 

optimizing for minimal muscle energy expenditure.  This finding suggests other 

mechanisms may be involved which counteract any possible energy savings mechanisms 

of FF running.  Alternatively, the cumulative effects of requiring a shorter Achilles 

tendon moment arm and other biomechanical factors of RF running may result in greater 

energy savings over FF running. 

The difference in elastic energy storage and release between footfall patterns was 

investigated by Ardigo et al. (1995).  Elastic energy was estimated by calculating a ratio 

between external work and deceleration time to external work and acceleration time (Wext 

tdec
-1/Wext tacc

-1).  Calculating this ratio revealed FF running resulted in greater elastic 

energy contribution although no difference in oxygen consumption between RF and FF 

running was detected.  The authors suggested FF running generated more negative work 

which must be overcome by a combination of elastic energy and additional positive work, 

which did not result in energy savings.  Therefore, it is possible that FF running utilizes 

more elastic energy than RF running, but the additional negative work generated to 

maintain a plantar flexed position during stance may negate any energy savings.  
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Impact Parameters in Running 

The different segment orientations and force requirements of each footfall pattern 

will not only change how the muscles function, but may also affect the impact 

characteristics during landing and how those impacts are attenuated (Bobbert et al., 1992; 

Boyer and Nigg, 2004; Gerritsen et al., 1995; Wakeling et al., 2001b).  Compared to FF 

running, RF running results in lower vertical active force peak but increased vertical GRF 

loading rate and tibial acceleration; however, there are conflicting reports on these 

findings (Cavanagh and Lafortune, 1980; Laughton et al., 2003; McClay and Manal, 

1995b; Oakley and Pratt, 1988).  Vertical GRF loading rate and the magnitude of the 

initial impact peak have been suggested to cause overuse injuries from running (Davis et 

al., 2010; Dickinson et al., 1985; Hreljac et al., 2000; James et al., 1978; Milner et al., 

2006; Paul et al., 1978; Radin et al., 1973; Voloshin and Wosk, 1982; Williams et al., 

2000; Zifchock et al., 2006).  However, active forces, which are greater in FF running 

(Dickinson et al., 1985; Laughton et al., 2003; McClay and Manal, 1995b; Oakley and 

Pratt, 1988; Williams et al., 2000), can result in 3 – 5 times greater joint forces than the 

impact peak (Burdett, 1982; Harrison et al., 1986; Scott and Winter, 1990).  Therefore the 

high forces produced with FF running may also contribute to injury mechanisms 

(Dickinson et al., 1985; Messier et al., 1991; Nigg, 2011; Radin, 1972; Winter, 1983).  

Therefore, both footfall patterns may have different mechanisms contributing to injury 

risk.  

The differences in vertical GRF profile between footfall patterns may affect the 

frequency content of the impact shock wave that is attenuated by the body tissues.  For 

example, the initial impact peak is believed to have a frequency content of 10 – 20 Hz 
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(Derrick et al., 1998; Hamill et al., 1995; Nigg, 2001).  Frequencies in this range may 

have lower power during FF running due to the absence of this peak.  Frequency 

components below 8 Hz are associated to the active force (Potthast et al., 2010; Shorten 

and Mientjes, 2003) and thus may have greater power during FF running. 

Since the initial impact peak occurs too quickly for muscles to directly respond to 

it as a stimulus (Nigg et al., 1981), passive mechanisms may be primarily responsible for 

attenuating impact shock during RF running (Williams and Cavanagh, 1987).  Passive 

shock attenuation mechanisms include deformation of the running shoe, heel fat pad, 

ligaments, bone and articular cartilage (Chu et al., 1986; Paul et al., 1978).  Passive 

mechanisms are responsible for damping the high frequency components of impact forces 

and the impact shock wave (Lafortune et al., 1996; Nigg et al., 1981; Paul et al., 1978; 

Voloshin et al., 1985).  For example, the heel fat pad has been shown to attenuate all 

frequencies and bone attenuates frequencies greater than 18 Hz (Paul et al., 1978).  FF 

running does not take advantage of the heel fat pad to attenuate impacts therefore these 

frequency need to be absorbed by other mechanisms. 

Active shock attenuation mechanisms include eccentric muscle contractions, 

increased muscle activation, changes in segment geometry and adjustments in joint 

stiffness (Bobbert et al., 1992; Cole et al., 1996a; Denoth, 1986; Derrick et al., 1998; 

Gerritsen et al., 1995; McMahon et al., 1987).  Active mechanisms are responsible for 

attenuating lower frequency components because muscle latency is too slow to elicit 

muscular reactions during the short impact phase (Nigg, 1986; Nigg et al., 1981).  

Differences in impact characteristics between footfall patterns may affect which 

mechanisms are responsible for attenuating impacts, how much attenuation occurs and 
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the stress placed on different tissues.  Therefore, it may not be that one footfall pattern 

prevents more injuries than another, but the tissues affected by injury may differ between 

patterns.  Examining the frequency content of the vertical GRFs and tibial impact shock 

may identify the mechanisms responsible for shock attenuation between footfall patterns.  

Identifying which tissues may be more affected by shock attenuation with each pattern 

may be a better indicator of injury risk than traditional loading characteristics. 

Differences in the frequency content of vertical GRFs suggest each footfall 

pattern may have a greater reliance on different attenuation mechanisms.  RF running 

may rely more on passive mechanisms such as footwear and bone deformation whereas 

FF running may rely more on active mechanisms such as eccentric contractions of the 

plantar flexors (Pratt, 1989; Williams and Cavanagh, 1987).  The difference in how the 

body attenuates impacts during RF and FF running may subject different tissues to injury 

as well as the total amount of attenuation that occurs.  Attenuation is important to 

maintain the visual field and vestibular function (Pozzo et al., 1991).  Additionally, 

differences in attenuation mechanisms may explain why more biomechanical factors 

associated with greater economy were seen in RF running (Williams and Cavanagh, 

1987).  However, runners tend to optimize for shock attenuation rather than running 

economy which may result in an increased risk for injury at the expense of improved 

performance (Hamill et al., 1995).  Therefore, the footfall pattern that elicits the greatest 

attenuation and economy will prevent the need for this trade-off. 

The occurrence of overuse injuries in running have been blamed on the vertical 

GRF loading rate and magnitude of the impact transient (Davis et al., 2010; Grimston et 

al., 1991; Hreljac et al., 2000; Milner et al., 2006; Voloshin and Wosk, 1982; Zifchock et 
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al., 2006).  However, these findings are not consistent between all studies (Azevedo et al., 

2009; Bredeweg, 2011; McCrory et al., 1999; Nigg, 1997; Pohl et al., 2008; Scott and 

Winter, 1990).  Many have speculated that the FF pattern may reduce the risk of impact 

related injuries because of the absence of the initial impact peak (Cavanagh and 

Lafortune, 1980; Daoud et al., 2012; Davis et al., 2010; Lieberman et al., 2010; Oakley 

and Pratt, 1988).  Potential differences in how the body attenuates impact shock between 

footfall patterns, and not just the difference in GRF characteristics, may reveal a 

misconception of the potential for FF running to prevent injury.    

 

Problem Statement 

Several claims and recommendations regarding the performance and injury 

prevention benefits of FF running have been made without appropriate empirical 

evidence.  Previous studies examining the performance benefits of altering footfall 

patterns have not found sufficient evidence to support one footfall pattern being more 

economical than another.  The lack of significant differences in the rate of oxygen 

consumption between footfall patterns suggests each pattern may exhibit characteristics 

that do not lead to a net improvement in running economy.  Therefore, a combination of 

factors affecting running economy should be investigated to determine the benefits of a 

specific footfall pattern.  Additionally, previous studies investigating biomechanical or 

performance differences between footfall patterns only used natural RF runners.  Not 

including a natural FF runners group may have limited the ability to identify significant 

differences in running economy between footfall patterns.   
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Although FF running has been suggested to improve running economy by 

increasing the amount of elastic energy contribution, this has not been previously 

investigated.  The only study to examine the possible differences in elastic energy 

between footfall patterns did so with an inverse dynamics approach (Ardigo et al., 1995).  

An inverse dynamics approach may not be sensitive enough to determine the differences 

in muscular mechanics and how they relate to energy consumption because it cannot 

identify the function of individual muscle components.  Other methods, such as muscle 

models and identifying differences in anthropometrics, may be needed to reveal the 

functional differences between footfall patterns and their relation to running economy. 

FF running has been suggested to reduce the risk of running overuse injuries due 

to the absence of the initial vertical ground reaction force component.  Differences in 

ground reaction force characteristics may change the frequency content of the impact 

shock wave which may affect how they are attenuated.  Changing the reliance of the 

body’s tissues to attenuate impact may place certain tissues at a greater risk of injury. 

Therefore, other parameters besides discrete impact characteristics may reveal more 

information regarding injury risk.  

 

Purpose 

FF running has been suggested to improve performance and decrease the risk of 

injury.  Therefore, recommendations have been made for natural RF runners to switch to 

the FF pattern; however, many of these recommendations are not based on empirical 

evidence.  The purpose of this dissertation was to ascertain the potential advantages 
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between footfall patterns and of altering running footfall pattern with respect to running 

economy and injury risk.  

 

Significance 

Previous investigations have only enlisted natural RF runners when comparing 

biomechanical or metabolic differences between running footfall patterns.  This 

dissertation incorporated both natural FF runners as well as natural RF runners to 

investigate the advantages of each pattern and the efficacy of switching to the alternative 

pattern.  Examining the mechanical and functional differences between those who 

naturally perform the RF or FF running patterns will allow for a legitimate comparison 

between patterns and remove any confounding effects from the novelty of performing 

either footfall pattern.  Additionally, incorporating each group may symbolize the effect 

of training with the opposite pattern.  Together, these comparisons may lead to more 

conclusive evidence for benefit of altering footfall pattern for improving performance or 

injury prevention.   

Identifying the differences in the underlying mechanisms dictating running 

economy, such as Achilles tendon moment arm length, elastic energy storage and 

utilization, and the contribution of active and passive muscle-tendon components, may 

reveal important information about how running economy is affected by running footfall 

pattern.  The elastic energy contribution between footfall patterns has previously been 

investigated with an inverse dynamics approach (Ardigo et al., 1995).  However, 

differences in muscular mechanics between footfall patterns are not detectable with an 

inverse dynamics approach (Sasaki et al., 2009).  Therefore, this dissertation used a 
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modeling approach to examine muscular mechanics and resulting energy consumption 

between patterns.   

Although a specific footfall pattern may be more economical due to one or more 

factors, the different mechanics of each footfall pattern may result in an increased risk of 

injury.  This dissertation assessed the risk of developing running injuries by examining 

the stress incurred by the Achilles tendon, the amount of shock attenuation, and the 

frequency content of ground reaction force characteristics.  Examining the differences in 

the frequency content of ground reaction forces between footfall patterns may identify the 

tissues responsible for attenuation and the risk of damage to these tissues. 

 

Hypotheses 

This dissertation proposal consisted of four studies to investigate the metabolic 

and mechanical differences between the RF and FF running patterns.  These studies 

aimed to determine the efficacy of altering running footfall patterns for enhancing 

running performance or preventing running injuries. Comparisons were made between 

two groups: 1) natural RF runners and 2) natural FF runners. 

 

Study 1 

The purpose of Study 1 was to determine the difference in running economy (i.e. 

lowest sub-maximal rate of oxygen consumption) between footfall patterns and if there 

was an improvement in running economy in either group when performing the alternate 

footfall pattern.  The following hypotheses were created based on the findings of 

Williams and Cavanagh (1987) who found that those who exhibited running 
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characteristics indicative of the RF pattern where more economical than those who did 

not. 

 

Research Aim 1.1; 

To investigate the difference in running economy between natural RF runners and natural 
FF runners when performing their habitual footfall pattern. 
 

Hypothesis 1.1.1 Running economy would be greater in natural RF runners 
performing the RF pattern compared to natural FF runners 
performing the FF pattern. 

 

Research Aim 1.2; 

To investigate if running economy improves when performing the alternate footfall 
pattern. 
 

Hypothesis 1.2.1 If the RF pattern was more economical, then running 
economy would worsen when natural RF runners perform 
the FF running pattern. 

  
Hypothesis 1.2.2 If the RF pattern was more economical, then running 

economy would improve when natural FF runners perform 
the RF running pattern. 

 

Study 2 

The purpose of Study 2 was to determine the AT moment arm length during the 

stance phase of RF and FF running and to investigate the relationship between moment 

arm length and running economy.  Additionally, this study aimed to determine the 

difference in Achilles tendon force between RF and FF running patterns.  The following 

hypotheses were based on the findings of Scholz et al. (2008) and Maganaris et al. 

(2000).  Together, these studies showed that a dorsiflexed ankle position results in a 

shorter Achilles tendon moment arm and those with shorter Achilles tendon moment 
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arms tend to be more economical runners.  Additionally, FF running results in greater 

plantar flexion moments (Williams et al., 2000).  Therefore, the reduction in muscle force 

that would be expected with a longer Achilles tendon moment arm may be diminished by 

the muscle force required to maintain a plantar flexed ankle position during the stance 

phase of FF running. 

 

Research Aim 2.1; 

To investigate the difference in Achilles tendon moment arm length between footfall 
patterns during the stance phase of running. 
 

Hypothesis 2.1.1 Achilles tendon moment arm length would be greater 
during the first third of the stance phase with the FF 
running compared to RF running (Maganaris et al., 2000). 

 

Research Aim 2.2; 

To investigate the relationship between Achilles tendon moment arm and running 
economy. 
 

Hypothesis 2.2.1 A shorter Achilles tendon moment arm would correlate 
with running economy during RF running but a longer 
Achilles tendon moment arm would correlate with running 
economy during FF running. 

 

Research Aim 2.3; 

To determine the difference in Achilles tendon force between RF and FF running patterns 
calculated by inverse dynamics analysis. 
 

Hypothesis 2.3.1 Achilles tendon force would be similar between footfall 
patterns during the stance phase of running. 
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Study 3 

The purpose of Study 3 was to compare the mechanical muscle work and muscle 

metabolic cost of the triceps surae muscle group between footfall patterns using a 

musculoskeletal modeling approach.  The force and work produced by each muscle of the 

triceps surae was assessed with a muscle model.  The following hypotheses were based 

on the findings of Hof et al. (2002).  This study incidentally found that MF runners 

produced mechanical work in the triceps surae muscle by the muscle fibers acting more 

isometrically where as a RF runner produced mechanical work concentrically.  In 

addition, producing mechanical work by acting isometrically resulted in greater storage 

of elastic energy (Hof et al., 2002; Ishikawa et al., 2007; Lichtwark and Wilson, 2007a).  

Producing mechanical work isometrically and greater storage of elastic energy have been 

shown to be energy saving mechanisms in running (Cavagna, 1977a; Cavagna et al., 

1977b; Lichtwark and Wilson, 2005b; Roberts, 2002; Williams and Cavanagh, 1987). 

 

Research Aim 3.1; 

To determine the mechanical work contribution from active and passive elements of the 
triceps surae muscle between footfall patterns during the stance phase of running. 
 

Hypothesis 3.1.1 RF running would result in the triceps surae producing 
more mechanical work from the CE whereas FF running 
would result in the triceps surae producing more 
mechanical work from the SEE (i.e. greater elastic energy 
utilization). 

 

Research Aim 3.2; 

To determine the energetic consequences of the different muscle mechanics between 
footfall patterns by modeling the metabolic work of the muscle contractile element. 
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Hypothesis 3.2.1 FF running would result in lower muscle energy 
expenditure than RF running due to increased elastic 
energy utilization. 

 

Study 4 

The purpose of Study 4 was to determine the difference in shock attenuation 

between footfall patterns and to infer the primary mechanisms responsible for attenuating 

impact shock between footfall patterns.  These hypotheses were based on several studies 

identifying the differences in impact peak magnitude and initial vertical loading rate 

between RF and FF running (McClay and Manal, 1995b; Nilsson and Thorstensson, 

1989; Oakley and Pratt, 1988).  Since the impact characteristics between patterns differ, 

the characteristics of the impact shock wave may also differ and result in altered shock 

attenuation between patterns.  

 

Research Aim 4.1; 

To determine the difference in impact shock wave attenuation between footfall patterns. 
 

Hypothesis 4.1.1 RF running would result in greater shock attenuation 
between the tibia and the head than FF running as indicated 
by reduced power of the frequencies contained in the head 
acceleration signal. 

 

Research Aim 4.2; 

To determine if there is an advantage of altering footfall pattern to improve impact shock 
attenuation. 
  

Hypothesis 4.2.1 Natural RF runners would not increase the amount of 
impact shock attenuation when switching to a FF pattern.  

  
Hypothesis 4.2.2 Natural FF runners would increase the amount of impact 

shock attenuated when switching to a RF pattern. 
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Research Aim 4.3; 

To determine if there may be a difference in impact shock attenuation mechanisms 
between footfall patterns. 
 

Hypothesis 4.3.1 The RF pattern would rely more on passive shock 
attenuation mechanisms (as indicated by frequencies 
greater than 10 Hz) whereas the FF pattern would rely 
more on active shock attenuation mechanisms (as indicated 
by frequencies below 10 Hz) (Derrick et al., 1998; Shorten 
and Winslow, 1992). 

 

Assumptions 

1. Metabolic cost of running is independent of body mass after scaling for body 

mass (Martin and Morgan, 1992). 

2. The freely chosen stride length and stride frequency for each gait pattern is the 

most economical combination to maintain speed at a given speed. 

 

Operational Definitions 

1. Rearfoot (RF) running pattern consists of initially landing on the posterior portion 

of the foot, or heel.   

2. Forefoot (FF) running pattern consists of initially landing on the forward portion 

of the foot or toes without the heel making contact with the ground.   

 

Summary 

The forefoot running pattern has been speculated to improve performance and 

reduce the risk of overuse injuries in running (Davis et al., 2010; Hasegawa et al., 2007; 

Laughton et al., 2003; Lieberman et al., 2010; Oakley and Pratt, 1988; Pratt, 1989; 

Williams et al., 2000).  To date, there is no evidence to support these claims.  Previous 
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investigations on running economy have identified more kinematic and kinetic 

parameters associated with greater economy that are inherent to the RF running pattern 

compared to the FF pattern.  However, direct comparisons of oxygen consumption have 

not shown significant differences between the two patterns.  Despite potential 

performance benefits, the mechanics of each footfall pattern may change or increase the 

risk of running associated injuries.  Landing on the toe rather than the heel changes the 

impact characteristics which may affect how the body attenuates those forces.  Each 

footfall pattern may rely on different shock attenuation mechanisms, putting different 

tissues at risk for injury. 
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CHAPTER 2  

REVIEW OF THE LITERATURE 

 

General Introduction 

The overall aim of this dissertation is to determine the advantage of altering 

running footfall patterns to improve running economy and injury risk.  This chapter will 

review the literature of previous, pertinent research examining: 1) the differences 

between the footfall patterns used in running; 2) variations in running economy; 3) 

Achilles tendon moment arm; 4) muscle function and elastic energy utilization in 

running; and 4) impact force, impact shock and attenuation.  

 

Footfall Patterns used in Running 

Humans exhibit three distinct footfall patterns while running: rearfoot (RF), 

forefoot (FF), or midfoot (MF) (Figure 2.1).  When using the RF pattern, the runner 

initially contacts the ground on the lateral aspect of the heel whereas the FF pattern 

involves landing on or near the toes without the heel touching the ground.  The MF 

pattern involves the whole foot making ground contact at nearly the same time but with 

initial contact in the forefoot region.  Nearly 75% of runners land with the RF pattern and 

only 23.7% and 1.4% use the MF and FF patterns respectively (Hasegawa et al., 2007).  

Distance runners tend to be predominately RF runners whereas middle distance and 

sprinters tend to land near the toes (Payne, 1983).  Since a greater proportion of elite 

distance runners and sprinters use a FF pattern (Hasegawa et al., 2007; Kerr et al., 1983; 

Payne, 1983), some believe there is a performance benefit of using this footfall pattern 
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(Hasegawa et al., 2007; Martin and Cole, 1991; Romanov, 2002; Shorter, 2005; Yessis, 

2000). 

 

 

Figure 2.1: Footfall patterns used in running. A) Rearfoot pattern; B) Forefoot pattern; C) Midfoot 
pattern. 

 

Expert running coaches and several new running programs have suggested RF 

runners should switch to a FF running pattern to improve performance and reduce the risk 

of running injuries (Martin and Cole, 1991; Romanov, 2002; Shorter, 2005; Yessis, 

2000).  It has been suggested that the FF running pattern utilizes the storage and release 

of elastic energy in the plantar flexors muscles and therefore results in lower metabolic 

cost (Ardigo et al., 1995; Hasegawa et al., 2007; Perl et al., 2012).  Additionally, it has 

been suggested that the FF running pattern may to reduce the risk of overuse injuries 

because of the absence of the initial impact ground reaction force (GRF) that is present in 

A) B)

C)
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RF running (Cavanagh and Lafortune, 1980; Davis et al., 2010; Dickinson et al., 1985; 

Lieberman et al., 2010; Pratt, 1989) (Figure 2.2).  The FF running pattern and its 

relationship performance and injury prevention benefits have not been validated in the 

literature.  In order for these claims to be supported, the factors that dictate running 

economy and injury mechanisms within each pattern must be investigated. 

 

 
Figure 2.2: Vertical ground reaction force profile for A) the rearfoot running pattern and B) the 
forefoot running pattern. 
 

Characteristics of the Rearfoot Running Pattern 

RF running is characterized by a dorsiflexed and slightly supinated foot position 

at touchdown (Bates et al., 1978).  This position causes initial contact to be made on the 

lateral boarder of the heel and the center of pressure (COP) positioned within 33% of the 

foot length relative to the heel (Williams and Cavanagh, 1987) (Figure 2.3).  The forefoot 

is lowered to the ground by eccentric contraction of the tibialis anterior, which is 

activated during the swing phase (Novacheck, 1998).  The calcaneus pronates (i.e. 

calcaneal eversion) during weight acceptance and reaches maximum eversion at 

approximately 35-45% of stance (Bates et al., 1978).  Maximum eversion is typically 

coupled with maximum knee flexion.  These actions of the foot during running serve to 
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attenuate impact forces and reduce the center of mass (COM) velocity after ground 

contact (Bates et al., 1978; Winter, 1983). 

 

 
Figure 2.3: The center of pressure trajectory for A) the rearfoot running pattern and B) the forefoot 
running pattern. 
 

The internal ankle joint moment during rearfoot running is initially dorsiflexor but 

switches to plantar flexor between 5 – 10% of the running gait cycle (Novacheck, 1998).  

Ankle power absorption occurs during the first half of stance to attenuate impact forces 

and reduce the COM velocity after ground contact (Bates et al., 1978; Winter, 1983).  

Power generation for the remainder of stance serves to generate forward propulsion 

(Novacheck, 1998).  The internal knee flexor moment in late swing is produced by the 

hamstrings in preparation for impact. During stance, the quadriceps produce a knee 

extensor moment eccentrically to control the lowering of the body’s center of mass and 

absorb energy  (Bates et al., 1978; Winter, 1983).  The knee extensors generate power in 

the second half of stance as they contract concentrically and extend the knee. 
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The vertical GRF curve during RF running contains an initial impact peak which 

represents the foot-ground collision (Nigg, 1983).  The initial impact peak, or passive 

peak, is thought to be passive because it occurs too quickly for muscles to respond to it 

directly (Nigg et al., 1981).  However, several muscles, such as the hamstrings and 

tibialis anterior, are active before the foot makes contact with the ground in order to move 

the leg through the swing phase and to prepare for touchdown (Novacheck, 1998).  Since 

these muscles are activated before touchdown and early stance, they may serve to 

attenuate some of the impact shock wave resulting from the initial impact peak.  Several 

researchers speculate this impact peak is responsible for the high rate of overuse injuries 

in runners (Davis et al., 2010; Grimston et al., 1991; Hreljac et al., 2000; Milner et al., 

2006; Paul et al., 1978; Radin et al., 1973; Voloshin and Wosk, 1982; Zifchock et al., 

2006); however, these results are not consistent across all studies (Azevedo et al., 2009; 

Bennell et al., 2004; Bredeweg, 2011; Crossley et al., 1999; Marti et al., 1988; McCrory 

et al., 1999; Nigg, 1997; Pohl et al., 2008; Scott and Winter, 1990).  Therefore, the 

current approach for investigating the development of running injuries may need to be 

reexamined or expanded beyond time domain variables. 

 

Characteristics of the Forefoot Running Pattern 

During FF running, the foot lands in a plantar flexed and supinated position and 

then dorsiflexes and everts as the heel is lowered to the ground (McClay and Manal, 

1995a; Pratt, 1989).  Eccentric contractions of the gastrocnemius, soleus and tibialis 

posterior will control this foot movement and decrease the vertical velocity of the center 

of mass (Pratt, 1989).  Dorsiflexion, eversion and eccentric contractions of the plantar 



33 

flexors may attenuate some of the impact shock during the loading phase (Laughton et 

al., 2003; Pratt, 1989).   

The FF pattern results in greater ankle plantar flexor moment during all of stance 

and greater ankle power absorption during the first 40% of stance  (Williams et al., 2000).  

The stance phase internal knee extensor moment is similar between footfall patterns but 

FF running produces a lower peak moment than RF funning.  FF running also results in 

reduced knee power absorption in the first half of stance (Williams et al., 2000).  These 

differences in ankle and knee joint moment between patterns result in greater leg and 

knee joint stiffness during FF running whereas RF running causes greater ankle joint 

stiffness.  This shift in joint stiffness suggests there is also a shift in the mechanisms of 

impact shock absorption between patterns (Hamill et al., 2000b; Laughton et al., 2003). 

The FF pattern lacks the initial impact peak and has reduced vertical GRF loading 

rates compared to the RF pattern (McClay and Manal, 1995b; Nilsson and Thorstensson, 

1989; Oakley and Pratt, 1988).  Therefore, it has been suggested that natural RF runners 

may benefit from switching to a FF pattern (Daoud et al., 2012b; Davis et al., 2010; 

Hasegawa et al., 2007; Lieberman et al., 2010; Oakley and Pratt, 1988).  However, 

conflicting results between footfall patterns have been reported for vertical GRF loading 

rate and peak to peak tibial acceleration but all have found greater peak active forces with 

FF running compared to RF running (Dickinson et al., 1985; Laughton et al., 2003; 

McClay and Manal, 1995b; Nilsson and Thorstensson, 1989; Oakley and Pratt, 1988; 

Williams et al., 2000).  Additionally, FF running has been shown to result in greater peak 

horizontal GRF and greater horizontal GRF loading rate.  However, other studies have 

not found differences in horizontal forces between footfall patterns (Cavanagh and 
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Lafortune, 1980; Nilsson and Thorstensson, 1989).  Most of the published studies 

comparing impact characteristics have only included natural RF runners as participants.  

In studies finding greater tibial shock with the FF pattern, the authors warn that the 

increased tibial shock may be a result of the natural RF runners artificially increasing leg 

stiffness to prevent heel contact (Laughton et al., 2003).  Differences in GRF profiles, 

loading rates and tibial acceleration between RF and FF running patterns may affect how 

forces are primarily attenuated.   

Some have suggested that the FF running pattern leads to better performance for 

two reasons.  First, many of the top runners for all competitive distances are either a MF 

or FF runner (Hasegawa et al., 2007).  It has been suggested that FF runners are able to 

run faster with a reduced metabolic cost because of an increase in elastic energy 

production (Ardigo et al., 1995; Hasegawa et al., 2007; Lieberman et al., 2010; Perl et al., 

2012) but these claims have not been supported in the literature (Ardigo et al., 1995; 

Cunningham et al., 2010; Perl et al., 2012).  Second, many RF runners tend to shift to a 

MF or FF pattern with increasing running speeds (Cavanagh and Lafortune, 1980; 

Mason, 1980; Slavin and Hamill, 1992).  It has been suggested that switching footfall 

patterns at high running speeds may be an energy saving mechanism to continue 

increasing running speed when oxygen consumption cannot be increased further (Nigg et 

al., 1984).  However, Cavanagh and Lafortune (1980) found that individual differences in 

initial contact point and pressure distribution under the foot are large enough to suggest 

there may not be a relationship between initial contact point and absolute speed. 

Most of the previous studies investigating the differences between footfall 

patterns used natural RF runners performing the FF pattern.  Natural RF runners have 
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been shown to successfully replicate rearfoot kinematics and many kinetic variables 

compared to natural FF runners with a habituation period of several minutes (Stackhouse 

et al., 2004; Williams et al., 2000).  Despite this confirmation, some subtle differences 

between those who briefly converted to FF running and natural FF runners may exist.  

For example, natural RF runners who performed the FF pattern had significantly greater 

peak vertical GRF, ankle plantar flexion moment and ankle power absorption compared 

to natural FF runners (Williams et al., 2000).  Since no differences in kinematics were 

observed between the natural RF and FF groups performing the FF pattern, slight 

differences in segment velocities and contact time may be responsible for the differences 

in some kinetic variables (Williams et al., 2000).  Additionally, Laughton et al. (2003) 

suggested that greater tibial acceleration and greater leg stiffness during FF running 

found in their study may be a result of the participants being natural RF runners who do 

not have extensive experience with the FF pattern.  Because these participants were 

instructed to prevent their heel from touching the ground during the FF running 

condition, they may have artificially and unnecessarily stiffened the support leg.  

Laughton et al. (2003) further suggested that runners who initially land on the ball of the 

foot but allow the heel to touch the ground may have lower tibial shock compared to a FF 

pattern that does not allow heel contact. 

 

Variations in Running Economy 

Running economy, or sub-maximal metabolic energy consumption (VO2), is 

assessed to determine the relationship between running mechanics and running economy 

(Williams and Cavanagh, 1987).  Several biomechanical characteristics have been 
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identified as significant contributors to greater running economy (Table 2.1).  An 

improvement in running economy, and thereby performance, will be accomplished if a 

change in movement characteristics, cardiovascular training, footwear, etc. results in a 

reduction of VO2 over a range of running speeds (Williams, 1990).   

 

Table 2.1: Biomechanical characteristics found to be related to greater running economy.  These 
parameters have not been specifically investigated with respect to running footfall patterns. 
 

Reduced peak anteroposterior GRF  
Chang & Kram (1999);  
Williams & Cavanagh (1987) 

Greater leg stiffness during ground contact Heise & Martin (1998) 

Lower total vertical impulse  
Lower net vertical impulse 

Heise & Martin (2001) 

Reduced plantar flexion moments Heise et al. (2011) 

Longer ground contact time  
Kram (2000);  
Williams & Cavanagh (1987) 

Smaller Achilles tendon moment arm length Scholz et al. (2008) 

More extended leg angle at impact 
Reduced maximum plantar flexion angle at toe-off 
Greater knee flexion during support 
Greater elastic energy storage  
Reduced net positive power and  
Reduced total mechanical power  
Reduced peak vertical GRF  
Less vertical oscillation of the center of mass 

Williams & Cavanagh (1987) 

 

Running economy depends on a number of psychological, physiological and 

mechanical factors; therefore it is highly variable between runners and within an 

individual (Daniels, 1985; Morgan et al., 1994a).  Many of physiological and mechanical 

factors can be improved with training; however, factors such as genetics, age, gender, 

anatomical mechanical advantage, cannot be altered with training (Davies et al., 1997; 

Nevill et al., 1992).  Manipulation of certain characteristics that improve economy in one 

individual may not change or reduce economy in another individual.  It has been 
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suggested that runners self-optimize movement patterns to reduce the metabolic cost of 

the task (Cavanagh and Williams, 1982).  For example, runners will self-select a running 

speed, stride length and stride frequency, and possibly a footfall pattern, that will result in 

lower metabolic cost at a given speed (Cavanagh and Williams, 1982; Gutmann et al., 

2006; Miller and Hamill, 2012; Morgan et al., 1994b; Morgan et al., 1989).  Therefore, 

deviating from a self-select movement pattern may result in an increase in VO2.  

Nonetheless, studying the movement patterns that are characteristic of more economical 

runners may provide support for recommendations to improve economy. 

A study by Williams and Cavanagh (1987) identified the differences in movement 

patterns between runners with different economy.  In addition to the findings listed in 

Table 2.1, it was discovered that those with greater economy tended to run with 

kinematics associated with the RF pattern.  Parameters that were characteristic of the RF 

pattern and seen in the most economical group included longer ground contact time, 

lower vertical GRF peak, and a more extended leg at touchdown.  The authors suggested 

that RF running may reduce the metabolic cost of running because the RF pattern results 

in the shoe attenuating some of the impact shock.  This finding supports the observation 

that well-cushioned shoes resulted in a 2.8% reduction of metabolic cost compared to 

poorly cushioned shoes of the same weight (Frederick et al., 1983).  By not utilizing shoe 

cushioning in FF running, additional muscular contractions may be needed to attenuate 

impacts thus increasing metabolic energy consumption.  Currently, kinematic and kinetic 

features of the FF running pattern that specifically relate to running economy have yet to 

be investigated.   
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Some have speculated that the FF running pattern will improve running economy 

due to increased elastic energy storage and release in the plantar flexor muscles (Ardigo 

et al., 1995; Hasegawa et al., 2007; Perl et al., 2012).  However, the results from previous 

studies have shown mixed results.  Some studies did not find a difference in running 

economy between RF and FF running but only examined runners habituated to one 

footfall pattern (Ardigo et al., 1995; Cunningham et al., 2010; Perl et al., 2012).  

However, Slavin (1992) observed an increase in VO2 when natural RF runners performed 

the FF pattern whereas natural FF runners had no difference in VO2 between patterns.  

Although the findings from Slavin (1992) suggest the RF pattern may be more 

economical, differences between footfall patterns were not observed across all three of 

the speed conditions tested or all metabolic variables.  Each of the previous studies 

investigating the difference in running economy between footfall patterns have 

methodological limitations.  Some included small sample sizes, only one running speed 

examined, or not assessing running economy in both natural RF runners and natural FF 

runners. 

Future studies investigating the difference in economy between running patterns 

should incorporate both natural RF and natural FF runners.  Comparing both groups 

performing their natural pattern will eliminate the influence of experience or training as a 

possible confounding limitation. Additionally, including both groups can substitute the 

need to investigate how training with the opposite pattern may improve economy.  Future 

studies should also include a larger sample size. With an adequate number of participants, 

it may be expected that those who naturally perform the more economical footfall pattern 

will experience a decrease in economy (i.e. increase VO2) when switching to the 
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alternate, less economical pattern.  Moreover, those that perform the less economical 

pattern habitually would improve economy (i.e. decrease VO2) or not see an 

improvement when switching to the more economical pattern.  However, if there is no 

metabolic benefit of altering footfall pattern, then no change in economy may be 

observed.  

Many studies have found conflicting support for biomechanical variables that may 

relate to running economy.  For example, findings from Heise & Martin (2001) suggest 

less vertical oscillation is not an indicator of economy which conflicts with findings from 

Williams and Cavanagh (1987).  Additionally, ground contact time was not associated 

with economy in Heise & Martin (2001) which also conflicts with previous reports 

(Kram, 2000).  Individual differences in muscle-tendon properties relating to force 

generation has been suggested as a more appropriate explanation for individual variation 

in running economy compared to external mechanical factors (Albracht and Arampatzis, 

2006; Martin and Morgan, 1992).  However, it is unlikely that a single factor will 

dominate as the primary influence on running economy or explain the individual 

variation between suggested mechanical factors that improve economy (Williams, 1990; 

Williams and Cavanagh, 1987).  Identifying the underlying mechanisms that affect 

running economy between footfall patterns may help determine the benefits and 

disadvantages of each pattern.   

 

Achilles Tendon Moment Arm 

Although many kinematic and kinetic factors of running can be manipulated, an 

improvement in running economy may be limited by an individual’s physiological, 
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morphological, and anthropometric factors (Albracht and Arampatzis, 2006; Arampatzis 

et al., 2006; Biewener et al., 2004; Biewener and Roberts, 2000; Lichtwark and Wilson, 

2007b; Lichtwark and Wilson, 2008).  For example, Scholz et al. (2008) reported that 

those with shorter Achilles tendon moment arms tend to have greater economy than those 

with longer Achilles tendon moment arms.  However, the study only investigated RF 

runners.  The authors suggest that a smaller Achilles tendon moment arm leads to higher 

economy because of an increase in tendon stretch and elastic energy storage.  The 

increased elastic energy storage will be accomplished by generating higher forces 

necessary to produce a given joint moment.  Although greater muscle force production is 

associated with an increase in metabolic cost (Biewener and Roberts, 2000; Roberts et al., 

1998), the authors found a smaller Achilles tendon moment arm was associated with a 

lower metabolic cost, indicating variations in economy were dominated by the cost to 

produce muscle fiber work and not force (Scholz et al., 2008).   

The study by Scholz et al. (2008) did not measure how the length of the Achilles 

tendon moment arm changes as the foot dorsiflexes and plantar flexes during running.  

However, static measurements by magnetic resonance imaging (MRI) have shown that 

the length of the Achilles tendon moment arm increases as ankle plantar flexion angle 

increases (Maganaris et al., 2000).  Given these findings, it may be expected that the FF 

running pattern will result in a longer Achilles tendon moment arm throughout early 

stance due to the plantar flexion position at touchdown and, consequently, negatively 

affect running economy.  Additionally, RF running may result in a shorter Achilles 

tendon moment arm, suggesting it may be more economical than FF running. 
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Although there is currently no indication of how Achilles tendon moment arm 

length may be affected by sub-maximal muscle force generation, it’s length has been 

shown to increase when performing an isometric maximum voluntary contraction (MVC) 

(Maganaris et al., 2000).  Since FF running has been speculated to require greater muscle 

force in the plantar flexors compared to RF running (Pratt, 1989), the difference in 

plantar flexor force production between patterns may add to the effect of the different 

foot positions at touchdown.  If RF running involves a shorter Achilles tendon moment 

arm, greater plantar flexor muscle forces would be required to maintain a given joint 

moment.  It may be these greater forces that result in an increase in elastic energy storage 

and utilization and lead to greater economy (Biewener and Roberts, 2000; Cavagna and 

Margaria, 1964; Roberts et al., 1998; Scholz et al., 2008).  However, previous studies 

have indicated FF running generates greater plantar flexion joint moments and eccentric 

work than RF running (Williams et al., 2000).  This finding may suggest FF running 

requires greater plantar flexion muscle force generation in order to maintain a plantar 

flexed foot position during stance.  Therefore, the differences in Achilles tendon moment 

arm length may not only affect running economy but the stress placed on the Achilles 

tendon due to increased muscle force production.  

Many chronic overuse injuries in running may be a result of repetitive stretch and 

recoil of tendon (Leadbetter, 1992).  Therefore the benefits of a shorter Achilles tendon 

moment arm of providing increased elastic energy storage and return may potentially 

increase the risk of tendon injury.  Scholz et al. (2008) suggested a small Achilles tendon 

moment arm combined with greater peak joint moments may compromise the safety 

factor of the tendon and therefore increase the risk of tendon overuse injuries or tendon 
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rupture (Biewener, 2005; Scholz et al., 2008).  Although RF running may result in a 

shorter Achilles tendon moment arm during the stance phase, the risk of tendon injury 

may not be as great as with FF running.  Greater ankle joint moments and eccentric work 

production during FF running has led some authors to suggest  that FF running may place 

increased stress on the Achilles tendon and increase the risk of Achilles tendon injury 

(Nilsson and Thorstensson, 1989; Oakley and Pratt, 1988; Williams et al., 2000).  

Therefore, both patterns may result in mechanisms that subject the Achilles tendon to 

injury.   

 

Muscle Function and Elastic Energy Utilization in Running 

Increased storage and release of elastic energy by the muscle’s elastic structures 

may reduce the metabolic cost associated with muscular work during gait (Cavagna, 

1977a; Cavagna et al., 1977b; Lichtwark and Wilson, 2005b; Roberts, 2002; Williams 

and Cavanagh, 1987).  Previous investigations on running humans demonstrated that the 

muscle fibers of the triceps surae act isometrically or concentrically while the whole 

muscle-tendon complex (MT) lengthens during mid-stance (Hof et al., 2002; Ishikawa et 

al., 2007; Lichtwark and Wilson, 2007a).  As the muscle fibers produce force either 

isometrically or concentrically, the tendon will stretch resulting in MT lengthening and 

elastic energy storage.  At the end of the stance phase, the MT shortens rapidly causing 

elastic energy to be released and contributes to positive mechanical work (Biewener and 

Roberts, 2000; Cavagna and Kaneko, 1977c; Lichtwark and Wilson, 2007a).  The 

positive mechanical work produced by the tendon stretch and recoil will not need to be 

produced by the muscle fibers, thereby reducing the metabolic cost and heat production 
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without sacrificing force generation (Biewener, 1998; Ettema, 2001; Fukunaga et al., 

2002; Fukunaga et al., 2001).  Therefore, the action of the elastic components allows the 

muscle fibers to produce force isometrically or concentrically at low shortening 

velocities.  Isometric and near isometric contractions will result in greater force 

production at a lower metabolic cost compared to conditions with substantial changes in 

fiber length at high velocities (Biewener and Roberts, 2000; Hof et al., 2002; Lichtwark 

and Wilson, 2007a).  These mechanisms have been observed in human running muscle 

model simulations (Hof et al., 2002) and directly observed by ultrasound (Ishikawa et al., 

2005; Ishikawa et al., 2007; Lichtwark and Wilson, 2006; Lichtwark and Wilson, 2007a). 

Increased storage and release of elastic energy has been proposed as the reason FF 

running may be more economical than RF running (Ardigo et al., 1995; Hasegawa et al., 

2007; Perl et al., 2012).  Although muscle function between different footfall patterns has 

not been explicitly investigated, a study by Hof et al. (2002) included three subjects that 

ran with the MF pattern, an intermediate pattern between the RF and FF patterns.  By 

using a muscle model, it was found that the RF runner produced a greater ankle plantar 

flexor moment than the MF runner.  The MT and muscle fibers of the soleus and 

gastrocnemius muscles in both runners performed nearly zero negative mechanical work 

but the RF runner produced substantially more positive work by the muscle fibers in both 

muscles than the MF runner.  Less positive mechanical work by the MF runner was 

accomplished by generating muscle force with the muscle fibers remaining isometric at 

near optimum length of the force-length relationship.  Allowing the muscle fibers to 

operate isometrically may cause the shortening and lengthening of the MTU to be 
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accomplished by passive elements; a potentially energy saving mechanism (Biewener and 

Roberts, 2000).   

If the MF running pattern is a true intermediate, FF running may also result in 

isometric muscle force development and utilization of elastic energy which may result in 

a decrease of metabolic energy consumption.  Despite this potential energy saving 

mechanism of FF running, a forward dynamics running simulation by Miller and Hamill 

(2012) exhibited a distinct RF running pattern when optimizing for minimal muscle 

energy expenditure.  This suggests other mechanisms may be involved which counteract 

the energy savings of FF running or isometric muscle force development and utilization 

of elastic strain energy.   

Each pattern may exhibit a combination of mechanical factors that singularly 

improve or are detrimental to running economy.  Therefore, the net effect of these factors 

results in neither footfall pattern being more economical than the other.  For example, 

Ardigo et al. (1995) found greater external mechanical work and greater estimated elastic 

energy production during FF running but no difference in rate of oxygen consumption 

compared to RF running.  The authors suggested the larger elastic energy contribution 

negated the effects of increased external work production that would have otherwise 

required a metabolic cost to overcome.  Therefore, there was no net increase in metabolic 

cost with FF running and oxygen consumption between FF and RF running was the same. 

The increased stretch of the Achilles tendon in FF running has been assumed to be 

accompanied by eccentric muscle contractions to prevent the heel from contacting the 

ground (Ardigo et al., 1995; Perl et al., 2012; Pratt, 1989; Williams et al., 2000).  FF 

running typically results in increased ankle plantar flexor moments which may be 
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accomplished by increased eccentric contractions and force production by the plantar 

flexors compared to RF running (Williams et al., 2000).  Increased muscle force 

production in FF running suggests the ankle joint moments would be produced with an 

increase in metabolic cost (Biewener and Roberts, 2000; Roberts et al., 1998; Scholz et 

al., 2008).  In theory, metabolic cost would not increase if the larger ankle joint moments 

in FF running were accomplished by the muscle fibers acting with a more optimal 

contraction velocity (Biewener and Roberts, 2000; Fenn, 1924; Huxley, 1974; Rall, 1985; 

Roberts et al., 1997).      

Differences in mechanical work production between running patterns have only 

been investigated through inverse dynamics analysis and external mechanical work ratios 

(Ardigo et al., 1995).  These techniques may be inadequate to accurately determine the 

differences in muscle function between the two patterns and how it relates to metabolic 

energy consumption and running economy (Sasaki et al., 2009).  The differences in 

muscle function between RF and FF patterns may be too subtle to determine through 

motion analysis and inverse dynamics.  Therefore, a muscle model may be more 

appropriate to evaluate these differences and determine the individual contributions of 

passive and active elements. 

 

The use of Musculoskeletal Models for Running Investigations 

Musculoskeletal models are frequently used to describe how muscle behaves to 

produce force during many types of activities, including running.  Other methods, such as 

isokinetic tests and inverse dynamics calculations, can determine the net joint moments 

produced during movement.  However, these methods cannot determine the force 
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contribution by individual muscles or distinguish between muscle fiber shortening 

velocity compared to that of the whole muscle-tendon complex.  Conversely, 

musculoskeletal models can be used to simulate the behavior of each element of a muscle 

that contributes to force production, as well as estimate the force produced by individual 

muscles without invasive procedures.  Musculoskeletal models can also estimate how the 

muscle and tendon interact to produce force during complex movements and the exact 

behavior of muscles and tendons will depend on the movement being simulated.  

However, musculoskeletal models can be difficult to create because of the substantial 

amount of information needed to create a model.  For example, some of the information 

that is needed for a musculoskeletal model includes muscle force, length and moment 

arm, time course of the gait data being simulated (e.g. joint angles, ground reaction 

forces, etc.), muscle architecture and the model parameters of maximum isometric force, 

optimal fiber length, maximum shortening velocity, tendon slack length and pennation 

angle (Zajac, 1989).  Additionally, the number of unknowns to be estimated by a 

musculoskeletal model must be equal to the number of equations used to describe the 

musculoskeletal system (Crowninshield and Brand, 1981).  

Typical musculoskeletal models representing the ankle joint complex are 

composed of rigid segments representing the foot, leg, and thigh as well as two muscles 

representing the gastrocnemius and soleus.  The muscles are generally modeled as a two- 

or three-component Hill model (Cole et al., 1996b).  Hill models are phenomenological 

models in that they represent the behavior and relationships between muscle, tendon, and 

other elastic structures, but do not represent the mechanisms by which force is produced 

(i.e. cross-bridge cycle).  With the two-component Hill model, each muscle is represented 
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by a contractile element (CE) and a series elastic element (SEE).  The CE represents the 

active characteristics of the muscle fibers and the SEE represents the elastic behavior of 

the tendon, aponeurosis and other passive structures in series with the CE (Cole et al., 

1996b).  Being located in series, the sum of the lengths of the CE and the SEE equals the 

length of the whole muscle-tendon complex (MT).  A three-component Hill model can be 

used which includes a parallel elastic element (PEE) in addition to the CE and the SEE.  

The PEE represents the elastic properties of the passive muscle fibers and muscle fascia, 

which are in parallel with the CE (Hof et al., 2002).  Additionally, other passive 

structures can be represented by a passive moment (Mpas) which acts about the simulated 

joint.  Mpas represents the moment produced by passive forces and structures that are not 

in series with the CE including ligaments, stretch of biarticular muscles, joint capsule and 

joint contact forces (Hatze, 1997).  When using a two-component Hill model, Mpas will 

also include the passive structures that are represented by the PEE in the three-component 

model. 

Muscle properties and how the muscles produce force are dictated by the Hill 

relationships: CE excitation-activation, CE force-length, CE force-velocity and SEE 

force-extension (Gordon et al., 1966; Hill, 1938; Wilkie, 1950).  All of the Hill model 

relationships are interrelated.  The amount of activation will affect the peak of the force-

length curve and thus the peak isometric force potential of the CE.  The original Hill 

relationships assume 100% activation; therefore, appropriate adjustments to the Hill 

relations must be made when simulating sub-maximal activities (van den Bogert et al., 

1998).  The magnitude of the maximum isometric force potential will also affect the 

amount of force that can be produced as a factor of the CE shortening or lengthening 
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velocity.  Because the CE and SEE are in series, the amount of force produced by the CE 

is transmitted to the SEE and will be equal in both structures.  Forces produced by the CE 

will also cause the SEE to change length.  As the SEE increases length, it also becomes 

stiffer thereby increasing the rate of force production.  Additionally, the sum of the CE 

and SEE velocity and length will be equal to that of the MT. 

The Hill model relationships make it possible to calculate the forces produced, as 

well as the changes in length and velocity of each component included in the model.  

Although isokinetic and gait studies have also been used to calculate the MT velocity, the 

results from these studies equate the findings to the CE velocity only, because the SEE 

cannot be taken into account and muscle-tendon interactions cannot be examined 

(Fukunaga et al., 2001).  Therefore, muscle velocities found by isokinetic dynamometry 

or gait studies may lead to inaccurate conclusions regarding CE length changes and 

velocities (Bobbert and van Ingen Schenau, 1990; Fukunaga et al., 2001).  Bobbert et al. 

(1986a) investigated this discrepancy using a musculoskeletal model to examine how the 

human triceps surae muscle functions during a vertical jumping task.  The results from 

the model demonstrated that the high ankle joint moments and angular velocities required 

during push-off of a vertical jump would not be possible without the high shortening 

velocity of the tendon which exceeded that of the CE.  The model also revealed that at 

take-off, the muscle force and the ankle joint moment decline causing the tendon length 

to decrease.  It is the action of the tendon with changing force levels that is responsible 

for the discrepancy between the torque-angular velocity plots for isokinetic studies 

compared to the plots from complex movements.  Therefore, the muscle model revealed 



49 

important information about tendon and muscle function that could not be obtained by 

isokinetic tests. 

Similar models have been used to examine muscle function during running, 

including the study by Hof et al. (2002) which was previously described in this chapter.  

The model developed by Hof et al. (2002) used sub-maximal experimental data of 

walking and running as input.  As a result, it differed from the original Hill models that 

assume 100% activation.  The results from Hof et al. (2002) and other studies on running 

(Ishikawa et al., 2007; Lichtwark and Wilson, 2007a), walking (Fukunaga et al., 2001; 

Hof et al., 1983; Ishikawa et al., 2005) and hopping (Belli and Bosco, 1992; Fukashiro et 

al., 2005; Fukunaga et al., 2002; Kurokawa et al., 2001) have indicated that the CE 

performs very little work during running and functions at shortening velocities that 

optimize force production.  Therefore, the SEE was the structure primarily responsible 

for the changes in MT length during these complex movements.  Additionally, the recoil 

of the SEE explains why the MT shortens at velocities higher than the CE maximum 

shortening velocity.  These results suggest the stretch and recoil of the SEE acts like a 

spring, storing elastic strain energy that can contribute to the work produced by the CE 

that propels the body during push-off (Cavagna et al., 1977b; Cavagna et al., 1964; 

Fukunaga et al., 2001).  Therefore, the SEE affects CE function during walking, running 

and jumping by allowing the CE to remain near isometric and generate elastic strain 

energy.  Allowing the CE to function near isometrically and increased elastic strain 

energy generated by the SEE may be significant contributors to muscle function and the 

metabolic cost of running (Biewener and Roberts, 2000; Fukashiro et al., 2005; Fukunaga 

et al., 2001).   
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Several studies have investigated the contribution of elastic energy during 

complex movements by modeling the amount of CE and SEE length changes or the 

amount of CE and SEE work (Anderson and Pandy, 1993; Belli and Bosco, 1992; Bohm 

et al., 2006; Cavagna and Kaneko, 1977c; Fukashiro et al., 1995; Fukunaga et al., 2001; 

Hof et al., 1983; Ishikawa et al., 2005; Roberts, 2002).  These studies found that if the CE 

does less work or performs work at slower shortening velocities, changes in MT length 

will be due to changes in primarily SEE length.  Therefore, less metabolic energy will be 

consumed by the CE compared to conditions that cause substantial changes in CE length.  

Additionally, the reduced CE shortening velocity results in greater force production than 

if the CE was required to undergo substantial length changes at higher velocities.  These 

findings suggest that maximizing the amount of elastic work performed will depend on 

the force-velocity characteristics of the muscle (Belli and Bosco, 1992).  Therefore, the 

amount of elastic energy storage and release that occurs during a given movement pattern 

will depend on the interrelationships of the force generating properties of the CE and 

SEE. 

It has been suggested that humans typically select kinematic and kinetic patterns 

that minimize metabolic cost (Cavanagh and Williams, 1982; Gutmann et al., 2006).  

Therefore, the metabolic cost of force generation and the conditions that optimize 

metabolic efficiency have been a particular interest to many researchers (di Prampero et 

al., 2005; Donelan et al., 2001; Griffin et al., 2003; Kram, 2000; McNeill Alexander, 

2002; Minetti et al., 2002; Roberts et al., 1998; Sih and Stuhmiller, 2003; Wickler et al., 

2000).  Models that estimate muscle energy liberation have been developed to address 

this interest.  Muscle energetics models calculate the total rate of energy expenditure as 
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the sum of the activation heat rate, the maintenance heat rate, the shortening/lengthening 

heat rate and the mechanical work heat rate (Lichtwark and Wilson, 2005a; Umberger et 

al., 2003).  Other, more simplified models have determined the metabolic expenditure of 

the muscle as a function of relative CE velocity (i.e. instantaneous/maximum), relative 

force production, and instantaneous activation level (Minetti and Alexander, 1997; 

Sellers et al., 2003).  When combined with a musculoskeletal model, the energetics of a 

specific task or set of conditions can be determined.   

Some previous studies have combined musculoskeletal and muscle energetics 

models to investigate the variables that affect force production, such as muscle-tendon 

material properties (Lichtwark and Wilson, 2006; Lichtwark and Wilson, 2007a; 

Lichtwark and Wilson, 2007b; Lichtwark and Wilson, 2008; Minetti and Alexander, 

1997; Sellers et al., 2003).  Research by Lichtwark and Wilson (2007b) found that there 

was an optimal tendon stiffness for improving metabolic efficiency in running.  The 

optimal tendon stiffness allows for the change in MT length to occur primarily by 

changes in SEE length.  The authors proposed that increasing tendon stiffness resulted in 

changes in MT length occurred primarily from changes in CE length.  Therefore, greater 

tendon stiffness required high CE shortening velocities and greater CE work.  The greater 

shortening velocities of the CE resulted in lower force production as dictated by the 

force-velocity relationship.  Therefore, increasing tendon stiffness results in greater 

muscle fiber recruitment to produce a given force level thereby activation level and 

energetic cost increased.  Additional studies have found that efficient running also 

requires longer fiber lengths compared to the fiber lengths needed for efficient walking 

(Albracht et al., 2008; Lichtwark and Wilson, 2008).  This work suggests that material 
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properties of muscle and muscle architecture maybe tuned to maximize efficiency for a 

given task or condition.   

Despite the potential benefits, musculoskeletal models also have several 

limitations and drawbacks.  For example, models do not account for effects from prior 

history, fatigue or neural feedback which can decrease the applicability and accuracy of 

the results.  Additionally, the results from a model will depend on the force-generating 

properties of the muscle including the underlying neural control system, skeletal 

anatomical features (e.g. anthropometric properties, muscle paths) and muscle 

architecture parameters (Erdemir et al., 2007).  Muscle architecture properties include: 

the muscle fiber length for optimal force generation, tendon slack length, physiological 

cross-sectional area and pennation angle.  The importance of any one muscle property on 

the force production calculated by a model can be assessed with a sensitivity analysis. 

Typically, muscle parameters are based on cadaveric data but can also be taken from 

imaging or calculations.   

The muscle properties used to estimate force generation in muscle models have 

previously been based on cadaver data with a relatively low number of subjects 

(Friederich and Brand, 1990; Klein Horsman et al., 2007; Wickiewicz et al., 1983).  

Arnold et al. (2010) developed a new generic model based on a recent muscle 

architecture study performed on 21 cadavers (Ward et al., 2009).  This model improves 

on previous models because it uses muscle architecture properties from a single, large 

group of cadavers, rather than accumulating various properties from several studies.  By 

using more representative data on muscle properties, the Arnold et al. (2010) model 

improved calculations of fiber length-joint angle relationships and muscle moment arms 
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which matched experimental data.  Improving the estimation of muscle properties will 

improve the accuracy and applicability of models simulating complex movements. 

 

Impact Force, Impact Shock and Attenuation 

Different segment orientations at touchdown between footfall patterns will not 

only affect muscle function and force generation but also impact characteristics and how 

those impacts are attenuated (Bobbert et al., 1992; Boyer and Nigg, 2007; Gerritsen et al., 

1995; Wakeling et al., 2001b).  With RF running, the vertical ground reaction force 

(GRF) has two distinct phases: a passive or impact phase followed by an active phase.  

The passive and active phases represent the time of energy absorption and generation, 

respectively (Derrick et al., 1998; Winter, 1983).  Derrick et al. (1998) defined the 

passive phase as the time between heel contact to the time the support leg center of mass 

(COM) stops decelerating.  The peak force within the passive phase is known as the 

impact peak.  The impact peak results from the collision of the heel with the ground 

(Nigg, 1986) and has a magnitude of 1.5 to 5 body weights which will increase with 

running speed (Cavanagh and Lafortune, 1980; Hamill et al., 1983).  The impact peak 

occurs approximately at the same time as peak deceleration of the leg COM (Bobbert et 

al., 1991).  This time-point corresponds to approximately 5 – 50 ms after foot contact or 

within the first 10% of stance (Bobbert et al., 1991; Nigg et al., 1981).  Several studies 

examining running at a long distance pace have observed the impact peak occurring at 

approximately 25 ms (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Dickinson et 

al., 1985).  The impact peak is absent in FF running but the active peak is typically higher 

with this pattern (Dickinson et al., 1985; Laughton et al., 2003; McClay and Manal, 
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1995b; Nilsson and Thorstensson, 1989; Oakley and Pratt, 1988; Williams et al., 2000).  

These differences in time domain features of the vertical GRF profile between footfall 

patterns may result in differences in frequency domain characteristics as well. 

The frequency content of the vertical GRF contains a 10 – 20 Hz component which is 

associated with the impact peak (Nigg, 2001; Shorten and Winslow, 1992).  The 

frequency characteristics of the impact peak are primarily determined by the acceleration 

of the leg segments; however, the magnitude of the peak depends on the acceleration of 

whole body COM (Bobbert et al., 1991).  GRF frequencies below 8 Hz are attributed to 

the active force (Potthast et al., 2010; Shorten and Mientjes, 2003) and therefore may 

have greater power with FF running.  However, the frequency content of GRFs during FF 

running has not previously been investigated.  The differences in the frequency content of 

the vertical GRF between footfall patterns may also affect how these frequencies are 

attenuated.   

Impact forces generate a shock wave that is transmitted into the foot and through 

the rest of the body (Nigg et al., 1981; Shorten and Winslow, 1992).  The impact peak of 

the vertical GRF is the main source of this shock wave (Voloshin et al., 1985).  Impact 

shock will increase with running speed and stride length due to the increased acceleration 

of the tibia (Clarke et al., 1985; Derrick et al., 1998; Hamill et al., 1995).  Between 

footfall patterns difference in segment velocity and stride length, in addition to vertical 

GRF characteristics, may affect the amount of shock transmitted through the body. 

Impact shock can be determined by measuring tibial acceleration with an 

accelerometer.  Accelerometers measure bone vibrations resulting from initial ground 

contact and acceleration of the segment (Shorten and Winslow, 1992; Wosk and 
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Voloshin, 1981).  Tibial acceleration in running is between 5 – 15 g (Shorten and 

Winslow, 1992).  Peak positive acceleration of the leg occurs approximately 5 ms before 

the initial impact peak and has a strong relationship with vertical GRF loading rate but 

only a moderate  relationship with impact peak magnitude (Hennig and Lafortune, 1991).  

The tibial acceleration profile contains a low frequency range (4 – 8 Hz) representing the 

active movement of the leg during ground contact and a mid-frequency range (12 – 20 

Hz) representing foot impact (Derrick et al., 1998; Shorten and Winslow, 1992).  The 

low- and mid-frequency ranges were shown to represent the active and passive phases of 

the vertical ground reaction force during a vertical jump landing, respectively (Nigg et 

al., 1981).  A higher frequency range (60 – 90 Hz) also exists and represents the resonant 

frequency of the accelerometer mass and mounting technique (Shorten and Winslow, 

1992).   

Differences in tibial acceleration may result in differences in peak forces and 

loading rates between footfall patterns (Laughton et al., 2003).  However, artificial 

stiffening of the leg may be a potential contributor to greater tibial acceleration 

characteristics some authors have observed with FF running performed by natural RF 

runners (Laughton et al., 2003).  Therefore, recommending a RF runner to switch to the 

FF pattern may increase impact shock and the amount of shock to be attenuated.  

Previous studies that have included both natural RF and FF runners only examined basic 

GRF characteristics such as impact peak magnitude and vertical loading rate (Cavanagh 

and Lafortune, 1980; Nilsson and Thorstensson, 1989; Payne, 1983).  Additionally, other 

studies have investigated tibial acceleration between footfall patterns in only natural RF 

runners (Laughton et al., 2003; Oakley and Pratt, 1988).  Investigating tibial acceleration 
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and other impact variables in natural FF should occur in order to accurately assess the 

differences between footfall patterns.    

In order to determine the amount of shock attenuation occurring in the body, 

several studies have used spectral analysis to transform tibial and head acceleration data 

from the time domain into the frequency domain (Derrick et al., 1998; Hamill et al., 

1995; Lafortune et al., 1995; Lafortune et al., 1996; Shorten and Winslow, 1992; Wosk 

and Voloshin, 1981).  A transfer function is calculated by determining the ratio between 

the power spectral density of the head acceleration and the power spectral density of the 

tibial acceleration.  The transfer function can identify the frequency ranges that increase 

or decrease in signal strength as the impact shock wave travels from the tibia to the head 

(Derrick et al., 1998).  Most of the frequency content measured at the head is within the 3 

– 8 Hz range (Derrick et al., 1998).  Therefore, the body may be more capable of 

attenuating frequency components greater than 8 Hz than lower frequencies.   

Shock attenuation occurs in order to stabilize the head to maintain a runner’s 

visual field and stabilize the vestibular system (Pozzo et al., 1991).  Attenuation occurs 

by a combination of passive and active mechanisms which can reduce the damaging 

effects of loading (Radin, 1972), such as osteoarthritis (Simon et al., 1972).  Examples of 

shock attenuation mechanisms previously observed in the literature are listed in Table 

2.2.  Bone deformation (a passive mechanism) and eccentric muscle contractions (an 

active mechanism) may be the primary mechanisms that attenuate forces transmitted 

through the body (Radin and Paul, 1970).   

Attenuation appears to increase with greater impact magnitudes to maintain head 

stabilization (Derrick et al., 1998; Hamill et al., 1995; Shorten and Winslow, 1992).  
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Some suggest attenuation increases by increasing energy absorption from active muscles 

(Derrick et al., 1998) or by overloading passive tissues responsible for attenuation 

(Voloshin and Wosk, 1982; Voloshin et al., 1981).  If there is a reduced capacity for 

attenuation by one tissue, changes in gait patterns or increased attenuation by the other 

tissues may occur (Voloshin and Wosk, 1982).  However increasing attenuation subjects 

the body’s tissues to greater deformation which may contribute to tissue injury.  If the 

frequency content of the vertical GRF and impact shock wave is different between 

footfall patterns, than each pattern may have a different reliance on various attenuation 

mechanisms.   

 

Table 2.2: Shock attenuation mechanisms found in previous investigations. 
 

Energy absorption through eccentric 
muscle contractions 

Derrick et al., (1998); Novacheck, (1998); Winter, (1983) 

Hip adduction during early stance Novacheck, (1998). 

Changes in sagittal plane lower 
extremity joint angles, especially 
knee and ankle 

Bobbert et al., (1992); Clarke et al., (1983b); Derrick et al., (1998); 
Lafortune et al., (1996a); Lafortune et al., (1996); McMahon et al., 
(1987); Potthast et al., (2010); Ratcliffe and Holt, (1997) 

Greater rearfoot pronation 
Bates et al., (1978); Denoth, (1986); Nigg et al., (1987); Perry & 
Lafortune, (1995); Winter, (1983) 

Decrease stride length and increase 
stride frequency 

Derrick et al., (1998); Hamill et al., (1995); Mercer et al., (2003) 

Changes in muscle force Bobbert et al., (1992); Denoth, (1986); Gerritsen et al., (1995) 

 

Studies identifying the frequency content of GRFs and tibial acceleration during 

running have found frequency components above 6 Hz are attenuated but the body is 

most effective at attenuating frequency components within the 15 – 50 Hz range (Hamill 

et al., 1995; Lafortune et al., 1996; Shorten and Winslow, 1992).  More specifically, GRF 
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frequencies above 60 Hz were shown to be damped by the foot and leg, likely by a 

combination of passive and active mechanisms.  Frequencies between 30 – 60 Hz were 

transmitted into the knee and the rest of the body and attenuated by kinematic 

adjustments, muscular contractions and deformation of the spine (Lafortune et al., 1995; 

Lafortune et al., 1996; Nigg et al., 1981; Voloshin et al., 1985).  Additionally, frequencies 

between 8 – 10 Hz have the greatest power compared to all others at both the head and 

tibia (Lafortune et al., 1996), suggesting that these frequencies are not attenuated as much 

as higher frequency components.  During walking, frequencies outside of the 15 – 25 Hz 

range were attenuated below the knee (Voloshin et al., 1985).   

 

Passive Mechanisms of Shock Attenuation in Running 

Since muscle latency is 30 ms or more, muscular contractions are unable to 

directly respond to impacts occurring during the period of initial ground contact (Nigg et 

al., 1981).  Therefore, passive forces are attenuated by deformation of the shoe and the 

body tissues such as the heel fat pad, ligaments, bone and articular cartilage (Chu et al., 

1986; Paul et al., 1978).  When subjected to repeated impacts, the heel fat pad has been 

shown to be responsible for absorbing approximately 85% of the impact energy, therefore 

it is a significant contributor to impact attenuation in RF running (Cavanagh et al., 1984).  

In a study performed on rabbits, Paul et al. (1978) showed that the heel fat pad was able 

to attenuate all frequencies and reduces frequency power by 20 – 28% whereas bone was 

responsible for attenuating frequencies greater than 18 Hz.  Other animal model studies 

have found increased new bone formation when subjected to a 15 Hz signal, but not a 1 

Hz signal, suggesting bone is stressed when exposed to higher frequencies (McLeod and 
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Rubin, 1990).  Passive structures of the knee, including ligaments, capsular and 

intracapsular tissues, have also been shown to significantly reduce peak accelerations 

(Chu et al., 1986).  

Without the assistance of other attenuation mechanisms, bone may be overloaded 

and at risk for fracture (Nigg et al., 1981; Voloshin and Wosk, 1982).  Therefore, passive 

forces are believed to be the cause of microtrauma to bone as well as muscle tissue (Nigg 

et al., 1981).  Since the initial impact peak is not visible in the time domain during FF 

running, it has been speculated that this footfall pattern protects against injury resulting 

from impact forces (Davis et al., 2010; Hasegawa et al., 2007; Laughton et al., 2003; 

Lieberman et al., 2010; Oakley and Pratt, 1988; Pratt, 1989; Williams et al., 2000).  

Although FF running does not cause an initial impact peak, differences in frequency 

content of the vertical GRF characteristics may reveal that the FF pattern may not prevent 

injuries sustained with RF running.  Therefore, there may be a misconception of the 

benefits of FF running with respect to injury prevention. 

 

Active Mechanisms of Shock Attenuation in Running 

Active shock attenuation mechanisms include eccentric muscle contractions, 

increased muscle activation, changes in segment geometry and adjustments in joint 

stiffness (Bobbert et al., 1992; Cole et al., 1996a; Denoth, 1986; Derrick et al., 1998; 

Gerritsen et al., 1995; McMahon et al., 1987; Wright et al., 1998).  The ability for muscle 

actions to attenuate impacts may be limited by the reaction time to an impact stimulus 

(McMahon and Green, 1984).   Because muscle latency is 30 – 75 ms (Nigg et al., 1981; 

Simon et al., 1981),  active muscle contractions that are specifically responding to an 
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impact stimulus may only be effective at attenuating frequencies below 10 Hz (Paul et al., 

1978).  Muscle is capable of large deformations and can adapt in order to attenuate a 

large range of frequencies.  Therefore, muscle has a large shock attenuation capacity.  

However,  if the muscles of the lower extremity are unable to sufficiently absorb impact 

energy, passive structures may be overloaded to attenuate shock (Derrick et al., 1998). 

Although muscles may not be able to respond to passive forces in the time that 

they are occurring, pre-activation of muscles before ground contact may occur in 

preparation for impact and may be scaled to different loading conditions (Boyer and 

Nigg, 2007; Gerritsen et al., 1995; Nigg et al., 1987; Wakeling et al., 2001b).  The 

intensity, timing and frequency of muscle activation will vary before and after impact to 

change the material properties and increase damping of impact shock wave frequencies 

(Boyer and Nigg, 2007).  Changes in muscle activity may be responsible for absorbing 

frequencies greater than 40 or 50 Hz.  The muscles of the triceps surae may not be as 

effective as the quadriceps at changing muscle activity to increase frequency damping 

due to the smaller mass of the triceps surae (Boyer and Nigg, 2007).   

Eccentric contractions attenuate shock by controlling the slow deceleration of the 

body thereby dissipating impacts over a longer period of time (Derrick et al., 1998; Pratt, 

1989).  During RF running, eccentric contractions of the tibialis anterior, tibialis posterior 

and flexor hallucis longus muscles assist the foot to control pronation and lower the 

forefoot to the ground (Novacheck, 1998; Winter, 1983) whereas FF running may result 

in eccentric contractions of the plantar flexors to prevent the heel from making contact 

with the ground (Pratt, 1989).  The combination of dorsiflexion, eversion and eccentric 

contractions of the plantar flexors during running may also be partially responsible for 
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the differences in loading characteristics between footfall patterns (Laughton et al., 

2003). 

Runners have been shown to alter their gait pattern and segment geometry in 

order to reduce impact shock wave transmission when subjected to greater impact shock 

(Clarke et al., 1984; Derrick et al., 1998).  In particular, increased knee and ankle joint 

flexion in the initial portion of the stance phase have been associated with significant 

impact attenuation and may be responsible for attenuating frequencies above 10 Hz 

(Derrick et al., 1998; Lafortune et al., 1996a; Lafortune et al., 1996).  Increased 

attenuation from changes in knee joint angle, for example, may be accomplished by 

increased knee extensor moment and quadriceps eccentric contractions (Derrick et al., 

1998).  In a study by Derrick et al. (1998), increases in stride length resulted in greater 

knee flexion and impact forces but also greater shock attenuation between 10 – 20 Hz.  

However, it is unknown if the changes in knee joint moments and power were due to the 

muscle increasing attenuation or increased leg control with greater stride lengths.   

Adjustments in segment geometry may result in altered leg and joint stiffness and 

affect impact shock attenuation.  Leg and joint stiffness represents the combined passive 

and dynamic properties of muscles, tendons, and ligaments that contribute to the 

compliance of the lower extremity (Hamill et al., 2000a).  Therefore, leg or joint stiffness 

implies a greater capacity to perform negative work and attenuate impact shock.   FF 

running results in greater leg and knee stiffness but lower ankle stiffness compared to RF 

running (Hamill et al., 2000a; Laughton et al., 2003).  These results suggest that  a 

compliant ankle is responsible for active shock attenuation during FF running and a 

compliant knee is responsible for active shock attenuation during RF running (Hamill et 
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al., 2000a).  However, greater muscular contractions and a more extended knee will 

increase impact forces due to increased leg stiffness, thereby increasing the amount of 

shock that must be attenuated (Potthast et al., 2010).   

 

Is Forefoot Running Protective Against Running Injuries? 

Vertical loading rate and magnitude of the initial impact peak have been 

suggested as significant factors relating to overuse injuries from running (Daoud et al., 

2012a; Davis et al., 2010; Grimston et al., 1991; Hreljac et al., 2000; Milner et al., 2006; 

Paul et al., 1978; Radin et al., 1973; Voloshin and Wosk, 1982; Zifchock et al., 2006).  

However, several other investigations have found minimal or no relationship with impact 

force magnitude or loading rate to the risk of developing running related injuries 

(Azevedo et al., 2009; Bennell et al., 2004; Bredeweg, 2011; Crossley et al., 1999; Marti 

et al., 1988; McCrory et al., 1999; Nigg, 1997; Nigg, 2001; Nigg et al., 1995; Pohl et al., 

2008; Scott and Winter, 1990).   

Many have speculated that the FF pattern may reduce the risk of impact related 

injury due to the absence of the initial impact peak (Cavanagh and Lafortune, 1980; 

Daoud et al., 2012b; Davis et al., 2010; Lieberman et al., 2010; Oakley and Pratt, 1988).  

However, previous studies have found FF running to result in greater active peak vertical 

GRFs compared to RF running (Dickinson et al., 1985; Laughton et al., 2003; McClay 

and Manal, 1995b; Nilsson and Thorstensson, 1989; Oakley and Pratt, 1988; Williams et 

al., 2000).  Loads from the active portion of the vertical GRF result in 3 – 5 times greater 

joint forces than the impact peak (Burdett, 1982; Harrison et al., 1986; Scott and Winter, 

1990).  Active loads may play an important role to injury mechanisms (Dickinson et al., 
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1985; Messier et al., 1991; Nigg, 2011; Radin, 1972; Winter, 1983), which may be 

exacerbated with FF running.  Although RF running causes larger impact forces, some 

studies have shown that RF running also results in longer strides and a lower stride 

frequency than FF running (Hamill et al., 2010).  Therefore, FF running may result in 

greater exposure to loading because a greater number of impacts will occur over the same 

distance. 

Kinematic differences such as foot segment orientation at impact, knee flexion 

angle throughout stance, stride length, and segment velocities are likely the source for 

differences in impact force characteristics between footfall patterns.  Consequently, 

differences in GRF profiles, loading rates and tibial acceleration between RF and FF 

running patterns may result in a different reliance on attenuation mechanisms.  For 

example, FF running does not take advantage of the heel fat pad or shoe cushioning in the 

heel to attenuate impacts; therefore, greater proportions of shock may be applied to other 

tissues that do not have the same capacity for shock attenuation.  As a result, those who 

run with a FF pattern may need to make adjustments in kinematics and muscle activation 

to sufficiently attenuate impacts.  The difference in impact attenuation mechanisms 

between footfall patterns may have implications on not only the risk of injury, but the 

tissues that may be susceptible to injury. 

The segment geometries employed by the FF pattern and result in reduced GRF 

parameters may also affect internal loading conditions.  Kinematic changes to prevent 

amplified impact forces may result in increased muscle forces and, consequently, 

increased tendon and joint loads (Cole et al., 1996a).  Since repetitive loading of joints 

and tendons can lead to overuse injuries (Bobbert et al., 1992; Luethi et al., 1987; Nigg et 
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al., 1987; Wright et al., 1998), mechanisms other than impact forces and loading rates 

may be responsible for the development of an injury.  Therefore, FF running may not be 

protective against overuse injuries from running simply because of the absence of the 

initial impact peak and reduced vertical loading rates.   

 

Summary 

FF running has been suggested to improve running economy and prevent overuse 

injuries from running.  However, the benefits of FF running have yet to be substantiated.  

Mechanical differences between RF and FF running, such as the length of the Achilles 

tendon moment arm during the stance phase, muscle fiber contribution to mechanical 

work, and the storage and release of elastic energy may be significant determinants of the 

metabolic energy requirements between footfall patterns.  Additionally, the differences in 

segment orientation between footfall patterns may affect GRF loading characteristics and 

how impact shock is attenuated by the body tissues.  Understanding the mechanisms 

contributing to metabolic energy consumption and mechanical loading between footfall 

patterns will lead to more appropriate recommendations for runners to improve economy 

and prevent injury. 
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CHAPTER 3 

METHODOLOGY 

 

General Introduction 

The purpose of this dissertation was to investigate the potential advantages of 

altering running footfall patterns to improve running economy and reduce the risk of 

injury.  The aims were to examine the musculoskeletal and mechanical as determinants 

for running economy and risk of developing running related injuries.  Additionally, this 

dissertation aimed to determine the potential advantages of altering from a preferred 

footfall pattern.  Two groups of participants were recruited to participate in this 

dissertation: 1) natural rearfoot (RF) runners and 2) natural forefoot (FF) runners.  Four 

studies were developed to satisfy the aims of the study.   

Study 1 determined the difference in metabolic cost between footfall patterns and 

determined if there was an economical advantage of adopting the alternate footfall 

pattern.  Previous studies have not found a difference in rate of oxygen consumption 

between RF and FF patterns or had methodological limitations (Ardigo et al., 1995; 

Cunningham et al., 2010).  Study 1 addressed the differences in rate of oxygen 

consumption and cost of transport between footfall patterns by comparing runners who 

habitually perform RF or FF footfall patterns.  Additionally, Study 1 determined if there 

was an advantage for each group to switch to the alternate footfall pattern to improve 

running economy.   

Anthropometric and mechanical differences may influence the metabolic cost of 

performing each footfall pattern.  It has previously been observed that individuals with 
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shorter Achilles tendon moment arms have greater running economy than those with 

longer moment arms (Scholz et al., 2008).  Since the Achilles tendon moment arm is 

longest when the ankle is plantar flexed (Maganaris et al., 2000), the FF pattern may be 

less economical because of its characteristic plantar flexed ankle position at initial contact 

and throughout stance.  Study 2 investigated the length of the Achilles tendon moment 

arm during standing and during the stance phase of running between the RF and FF 

running patterns.  Additionally, due to increased ankle joint moments and suspected 

eccentric work during FF running, some have speculated FF running may place increased 

stress on the Achilles tendon (Nilsson and Thorstensson, 1989).  Therefore, Study 2 also 

determined the force transmitted through the Achilles tendon.    

FF running pattern has been suggested to result in greater utilization of elastic 

energy which may result in an improvement in running economy (Ardigo et al., 1995; 

Hasegawa et al., 2007; Nilsson and Thorstensson, 1989; Perl et al., 2012; Pratt, 1989).  

RF running results in concentric force production at low shortening velocities and small 

changes in fascicle length during the stance phase (Hof et al., 2002; Lichtwark and 

Wilson, 2005d,2007).  Low contraction velocities allow for more efficient force 

production at a reduced metabolic cost than higher shortening velocities; however, a 

greater metabolic advantage would occur if the muscle fascicles remained isometric 

(Biewener and Roberts, 2000; Fenn, 1924; Huxley, 1974; Rall, 1985; Roberts et al., 

1997).  Since a mid-foot (MF) pattern has been shown to produce force isometrically 

(Hof et al., 2002), the FF pattern may also result in more optimal work production than 

RF running.  Therefore, Study 3 investigated the function of the triceps surae muscle to 

uncover the mechanical and energetic differences between footfall patterns. 
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Previous studies have indicated that runners optimize for metabolic cost rather 

than impact shock attenuation which may lead to an increased risk of impact related 

injuries at the expense of improved performance (Hamill et al., 1995).  Study 4 

determined the difference in impact shock attenuation and the frequency content of the 

vertical ground reaction force (GRF) between footfall patterns.  Differences in these 

parameters between footfall patterns may alter how the impact shock wave is attenuated 

through the body. 

 

Study 1: Is there a difference in running economy between rearfoot and forefoot 

running patterns? 

 

Introduction 

The purpose of Study 1 was to determine the difference in running economy (i.e. 

lowest sub-maximal rate of oxygen consumption) between footfall patterns and if there 

was an improvement in running economy for either natural RF or natural FF runners 

when performing the alternate footfall pattern.  Comparisons were made between two 

groups: 1) natural RF runners and 2) natural FF runners. 

 

Participant Selection 

A priori sample size estimation was performed using the cost of transport data 

during running from Cunningham et al. (2010).  A sample size of 20 for each group was 

selected to provide a minimum statistical power of 0.8 with the alpha value of 0.05.   
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For inclusion into the study, participants had to be experienced runners 

completing a minimum of 16 km per week with an average speed of approximately 3.5 

m•s-1 for long running bouts.  Participants were included if they were a healthy male or 

female, ages 18 – 45 yrs, and had not experienced an injury to the lower extremity or 

lumbar region within the past year.  Exclusion criteria included: 1) currently smoking 

cigarettes; 2) neurological disease or injury and lightheadedness or dizziness with 

exercise; 3) cardiovascular problems including heart attack, high cholesterol, 

uncontrolled high blood pressure, pace maker, coronary artery disease, peripheral artery 

disease, chest pain with exercise; 4) musculoskeletal injury or surgery to the lower 

extremity or back within the past 1 year; and 5) other health problems including cancer, 

diabetes, vision problems, etc.  Each participant gave written approval to participate in 

accordance with the University of Massachusetts Institutional Review Board policies.   

Participants were classified into the natural RF group or the natural FF group by 

the footfall pattern they habitually perform during runs longer than one mile.  The natural 

footfall pattern was determined by the investigator recording vertical ground reaction 

forces (GRF) and high speed video of each participant while running over-ground at their 

preferred running speed.  RF running was defined as making initial contact with the heel.  

FF running was defined as making initial contact on the metatarsal heads and preventing 

the heel from contacting the ground.  Participants who exhibited a MF pattern were 

placed in the RF or FF groups based on their ankle kinematics and GRF.  Natural MF 

runners were classified into the RF group if they made contact with a flat foot position 

(approximately zero degrees of dorsiflexion) and generated an initial impact peak within 

the vertical GRF component (n = 5).  MF participants were classified into the FF group if 
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they landed on the metatarsal heads but allowed the heel to touch the ground (foot 

position approximately below zero degrees, i.e. plantar flexion) and did not generate an 

initial impact peak (n = 6).   

Participants data were excluded from the analysis if they were unable to run 

comfortably until sufficient steady state oxygen consumption was collected for a given 

footfall pattern or speed or if some anomaly in the data was detected.  Data from other 

speed conditions were not excluded if the participant performed both footfall patterns 

comfortably within that speed and sufficient oxygen consumption data were collected.  

Twenty RF runners were collected, however, but only 19 were included in the analysis.  

Specifically, data from 18/20 RF group participants were included in the analysis for the 

slow speed, 19/20 analyzed for the medium speed, and 17/20 analyzed for the fast speed.  

In the FF group, 21 participants were collected; however, one participant was excluded 

because they could not comfortably perform each footfall pattern at the medium or fast 

speeds, one participant had unusual data, and one participant was excluded for 

misclassification into the FF group.  Therefore, data from 18 FF group participants were 

used in the analysis for the slow and medium speeds and 17/18 participants were 

analyzed for the fast speed. 

 

Experimental Setup 

The volume and content of gases expired by each participant while running on a 

motorized treadmill was measured by indirect calorimetry using a metabolic cart 

(TrueOne, ParvoMedics, Sandy, UT, USA).  The volume of gas exchange was used to 

calculate the gross rate of oxygen consumption.  Three-dimensional motion of reflective 
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markers placed on the right foot and leg (McClay and Manal, 1999) (Appendix B) were 

recorded by an eight-camera Qualisys Oqus 3-Series optical motion capture system 

(Qualisys, Inc., Gothenberg, Sweden) sampling at 240 Hz.  A treadmill was placed in the 

center of the motion capture collection volume.  Camera calibration was performed to 

define a right-hand laboratory coordinate system.  A wand with two markers separated by 

a known length was used to scale the perspective of individual camera views to the 

collection volume in reference to a 90o rigid frame to define the origin.  The corner of the 

frame was placed at the edge of the treadmill to define the X and Y axes as mediolateral 

and anteroposterior axes respectively.  Motion capture data were used to monitor the 

footfall pattern used by the participants during each condition.  Calibration markers 

included the medial and lateral femoral condyles, medial and lateral malleoli, and the 

heads of the first and fifth metatarsals.  Calibration markers were used to determine 

segment local coordinate systems, segment origins, segment length and joint center 

locations.  The long axis of the thigh and leg were defined as the distance between the 

proximal and distal joint centers.  The long axis of the foot was defined as the distance 

between the ankle joint center and the center of the metatarsal calibration markers.  

Tracking markers included a rigid plate with three non-collinear markers placed on the 

posterior calcaneus.  Tracking markers were used to measure the marker movements in 

space by determining deviations from the standing calibration.  Marker tracking was 

completed by calculating the transformation of the markers to the position and orientation 

of each segment.  A standing calibration trial was collected with the participant in quiet 

stance in order to orient the local coordinate system in the laboratory coordinate system.  

Calibration markers were removed prior to performing the movement trials.  Each 
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participant wore a neutral racing flat running shoe provided by the laboratory to 

standardize any effects of cushioning and other footwear properties (RC 550, New 

Balance, Brighton, MA, USA).   

 

Protocol 

Each participant refrained from caffeine consumption and was fasted for at least 

three hours prior to arrival for the test session.  Upon arrival at the laboratory, 

participants completed: 1) an informed consent form; 2) a Physical Activity Readiness 

Questionnaire (PAR-Q); and 3) a demographic information form.  If a participant 

answered “Yes” to any question on the PAR-Q, they were immediately excluded from the 

study.  The test session began with measurements of body mass and height.  Each 

participant was allowed to warm-up on the treadmill for several minutes as needed and 

also practiced each footfall pattern at a slow, medium, and fast speed which were 3.0, 3.5 

and 4.0 m•s-1, respectively.  Running speed was adjusted by ±5% if necessary to allow 

the participant to run more comfortably.  The participant was then prepared for data 

collection by securing the reflective markers onto the right leg and foot and then the 

standing calibration was recorded.  Each participant began the data collection by standing 

quietly for 10 minutes on the treadmill to record baseline oxygen consumption.  Next, the 

participant performed each footfall pattern within one speed condition before continuing 

to the next speed condition.  The order of the footfall patterns and running speeds was 

randomized.  Each participant ran for a minimum of five minutes during each speed and 

footfall pattern condition or until two minutes of steady state oxygen consumption was 

recorded.  Steady state was attained when there was less than a 10% change in oxygen 
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consumption over a two minute period (Stephens et al., 2006).  Each participant rested 

until the volume of expired air returned within 0.02 L•min-1 of the baseline value. 

The most appropriate speed to assess running economy is currently unknown.  

However, Williams (1990) suggests that any change resulting in a reduction of sub-

maximal oxygen consumption over a range of speeds would be sufficient to detect in an 

improvement in running economy.   

 

Data Reduction 

The absolute (L•min-1) and relative (ml•kg-1•min-1) rates of steady state oxygen 

consumption (Vሶ O2) over the last two minutes of each condition was averaged to 

determine the net and gross Vሶ O2 and cost of transport (COT).  The first five minutes of 

the baseline oxygen consumption measure was typically highly variable as the 

participants became accustom to breathing with the mouthpiece.  As a result, the average 

rate of oxygen consumption over the last five minutes of the baseline period was used to 

calculate net Vሶ O2 and COT by subtracting the baseline value from the average rate of 

oxygen consumption during the last two minutes of each running condition.  Absolute 

(J•m-1) and relative (J•m-1•kg-1) COT were first calculated by converting the relative rate 

of oxygen consumption (ml•kg-1•min-1) to metabolic rate (W•kg-1) by (Weir, 1949):  

 

Metabolic rate = Vሶ O2* 
ሺ3.876 + RER * 1.2411ሻ

1000
 * 

4184

60
 

   (3.1) 
 

where Vሶ O2 is the rate of oxygen consumption in ml•kg-1•min-1, RER was the respiratory 

exchange ratio calculated by volume of carbon dioxide expired divided by the volume of 
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oxygen consumed averaged over the last two minutes of steady state, 3.876 was the 

number of kcals expended per liter of oxygen consumed, 1.2411 kcals expended per liter 

of carbon dioxide expired, and 4184 was the number of Joules (J) per kcal, 1000 ml•L-1, 

and 60 s•min-1.  COT was then determined by dividing metabolic rate by the velocity of 

the treadmill belt.   

Absolute rate of carbohydrate oxidation (gCHO) in g•hr-1  was determined from 

the volume of carbon dioxide expired and the volume of oxygen consumed by (McArdle 

et al., 2001):   

 

gCHO = (4.58 Vሶ CO2 – 3.23 Vሶ O2) * 60    (3.2). 

 

Relative carbohydrate oxidation (%CHO) was expressed as the percentage of energy 

expenditure resulting from carbohydrate oxidation was calculated from Vሶ O2 in L•min-1 

and gCHO: 

 

%CHO = 
g CHO * 4 kcal•g-1

5 kcal•L-1•VO2
-1 * L VO2•min-1  * 100 

    (3.3) 
 

where 4 kcal•g-1 is the number of kcals liberated from oxidizing 1 g of CHO and 5 

kcal•L-1 is the number of kcals expended per liter of oxygen consumed. 

The 3D positions of the markers placed on the foot and leg were tracked using 

Qualisys Track Manager software (Qualisys, Inc., Gothenberg, Sweden).  The data were 

exported in .C3D format to calculate sagittal plane ankle joint angles at touchdown 

(AATD) using Visual 3D software (C-Motion, Inc, Rockville, MD, USA).  Raw 
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kinematic data were filtered with a 4th order, zero-lag Butterworth digital low-pass filter 

with a cutoff frequency of 12 Hz (Winter et al., 1974).  Ankle joint angle was calculated 

by a rotation matrix of the distal segment with respect to the coordinate system of the 

proximal segment using a Cardan rotation sequence of x (dorsiflexion/plantar flexion) – y 

(eversion/inversion) – z (axial rotation) (Cole et al., 1993).  Stride frequency (SF) was 

calculated as the number of strides occurring during the 15 s motion capture period and 

multiplied by four to result in units of strides per minute.  Stride length (SL) was 

calculated by dividing the treadmill belt speed by SF.  Contact time (CT) was calculated 

for each stance phase as the time between initial impact and toe-off of the right foot. 

 

Statistical Analysis 

The kinematic variables that were assessed included the AATD, SL, SF and CT.  

The running economy variables assessed included net absolute and relative steady state 

Vሶ O2, gross absolute and relative Vሶ O2, net absolute and relative COT, and gross absolute 

and relative COT, gCHO, and %CHO.  Each variable was subjected to a mixed model 

analysis of variance (ANOVA) with footfall pattern and group as fixed variables and 

participant nested within group as a random variable.  The differences between footfall 

patterns (2 levels) and between groups (2 levels) and the interaction of footfall pattern 

and group were assessed with a significance level of α = 0.05.  When a significant group 

by pattern interaction was observed, a post-hoc assessment was performed by partitioning 

the interaction by group and by pattern.  Partitioning by group determined the 

significance between each footfall pattern within each group.  Partitioning by pattern 

determined the significance between groups within each footfall pattern.  A one-way 
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ANOVA was used to determine the differences in running economy variables between 

groups at baseline and each speed when performing their preferred pattern (α = 0.05). 

Effect sizes were also calculated to determine if the differences between footfall pattern 

and groups were biologically meaningful.  An effect size (d)  lower than 0.4 indicated a 

small effect, an effect size between 0.5 and 0.7 indicated a moderate effect and an effect 

size greater than 0.8 indicated a large effect (Cohen, 1992).    

 

Study 2: Achilles tendon forces and moment arm length in rearfoot and forefoot 

running 

 

Introduction 

The purpose of Study 2 was to determine the AT moment arm length during the 

stance phase of running and to investigate the relationship between moment arm length 

and running economy.  Additionally, this study aimed to determine the difference in AT 

force between RF and FF running patterns.  Results from this study were combined with 

the results of Study 1 to determine the relationship of Achilles tendon moment arm length 

to running economy.   

 

Participant Selection 

Study 2 used the participants from Study 1 that were included in the oxygen 

consumption analysis for the medium speed.  Therefore, 19 participants were included in 

the RF group and 18 participants were included in the FF group.  These participants 

performed over-ground running trials with each footfall pattern at a single speed, as 
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described below.  Rate of oxygen consumption data from these participants was 

correlated with measurements of the Achilles tendon moment arm.  All participants read 

and completed an informed consent document and questionnaires approved by the 

University of Massachusetts Amherst Institutional Review Board. 

 

Experimental Setup 

An eight-camera Qualisys Oqus 3-Series optical motion capture system (Qualisys, 

Inc., Gothenberg, Sweden), sampling at 240 Hz, surrounded the center of a 25 m runway 

and was used to collect unilateral three-dimensional kinematic data.  Camera calibration 

was performed to define a right-hand laboratory coordinate system.  A wand with two 

markers separated by a known length was used to scale the perspective of individual 

camera views to the collection volume in reference to a 90o rigid frame to define the 

origin.  The corner of the frame was placed at the edge of a force platform to define the X 

and Y axes as mediolateral and anteroposterior axes respectively.  A floor mounted strain 

gauge force platform (OR6-5, AMTI, Inc.  Watertown, MA, USA) was located in the 

center of the collection volume.  Ground reaction forces (GRF) and center of pressure 

were recorded with the force platform with a sampling frequency of 1200 Hz.   

Photoelectric sensors (Lafayette Instrument Company, Lafayette, IN) were placed 3m 

before and after the force platform to record movement speed.    

Retro-reflective markers were placed on the right lower extremity and pelvis of 

the participant according to McClay and Manal (1999) (Appendix B).  Calibration 

markers included the iliac crests, greater trochanters, medial and lateral femoral condyles, 

medial and lateral malleoli, and the heads of the first and fifth metatarsals.  Calibration 
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markers were used to determine segment local coordinate systems, segment origins, 

segment length and joint center locations.  The long axis of the thigh and leg were 

defined as the distance between the proximal and distal joint centers.  The long axis of 

the foot was defined as the distance between the ankle joint center and the center of the 

metatarsal calibration markers.  Tracking markers included four non-collinear markers 

secured onto a rigid plate, positioned on the lateral thigh and leg, as well as a rigid plate 

with three non-collinear markers placed on the posterior calcaneus.  Additional tracking 

markers, secured onto the skin or form fitting clothing, included the right and left anterior 

superior iliac spine and between the 5th lumbar-1st sacral vertebrae.  Tracking markers 

were used to measure the marker movements in space by determining deviations from the 

standing calibration.  Marker tracking was completed by calculating the transformation of 

the markers to the position and orientation of each segment.   A standing calibration trial 

was collected with the participant in quiet stance in order to orient the local coordinate 

system in the laboratory coordinate system.  Calibration markers were removed prior to 

performing the movement trials.  Participants wore form-fitting clothing and a neutral 

racing flat running shoe provided by the laboratory. 

The static AT moment arm length was measured using methods similar to those 

of Scholz et al. (2008).  The static AT moment arm was defined as the shortest distance 

from the line of action of the AT to the center of rotation of the ankle.  The center of 

rotation of the ankle was approximately the midpoint between the medial and lateral 

malleoli (Lundberg et al., 1989).  The location of the lateral malleolus and its center were 

marked with a pen while the participant was standing (Figure 3.1).  A high speed video 

camera (Exilim EX-F1, Casio Computer Co., LTD, Shibuya-ku, Tokyo, Japan) sampling  
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Figure 3.1: Measurement of Achilles tendon (AT) moment arm length during standing. The visual 
field was calibrated by determining the pixels in 50 cm reference distance. The distance between the 
ankle joint center and the posterior aspect of the AT was determined by averaging the distance 
between the medial (black line) and lateral malleoli (white line). 
 

at 300 Hz was used to record video of the foot and leg during a standing.  The length of 

the static AT moment arm was recorded with each participant standing on a wooden 

block of known length.  The lateral boarder of the foot was aligned with the edge of the 

block.  The posterior aspect of the AT was identified on the video.  The length of the 

static AT moment arm was determined by taking the average of the horizontal distance 

between the mark on the center of the lateral malleolus and the posterior aspect of the AT 

and the horizontal distance between the mark on the anterior aspect of the lateral 

malleolus and the posterior aspect of the AT.  This procedure was used to better estimate 

the ankle joint center which lies on an axis connecting the medial and lateral malleoli.  If 

the shoe upper covered the point on the AT necessary for indicating the posterior aspect, 

the thickness of the shoe upper was included in the measurement of the perpendicular 

distance then subtracted from the total length.  This method was previously used by both 

Scholz et al. (2008) and Fath et al. (2010) who reported values that were well correlated 

with more precise magnetic resonance imaging data.  The motion capture data were used 



 

96 

to derive a second order polynomial to estimate the dynamic AT moment arm across the 

stance phase as a function of ankle joint angle (Arnold et al., 2010).   

Oxygen consumption data were recorded during the data collection for Study 1.  

The volume and content of gases expired by each participant while running on a 

motorized treadmill was measured by indirect calorimetry using a metabolic cart 

(TrueOne, ParvoMedics, Sandy, UT, USA).  The volume of gas exchange was used to 

calculate the gross rate of oxygen consumption.     

 

Protocol 

After signing the informed consent documents, the participants were prepared for 

data collection and the standing calibration and static AT moment arm length 

measurement were performed.  Each participant was instructed on how to run across the 

force platform at the desired speed and without targeting or adjusting speed or stride.  

The data collection for the over-ground running conditions began with the participants 

performing five trials without any instruction on speed or footfall.  This condition was 

used to identify the natural running pattern of each participant in accordance with the 

footfall pattern definitions described in the methods for Study 1.  Each participant then 

performed 10 successful trials of each footfall pattern while running at 3.5 m•s-1 ±5%.   

The order of the footfall conditions was randomized between participants.  Most 

biomechanical studies on running incorporate a single fixed running speed.  A single 

fixed running speed was chosen for this study to limit the number of conditions 

performed in order to minimize the occurrence and severity of delayed onset muscle 
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soreness.  The speed 3.5 m•s-1 was chosen because it is similar to speeds selected in the 

literature and was similar to the preferred speed of the participants (Queen et al., 2006). 

Data collection for the treadmill conditions were described in the methods for 

Study 1.  However, for Study 2 only the baseline oxygen consumption recording and the 

steady state oxygen consumption when running at 3.5 m•s-1 were included in Study 2.  

Participants arrived at the laboratory having fasted for at least three hours and had 

refrained from exercise before the data collection.  Participants were allowed to warm-up 

on the treadmill for a several minutes as needed and also practiced each footfall pattern at 

3.5 m•s-1.  Running speed was adjusted by ±5% if necessary to allow for the participant 

to run comfortably with each footfall pattern.  Participants began the data collection 

protocol by standing quietly for 10 minutes on the treadmill to record baseline oxygen 

consumption.  Participants ran for a minimum of five minutes during each footfall pattern 

condition or until two minutes of steady state oxygen consumption was recorded.  Steady 

state was reached when there was less than a 10% change in oxygen consumption over a 

two minute period (Stephens et al., 2006).  Participants rested for a minimum of five 

minutes between conditions or until the volume of expired air returned within 0.02 

L•min-1 of the baseline value. 

 

Data Reduction 

Kinematic data were tracked using Qualisys Track Manager software (Qualisys, 

Inc., Gothenberg, Sweden) and exported in .C3D format for processing with Visual 3D 

software (C-Motion, Inc, Rockville, MD, USA).   Raw kinematic and kinetic data were 

filtered with a 4th order, zero-lag Butterworth digital low-pass filter with a cutoff 
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frequency of 12 Hz and 50 Hz respectfully (Winter et al., 1974).  Three dimensional joint 

angles were calculated by a rotation matrix of the distal segment with respect to the 

coordinate system of the proximal segment using a Cardan rotation sequence of x 

(flexion/extension) – y (abduction/adduction) – z (axial rotation) (Cole et al., 1993).  For 

the knee, positive angles indicated extension, adduction and internal rotation.   For the 

ankle, positive angles indicated dorsiflexion, inversion and adduction.  Ankle joint angles 

were averaged over early (AAave1), mid- (AAave2), and late stance (AAave3).  Early 

stance was defined as 0-33% of the stance phase, mid-stance as 34-66%, and late stance 

as 67-100%.    

A Newton-Euler inverse dynamics approach was used to calculate three 

dimensional joint moments.  Segment geometries were modeled as a frustra of a right 

cone for the foot, leg and thigh, and as a cylinder for the pelvis.   Segment mass, location 

of segmental center of mass, and moment of inertia were estimated by techniques 

described by Hanavan (1964).  Internal joint moments were calculated with respect to the 

local coordinate system of the proximal segment.   For the knee, positive values indicated 

extensor, adduction and internal rotation moments.   For the ankle, positive values 

indicated dorsiflexor, inversion and adductor moments.   Ankle joint angle and joint 

moments from the stance phase of each condition were interpolated to 101 data points 

from initial contact to toe-off, with each point representing 1% of the stance phase.   

Kinovea Motion Tuner software v. 0.8.15 (www.kinovea.org/en/) was used to 

calculate the static AT moment arm length (dmt0).  A scaling factor was determined from 

the reference distance by the number of pixels that equaled the length of two points, 50 

cm apart.  The Euclidean distance between the center of the lateral malleolus and the 
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posterior aspect of the Achilles tendon was determined.  The distance in pixels was 

divided by the scaling factor to determine the length of the AT moment arm in cm.   

A custom MATLAB program was developed to determine the AT force and the 

dynamic AT moment arm length during the stance phase.  A separate plots for the 

moment arm of the plot soleus and the medial and lateral heads of the gastrocnemius 

moment arm at the ankle were created as a function of ankle joint angle (θ) based on 

generic model by Arnold et al. (2010).  The data from each muscle were combined by 

scaling each by its physiological cross sectional area.  The data were fit to a second-order 

polynomial by a custom MATLAB program (Mathworks, Inc., Natick, MA) and used to 

determine the polynomial coefficients.  A second-order polynomial was the lowest order 

that adequately fit the moment arm data, based on an assessment of the root mean square 

error between the polynomial prediction and the data.  The zeroth-order polynomial 

coefficient was scaled for each subject individually by the static Achilles tendon moment 

arm measurement.  The experimental ankle joint angle data were entered into the 

polynomial to determine the dynamic AT moment arm for each instant of the stance 

phase.  The dynamic AT moment arm length was averaged over early (dmt1), mid- 

(dmt2), and late stance (dmt3) and compared between footfall patterns. 

To calculate AT force, the ankle and knee joint angles were used to estimate the 

passive joint moment (Riener and Edrich, 1999).  The passive joint moment was 

subtracted from the net joint moment calculated by the inverse dynamics procedure to 

determine the active muscle moment.  The maximum active ankle joint moment 

(AMmax) and the active ankle joint moment averaged over early (AMave1), mid- 

(AMave2), and late stance (AMave3) were calculated and compared between patterns.  
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The active ankle moment was divided by the dynamic AT moment arm at each instant of 

stance to determine the AT force.  It was assumed that the force in the AT was zero 

whenever the active ankle moment was dorsiflexor.  The maximum AT force (ATmax) 

and the AT force averaged over early (ATave1), mid- (ATave2), and late stance (ATave3) 

were calculated.  The active ankle joint moment (AM10), AT force (AT10), and the 

dynamic AT moment arm (dmt10) were averaged over the period of stance at which ±10% 

of the maximum AT force was generated.  The relationship of these variables in addition 

to dmt0 and of the rate of oxygen consumption was determined and compared between 

footfall patterns.  However, the results of the correlation between each oxygen 

consumption variable and AM10 and AT10 are presented in Appendix D.  Only the 

correlation results between net and gross rate of oxygen consumption and dmt0 and dmt10 

will be presented in the results, as they are the only relationships that pertain to the 

hypotheses. 

The absolute (L•min-1) and relative (ml•kg-1•min-1) rates of steady state oxygen 

consumption (Vሶ O2) over the last two minutes of each condition was averaged to 

determine the net and gross Vሶ O2.  The first five minutes of the baseline oxygen 

consumption measure was typically highly variable as the participants became accustom 

to breathing with the mouthpiece.  As a result, the average rate of oxygen consumption 

over the last five minutes of the baseline period was used to calculate net Vሶ O2 by 

subtracting the baseline value from the average rate of oxygen consumption during the 

last two minutes of each running condition.  
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Statistical Analysis 

Each ankle joint angle, ankle joint moment, AT force, AT moment arm, and Vሶ O2 

variable was compared between the RF and FF patterns.  A one-way analysis of variance 

(ANOVA) was used to assess the differences in dmt0 between groups with a significance 

level of α = 0.05.  Additionally, each variable was subjected to a mixed model analysis of 

variance with footfall pattern and group as fixed variables and subject nested within 

group as a random variable.  The differences between footfall patterns (2 levels) and 

between groups (2 levels) and the interaction of footfall pattern and group were assessed 

with a significance level of α = 0.05.  When a significant group by pattern interaction was 

observed, a post-hoc assessment was performed by partitioning the interaction by group 

and by pattern.  Partitioning by group determined the significance between each footfall 

pattern within each group.  Partitioning by pattern determined the significance between 

groups within each footfall pattern.  A Pearson product moment correlation coefficient 

was calculated to determine the relationship between absolute and relative Vሶ O2 and dmt0 

and dmt10.  Effect sizes were also calculated to determine if the differences between 

footfall pattern and groups were biologically meaningful.  An effect size (d) greater than 

0.3 indicated a small effect, an effect size greater than 0.5 indicated a moderate effect and 

an effect size greater than 0.8 indicated a large effect (Cohen, 1992). 

 

 

 

 



 

102 

Study 3: Muscle mechanics and energy expenditure of the triceps surae during 

rearfoot and forefoot running 

 

Introduction 

The purpose of Study 3 was to compare the mechanical muscle work and muscle 

metabolic cost of the triceps surae muscle group between footfall patterns using a 

musculoskeletal modeling approach.  The force and work produced by each muscle of the 

triceps surae was assessed with a muscle model.  The resulting effects on metabolic cost 

were determined by comparing the muscle energy expenditure between footfall patterns. 

 

Participant Selection 

Study 3 used the over-ground kinematic and kinetic data as well as the static 

Achilles tendon moment arm length of 10 participants from each group collected from 

Study 2.  Included participants were selected by matching for body mass, body height, 

and steady state oxygen consumption when running with their preferred footfall pattern at 

3.5 m•s-1.  This data was used to develop a muscle model.  Individual participant data for 

10 trials of each footfall pattern condition were averaged across conditions.  Therefore, 

the mean data from each condition of each participant were used as input into the muscle 

model.  Each variable was compared by the following group-condition combinations: 1) 

natural RF runners performing the RF pattern; 2) natural RF runners performing the FF 

pattern; 3) natural FF runners performing the RF pattern; and 4) natural FF runners 

performing the FF pattern.  All participants read and completed an informed consent 
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document and questionnaires approved by the University of Massachusetts Amherst 

Institutional Review Board before participating. 

 

Musculoskeletal Model 

A two-dimensional musculoskeletal model was developed similar to the methods 

of previous studies (Bobbert et al., 1986a; Hof et al., 2002; van Soest and Bobbert, 1993).  

Properties of the muscle-tendon complex (MT) reflected the action of the gastrocnemius 

(GA) and soleus (SO), which together comprise the muscles of the triceps surae.  The 

model consisted of three rigid segments representing the foot, leg and thigh (Appendix E, 

Figure E.1).  Segments were connected by two frictionless hinge joints to represent the 

ankle and knee joints.  A Hill-type muscle model was employed to simulate the action of 

the GA and the soleus SO individually.  Each muscle contained a contractile element 

(CE) and a series elastic element (SEE) in series with the CE.  Although Hill-type muscle 

models are phenomenological models, the CE is primarily associated with the muscle 

fascicles and the SEE is primarily associated with the Achilles tendon, aponeurosis and 

other elastic structures in series with the CE.  Passive elements which act in parallel with 

the muscle fibers, such as muscle fascia, ligaments and joint capsule were represented by 

a passive moment (Mpas).   The equation developed by Riener and Edrich (1999) was 

used to estimate Mpas as a function of ankle and knee joint angles:  

 

     Mpas=  – exp൫2.1016 + 0.0843φA–  0.0176φK൯ 

   – exp൫– 7.9763 – 0.1949φA+ 0.0008φK൯ –  1.792     (3.4). 
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The mean ankle angle, knee angle, and ankle joint moment was compiled across trials for 

each participant served as inputs into the muscle model (Figure 6.1).  The model was run 

on each participant individually for the following group-condition combinations: 1) 

natural RF runners performing the RF pattern; 2) natural RF runners performing the FF 

pattern; 3) natural FF runners performing the RF pattern; and 4) natural FF runners 

performing the FF pattern.   

A generic model by Arnold et al. (2010) was used to determine the moment arm 

length (dMT) for the GA and SO.  A plot of dMT as a function of joint angle (θ) for each 

muscle was created based on generic model by Arnold et al. (2010).  dMT for the SO was 

plotted against ankle joint angle.  Plots for the dMT of the GA as a function of knee and 

ankle joint angles were created separately.  Additionally, the plots for dMT of the medial 

and lateral heads of the GA were created separately for each joint angle.  The data from 

the medial and lateral heads of the GA were combined by scaling each muscle by its 

physiological cross sectional area (PCSA).  The modal data were fit to a second-order 

polynomial by a custom MATLAB program (Mathworks, Inc., Natick, MA) and used to 

determine the polynomial coefficients.  A second-order polynomial was the lowest order 

that adequately fit the moment arm data, based on an assessment of the root mean square 

error between the polynomial prediction and the data.  The zeroth-order polynomial 

coefficient was scaled for each subject individually by the static Achilles tendon moment 

arm measurement.   Each dMT polynomial was integrated with respect to the knee and 

ankle joint angle, thus creating third-order polynomials for GA and SO muscle-tendon 

complex length (LMT) as a function of θ.  The zeroth-order coefficients for the LMT 

polynomials were scaled based on the participant’s static   leg length.  The experimental 
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joint angle data were entered into these polynomials to determine LMT and dMT for each 

instant of the stance phase.  LMT of the GA and SO was used as a constraint for the model 

by requiring the sum of the CE and SEE lengths equal that of the LMT. 

Active moment (Mact) produced by the GA and SO was determined by subtracting 

Mpas from the ankle joint moment (MA) found by the inverse dynamics procedure.  Mact 

was used to calculate the force generated by the triceps surae as a sum of the forces 

produced by the GA and SO multiplied by their respective moment arms.  Force 

produced by each muscle was partitioned by the ratio of each muscle’s PCSA to the total 

triceps surae PCSA.  A ratio of 1.88:1 SO to GA was used (Arnold et al., 2010).   

 

 

Figure 3.2: Schematic representing the steps of the muscle and muscle energetic model.  The model 
begins by entering experimental data into the model. Based on the contraction dynamics (force-
length CE F-L, force-velocity CE F-V and SEE force-extension SEE FΔL relationships), activation 
level of the muscle was determined, followed by the excitation level.  The model was then constrained 
to the equilibrium condition (LMT = LCE + LSEE) then the rate of muscle energy expenditure was 
determined. 

 

The amount of force that could be generated by the muscle fibers was dependent 

on the contraction dynamics dictated by three relationships.  The force-length relationship 

(F-L) represents the isometric force potential at any CE length (Gordon et al., 1966).  
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Peak isometric force production (F0) occurs when the CE is at optimal length (Lo).  The 

F-L relationship is modeled as a parabola and is scaled down depending on the sub-

maximal activation level.  The F-L relationship also determines the magnitude of F0 used 

in the force-velocity relationship.  The force velocity relationship (F-V) represents the CE 

force that is produced, based on the CE velocity (i.e. shortening, lengthening or 

isometric) (Hill, 1938).  The F-V relationship is modeled by a rectangular hyperbola and 

is scaled up or down by the amount of activation and the F-L parameters.  The force-

extension relationship (FΔL) of the SEE represents the change in SEE elasticity, or 

stiffness, as SEE length is increased or decreased (Bahler, 1967).  The FΔL relationship is 

modeled as a quadratic function.  Determining the properties in the MT, CE and SEE 

based on the Hill relationships allowed for the activation level to be calculated.  The 

internal states of the muscle model were based on the experimental data and constrained 

by the muscle geometry of the equilibrium condition (LMT = LCE + LSEE and FMT = FCE = 

FSEE).  After determining the MT, CC and SEE dynamics, the metabolic power produced 

by each muscle was calculated as a function of the CE velocity and activation (Minetti 

and Alexander, 1997; Sellers et al., 2003).  Appendix E describes the equations and 

relationships used for the muscle and muscle energy expenditure models.  Appendix F 

lists of all abbreviations that were used in the model.   

 

Data Analysis 

The power output of the MT, CE, and SEE was calculated by multiplying their 

respective force by velocity for each instant in time.  Mechanical work was calculated by 

integrating the power output of the MT, CE, and SEE with respect to time.  The amount 
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of elastic energy stored and released during the stance phase was determined by the 

amount of positive and negative mechanical work, respectively, performed by the SEE.  

Metabolic energy expenditure by the CE was calculated by integrating CE metabolic 

power with respect to time.   Mechanical work of the MT, CE, and SEE as well as the 

metabolic energy expended by the CE of the GA and SO was calculated for each 

participant under the RF and FF pattern conditions. 

 

Statistical Analysis 

Mechanical work and metabolic energy expenditure were compared between the 

RF and FF running footfall patterns.  Each variable was subjected to a mixed model 

analysis of variance with footfall pattern and group as fixed variables and subject nested 

within group as a random variable.  The differences between footfall patterns (2 levels) 

and between groups (2 levels) and the interaction of footfall pattern and group were 

assessed with a significance level of α = 0.05.  When a significant group by pattern 

interaction was observed, a post-hoc assessment was performed by partitioning the 

interaction by group and by pattern.  Partitioning by group determined the significance 

between each footfall pattern within each group.  Effect sizes were also calculated to 

determine if the differences between footfall pattern and groups were biologically 

meaningful.  An effect size (d) greater than 0.3 indicated a small effect, an effect size 

greater than 0.5 indicated a moderate effect and an effect size greater than 0.8 indicated a 

large effect (Cohen, 1992).  
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Study 4: Impact characteristics and shock attenuation between footfall patterns in 

running 

 

Introduction 

The purpose of Study 4 was to determine the difference in shock attenuation 

between footfall patterns and to infer the primary mechanisms responsible for attenuating 

impact shock between footfall patterns.  

 

Participant Selection 

Data for 20 participants in each group were used in Study 4.  Ground reaction 

force data collected during Study 2 were used to determine impact force characteristics of 

these participants.  Head and tibia accelerometer data were collected while running on a 

treadmill of all participants.  However, the accelerometer data from one FF group 

participant was excluded from the analysis because of an anomaly in the data.  All 

participants read and completed an informed consent document and questionnaires 

approved by the University of Massachusetts Amherst Institutional Review Board. 

 

Experimental Setup 

Three-dimensional kinematics of the right leg and foot were recorded with an 

eight-camera Qualisys Oqus 3-Series optical motion capture system (Qualisys, Inc., 

Gothenberg, Sweden) sampling at 240 Hz.  Motion of retro-reflective markers placed on 

the foot and leg were used to monitor the footfall pattern performed by each participant 

(Appendix B).  Calibration markers included the medial and lateral femoral condyles, 
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medial and lateral malleoli, and the heads of the first and fifth metatarsals.  Tracking 

markers included a rigid plate with three non-collinear markers placed on the lower leg 

and the posterior calcaneus. 

The cameras surrounded an AMTI force platform (OR6-5, AMTI Inc., 

Watertown, MA, USA) mounted flush with the floor surface.  The force platform was 

located in the center of a 25 m runway.  GRFs and center of pressure were recorded at a 

sampling frequency of 1200 Hz and were synchronized with the motion capture data.  

Running speed was monitored with photoelectric sensors (Lafayette Instrument 

Company, Lafayette, IN) placed 3 m before and after the force platform.   

For collecting the accelerometer data, a treadmill was placed in the center of the 

motion capture space in order for continuous accelerometer data to be captured 

synchronously with kinematics.  A low-mass (<4 grams), uniaxial, piezoelectric 

accelerometers (ICP®, PCB Piezotronics, Depew, NY, USA) were placed in accordance 

with the methods of Valiant et al. (1987).  The head accelerometer was attached to the 

center of the frontal bone and the tibial accelerometer was attached to the anteromedial 

aspect of the distal tibia (Hamill et al., 1995).  Each attachment site was chosen to reduce 

the effects of soft tissue vibration (Valiant et al., 1987; Wosk and Voloshin, 1981).  The 

axis of each accelerometer was aligned with the vertical axis of the lab coordinate 

system.  The accelerometers were sampled at 1200 Hz and voltage was amplified by a 

factor of 10.  
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Protocol 

GRFs and kinematics were recorded while the participants ran over the force 

platform at 3.5 m·s-1 ± 5%.  Ten trials of each condition were performed. Conditions 

included RF and FF running.  The order of the conditions was randomized.  For the FF 

running condition, the participants were instructed to land on the ball of the foot and 

prevent the heel from making contact with the ground.  

After the over-ground conditions were performed, accelerometers were secured to 

the head and anteromedial distal tibia by rubber straps tightened to participant tolerance.  

Participants were then asked to run on a treadmill at 3.5 m·s-1 ± 5% with each footfall 

pattern condition.  The order of conditions performed on the treadmill was also 

randomized.  Participants practiced running on the treadmill with each footfall pattern for 

several minutes before data was collected.  After sufficient practice was performed, 

participants ran for two minutes on the treadmill before data was collected for each 

condition.  Accelerometer data was collected for 15 seconds during the last minute of 

each condition.    

 

Data Reduction 

Motion capture, GRF and accelerometer data were exported in .C3D format for 

processing with Visual 3D software (C-Motion, Inc, Rockville, MD, USA).  Raw 

kinematic data was filtered with a 4th order, zero-lag Butterworth digital low-pass filter 

with a cutoff frequency of 12 Hz (Winter et al., 1974).  Joint angles were calculated using 

a rotation matrix of the distal segment with respect to proximal segment with a Cardan 

rotation sequence of x (flexion/extension; dorsiflexion/plantar flexion) – y 
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(abduction/adduction; inversion/eversion) – z (axial rotation) (Cole et al., 1993).  The 

sagittal plane ankle angles during the stance phase of each condition were analyzed in 

order to confirm the footfall pattern performed during each condition.  Kinematic data 

were interpolated from heel-strike to toe-off to 101 data points, with each point 

representing 1% of the stance phase.  Ground contact time was calculated as the time 

from initial ground contact to toe-off of each stance phase. 

Sagittal plane ankle joint and leg segment angles were also determined from the 

motion capture data collected during the treadmill conditions using the same procedures 

as with the over ground data.  Stride frequency (SF; strides per minute) was determined 

from the treadmill conditions by multiplying the number of strides occurring during the 

15 second recording of each treadmill condition by four.  Stride length (SL; m) was 

calculated by dividing the running speed set on the treadmill by the SF.  Contact time 

(CT) was calculated for both the over ground and treadmill conditions as the time 

between initial ground contact and toe-off. 

Time domain and frequency parameters from the vertical GRF and tibia and head 

accelerometers were calculated using a custom MATLAB program (Mathworks, Inc., 

Natick, MA).  In the time domain, impact peak (IMP) and active peak (ActP) of the 

vertical GRF (in units of body weights, BW) was determined during the stance phase 

over-ground running.  Since the FF pattern does not result in an impact peak, IMP during 

the FF pattern was calculated by determining the magnitude of the vertical GRF at 25 ms 

of the stance phase (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Munro et al., 

1987).  The active peak was calculated by determining the maximum of the vertical GRF 

across the stance phase.  Vertical GRF loading rate (VLR) was calculated from the slope 
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of line between 20-80% of the time before the first peak of the GRF was reached during 

the RF pattern.  VLR during the FF pattern was calculated between 20 – 80% of the first 

25 ms of the stance phase (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Munro et 

al., 1987).   

Time domain parameters from the tibia and head accelerometers were determined 

from 15 stance phases in each condition during treadmill running.  A least-squares best fit 

line was subtracted from the raw data of each signal to remove any linear trend (Shorten 

and Winslow, 1992).  Data were then filtered with a second order Butterworth low-pass 

filter with a cut-off frequency of 60 Hz (Hennig and Lafortune, 1991).  The first (HP1) 

and second (HP2) peak of the head acceleration signal were identified as the peak 

between 1 – 30% of stance and 31 – 101% of stance, respectively.  Impact shock 

characteristics were determined by calculating peak positive tibial acceleration (PPA) and 

rate of positive tibial acceleration (RPA).  RPA was calculated from the slope of line 

between 10-90% of the time before peak acceleration is reached (Lafortune, 1991). 

The frequency content of the vertical GRF, tibia acceleration and head 

acceleration was determined by expressing the signal in the frequency domain (Shorten 

and Winslow, 1992).  Unfiltered, detrended and zero padded data were transformed into 

the frequency domain by a discrete Fourier Transform (DFT).  A DFT was performed on 

each trial or stance phase then normalized to 1 Hz bins.  The amplitude at each frequency 

1 – 50 Hz was averaged across all stance phases and participants.  GRF frequencies 

above 10 Hz indicated impact was attenuated by passive mechanisms and frequencies 

below 10 Hz indicated impact was attenuated by active mechanisms (Derrick et al., 

1998). 
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The degree of shock attenuation occurring during the stance phase with each 

footfall pattern was calculated by first using the frequency data of the tibia and head 

acceleration to determine the power spectral density (PSD) at frequencies 0 to the 

Nyquist frequency (Nyquist, FN = one half of sampling rate, therefore FN = 600).  Powers 

from each stance phase were normalized into 1 Hz bins.  After binning, the PSD was 

normalized in order for the sum of the powers from 0 to FN to be equal to the mean 

squared amplitude of the data in the time domain.  Normalizing allowed for a group 

average to be calculated for each frequency bin (Derrick et al., 1998; Hamill et al., 1995).  

A transfer function was then calculated to determine the degree of shock attenuation 

occurring between the tibia to the head by: 

 

Shock Attenuation = 10· log10(PSDhead/PSDtibia)   (3.5). 

 

For each frequency, the transfer function calculated the gain or attenuation, in 

decibels, between the tibia and head signals.  Positive values indicated a gain, or increase 

in signal strength between signals, and negative values indicated attenuation, or decrease 

in signal strength (Derrick et al., 1998; Hamill et al., 1995; Shorten and Winslow, 1992). 

 

Statistical Analysis 

Differences in each of the following variables were assessed between footfall 

from the over-ground running conditions: sagittal plane ankle and knee joint angle at 

initial contact, CT, IMP, ActP, VLR and the amplitude of the vertical GRF in the 

frequency domain from frequencies 1-50 Hz.  Additionally, the differences between 
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footfall patterns in the following variables were assessed from the treadmill conditions: 

sagittal plane ankle joint and leg segment angles at initial contact, SF, SL, CT, HP1, HP2, 

PPA, RPA, tibia and head acceleration in the frequency domain from frequencies 1-50 

Hz and the transfer function between the tibia and head.  Each variable was subjected to a 

mixed model analysis of variance with footfall pattern and group as fixed variables and 

subject nested within group as a random variable.  The differences between footfall 

patterns (2 levels) and between groups (2 levels) and the interaction of footfall pattern 

and group were assessed with a significance level of α = 0.05.  When a significant group 

by pattern interaction was observed, a post-hoc assessment was performed by partitioning 

the interaction by group and by pattern.  Partitioning by group determined the 

significance between each footfall pattern within each group.  Partitioning by pattern 

determined the significance between groups within each footfall pattern.  Effect sizes 

were also calculated to determine if the differences between footfall pattern and groups 

were biologically meaningful.  An effect size (d) greater than 0.3 indicated a small effect, 

an effect size greater than 0.5 indicated a moderate effect and an effect size greater than 

0.8 indicated a large effect (Cohen, 1992). 
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CHAPTER 4 

IS THERE A DIFFERENCE IN RUNNING ECONOMY BETWEEN REARFOOT 

AND FOREFOOT RUNNING PATTERNS? 

 

Abstract 

The forefoot (FF) running pattern has been advocated to improve running 

economy compared to the rearfoot (RF) pattern although no empirical evidence currently 

exists to support these claims.  Therefore, the purposes of this study were to determine if 

there were differences in running economy between footfall patterns in habitual RF and 

FF runners and if running economy was improved when habitual RF and FF runners ran 

with the alternate footfall pattern.  Nineteen habitual RF and 18 habitual FF runners ran 

with the RF and FF patterns on a treadmill at 3.0, 3.5 and 4.0 m•s-1.  Oxygen 

consumption was measured until two minutes of steady state were recorded for which 

rate of oxygen consumption (Vሶ O2), cost of transport (COT), and absolute (gCHO) and 

relative (%CHO) carbohydrate oxidation were calculated.  Mixed model ANOVA with 

participant nested within group was used to assess the differences in each variable 

between footfall patterns (α=0.05).  Significant group by pattern interactions revealed the 

RF pattern resulted in decreased Vሶ O2, gCHO, and %CHO compared to the FF pattern at 

the slow and medium speeds in the RF group (p<0.05) but not in the FF group (p>0.05). 

At the fast speed, a significant pattern main effect revealed the FF pattern resulted in 

greater Vሶ O2 and gCHO, but not %CHO compared to the RF pattern (p<0.05) but the 

difference in %CHO was not significant (p>0.05).  The results suggest that the FF pattern 

does not result in an improvement in running economy. 
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Introduction 

Humans are capable of running with different footfall patterns which are defined 

by the location of the center or pressure at initial contact with the ground.  These patterns 

include: 1) rearfoot (RF) in which initial contact is made on the lateral heel; 2) midfoot 

(MF) in which initial contact is made on the lateral side of the midfoot or on the 

metatarsal heads with subsequent heel contact; and 3) forefoot in which initial contact is 

made with the lateral portion of the metatarsal heads.  It has been shown that the top 

finishers in short, middle, and long distance events tend to run with the FF or MF footfall 

pattern (Kerr et al., 1983; Pratt, 1989).  Additional studies have also reported that the 

greatest proportion of FF and MF runners was among the top finishers of a half marathon 

(Hasegawa et al., 2007).  These observations have led to claims that the MF and FF 

patterns enhance running economy compared to the RF pattern (Bonacci et al., 2010; 

Hasegawa et al., 2007; Lieberman et al., 2010) and thus RF runners should change to a 

MF or FF pattern (Martin and Cole, 1991; Romanov, 2002; Shorter, 2005; Yessis, 2000). 

Although results from competitive events provide some intriguing suggestions, 

there is currently a lack of empirical evidence supporting a single pattern as being 

optimal for running economy.  Greater running economy is generally quantified by the 

lowest sub-maximal rate of oxygen consumption.  Running economy is dependent on 

numerous biomechanical, physiological and anthropometric factors (Daniels, 1985; 

Morgan et al., 1994a).  Williams and Cavanagh (1987) identified several biomechanical 

features in more economical runners, such as longer ground contact time, lower vertical 

GRF active and impact peaks, decreased vertical oscillation of the center of mass, greater 
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trunk angle, greater maximum knee flexion during the stance phase and a more extended 

leg at touchdown.   

Interestingly, many of the features found in more economical runners were 

characteristic of those who ran with the RF pattern (Williams and Cavanagh, 1987).  In a 

computer simulation study, it was found that the RF pattern required a lower metabolic 

energy expenditure compared to the FF pattern; however the FF pattern was superior to 

the RF pattern for optimizing running velocity (Miller and Hamill, 2012).  These results 

suggest RF running may be more economical; however, human studies investigating the 

difference in economy between patterns have failed to observe any differences (Ardigo et 

al., 1995; Cunningham et al., 2010; Perl et al., 2012). The primary limitation of most 

previous studies was that they included only one group of runners; a natural RF runners 

group or a natural FF runners group.  Only one previous study incorporated both natural 

RF and natural FF runners and found the RF pattern resulted in a lower rate of oxygen 

consumption compared to the FF pattern (Slavin, 1992).  However, significant 

differences between footfall patterns were not observed over all running speeds or for 

additional metabolic variables (e.g. respiratory exchange ratio, ventilation volume).  

Other studies used a sample size of less than eight participants, which may result in 

difficulty detecting significant differences across all speeds and respiratory variables.  

Examining alternative metabolic variables, such as carbohydrate oxidation, may be more 

a more meaningful measure of running performance as it is the limiting factor in 

endurance exercise (Coyle et al., 1986). 

Comparing both groups of runners performing their natural footfall pattern could 

eliminate the potential for artificially high oxygen consumption the due to the novelty of 
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performing an alternate footfall pattern.  Including both groups of runners also has a 

number of advantages over performing a training study.  Training studies can be long and 

arduous and may require extensive hours from research technicians to ensure training 

protocol adherence.  Additionally, incorporating both groups could be a surrogate for the 

effect of training with the opposite pattern.   

Although previous studies suggest that the gait mechanics associated with running 

using the RF pattern are more economical than FF running (Heise et al., 2011; Miller and 

Hamill, 2012; Williams and Cavanagh, 1987), this relationship has not been shown in 

human studies directly comparing economy between footfall patterns.  Previous studies 

examining the difference in running economy between the RF and FF running have had 

methodological limitations which may have affected the results.  Therefore, the first 

purpose of this study was to determine the difference in running economy between 

footfall patterns in both natural RF and FF runners.  A secondary purpose was to 

determine if there was an improvement in running economy for either natural RF or 

natural FF runners when performing the alternate footfall pattern.  The hypotheses 

investigated in this study were: 1) running economy would be greater (e.g. lower sub-

maximal rate of oxygen consumption and cost of transport) in natural RF runners 

performing the RF pattern compared to natural FF runners performing the FF pattern as 

suggested by Williams and Cavanagh (1987); 2) running economy would worsen when 

natural RF runners perform the FF running pattern; and finally 3) running economy 

would improve when natural FF runners perform the RF running pattern.     
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Methodology 

 

Participant Selection 

The abbreviations and acronyms used in this study are listed in Table 4.1. 

Nineteen natural RF and 18 natural FF runners participated in this study (Table 4.2) after 

reading and completing the informed consent document and questionnaires approved by 

the University of Massachusetts Amherst Institutional Review Board.  All participants 

were experienced runners completing a minimum of 16 km per week with an average 

speed of approximately 3.5 m•s-1 for long running bouts.  Both groups consisted of 

healthy individuals, with no history of cardiovascular or neurological problems and had 

not sustained an injury to the lower extremity or back within the past year.  The natural 

footfall pattern was determined by the investigator recording vertical ground reaction 

forces (GRF) and high speed video of each participant while running over-ground at their 

preferred running speed.  RF running was defined as making initial contact with the heel.  

FF running was defined as making initial contact on the metatarsal heads and preventing 

the heel from contacting the ground.  Participants who exhibited a MF pattern were 

placed in the RF or FF groups based on their ankle kinematics and GRF.  Natural MF 

runners were classified into the RF group if they made contact with a flat foot position 

(approximately zero degrees of dorsiflexion) and generated an initial impact peak within 

the vertical GRF component (n = 5).  MF participants were classified into the FF group if 

they landed on the metatarsal heads but allowed the heel to touch the ground (foot 

position approximately below zero degrees, i.e. plantar flexion) and did not generate an 

initial impact peak (n = 6).   
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Table 4.1: Acronyms and abbreviations for each variable. 
 

AATD ankle joint angle at touchdown %CHO  relative rate of carbohydrate oxidation 

CHO carbohydrate oxidation RER respiratory exchange ratio 

COT cost of transport RF rearfoot running footfall pattern 

CT contact time SL stride length 

FF forefoot running footfall pattern SF stride frequency 

gCHO absolute rate of carbohydrate oxidation Vሶ CO2 volume of expired carbon dioxide 

GRF ground reaction force Vሶ O2 
steady state rate of oxygen 
consumption 

MF midfoot running footfall pattern   

 

Table 4.2: Mean ± SD participant characteristics of the rearfoot group (RF) and the forefoot group 
(FF) for the participants included in Study 1. Differences between groups were assessed by a 
student’s t-test (α = 0.05). 
 
 Males/Females 

(#) 
Age 
(yrs) 

Height 
(m) 

Mass 
(kg) 

Pref. Speed 
(m•s-1) 

Distance/week 
(km) 

RF group 12/7 26.7 ± 6.1 1.75 ± 0.09 70.10 ± 10.00 3.47 ± 0.90 42.85 ± 29.04 
FF group 13/5 25.6 ± 6.4 1.76 ± 0.10 68.69 ± 9.77 3.70 ± 0.27 49.79 ± 25.90 
p-value - 0.585 0.918 0.668 0.288 0.449 
 

Experimental Setup 

The volume and content of gases expired by each participant while running on a 

motorized treadmill was measured by indirect calorimetry using a metabolic cart 

(TrueOne, ParvoMedics, Sandy, UT, USA).  The volume of gas exchange was used to 

calculate the gross rate of oxygen consumption.  Three-dimensional motion of reflective 

markers placed on the right foot and leg (McClay and Manal, 1999) (Appendix B) were 

recorded by an eight-camera Qualisys Oqus 3-Series optical motion capture system 

(Qualisys, Inc., Gothenberg, Sweden) sampling at 240 Hz.  Motion capture data were 

used to monitor the footfall pattern used by the participants during each condition.  

Calibration markers included the medial and lateral femoral condyles, medial and lateral 

malleoli, and the heads of the first and fifth metatarsals.  Tracking markers included a 

rigid plate with three non-collinear markers placed on the posterior calcaneus.  A 
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treadmill was placed in the center of the motion capture collection volume.  Each 

participant wore a neutral racing flat running shoe provided by the laboratory to 

standardize any effects of cushioning and other footwear properties (RC 550, New 

Balance, Brighton, MA, USA).   

 

Protocol 

Each participant arrived at the laboratory having fasted for at least three hours and 

had refrained from exercise before the data collection.  Each participant was allowed to 

warm-up on the treadmill for several minutes as needed and also practiced each footfall 

pattern at a slow, medium, and fast speed which were 3.0, 3.5 and 4.0 m•s-1, respectively.  

Running speed was adjusted by ±5% if necessary to allow the participant to run more 

comfortably.  The participant was then prepared for data collection by securing the 

reflective markers onto the right leg and foot and a standing calibration of the marker 

placement was recorded.  Each participant began the data collection by standing quietly 

for 10 minutes on the treadmill to record baseline oxygen consumption.  Next, the 

participant performed each footfall pattern within one speed condition before continuing 

to the next speed condition.  The order of the footfall patterns and running speeds was 

randomized.  Each participant ran for a minimum of five minutes during each speed and 

footfall pattern condition or until two minutes of steady state oxygen consumption was 

recorded.  Steady state was attained when there was less than a 10% change in oxygen 

consumption over a two minute period (Stephens et al., 2006).  Each participant rested 

until the volume of expired air returned within 0.02 L•min-1 of the baseline value.  
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Data Reduction 

The absolute (L•min-1) and relative (ml•kg-1•min-1) rates of steady state oxygen 

consumption (Vሶ O2) over the last two minutes of each condition was averaged to 

determine the net and gross Vሶ O2 and cost of transport (COT).  The first five minutes of 

the baseline oxygen consumption measure was typically highly variable as the 

participants became accustomed to breathing with the mouthpiece.  As a result, the 

average rate of oxygen consumption over the last five minutes of the baseline period was 

used to calculate net Vሶ O2 and COT by subtracting the baseline value from the average 

rate of oxygen consumption during the last two minutes of each running condition.  

Absolute (J•m-1) and relative (J•m-1•kg-1) COT were first calculated by converting the 

relative rate of oxygen consumption (ml•kg-1•min-1) to metabolic rate (W•kg-1) by (Weir, 

1949):  

 

Metabolic rate = Vሶ O2 * 
ሺ3.876 + RER * 1.2411ሻ

1000 
 * 

4184

60 
 

   (4.1) 
 
where Vሶ O2 was the rate of oxygen consumption in ml•kg-1•min-1, RER was the 

respiratory exchange ratio calculated by volume of carbon dioxide expired divided by the 

volume of oxygen consumed averaged over the last two minutes of steady state, 3.876 

was the number of kcals expended per liter of oxygen consumed, 1.2411 kcals expended 

per liter of carbon dioxide expired, 4184 was the number of Joules (J) per kcal, 1000 

ml•L-1, and 60 s•min-1.  COT was then determined by dividing metabolic rate by the 

velocity of the treadmill belt.   
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Absolute rate of carbohydrate oxidation (gCHO) in g•hr-1  was determined from 

the volume of carbon dioxide expired (Vሶ CO2) and the volume of oxygen consumed by 

(McArdle et al., 2001):   

 

gCHO = (4.58 Vሶ CO2 – 3.23 Vሶ O2) * 60    (4.2). 

 
Relative carbohydrate oxidation (%CHO) was expressed as the percentage of energy 

expenditure resulting from carbohydrate oxidation was calculated from Vሶ O2 in L•min-1 

and gCHO: 

 

%CHO= 
g CHO * 4 kcal•g-1

5 kcal•L-1•VO2
-1 * L VO2•min-1  * 100 

    (4.3) 
 
where 4 kcal•g-1 was the number of kcals liberated from oxidizing 1 g of CHO and 5 

kcal•L-1 was the number of kcals expended per liter of oxygen consumed. 

The 3D positions of the markers placed on the foot and leg were tracked using 

Qualisys Track Manager software (Qualisys, Inc., Gothenberg, Sweden).  The data were 

exported in .C3D format to calculate sagittal plane ankle joint angles at touchdown 

(AATD) using Visual 3D software (C-Motion, Inc, Rockville, MD, USA).  Raw 

kinematic data were filtered with a 4th order, zero-lag Butterworth digital low-pass filter 

with a cutoff frequency of 12 Hz (Winter et al., 1974).  Ankle joint angle was calculated 

by a rotation matrix of the distal segment with respect to the coordinate system of the 

proximal segment using a Cardan rotation sequence of x (dorsiflexion/plantar flexion) – y 

(eversion/inversion) – z (axial rotation) (Cole et al., 1993).  Stride frequency (SF) was 

calculated as the number of strides occurring during the 15 s motion capture period and 
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multiplied by four to result in units of strides per minute.  Stride length (SL) was 

calculated by dividing the treadmill belt speed by SF.  Contact time (CT) was calculated 

for each stance phase as the time between initial impact and toe-off of the right foot. 

 

Statistical Analysis 

The kinematic variables that were assessed included the AATD, SL, SF and CT.  

The running economy variables assessed included net absolute and relative steady state 

Vሶ O2, gross absolute and relative Vሶ O2, net absolute and relative COT, and gross absolute 

and relative COT, gCHO, and %CHO.  Each variable was subjected to a mixed model 

analysis of variance (ANOVA) with footfall pattern and group as fixed variables and 

participant nested within group as a random variable.  The differences between footfall 

patterns (2 levels) and between groups (2 levels) and the interaction of footfall pattern 

and group were assessed with a significance level of α = 0.05.  When a significant group 

by pattern interaction was observed, a post-hoc assessment was performed by partitioning 

the interaction by group and by pattern.  Partitioning by group determined the 

significance between each footfall pattern within each group.  Partitioning by pattern 

determined the significance between groups within each footfall pattern.  A one-way 

ANOVA was used to determine the differences in running economy variables between 

groups at baseline and each speed when performing their preferred pattern (α = 0.05). 

Effect sizes were also calculated to determine if the differences between footfall patterns 

and groups were biologically meaningful.  An effect size (d)  lower than 0.4 indicated a 

small effect, an effect size between 0.5 and 0.7 indicated a moderate effect and an effect 

size greater than 0.8 indicated a large effect (Cohen, 1992).    
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Results 

 

Kinematics 

There was a significant group by pattern interaction for AATD at all three running 

speeds (p < 0.05) (Table 4.3; Figure 4.1).  Partitioning the interaction by group revealed 

RF running resulted in a greater AATD than FF running at each speed in both the RF 

group (p < 0.001, d = 5.7; medium p < 0.001, d = 5.4; fast p < 0.001, d = 5.2) and FF 

group (slow: p < 0.001, d = 4.3; medium p < 0.001, d = 3.9; fast p < 0.001, d = 3.9).  

Partitioning the interaction by pattern revealed no difference in AATD between groups 

when performing the RF pattern at each speed (slow: p = 0.455, d = 0.3; medium p = 

0.146, d = 0.6; fast p = 0.399, d = 0.3).  However, when performing the FF pattern, the 

RF group ran with a significantly greater plantar flexion AATD than the FF group at all 

three speeds (slow: p = 0.015, d = 0.8; medium p = 0.030, d = 0.6; fast p = 0.047, d = 

0.6).   

 

 
 
Figure 4.1:  Group mean time series of sagittal plane ankle joint motion of all subjects in the rearfoot 
(RF) and forefoot (FF) groups performing the RF and FF patterns at the medium speed.  Only 
touchdown angle when performing the FF pattern was different between groups (p-value > 0.05). 
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Table 4.3:  Mean ± SD for the kinematic variables when performing the rearfoot (RF) and forefoot 
(FF) patterns.  Variables include ankle angle at touch-down (AATD), stride length (SL), stride 
frequency (SF) and contact time (CT).  Listed statistics include the p-value for the group by pattern 
interaction (GxP), the p-value (effect size) for the group main effect (G) and pattern main effect (P). 
 

Speed RF Group FF Group GxP G P 

 RF FF RF FF  

AATD  
(deg) 

Slow 
8.27 ± 
2.39 

-8.37 ± 
3.41 

7.48 ± 
2.65 

-5.70 ± 
3.55 

0.025 - - 

 
Medium 

7.62 ± 
2.45 

-8.38 ± 
3.52 

6.13 ± 
2.65 

-6.10 ± 
3.66 

0.012 - - 

 
Fast 

7.56 ± 
3.17 

-8.97 ± 
3.14 

6.62 ± 
2.78 

-6.69 ± 
3.98 

0.047 - - 

SL (m) Slow 
2.17 ± 
0.14 

2.15 ± 
0.13 

2.21 ± 
0.22 

2.16 ± 
0.18 

0.553 
0.680 
(0.1) 

0.137 
(0.2) 

 
Medium 

2.49 ± 
0.20 

2.44 ± 
0.19 

2.49 ± 
0.17 

2.43 ± 
0.19 

0.734 
0.956 
(0.0) 

0.012 
(0.3) 

 
Fast 

2.76 ± 
0.16 

2.78 ± 
0.23 

2.79 ± 
0.27 

2.74 ± 
0.27 

0.425 
0.953 
(0.0) 

0.726 
(0.1) 

SF 
(strides·s-1) 

Slow 
83.08 ± 

5.18 
84.21 ± 

5.13 
83.45 ± 

6.35 
84.54 ± 

5.47 
0.951 

0.848 
(0.1) 

0.010 
(0.2) 

 
Medium 

84.25 ± 
5.90 

85.92 ± 
5.83 

85.09 ± 
5.12 

86.66 ± 
6.30 

0.862 
0.725 
(0.1) 

0.006 
(0.3) 

 
Fast 

86.24 ± 
4.42 

86.75 ± 
5.05 

86.52 ± 
5.77 

87.84 ± 
6.48 

0.449 
0.716 
(0.1) 

0.094 
(0.2) 

CT (s) Slow 
0.27 ± 
0.02 

0.24 ± 
0.01 

0.26 ± 
0.02 

0.23 ± 
0.01 

0.410 
0.100 
(0.5) 

<0.001 
(1.7) 

 
Medium 

0.25 ± 
 0.02 

0.23 ±  
0.01 

0.24 ±  
0.02 

0.21 ± 
 0.02 

0.516 
0.045 
(0.7) 

<0.001 
(1.5) 

 
Fast 

0.23 ± 
0.01 

0.21 ± 
0.01 

0.22 ± 
0.02 

0.20 ± 
0.01 

0.642 
0.056 
(0.7) 

<0.001 
(1.6) 

 

Stride Characteristics 

No significant group by pattern interactions were observed for SF, SL or CT 

across all speeds (p > 0.05) (Table 4.3).  A significant pattern main effect revealed SL 

was 2.2% greater during RF running compared to the FF pattern at the medium speed (p 

< 0.05, d = 0.3) but not different at the slow or fast speeds (p > 0.05, d < 0.2).  SF was 

1.3% greater during FF running compared to RF running at the slow speed and was also 

1.7% greater at the medium speed  as indicated by significant pattern main effects (p < 
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0.05, d = 0.2 – 0.3).  Although SF was 1.1% greater during FF running at the fast speed, a 

significant pattern main effect was not observed (p > 0.05, d = 0.2).  A significant pattern 

main effect was observed for CT at all three speeds (p < 0.05, d = 1.5 – 1.7).  CT was 

over 10% greater during the RF pattern compared to the FF pattern at each speed.  

Additionally, a significant group main effect was observed at the medium speed (p < 

0.05, d = 0.7) but not at the slow or fast speeds (p > 0.05, d = 0.5 – 0.7).  The FF group 

had 1.8% decrease in CT during FF running at the medium speed whereas the RF group 

had a 1.6% decrease in CT with FF running. Both groups changed CT similarly at the 

slow and medium speeds. 

 

Running Economy Variables 

There was no significant difference in the baseline rate of oxygen consumption, 

gCHO or %CHO between groups (p > 0.05, d = 0.1) (Table 4.4).  No significant 

differences in any economy variable was found when comparing the RF and FF groups 

running with their preferred footfall pattern at any speed (p > 0.05, d < 0.4) (Table 4.5 

and 4.5).  However, a moderately large effect size was found for %CHO between groups 

when running with their preferred pattern at the slow speed.  The RF group had lower 

%CHO compared to the FF group, but this difference was not significant. 

 

Table 4.4: Mean ± SD and p-value (d) for the baseline rate of oxygen consumption (Vሶ O2) and 
absolute (gCHO) and relative (%CHO) carbohydrate oxidation in the rearfoot (RF) and forefoot 
(FF) groups. 
 

group Vሶ O2 
L•min-1 

Vሶ O2 
ml•kg-1•min-1 

gCHO 
g•hr-1 

%CHO 
% 

RF 0.32 ± 0.05 4.57 ± 0.39 12.61 ± 8.24 50.61 ± 24.19 
FF 0.32 ± 0.06 4.58 ± 0.64 13.32 ± 7.58 56.08 ± 24.49 

p-value (d) 0.819 (0.1) 0.960 (0.1) 0.788 (0.1) 0.499 (0.2) 
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Table 4.5: Mean ± SD and p-value (d) for A) rate of oxygen consumption (Vሶ O2) during the preferred 
footfall pattern condition and B) cost of transport (COT) during the preferred footfall pattern 
condition at the slow, medium and fast speeds. 
 
A) 

Speed Group Net Vሶ O2 
L•min-1 

Net Vሶ O2 
ml•kg-1•min-1 

Gross Vሶ O2 

L•min-1 
Gross Vሶ O2 

ml•kg-1•min-1 
Slow RF 2.09 ± 0.36 29.60 ± 1.80 2.42 ± 0.40 34.19 ± 1.93 

 FF 2.03 ± 0.34 29.49 ± 2.56 2.35 ± 0.38 34.08 ± 2.71 
 p-value (d) 0.588 (0.2) 0.886 (0.0) 0.591 (0.2) 0.890 (0.0) 

Medium RF 2.44 ± 0.38 34.79 ± 1.85 2.76 ± 0.42 39.36 ± 2.00 
 FF 2.34 ± 0.39 33.93 ± 2.51 2.65 ± 0.43 38.51 ± 2.63 
 p-value (d) 0.425 (0.3) 0.240 (0.4) 0.457 (0.2) 0.273 (0.4) 

Fast RF 2.88 ± 0.46 40.19 ± 2.13 3.21 ± 0.50 44.77 ± 2.26 
 FF 2.76 ± 0.45 39.54 ± 2.67 3.08 ± 0.49 44.15 ± 2.87 
 p-value (d) 0.668 (0.3) 0.654 (0.3) 0.715 (0.3) 0.756 (0.2) 

 
B) 

Speed Group 
Net COT 

J•m-1 
Net COT 

J•m-1•kg-1 
Gross COT 

J•m-1 
Gross COT 
J•m-1•kg-1 

Slow RF 237.3 ± 39.9 3.36 ± 0.20 274.0 ± 45.0 3.88 ± 0.22 
 FF 231.2 ± 39.1 3.36 ± 0.29 267.2 ± 44.0 3.89 ± 0.31 
 p-value (d) 0.645 (0.2) 0.939 (0.0) 0.649 (0.2) 0.918 (0.0) 

Medium RF 241.3 ± 36.1 3.45 ± 0.20 273.1 ± 40.6 3.90 ± 0.22 
 FF 231.1 ± 38.3 3.36 ± 0.26 262.4 ± 42.4 3.82 ± 0.27 
 p-value (d) 0.410 (0.3) 0.284 (0.4) 0.439 (0.3) 0.321 (0.3) 

Fast RF 253.8 ± 38.6 3.54 ± 0.18 282.7 ± 42.3 3.95 ± 0.20 
 FF 242.8 ± 39.1 3.49 ± 0.23 271.1 ± 42.6 3.90 ± 0.24 
 p-value (d) 0.693 (0.3) 0.784 (0.2) 0.659 (0.3) 0.681 (0.2) 

 

Table 4.6: Mean ± SD and p-value (d) absolute (gCHO) and relative (%CHO) carbohydrate 
oxidation during the preferred footfall pattern condition at the slow, medium and fast speeds. 
 

Speed Group 
gCHO 
g•hr-1 

%CHO 
% 

Slow RF 88.89 ± 23.41 51.3 ± 12.7 
 FF 100.23 ± 21.76 58.5 ± 8.3 
 p-value (d) 0.141 (0.5) 0.051 (0.7) 

Medium RF 131.17 ± 39.65 64.7 ± 15.5 
 FF 140.08 ± 33.00 71.3 ± 11.4 
 p-value (d) 0.464 (0.2) 0.152 (0.5) 

Fast RF 187.87 ± 58.05 77.93 ± 16.8 
 FF 186.12 ± 39.82 80.9 ± 11.8 
 p-value (d) 0.837 (0.0) 0.556 (0.2) 
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Significant group by pattern interactions were observed for all Vሶ O2 and COT 

variables during the slow and medium speeds (p < 0.05) but not at the fast speed (p > 

0.05) (Figure 4.2).  At the slow speed, partitioning the interaction by group revealed that 

the RF group ran with over 4.7% greater Vሶ O2 and over 5.0% greater COT when 

performing the FF pattern compared to when performing the RF pattern (p < 0.05, d = 0.3 

– 0.9) (Appendix C, Table C.1 and C.2).  Conversely, the FF group did not experience a 

significant difference in any Vሶ O2 or COT variable between footfall patterns at the slow 

speed (p > 0.05, d < 0.1).  Partitioning the interaction by pattern revealed that when 

performing the RF pattern at the slow speed, the RF group had over 3% greater absolute 

net and gross Vሶ O2 and over 2.5% greater absolute net and gross COT compared to the FF 

group (p < 0.05, d = 0.2).  Although significant, the differences in relative net and gross 

Vሶ O2 and COT were less than 1% between groups when performing the RF pattern at the 

slow speed (p < 0.05, d < 0.1).  When performing the FF pattern at the slow speed, the 

RF group had over 7.7% greater absolute net and gross Vሶ O2 and COT compared to the 

FF group (p < 0.05, d = 0.5) and relative Vሶ O2 and COT variables were over 5% greater in 

the RF group. 

At the medium speeds, partitioning the interaction by group revealed that the RF 

group ran with over 3% greater Vሶ O2 and COT when performing the FF pattern compared 

to when performing the RF pattern (p < 0.05, d = 0.2 – 0.7) (Figure 4.2) (Appendix C, 

Table C.1 and C.2).  Similar to running at the slow speed, the FF group did not have a 

significant difference in any economy variable between footfall patterns at the medium 

speed (p > 0.05, d < 0.1).  Partitioning the interaction by pattern revealed that performing 

the RF pattern at the medium speed resulted in the RF group having over 4.7% greater 
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absolute net and gross Vሶ O2 and COT compared to the FF group (p < 0.05, d = 0.3 – 0.5).  

When performing the FF pattern at the medium speed, absolute net and gross Vሶ O2 and 

COT were over 7.2% greater in the RF group compared to the FF group (p < 0.05, d = 0.4 

– 0.5) and relative net and gross Vሶ O2 and COT were over 5.3% greater in the RF group 

(p < 0.05, d = 0.9 – 1.0).   

 

 

 
 
Figure 4.2: Group mean results for net A) absolute and B) relative rate of oxygen consumption (Vሶ O2) 
and net C) absolute and D) relative cost of transport when performing the rearfoot (RF) and forefoot 
(FF) footfall patterns at each speed.  Error bars are ±1SD. 
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Although no significant group by pattern interactions were observed at the fast 

speed, a significant pattern main effect was observed for all Vሶ O2 at the fast speed (p < 

0.001, d = 0.1 – 0.4) (Figure 4.2) (Appendix C, Table C.3).  When running at the fast 

speed, the FF pattern resulted in approximately 2% greater Vሶ O2 and COT compared to 

the RF pattern.  No significant group main effects were observed at the fast speed 

indicating the RF and FF groups had similar Vሶ O2 and COT when performing both 

footfall patterns at the fast speed (p > 0.05, d = 0.4 – 0.7).   

There was a significant group by pattern interaction for gCHO at the slow (p = 

0.002) and medium speeds (p = 0.028) but not the fast speed (p = 0.552) (Figure 4.3A) 

(Appendix C, Table C.4).  Partitioning the interaction by group revealed FF running 

resulted in 16.3% greater gCHO in the RF group at the slow speed (p = 0.001, d = 0.6) 

and 9.5% greater gCHO at the medium speed (p < 0.001, d = 0.3) (Figure 4.3A).  

Although not statistically significant, the FF group had 4.3% greater gCHO with the RF 

pattern at the slow speed (p = 0.313, d = 0.2) but 2.1% greater gCHO with the FF pattern 

at the medium speed (p = 0.371, d = 0.1).  Partitioning the interaction by pattern revealed 

the FF group had 16.3% greater gCHO than the RF group when performing the RF 

pattern at the slow speed (p = 0.001, d = 0.6) (Figure 4.3A).  The FF group had 4.5% 

greater than the RF group when performing the RF pattern at the medium speed, but this 

difference was not significant (p = 0.064, d = 0.2).  When performing the FF pattern, the 

RF group had 4.3% greater gCHO than the FF group the slow speed and 3.0% greater 

gCHO at the medium speed, but these differences were not significant (slow: p = 0.312, d 

= 0.2; medium (p = 0.191, d = 0.1).  At the fast speed, a significant pattern main effect 

was observed for gCHO (p = 0.028, d = 0.2) (Figure 4.3A) (Appendix C, Table C.5); 
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however a significant group main effect was not observed (p = 0.710, d = 0.2).  FF 

running resulted in 5.2% greater gCHO compared to RF running. 

 

 
 
Figure 4.3: Group mean absolute (gCHO) and relative (%CHO) carbohydrate oxidation when 
performing the rearfoot (RF) and forefoot (FF) patterns at the slow, medium and fast speeds in the 
RF and FF groups.  Error bars are ±1SD.  
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%CHO was 10.0% greater with the FF pattern in the RF group (p = 0.009, d = 0.4) 

(Figure 4.3B).  No significant difference in %CHO was observed between patterns in the 

FF group although RF running resulted in a 4.4% increase in %CHO in this group (p = 

0.191, d = 0.3).  Partitioning the interaction by pattern revealed that during RF running, 

the RF group had a 17.5% lower %CHO than the FF group (p < 0.001, d = 0.8).  No 

significant difference in %CHO was observed between groups when performing the FF 

pattern although %CHO was 3.2% greater in the FF group (p = 0.359, d = 0.2).  No 

significant interaction (p = 0.153) or main effect of group (p = 0.326, d = 0.3) was found 
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for %CHO at the medium speed (Appendix C, Table C.5).  However, a significant pattern 

main effect revealed that FF running resulted in 3.4% greater %CHO compared to RF 

running (p = 0.022, d = 0.2) (Figure 4.3B).  No significant interactions or main effects 

were observed for %CHO at the fast speed (p < 0.05, d < 0.2) (Figure 4.3B). 

 

Discussion 

The present study was the first to incorporate a natural RF and natural FF group in 

order to compare running economy between footfall patterns.  Previous studies have 

failed to find a relationship between footfall patterns and running economy but have only 

used runners habituated to one footfall pattern (Ardigo et al., 1995; Cunningham et al., 

2010; Perl et al., 2012).  The first purpose of this study was to determine if there were 

differences in economy between natural RF and natural FF runners performing their 

preferred footfall pattern.  The first hypothesis, that running economy would be lower in 

natural RF runners performing the RF pattern compared to natural FF runners performing 

the FF pattern, was rejected.  There were no statistically significant differences in the rate 

of oxygen consumption, cost of transport, or carbohydrate oxidation between groups 

when performing their natural pattern at a slow, medium, or fast speed.  These results 

suggest that neither footfall pattern was more economical than the other when comparing 

natural RF and natural FF runners performing their habitual footfall pattern.  However, at 

the slow speed, a moderately large effect size (d = 0.7) was found for %CHO between 

groups indicating that the RF group had decreased %CHO and the difference may be 

biologically meaningful.  This result suggests that the RF group running with the RF 
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pattern may be able to sustain an endurance run longer than the FF group running with 

the FF pattern. 

Since the fastest runners in short, middle, and long distance events land on the 

anterior portion of the foot (Hasegawa et al., 2007; Kerr et al., 1983; Payne, 1983), it has 

been suggested that natural RF runners should switch to a FF pattern to improve running 

economy (Hasegawa et al., 2007).  However, previous studies have identified that 

features associated with more economical runners were characteristic of a RF pattern 

(Heise et al., 2011; Williams and Cavanagh, 1987).  Therefore, the second purpose of this 

study was to determine if running economy would change when natural RF and natural 

FF runners performed the alternate footfall pattern.  The second hypothesis, that running 

economy would worsen when the natural RF group performed the FF pattern, was 

supported (Table 4.5).  It was found that RF group increased the rate of oxygen 

consumption and cost of transport by 2 – 6% and carbohydrate oxidation by 

approximately 3 – 16% when running with a FF pattern compared to a RF pattern.  In the 

FF group, the rate of oxygen consumption, cost of transport, and carbohydrate oxidation 

was not different between footfall patterns.  Therefore, the third hypothesis, that running 

economy would improve when natural FF runners performed the RF running pattern, was 

not supported at the slow and medium speeds.  However, at the fast speed, the FF pattern 

resulted in approximately 2% greater rate of oxygen consumption and cost of transport 

and 5% greater absolute carbohydrate oxidation compared to the RF pattern when the 

data were collapsed across group.  Despite statistical significance between patterns at the 

fast speed, these results may not be biologically meaningful as indicated by low effect 

sizes and percent differences that were lower than the smallest worthwhile difference 
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(Brisswalter and Legros, 1994; Morgan et al., 1994a; Pereira and Freedson, 1997; 

Saunders et al., 2004).  

When comparing the groups performing their habitual footfall pattern, the RF 

group and FF group had similar running economy as indicated by similar rates of oxygen 

consumption and cost of transport between groups.  However, when both groups 

performed the RF pattern at the slow and medium speeds, the FF group was more 

economical compared the RF group.  A movement pattern that brings about an immediate 

reduction in rate of oxygen consumption is considered more economical than the 

previous movement pattern (Williams, 1990).  However, performing novel tasks typically 

causes an increase in the rate of oxygen consumption and requires habituation to see any 

improvement in economy (Cavanagh and Williams, 1982; Sparrow and Newell, 1998).  

Therefore, these finding suggests that RF running was more economical without a 

habituation period than FF running because the FF group had a lower rate of oxygen 

consumption when performing the RF pattern compared to the RF group performing the 

RF pattern. 

A limitation of this study was that running with an alternate running pattern was a 

novel task for most participants.  However, the RF and FF groups were able to 

successfully replicate the kinematics of the alternate footfall pattern (Figure 4.1; Table 

4.3).  This result supports previous studies that have found habituation periods of only a 

few minutes are adequate at replicating the gait mechanics of a new running pattern 

(MacLean et al., 2008; Stackhouse et al., 2004; Williams et al., 2000).  A study by 

Williams et al. (2000) also found no differences in joint angles between natural RF and 

FF groups performing the FF pattern but slight differences in segment velocities and 
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contact time resulted in differences in joint moment variables between groups performing 

the same footfall pattern.  Although not measured in the present study, differences in joint 

moments and muscle forces between groups likely contributed to differences in running 

economy variables between groups when performing the same footfall pattern.  Although 

the kinematics of a new gait mode may be adapted quickly, muscle activation patterns, 

co-contraction and muscle forces take much longer to accommodate (Duchateau et al., 

2006).  Future studies should utilize a training protocol to fully habituate participants to 

the alternative running footfall pattern.   

Training, or habituation to a new gait mode, results in a reduction in oxygen 

consumption from the initial performance of the task (Cavanagh and Williams, 1982; 

Sparrow and Newell, 1998).  A benefit of the present study was that it used both habitual 

RF and FF runners.  Thus, each group represents the outcome of training with the 

opposite footfall pattern where both mechanical and physiological adaptations have been 

completed.  If the RF group trained with the FF pattern, running economy when 

performing the FF pattern would improve.  However, this improvement may not result in 

the FF pattern becoming more economical than the RF pattern.  The results from the FF 

group suggest that training with the FF pattern does not result in this pattern being more 

economical than the RF pattern.  Since running economy was not different between 

patterns in the FF group, training with the RF pattern would improve running economy in 

this group and result in it becoming more economical than the FF pattern.  Alternatively, 

additional training of the FF group with the FF pattern could also result in an 

improvement in running economy, resulting in it becoming more economical than RF 

running in this group.  However, the natural FF group was comprised of trained, highly 
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skilled FF runners, so it can be assumed that their oxygen consumption while performing 

their natural pattern was already optimized (Brooks et al., 2004; Sparrow and Newell, 

1998).  This suggests that more training with the FF pattern may not lead to improved 

economy above the RF pattern in the FF group.   

Deviations from preferred stride length and stride frequency have previously been 

shown to increase the rate of oxygen consumption and cost of transport (Cavanagh and 

Williams, 1982; Holt et al., 1991; Morgan et al., 1994b; Morgan et al., 1989).  It has been 

suggested that the FF pattern results in different stride characteristics compared to the RF 

pattern (Divert et al., 2008; Perl et al., 2012; Squadrone and Gallozzi, 2009).  Thus, 

differences in these variables between footfall patterns may be explained by stride 

characteristics rather than ankle joint angle at touchdown.  At the slow speed, only stride 

frequency, and not stride length, statistically differed between patterns.  However, this is 

a statistical difference rather than a functional difference because the running speed was 

constant.  Stride length and stride frequency only differed between patterns at the 

medium speed whereas no differences in either stride length or stride frequency occurred 

at the fast speed.  The present study also found that contact time was decreased during FF 

running at all speeds.  These results are consistent with Ardigo et al. (1995) who 

suggested that  these results were a result of increased vertical oscillation of the center of 

mass during FF running compared to RF.  Previous studies have found lower running 

economy in those that had large vertical deviations of the center of mass (Williams, 1990; 

Williams and Cavanagh, 1987).  Additionally, decreased CT has been suggested to result 

in a greater metabolic cost of running (Kram, 2000; Kram and Taylor, 1990).  Although 

vertical oscillation was not measured in the present study, vertical oscillation and 
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decreased CT may partially explain the increased rates of oxygen consumption observed 

with the FF pattern.   

Although FF running resulted in greater rate of oxygen consumption and cost of 

transport in the present study, the effect sizes and the differences in magnitude between 

patterns in economy variables were small.  Although the FF pattern performed by the RF 

group resulted in a statistically significant increase in the rate of oxygen consumption of 

2 – 6% at all speeds and an increase of 2% at the fast speed in the FF group, these 

differences equated to less than 1.0 L•min-1 and 14 J•m-1 difference for rate of oxygen 

consumption and cost of transport, respectively.  Variation of greater than 2 – 5% in the 

rate of oxygen consumption may be needed to detect differences in running economy 

between conditions or individuals (Brisswalter and Legros, 1994; Morgan et al., 1994a; 

Pereira and Freedson, 1997; Saunders et al., 2004).  However, if a 2% difference in 

economy was real, and not a result of measurement error or day-to-day variation, than a 

2% difference in economy would result in a 2% improvement in performance time or 

approximately 30 s reduction in 10K performance time at a world-record pace (Frederick, 

1983; Williams, 1990).  Thus, small differences may be relevant to an elite athlete 

(Cavanagh and Kram, 1985). 

Any enhancement of running economy in an elite athlete may improve his or her 

placement in an elite endurance race.  Improvements in additional variables, such as 

carbohydrate oxidation, may also be beneficial to both elite and recreational runners.  The 

rate of carbohydrate oxidation is especially important during long endurance events that 

have the potential to deplete muscle glycogen stores and is the limiting factor in 

performance of endurance events (Coyle et al., 1986).  Compared to RF running in the 
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present study, FF running resulted in greater relative carbohydrate oxidation at each 

speed in the RF group and greater absolute carbohydrate oxidation at the fast speed in the 

FF group.  Therefore, the RF pattern may be the more appropriate footfall pattern for 

endurance events because carbohydrate oxidation is reduced.  In a recent study on 

recreational runners, it was found that natural FF runners switched to using a RF pattern 

between the 10 km and 32 km locations of a marathon (Larson et al., 2011).  This change 

in footfall pattern within a race may be a mechanism to spare glycogen stores when they 

are reaching depletion.   

 

Conclusion 

The present study found no difference in the rate of oxygen consumption, cost of 

transport, and absolute and relative carbohydrate oxidation between natural RF and FF 

runners when performing their preferred pattern, indicating no difference in running 

economy between footfall patterns.  Performing the FF pattern did not result in greater 

running economy in either natural RF or natural FF runners.  However, the RF pattern 

resulted in decreased absolute carbohydrate oxidation at the fast speed and relative 

carbohydrate oxidation at the medium speed.   These data suggest that the FF running 

footfall pattern is not more economical than the RF pattern but there may be an 

improvement in running economy with the RF pattern.  Due to low-to-moderate 

biological significance in economy variables, the benefits of altering footfall pattern may 

only be beneficial for high level, elite athletes. 
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CHAPTER 5 

ACHILLES TENDON FORCES AND MOMENT ARM LENGTH IN REARFOOT 

AND FOREFOOT RUNNING 

 

Abstract 

A short Achilles tendon (AT) moment arm has been associated with greater 

running economy; however, this has only been investigated in those that use a rearfoot 

(RF) footfall pattern.  The length of the AT moment arm during running may affect 

running economy in two ways.  First, a short AT moment arm length, as found with a 

dorsiflexed ankle position, may improve running economy by increasing the force 

necessary to produce a given joint moment and thereby increase the storage and release 

of elastic energy.  Second, a long AT moment arm, which is found with a plantar flexed 

ankle position, may improve running economy by reducing the force necessary to 

produce a given joint moment and thereby reduce the necessary active muscle volume 

and metabolic cost.  The FF pattern may result in either of these potential mechanisms for 

more economical running because of the plantar flexed position in early stance and the 

dorsiflexed position in mid and late stance.  Therefore, the purpose of this study was to 

determine the AT moment arm length during the stance phase of RF and FF running and 

to investigate the relationship between moment arm length and running economy and to 

determine the difference in AT force between RF and FF running patterns.  Nineteen 

natural RF runners and 18 natural FF runners performed over-ground running with the 

RF and FF patterns at 3.5 m·s-1 ± 5%.  Additionally, oxygen consumption was measured 

while the participants ran on a treadmill at 3.5 m·s-1 ± 5% with each footfall pattern.  
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Static moment arm was recorded by video in order to measure the length of the AT 

moment arm during quiet stance.  Ankle and knee joint kinematics and ankle joint 

moments were used to determine the length of the AT moment arm and AT force during 

the stance phase of running with each footfall pattern.  The oxygen consumption was 

correlated with the static and dynamic moment arms to determine the relationship 

between each footfall pattern and group.  A mixed-factor ANOVA (α = 0.05) and a 

Pearson’s product moment coefficient were determined to assess the differences in each 

variable between footfall patterns and the relationship of running economy and AT 

moment arm length.  The RF group had a moderate correlation with the rate of oxygen 

consumption consumed during both footfall patterns and either the static or dynamic 

moment arm (r2 < 0.25).  No relationship was found in the FF group.  AT force was 

greater in early and mid-stance of running with the FF pattern compared to the RF 

pattern.  Although the trend was weaker than previous studies, this study supports 

previous findings that a shorter AT moment arm was associated with greater running 

economy.  Metabolic cost associated with the production of large AT forces during FF 

running may negate any benefit provided by AT moment arm length or elastic energy 

utilization. 

 

Introduction 

Running economy is influenced by several biomechanical and morphological 

characteristics (Anderson, 1996; Cavanagh and Kram, 1985; Martin and Morgan, 1992; 

Saunders et al., 2004; Williams and Cavanagh, 1987).  For example, a recent study by 

Scholz et al. (2008) found that runners with a shorter Achilles tendon (AT) moment arm 
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(Figure 5.1) tended to be more economical than runners with a longer AT moment arm.  

However, this study was only performed on runners that naturally use the rearfoot (RF) 

footfall pattern.  Nearly 25% of runners use a midfoot (MF) or a forefoot (FF) pattern 

(Hasegawa et al., 2007; Kerr et al., 1983) and the popularity of performing the FF pattern 

has increased based on claims that it improves running economy and prevents overuse 

injuries compared to the RF pattern (Cavanagh and Lafortune, 1980; Daoud et al., 2012; 

Davis et al., 2010; Hasegawa et al., 2007; Lieberman et al., 2010; Oakley and Pratt, 

1988).  The relationship between AT moment arm and running economy may be different 

with FF running because a plantar flexed ankle position results in a longer AT moment 

arm than a dorsiflexed position (Maganaris et al., 2000).  However, previous 

measurements of the AT moment arm have only been performed statically (Maganaris et 

al., 2000; Scholz et al., 2008) and thus, it is unknown how the dynamic AT moment arm 

may be related to running economy or if the relationship is different between footfall 

patterns.   

 

 
 
Figure 5.1: The length and location of the Achilles tendon (AT) moment arm (white line).  
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Scholz et al. (2008) suggested that a shorter AT moment arm improves running 

economy by increasing elastic energy storage as a result of a higher muscle force 

requirement to produce a given joint moment compared to if the moment arm was long 

(Biewener and Roberts, 2000; Roberts et al., 1998; Scholz et al., 2008).  The FF pattern 

has also been suggested to improve running economy by increasing the storage and 

release of elastic energy compared to the RF pattern (Ardigo et al., 1995; Hasegawa et 

al., 2007; Lieberman et al., 2010; Perl et al., 2012).  The FF pattern may result in greater 

muscle forces and thus greater stretch and elastic energy as a result of increased plantar 

flexion moments generated in the first 60% of stance compared to RF running (Arendse 

et al., 2004; Williams et al., 2000).  However, a longer AT moment arm resulting from 

the plantar flexed position in early stance during FF running suggests that the increased 

plantar flexion moments may be produced without substantial differences in muscle 

forces compared to RF running.  If the muscle forces between footfall patterns are more 

similar than the differences in plantar flexion moments may indicate, then the amount of 

elastic energy storage may also be similar between footfall patterns.  Therefore, 

differences in the dynamic AT moment arm between footfall patterns may explain why 

previous studies have not found a difference in running economy between footfall 

patterns (Ardigo et al., 1995; Cunningham et al., 2010; Perl et al., 2012).   

In addition to the cause for increased elastic energy utilization during FF running, 

the greater plantar flexion moments and eccentric work produced during this pattern 

compared to RF running have also lead some to suggest that FF running places increased 

stress on the AT and increase the risk of AT injury (Nilsson and Thorstensson, 1989; 

Oakley and Pratt, 1988; Williams et al., 2000).  Greater muscle forces required to 
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produce a given joint moment may compromise the safety factor of the tendon and 

increase the risk of a tendon overuse injury or rupture (Biewener, 2005; Scholz et al., 

2008).  However, if the plantar flexed position at touch-down with the FF pattern results 

in a longer AT moment arm, greater muscle forces may not be required to produce these 

moments compared to the muscle forces produced if the moment arm was shorter.   

Differences in AT moment arm between footfall patterns during the stance phase 

of running may play a role in muscle force production and thus running economy 

between RF and FF running.  The FF pattern may be more economical by resulting in a 

longer AT moment arm in early stance to reduce the required muscle force but also by 

increasing elastic energy utilization later in stance as a result of greater muscle forces and 

tendon stretch.  Therefore, the purpose of this study was to determine the AT moment 

arm length during the stance phase of RF and FF running and to investigate the 

relationship between moment arm length and running economy.  Because the dynamic 

AT moment arm may affect the differences in muscle forces required between footfall 

patterns, an additional purpose of this study was to determine the difference in AT force 

between RF and FF running patterns.  The following hypotheses were investigated: 1) AT 

moment arm length would be greater during the first third of the stance phase with the FF 

running pattern compared to RF running and similar during the rest of the stance; 2) a 

shorter AT moment arm would correlate with running economy during RF running but a 

longer AT moment arm would correlate with running economy during FF running; and 3) 

AT force would be similar between footfall patterns during the stance phase of running. 
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Methodology 

 

Participant Selection 

A list of acronyms and abbreviations used in this study are listed in Table 5.1.  

Nineteen healthy natural RF runners and 18 natural FF runners participated in this study 

(Table 5.2).  Participants were experienced runners completing a minimum of 16 km per 

week with an average speed of approximately 3.5 m•s-1 for long running bouts.  

Exclusion criteria included a history of cardiovascular or neurological problems and 

injury to the lower extremity or back within the past year.  Vertical ground reaction 

forces (GRF) and high speed video recordings were used to determine the natural footfall 

pattern of each participant while running at their preferred running speed.  RF running 

was defined as making initial contact with the heel.  FF running was defined as making 

initial contact with the metatarsal heads and preventing the heel from touching the 

ground.  If a participant was classified as a midfoot runner (MF), they were placed in the 

RF group if they made contact with (approximately zero degrees of dorsiflexion or 

greater) and generated an initial impact peak within the vertical GRF component (n = 4).  

MF runners were classified into the FF group if they landed with a plantar flexed foot 

position but allowed the heel to touch the ground and did not generate an initial impact 

peak (n = 6).  All participants read and completed an informed consent document and 

questionnaires approved by the University of Massachusetts Amherst Institutional 

Review Board before participating.   

 

 

 



155 

Table 5.1: Acronyms and abbreviations for each variable. 
 

AAave1 early stance average ankle angle ATmax maximum Achilles tendon force 

AAave2 mid-stance average ankle angle dmt0 
static Achilles tendon moment arm 
length 

AAave3 late stance average ankle angle dmt1 
early stance average Achilles tendon 
moment arm length 

AM10 
average active ankle joint moment 
when Achilles tendon force was 10% of 
maximum the maximum value 

dmt2 
mid-stance average Achilles tendon 
moment arm length 

AMave1 
early stance average active ankle joint 
moment 

dmt3 
late stance average Achilles tendon 
moment arm length 

AMave2 
mid-stance average active ankle joint 
moment 

dmt10 
average Achilles tendon moment arm 
length when Achilles tendon force was 
10% of maximum the maximum value 

AMave3 
late stance average active ankle joint 
moment 

FF forefoot  

AMmax maximum active ankle joint moment GRF ground reaction force 

AT Achilles tendon MF midfoot 

AT10 
average Achilles tendon force when 
Achilles tendon force was 10% of 
maximum the maximum value 

r 
Pearson product moment correlation 
coefficient 

ATave1 
early stance average Achilles tendon 
force 

r2 coefficient of determination 

ATave2 
mid-stance average Achilles tendon 
force 

RF Rearfoot 

ATave3 
late stance average Achilles tendon 
force VO2 

steady state rate of oxygen 
consumption 

 

Table 5.2: Mean ± SD participant characteristics of the rearfoot group (RF) and the forefoot group 
(FF) for the participants included in Study 2.  Differences between groups were assessed with a 
student’s t-test (α = 0.05). 
 

 
Males/Females 

(#) 
Age 
(yrs) 

Height 
(m) 

Mass 
(kg) 

Pref. Speed 
(m·s-1) 

Distance/week 
(km) 

RF group 12/7 
26.7 ± 

6.1 
1.75 ± 
0.09 

70.10 ± 
10.00 

3.47 ± 0.90 42.85 ± 29.04 

FF group 13/5 
25.6 ± 

6.4 
1.76 ± 
0.10 

68.69 ± 
9.77 

3.73 ± 0.25 51.22 ± 24.76 

p-value - 0.585 0.918 0.668 0.242 0.353 
 

Experimental Setup 

An eight-camera Qualisys Oqus 3-Series optical motion capture system (Qualisys, 

Inc., Gothenberg, Sweden), sampling at 240 Hz, surrounded the center of a 25 m runway 

and was used to collect unilateral three-dimensional kinematic data.  A floor mounted 
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AMTI force platform (OR6-5, AMTI Inc., Watertown, MA, USA) was located in the 

center of the collection volume and collected GRF and center of pressure data at a 

sampling frequency of 1200 Hz.  Running speed was monitored with photoelectric 

sensors (Lafayette Instrument Company, Lafayette, IN) placed 3 m before and after the 

force platform. 

Retro-reflective markers were placed on the right lower extremity and pelvis of 

the participant according to McClay and Manal (1999) (Appendix B).  Calibration 

markers included the iliac crests, greater trochanters, medial and lateral femoral condyles, 

medial and lateral malleoli, and the heads of the first and fifth metatarsals.  Tracking 

markers included four non-collinear markers secured onto a rigid plate, positioned on the 

lateral thigh and leg, as well as a rigid plate with three non-collinear markers placed on 

the posterior calcaneus.  Additional tracking markers, secured onto the skin or form 

fitting clothing, included the right and left anterior superior iliac spine and between the 

5th lumbar-1st sacral vertebrae.  Participants wore form-fitting clothing and neutral racing 

flats provided by the laboratory (RC 550, New Balance, Brighton, MA, USA).   

The static AT moment arm length was measured using methods similar to those 

of Scholz et al. (2008).  The static AT moment arm was defined as the shortest distance 

from the line of action of the AT to the center of rotation of the ankle.  The center of 

rotation of the ankle was approximated as the midpoint between the medial and lateral 

malleoli (Lundberg et al., 1989).  The location of the lateral malleolus and its center were 

marked with a pen while the participant was standing (Figure 5.2).  A high speed video 

camera (Exilim EX-F1, Casio Computer Co., LTD, Shibuya-ku, Tokyo, Japan) sampling 

at 300 Hz was used to record video of the foot and leg during a static standing trial.  The 
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length of the static AT moment arm was recorded with each participant standing on a 

wooden block of known length.  The lateral edge of the shoe was aligned with the edge of 

the block.  The posterior aspect of the AT was identified on the video.  The length of the 

static AT moment arm was determined by taking the average of the horizontal distance 

between the mark on the center of the lateral malleolus and the posterior aspect of the AT 

and the horizontal distance between the mark on the anterior aspect of the lateral 

malleolus and the posterior aspect of the AT.  This procedure was used to better estimate 

the ankle joint center which lies on an axis connecting the medial and lateral malleoli.  If 

the shoe upper covered the point on the AT necessary for indicating the posterior aspect, 

the thickness of the shoe upper was included in the measurement of the perpendicular 

distance then subtracted from the total length.  This method was previously used by both 

Scholz et al. (2008) and Fath et al. (2010) who reported values that were well correlated 

with more precise magnetic resonance imaging data.  The motion capture data were used 

to derive a second order polynomial to estimate the dynamic AT moment arm across the 

stance phase as a function of ankle joint angle (Arnold et al., 2010).   

The volume and content of gases expired by each participant while running on a 

motorized treadmill was measured by indirect calorimetry using a metabolic cart 

(TrueOne, ParvoMedics, Sandy, UT, USA).  The volume of gas exchange was used to 

calculate the gross rate of oxygen consumption.     
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Figure 5.2: Measurement of Achilles tendon (AT) moment arm length during standing. The visual 
field was calibrated by determining the pixels in 50 cm reference distance. The distance between the 
ankle joint center and the posterior aspect of the AT was determined by averaging the distance 
between the medial (black line) and lateral malleoli (white line).  

 

Protocol 

After standing calibration of the reflective markers and the measurement of the 

AT moment arm were completed, each participant performed ten successful trials of each 

footfall pattern while running at 3.5 m•s-1 ±5%.  A trial was deemed successful if the 

participant landed on the force platform with the right foot without targeting or adjusting 

speed or stride.  The order of the footfall pattern conditions was randomized across 

participants.   

Oxygen consumption was recorded during a separate data collection.  Participants 

arrived at the laboratory having fasted for at least three hours and had refrained from 

exercise before the data collection.  Participants were allowed to warm-up on the 

treadmill for a several minutes as needed and also practiced each footfall pattern at 3.5 

m•s-1.  Running speed was adjusted by ±5% if necessary to allow for the participant to 
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run comfortably with each footfall pattern.  Participants began the data collection 

protocol by standing quietly for 10 minutes on the treadmill to record baseline oxygen 

consumption.  Participants ran for a minimum of five minutes during each footfall pattern 

condition or until two minutes of steady state oxygen consumption was recorded.  Steady 

state was reached when there was less than a 10% change in oxygen consumption over a 

two minute period (Stephens et al., 2006).  Participants rested for a minimum of five 

minutes between conditions or until the volume of expired air returned within 0.02 

L•min-1 of the baseline value. 

 

Data Reduction 

Kinematic data were tracked using Qualisys Track Manager software (Qualisys, 

Inc., Gothenberg, Sweden) and exported in .C3D format for processing with Visual 3D 

software (C-Motion, Inc, Rockville, MD, USA).   Raw kinematic and kinetic data were 

filtered with a 4th order, zero-lag Butterworth digital low-pass filter with a cutoff 

frequency of 12 Hz and 50 Hz respectfully (Winter et al., 1974).    Three dimensional 

knee and ankle joint angles were calculated by a rotation matrix of the distal segment 

with respect to the coordinate system of the proximal segment using a Cardan rotation 

sequence of x (flexion/extension) – y (abduction/adduction) – z (axial rotation) (Cole et 

al., 1993).  Ankle joint angles were averaged over early (AAave1), mid- (AAave2), and 

late stance (AAave3).  Early stance was defined as 0-33% of the stance phase, mid-stance 

as 34-66%, and late stance as 67-100%.   

A Newton-Euler inverse dynamics approach was used to calculate three 

dimensional ankle joint moments.  Segment geometries were modeled as a frustra of a 
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right cone for the foot and leg.  Segment mass, location of segmental center of mass, and 

moment of inertia were estimated by techniques described by Hanavan (1964).  Internal 

joint moments were calculated with respect to the local coordinate system of the proximal 

segment.   Ankle joint angle and joint moments from the stance phase of each condition 

were interpolated to 101 data points from initial contact to toe-off, with each point 

representing 1% of the stance phase.   

Kinovea Motion Tuner software v. 0.8.15 (www.kinovea.org/en/) was used to 

calculate the static AT moment arm length (dmt0).  A scaling factor was determined from 

the reference distance by the number of pixels that equaled the length of two points, 50 

cm apart.  The Euclidean distance between the center of the lateral malleolus and the 

posterior aspect of the Achilles tendon was determined.  The distance in pixels was 

divided by the scaling factor to determine the length of the AT moment arm in cm.   

A custom MATLAB program was developed to determine the AT force and the 

dynamic AT moment arm length during the stance phase of running with each footfall 

pattern.  A separate plots for the moment arm of the plot soleus and the medial and lateral 

heads of the gastrocnemius moment arm at the ankle were created as a function of ankle 

joint angle (θ) based on generic model by Arnold et al. (2010).  The data from each 

muscle were combined by scaling each by its physiological cross sectional area.  The 

model data were fit to a second-order polynomial by a custom MATLAB program 

(Mathworks, Inc., Natick, MA) and used to determine the polynomial coefficients.  A 

second-order polynomial was the lowest order that adequately fit the moment arm data, 

based on an assessment of the root mean square error between the polynomial prediction 

and the data.  The zeroth-order polynomial coefficient was scaled for each subject 
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individually by the static Achilles tendon moment arm measurement.  The experimental 

ankle joint angle data were entered into the polynomial to determine the dynamic AT 

moment arm for each instant of the stance phase.  The model-predicted dynamic AT 

moment arm length was averaged over early (dmt1), mid- (dmt2), and late stance (dmt3) 

and compared between footfall patterns.   

To calculate AT force, the ankle and knee joint angles were used to estimate the 

passive joint moment (Riener and Edrich, 1999).  The passive joint moment was 

subtracted from the net joint moment calculated by the inverse dynamics procedure to 

determine the active muscle moment.  The maximum active ankle joint moment 

(AMmax) and the active ankle joint moment averaged over early (AMave1), mid- 

(AMave2), and late stance (AMave3) were calculated and compared between patterns.  

The active ankle moment was divided by the dynamic AT moment arm at each instant of 

stance to determine the AT force.  It was assumed that the force in the AT was zero 

whenever the active ankle moment was in the direction of dorsiflexion.  The model-

predicted maximum AT force (ATmax) and the AT force averaged over early (ATave1), 

mid- (ATave2), and late stance (ATave3) were calculated.  The model-predicted active 

ankle joint moment (AM10), AT force (AT10), and the dynamic AT moment arm (dmt10) 

were averaged over the period of stance at which the AT force was within 10% of the 

maximum value.  The relationship of these variables in addition to dmt0 and of the rate of 

oxygen consumption was determined and compared between footfall patterns.  The 

results of the correlation between each oxygen consumption variable and AM10 and AT10 

are presented in Appendix D.   
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The absolute (L•min-1) and relative (ml•kg-1•min-1) rates of steady state oxygen 

consumption (VO2) over the last two minutes of each condition was averaged to 

determine the net and gross VO2.  The first five minutes of the baseline oxygen 

consumption measure was typically highly variable as the participants became accustom 

to breathing with the mouthpiece.  As a result, the average rate of oxygen consumption 

over the last five minutes of the baseline period was used to calculate net VO2 by 

subtracting the baseline value from the average rate of oxygen consumption during the 

last two minutes of each running condition.  

 

Statistical Analysis 

Each ankle joint angle, ankle joint moment, AT force, AT moment arm, and VO2 

variable was compared between the RF and FF patterns.  A one-way analysis of variance 

(ANOVA) was used to assess the differences in dmt0 between groups with a significance 

level of α = 0.05.  Additionally, each variable was subjected to a mixed model analysis of 

variance with footfall pattern and group as fixed variables and subject nested within 

group as a random variable.  The differences between footfall patterns (2 levels) and 

between groups (2 levels) and the interaction of footfall pattern and group were assessed 

with a significance level of α = 0.05.  When a significant group by pattern interaction was 

observed, a post-hoc assessment was performed by partitioning the interaction by group 

and by pattern.  Partitioning by group determined the significance between each footfall 

pattern within each group.  Partitioning by pattern determined the significance between 

groups within each footfall pattern.  A Pearson product moment correlation coefficient (r) 

was calculated to determine the relationship between absolute and relative VO2 and the 
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static (dmt0) and dynamic (dmt10) AT moment arm lengths.  A correlation coefficient of 

0.00 – 0.09 indicated no correlation, 0.10 – 0.30 was a weak correlation, 0.30 – 0.50 was 

a moderate, and 0.50 – 1.00 was a strong correlation (Cohen, 1988).  Effect sizes were 

also calculated to determine if the differences between footfall pattern and groups were 

biologically meaningful.  An effect size (d) greater than 0.3 indicated a small effect, an 

effect size greater than 0.5 indicated a moderate effect and an effect size greater than 0.8 

indicated a large effect (Cohen, 1992).   

 

Results 

 

Ankle Joint Angle 

No significant group by pattern interactions or group main effects were observed 

for AAave1, AAave2, or AAave3 (p > 0.05).  Significant pattern main effects, however, 

were found for these variables (p < 0.05, d = 0.8 – 3.4) (Table 5.3).  AA ave1 from each 

footfall pattern reflected the characteristic initial dorsiflexed position of RF running as 

well as the initial plantar flexed position of the FF pattern (Figure 5.3A).  AAave2 and 

AAave3 were 2.21 degrees (11.3%) and 5.43 degrees (101.1%) more dorsiflexed, 

respectively, during the RF pattern compared to the FF pattern.   
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Figure 5.3: Group mean time series of the A) sagittal plane ankle angle, B) Achilles tendon (AT) 
moment arm, C) active and passive (small dashed line) ankle joint moment, and D) AT force of the 
rearfoot (RF) and forefoot (FF) groups performing the RF and FF patterns.  
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Table 5.3:  Mean ± SD for the ankle joint angle and Achilles tendon (AT) moment arm variables 
when performing the rearfoot (RF) and forefoot (FF) patterns. Variables include ankle joint angle 
averaged over early (AAave1), mid- (AAave2), and late stance (AAave3), and the AT moment arm 
averaged over early (dmt1), mid- (dmt2), and late stance (dmt3). The AT moment arm length (dmt10) 
was also averaged over the period of stance at which the AT force was within 10% of the maximum 
value. Listed statistics include the p-value for the group by pattern interaction (GxP), the p-value (d) 
for the group main effect (G) and the pattern main effect (P). 
 

RF Group FF Group 
GxP G P 

RF FF RF FF 

AAave1 
deg 

9.94 
± 2.23 

0.92 
± 2.62 

10.52 
± 2.73 

2.04 
± 2.85 

0.695 
0.157 
(0.3) 

<0.001 
(3.4) 

AAave2 
deg 

20.81 
± 2.51 

18.48 
± 2.73 

20.85 
± 2.59 

18.49 
± 2.78 

0.612 
0.906 
(0.0) 

<0.001 
(0.8) 

AAave3 
deg 

8.35 
± 2.77 

2.67 
± 3.18 

7.83 
± 2.64 

2.65 
± 2.53 

0.458 
0.755 
(0.1) 

<0.001 
 (2.0) 

dmt1 
cm 

4.45 
± 0.64 

4.65 
± 0.66 

4.24 
± 0.33 

4.44 
± 0.29 

0.796 
0.215 
(0.4) 

<0.001 
(0.4) 

dmt2 
cm 

4.02 
± 0.66 

4.12 
± 0.68 

3.84 
± 0.32 

3.94 
± 0.31 

0.498 
0.303 
(0.4) 

<0.001 
(0.2) 

dmt3 
cm 

4.42 
± 0.67 

4.56 
± 0.68 

4.25 
± 0.31 

4.38 
± 0.30 

0.417 
0.331 
(0.3) 

<0.001 
(0.3) 

dmt10 
cm 

3.90 
± 0.66 

4.05 
± 0.69 

3.74 
± 0.33 

3.88 
± 0.32 

0.393 
0.351 
(0.3) 

<0.001 
(0.3) 

 

Achilles Tendon Moment Arm Length 

There was no significant difference in dmt0 between groups (p = 0.286, d = 0.4).  

dmt0 was 4.72 ± 0.67 cm in the RF group and 4.53 ± 0.29 in the FF group.  No significant 

group by pattern interactions or group main effects were found for any dynamic AT 

moment arm length variable during the stance phase (p > 0.05).  However, dmt10, dmt1, 

dmt2, and dmt3 were all greater during the FF pattern compared to the RF pattern as 

indicated by significant group main effects (p < 0.05, d = 0.2 – 0.4) (Table 5.3).  dmt10, 

dmt1, dmt2, and dmt3 were 0.15 cm (3.8%), 0.20 cm (4.6%), 0.10 cm (2.5%), and 0.14 cm 

(3.1%) longer, respectively, during FF running compared to RF running (Figure 5.3B). 
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Table 5.4:  Mean ± SD for the stance phase kinetic variables when performing the rearfoot (RF) and 
forefoot (FF) patterns.  Variables include the maximum active ankle joint moment (AMmax), the 
active ankle moment averaged over early (AMave1), mid- (AMave2), and late stance (AMave3), the 
maximum Achilles tendon force (ATmax), the AT force averaged over early (ATave1), mid- (ATave2), 
and late stance (ATave3). The ankle joint moment (AM10) and AT force (AT10) are the ankle joint 
moment and AT force were also averaged over the period of stance at which the AT force was within 
10% of the maximum value. Listed statistics include the p-value for the group by pattern interaction 
(GxP), the p-value (d) for the group main effect (G) and the pattern main effect (P). 
 

RF Group FF Group 
GxP G P 

RF FF RF FF 

AMmax 
N•m 

-159.45 
± 36.47 

-193.46 
± 47.10 

-156.27 
± 36.99 

-200.18 
± 44.72 

0.128 
0.895 
(0.0) 

<0.001 
(0.9) 

AMave1 
N•m 

-1.42 
± 10.46 

-77.05 
± 20.37 

-3.59 
± 18.75 

-78.53 
± 19.67 

0.934 
0.659 
(0.1) 

<0.001 
(4.3) 

AMave2 
N•m 

-137.05 
± 29.60 

-181.73 
± 44.01 

-134.66 
± 34.24 

-187.59 
± 41.92 

0.288 
0.885 
(0.0) 

<0.001 
(1.3) 

AMave3 
N•m 

-73.10 
± 17.48 

-75.03 
± 18.08 

-68.31 
± 14.50 

-72.98 
± 15.64 

0.206 
0.525 
(0.2) 

0.004 
(0.2) 

AM10 
N•m 

-157.89 
± 36.01 

-192.14 
± 46.82 

-154.73 
± 36.59 

-198.75 
± 44.39 

0.134 
0.897 
(0.0) 

<0.001 
(1.0) 

ATmax 
N 

4127.77 
± 810.37 

4824.80 ± 
1055.78 

4200.39 
± 988.39 

5204.52 
± 1251.18 

0.071 
0.498 
(0.2) 

<0.001 
(0.8) 

ATave1 
N 

362.53 
± 144.54 

1706.20 
± 399.97 

409.57 
± 269.78 

1825.29 
± 495.59 

0.625 
0.362 
(0.3) 

<0.001 
(4.2) 

ATave2 
N 

3459.03 
± 658.27 

4454.60 
± 966.52 

3529.63 
± 882.10 

4804.89 
± 1162.85 

0.167 
0.473 
(0.2) 

<0.001 
(1.2) 

ATave3 
N 

1757.91 
± 392.91 

1740.38 
± 418.93 

1698.82 
± 367.32 

1775.09 
± 418.53 

0.161 
0.865 
(0.1) 

0.459 
(0.0) 

AT10 
N 

4079.78 
± 799.72 

4786.32 
± 1047.09 

4149.96 
± 974.73 

5160.48 
± 1240.79 

0.074 
0.501 
(0.2) 

<0.001 
(0.8) 

 

Active Ankle Joint Moment 

No significant group by pattern interactions or group main effects were observed 

for any ankle joint moment variable (p > 0.05).  A significant pattern main effect was 

observed for AM10, AMmax, AMave1, AMave2, and AMave3 (p < 0.05, d = 0.2 – 4.2) 

(Table 5.4).  AM10, AMmax, AMave1, AMave2, and AMave3 were 39.13 N•m (22.2%), 
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38.96 N•m (21.9%), 75.28 N•m (187.7%), 48.81 N•m (30.4%), and 3.30 N•m (4.2%) 

greater, respectively, in FF running compared to RF running (Figure 5.3C).  

 

Achilles Tendon Force 

No significant group by pattern interactions or group main effects were observed 

for any AT force variable (p > 0.05).  A significant pattern main effect was observed for 

AT10, ATmax, ATave1, and ATave2 (p < 0.05, d = 0.8 – 4.2) but not ATave3 (p < 0.05, d 

= 0.0) (Table 5.4).  AT10, ATmax, ATave1, and ATave2 were 858.5 N (18.8%), 850.58 N 

(18.5%), 1379.70 N (128.2%), and 1135.42 N (27.9%) greater, respectively, in FF 

running compared to RF running (Figure 5.3D).  ATave3 was only 19.37 N (1.1%) 

different between patterns. 

 

Rate of Oxygen Consumption 

Significant group by pattern interactions were observed for net and gross VO2 (p 

< 0.05) (Table 5.5).  Partitioning the interaction by group revealed that the RF group ran 

with over 3% greater VO2 when performing the FF pattern compared to when performing 

the RF pattern (p < 0.05, d = 0.2 – 0.7).  The FF group did not have a significant 

difference in net or gross VO2 between footfall patterns (p > 0.05, d < 0.1).  Partitioning 

the interaction by pattern revealed that performing the RF pattern resulted in the RF 

group having between 2.9 – 5.1% greater net and gross VO2 compared to the FF group (p 

< 0.05, d = 0.3 – 0.5) (Table 5.5).  When performing the FF pattern, net and gross VO2 

were between 5.3 – 8.0% greater in the RF group compared to the FF group (p < 0.05, d 

= 0.5 – 1.0).   
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Table 5.5: Mean ± SD net and gross rate of oxygen consumption (VO2) during running with a 
rearfoot (RF) and a forefoot (FF) pattern in the RF and FF groups. Listed statistics include the p-
value for the group by pattern interaction (GxP), the p-value (d) for the group main effect (G), and 
the pattern main effect (P).  If the interaction was significant, the p-value (d) for each partition by 
group and partition by pattern were given. dmt0 was evaluated with a one-way analysis of variance, 
thus only a single p-value (d) are given for the difference of dmt0 between groups. Negative percent 
difference indicates the FF pattern resulted in a larger value. 
 

Group Pattern Net VO2 
L•min-1 

Gross VO2 
L•min-1 

Net VO2 
ml•kg-1·min-1 

Gross VO2 
ml•kg-1·min-1 

RF RF 
2.44 

± 0.38 
2.76 

± 0.42 
34.79 
± 1.85 

39.36 
± 2.00 

RF FF 
2.53 

± 0.42 
2.85 

± 0.46 
36.05 
± 1.80 

40.62 
± 2.02 

% difference -3.7% -3.3% -3.6% -3.2% 

FF RF 
2.32 

± 0.38 
2.63 

± 0.42 
33.66 
± 2.39 

38.25 
± 2.61 

FF FF 
2.34 

± 0.39 
2.65 

± 0.43 
33.93 
± 2.51 

38.51 
± 2.63 

% difference -0.9% -0.8% -0.8% -0.7% 

GxP 0.004 0.004 0.003 0.003 

G 
 

- - - - 

P 
 

- - - - 

G Partition RF Grp <0.001(0.2) <0.001(0.2) <0.001(0.7) <0.001(0.6) 

G Partition FF Grp 0.245 (0.1) 0.239(0.0) 0.255(0.1) 0.255(0.1) 

P Partition RF Patt <0.001(0.3) <0.001(0.3) <0.001(0.5) <0.001(0.5) 

P Partition FF Patt <0.001(0.5) <0.001(0.4) <0.001(1.0) <0.001(0.9) 

 

Relationship of Rate of Oxygen Consumption and Achilles Tendon Moment Arm 

In the RF group performing the RF pattern, moderate correlations were found 

between net and gross absolute VO2 and dmt0 (net: r = 0.484, r2 = 0.234; gross: r = 0.490, 

r2 = 0.240) (Figure 5.4A) and dmt10 (net: r = 0.488, r2 = 0.238; gross: r = 0.492, r2 = 

0.242) (Figure 5.5A).  When the RF group performed the FF pattern, a moderate was also 

found between net and gross absolute VO2 and dmt0 (net: r = 0.466, r2 = 0.217; gross: r = 

0.472, r2 = 0.223) (Figure 5.4A) and net and gross absolute VO2 and dmt10 (net: r = 
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0.457, r2 = 0.209; gross: r = 0.462, r2 = 0.213) (Figure 5.5A).  Both dmt0 and dmt10 

explained less than 25% of the variance of net and gross absolute VO2 in the RF group 

when performing the RF or FF patterns.  In the FF group performing the RF pattern, 

weak were only found between gross absolute VO2 and dmt0 (r = 0.137, r2 = 0.019) 

(Figure 5.4A) and net absolute VO2 and dmt10 (r = -0.120, r2 = 0.014) (Figure 5.5A).  No 

correlations were between net absolute VO2 and dmt0 and gross absolute VO2 and dmt10 

for the FF group when performing the RF pattern (Figure 5.4A and 5.5A).  Additionally, 

no correlations were found between net or gross absolute VO2 and dmt0 when the FF 

group performed the FF pattern (r < 0.09, r2 < 0.007) (Figure 5.4A).  However, weak 

correlations were found between net and gross absolute and dmt10 when the FF group 

performed the FF pattern (net: r = -0.141, r2 = 0.020; gross: r = -0.093, r2 = 0.009) (Figure 

5.5A).  Less than 2% of the variance in net and gross absolute VO2 was explained by 

either dmt0 or dmt10 in the FF group when performing the RF or FF footfall patterns.   

There was no correlation between net or gross relative VO2 between dmt0 and 

dmt10 in the RF group when performing either footfall pattern (r < 0.042, r2 < 0.002) 

(Figures 5.4B and 5.5B).  In the FF group performing the RF pattern, weak to moderate 

correlations were found between net and gross relative VO2 and dmt0 (net: r = -0.273, r2 

= 0.075; gross: r = -0.124, r2 = 0.015) and dmt10 (net: r = -0.459, r2 = 0.211; gross: r = -

0.352, r2 = 0.124) (Figures 5.4B and 5.5B).  When the FF group performed the FF 

pattern, net and gross relative VO2 was weak to moderately correlated with dmt0 (net: r = 

-0.381, r2 = 0.145; gross: r = -0.237, r2 = 0.056) (Figure 5.4B) and dmt10 (net: r = -0.446, 

r2 = 0.120; gross: r = -0.358, r2 = , 0.128) (Figure 5.5B).  In the FF group performing the 

RF pattern, dmt0 explained less than 8% of the variance in net and gross relative VO2 
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whereas dmt10 explained approximately 22% of the variance in net and gross relative 

.  However, when the FF group performed the FF pattern, less than 13% of the 

variance in net and gross relative  was explained by either dmt0 or dmt10. 

 

 

 
 
Figure 5.4 The relationship of Achilles tendon moment arm length measured during standing and the 
gross A) absolute and B) relative rate of oxygen consumption measured during rearfoot (RF) and 
forefoot (FF) running in the RF and FF groups. 
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Figure 5.5: The relationship of the dynamic Achilles tendon moment arm length and the gross A) 
absolute and B) relative rate of oxygen consumption measured during rearfoot (RF) and forefoot 
(FF) running in the RF and FF groups. 
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Discussion 

The purposes of this study were to investigate the relationship of AT moment arm 

length and running economy in RF and FF running patterns and to determine the 

difference in AT force between RF and FF running patterns.  This study expands on the 

results of previous studies by investigating the relationship between static as well as 

dynamic AT moment arm length and sub-maximal rate of oxygen consumption in both 

RF and FF runners.  Previous studies investigated the relationship of static AT moment 

arm length and rate of oxygen consumption in a group of RF runners (Scholz et al., 

2008).  The first hypothesis, that the model-predicted dynamic AT moment arm length 

would be greater during the early stance phase in the FF running pattern compared to the 

RF pattern, was supported.  The FF pattern resulted in a longer dynamic AT moment arm 

during the first portion of stance as well as across the rest of the stance phase compared 

to the RF pattern.  A longer AT moment arm during FF running was a result of the 

decreased dorsiflexion angle throughout the stance phase with this pattern. 

A study by Scholz et al. (2008) reported that a shorter static AT moment arm 

resulted in greater running economy due to increased tendon stretch and elastic energy 

storage.  A shorter static AT moment arm is a morphological measure that will result in 

increased force production for a given joint moment. Although muscle moment arm 

length is a morphological measure, it changes with joint position and it may be possible 

to manipulate joint position to improve economy.  If the kinematics of a particular 

running style result in joint angles that are smaller, then running economy may improve 

compared to a running style that utilizes a longer AT moment arm.  However, with the FF 

pattern, a longer AT moment arm resulting from the plantar flexed position in early 
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stance may decrease the force and thus metabolic cost compared if the moment arm was 

shorter.  Although the dynamic AT moment arm was shorter throughout stance with the 

RF pattern and longer with the FF pattern in the present study, similar correlations 

between rates of oxygen consumption and dynamic AT moment arm were observed 

between footfall patterns.  Thus, the second hypothesis that a shorter AT moment arm 

would correlate with running economy during RF running but a longer AT moment arm 

would correlate with running economy during FF running, was not supported.  Weak to 

moderate correlations between absolute or relative VO2 and static and dynamic moment 

arm were found in the present study.  The relationship between absolute VO2 and dmt0 or 

dmt10 in the both groups were less than 0.03 larger in RF running compared to FF 

running, but this difference is likely irrelevant.  Some negative correlations were found 

which indicated that a longer moment arm was related to a lower rate of oxygen 

consumption; however, they were found between data from both the RF and FF pattern.  

This finding may be a reflection of the variability in the moment arm data. 

Although the static AT moment arm lengths determined in the present study were 

in good agreement with those of Scholz et al. (2008), the results of the correlation 

analysis, however, were not in agreement.  Scholz et al. (2008) found that static AT 

moment arm length explained approximately 56% of the variance in sub-maximal rate of 

oxygen consumption.  The present study, however, found less than 25% of the variance 

in the rate of oxygen consumption was explained by either static or dynamic moment arm 

in both RF and FF runners performing either the RF or FF pattern.  However, depending 

on the group, footfall pattern or absolute or relative rate of oxygen consumption, the 

strength of the correlation decreased, resulting in AT moment arm explaining less than 
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1% of the variance in oxygen consumption.  Since no differences in static AT moment 

arm were found between groups in the present study and were in good agreement with 

Scholz et al. (2008), the discrepancy in the findings between studies was not a result of 

morphological differences between participants or between natural RF and FF runners. 

Other differences between the present study and that of Scholz et al. (2008) may also 

contribute to the discrepancy between results.  For example, the present study used a 

running speed 1.0 m•s-1 slower than Scholz et al. (2008), which may have affected the 

rates of oxygen consumption between participants of each study.  However, as part of a 

separate study, the participants in the present study performed each footfall pattern at an 

additional running speed which was within 0.5  m•s-1 of Scholz et al (2008).  The 

methods between the present study and the additional data set were the same except the 

dynamic moment arm was not measured at the higher running speed.  In this additional 

data set, static AT moment arm explained less than 10% of the variance in gross relative 

rate of oxygen consumption across both groups and conditions (Figure 5.6).  Therefore, 

the differences between results of the present study and Scholz et al. (2008) may not be 

due to differences in running speed.  The difference in the spread of the data may also 

account for the differences in correlations found in each study.  The present study had a 

larger range in static AT moment arm values but a smaller range in rate of oxygen 

consumption values compared to Scholz et al. (2008) (Figure 5.6).  A similarity between 

the studies was that they examined RF runners performing the RF pattern.  The largest 

correlations found in the present study were found in the RF group when performing the 

RF pattern.  Additionally, the RF pattern resulted in both a shorter AT moment arm 

throughout the stance phase as well as a lower rate of oxygen consumption compared to 
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the FF pattern.  The result that lower rates of oxygen consumption were found with the 

footfall pattern that utilizes a shorter moment arm was consistent with the relationships 

found in Scholz et al. (2008).  It is possible that AT moment arm and running economy 

may only be related to those performing and are habituated to the RF pattern.  Scholz et 

al. (2008) acknowledged that inter-individual variation in kinetic factors may account for 

additional variation in running economy.  Thus compared to the RF pattern, the different 

kinetic features of the FF pattern may alter the relationship between dynamic AT moment 

arm and the rate of oxygen consumption.   

 

 
 
Figure 5.6: Results for the additional data set of the relationship between the Achilles tendon 
moment arm length measured during standing and the gross rate of oxygen consumption measured 
during rearfoot (RF) and forefoot (FF) running in the RF and FF groups for running at 4.0 m·s-1 (for 
comparison with the results of Scholz et al. (2008), running speed = 4.4 m·s-1).  
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For a given joint moment, a shorter dynamic AT moment arm may improve 

running economy as a result of requiring greater muscle forces compared to if the 

moment arm was longer.  Although greater force generation will increase the metabolic 

energy consumption of the muscle, increased muscle force will also increase the tendon 

stretch and thus the potential for greater energy storage and more economical running by 

allowing the muscle fibers to act more isometrically (Biewener and Roberts, 2000; 

Roberts et al., 1998).  In the present study, FF running resulted in greater plantar flexion 

moments and AT forces compared to RF running, which supports the third hypothesis 

and was consistent with other studies (Arendse et al., 2004; Perl et al., 2012; Williams et 

al., 2000).  It has been previously speculated that these larger plantar flexion moments 

generated with FF running result in greater elastic energy utilization and thus improve 

running economy compared to RF running.  It was not within the scope of the present 

study to determine the differences in elastic energy utilization between footfall patterns; 

however, it is likely that the increased AT forces generated during FF running also 

resulted in greater elastic energy storage.  Despite this possibility, the present study also 

observed that FF running did not result in an improvement in running economy over that 

of RF running.  The metabolic cost associated with greater AT forces during FF running 

may have negated the energy savings from elastic recoil, if elastic recoil was also greater 

compared to RF running.  Alternatively, a combination of increased elastic energy recoil 

and utilizing a longer moment arm throughout stance during FF running may have 

prevented larger differences in rates of oxygen consumption between footfall patterns 

given the differences in AT force generation.  However, the results from the present study 

suggest that FF running may not be more economical than RF running because of the 
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greater muscle forces required with the FF pattern.  The sources of variation in economy 

between RF and FF footfall patterns requires further study to examine the differences and 

relationships of muscle mechanical work and metabolic cost between RF and FF running 

patterns. 

Although greater AT force may result in a beneficial elastic energy contribution to 

metabolic cost, the disadvantage of greater AT forces is the risk of developing tendon 

injury.  Many chronic overuse injuries in running may be a result of repetitive stretch and 

recoil of tendon that could be exacerbated by increased tendon forces (Leadbetter, 1992).  

Compared to RF running, FF running resulted in greater AT force which suggests that it 

may increase the risk of developing tendon injury.  Calculating the safety factor and the 

stressed imposed on the AT with each footfall pattern may provide some insight for this 

risk.  By using 95 mm2 as the cross-sectional area for the distal AT found in runners of 

previous studies (Magnusson and Kjaer, 2003; Rosager et al., 2002), the peak AT forces 

measured in the present study resulted in an AT stress of 43.5 MPa and 44.2 MPa during 

RF running in the RF and FF groups, respectively.  During the FF pattern, AT force 

results in 50.8 MPa for the RF group and 54.8 MPa for the FF group.  Although the FF 

pattern resulted in a greater AT stress than the RF pattern, both patterns resulted in an 

approximate safety factor of 4 – 5.5 and an AT stress far below the rupture stress of the 

AT (100 MPa) (Ker et al., 2000).  However, it is likely that the rupture stress of the AT is 

greater than 100 MPa, as this value was found in vitro (Farris et al., 2011).   

Repetitive impact loading from running may also result in adaptations to protect 

against tendon injury (Magnusson and Kjaer, 2003; Rosager et al., 2002).  Previous 

studies have shown that runners have a greater AT cross-sectional area than non-runners, 
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which suggests runners may experience lower tendon stress and a greater safety factor for 

a given load compared to non-runners (Magnusson et al., 2001; Magnusson and Kjaer, 

2003; Rosager et al., 2002).  These findings suggest that habitual exposure to greater AT 

forces in FF runners may lead to an adaptation in which the cross-sectional area of the 

AT is larger than RF runners.  Therefore, an AT cross-sectional area of 95 mm2 may be 

an underestimate for FF runners and the AT stress calculated above may be an 

overestimate.  However, the distal AT width was measured in a subgroup of participants 

from the present study (RF group n = 8; FF group n = 7) and was similar between groups 

(RF group = 17.0 ± 2.0 mm; FF group = 17.7 ± 2.0 mm; p-value = 0.895).  Assuming a 

similar AT thickness between groups, these data suggest that FF running may not result 

in further adaptation the AT cross-sectional area compared to RF running.  The calculated 

stress values above showed that the AT stress values are far below the failure stress; 

however, they represent the AT stress experienced during a single stance phase.  For each 

stance phase, a natural RF runner performing their habitual pattern will experience 

approximately 43.5 MPa of AT stress each stance phase whereas a natural FF runner 

performing their habitual footfall pattern will experience approximately 54.8 MPa of AT 

stress each stance phase.  These results suggest that the cumulative micro-trauma 

experienced by a FF runner will be greater than a RF runner due to the greater AT 

stressed experienced each stance phase, which will likely increase the risk of a FF runner 

developing tendinopathology.    
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Conclusion 

Previous studies have observed a relationship between static AT moment arm 

length and the rate of oxygen consumption.  The present study, however, found that only 

the RF pattern performed by the RF group resulted in a moderate correlation between 

these variables.  The FF pattern may result in running mechanics that negate any 

relationship between AT moment arm length and the rate of oxygen consumption.  A 

longer AT moment arm will provide a mechanical advantage in which reduced muscle 

forces are required to produce a given ankle joint moment; however, the longer AT 

moment arm resulting from FF running did not reduce the AT forces generated compared 

to the RF pattern.  Additionally, the plantar flexor muscle force required during FF 

running may negate any metabolic energy savings from increased elastic energy recoil.  

These increased AT forces with the FF pattern may also increase the risk of developing 

tendinopathology. 
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CHAPTER 6 

MUSCLE MECHANICS AND ENERGY EXPENDITURE OF THE TRICEPS 

SURAE DURING REARFOOT AND FOREFOOT RUNNING 

 

Abstract 

The forefoot (FF) running footfall pattern has been advocated to improve running 

economy compared to the rearfoot (RF) footfall pattern as a result of increased elastic 

energy storage and release.  However, this claim has not been previously investigated nor 

have previous studies found a difference in running economy between footfall patterns.  

Therefore, the purpose of this study was to compare the mechanical muscle work and 

muscle metabolic cost of the triceps surae muscle group between footfall patterns using a 

musculoskeletal modeling approach.  Ten natural RF runners and ten natural FF runners 

performed over-ground running with each footfall pattern at 3.5 m•s-1 ±5%.  Ankle and 

knee joint angles and ankle joint moments were used as inputs into a musculoskeletal 

model.  A generic model was used to determine the muscle-tendon length of the 

gastrocnemius (GA) and soleus (SO) and each muscle’s moment arm as a function of 

joint angle across the stance phase.  A two-component Hill muscle model was used to 

determine the contraction dynamics of each muscle’s contractile element (CE) and series 

elastic element (SEE).  Muscle metabolic energy expenditure was calculated as a function 

of muscle activation, maximum isometric force, maximum shortening velocity, and the 

relative velocity of the CE.  A mixed-factor ANOVA was used to determine the 

difference in each variable between footfall patterns and groups (α = 0.05).  The FF 

pattern resulted in greater SEE mechanical work in the GA compared to the RF pattern 
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but no differences were found in CE mechanical work or CE metabolic energy 

expenditure.  The FF pattern resulted in near isometric contractions that allowed for 

greater force production with a similar metabolic cost compared to the low force 

production and high contraction velocities occurring with the RF pattern.  In the SO, the 

FF pattern resulted in greater CE and SEE mechanical work and greater CE metabolic 

energy expenditure compared to the RF pattern.  The greater metabolic cost of the SO 

during FF running was a result of greater CE positive work compared to the RF pattern.  

These findings indicate that the FF pattern does not result in lower muscle metabolic 

energy expenditure despite increased elastic energy utilization compared to the RF 

pattern. 

 

Introduction 

Elastic energy utilization reduces muscle work, and thereby metabolic cost, 

without sacrificing force generation (Alexander, 1984; Biewener and Roberts, 2000; 

Cavagna, 1977a; Cavagna et al., 1977b; Fukunaga et al., 2002; Fukunaga et al., 2001; 

Ishikawa et al., 2007; Roberts et al., 1997).  Previous researchers have speculated that the 

forefoot (FF) running footfall pattern will result in greater stretch of the triceps surae 

muscle-tendon complex (Figure 6.1), resulting in greater elastic energy utilization and 

reduced metabolic cost compared to the rearfoot (RF) running footfall pattern (Ardigo et 

al., 1995; Hasegawa et al., 2007; Lieberman et al., 2010; Perl et al., 2012).  Although 

muscle function between different footfall patterns has not been explicitly investigated, 

Hof et al. (2002) incidentally found that the contractile element of soleus and 

gastrocnemius muscles in a RF runner produced substantially more positive work than in 
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a midfoot (MF) runner.  Less positive mechanical work of the simulated contractile 

elements in the MF runner was accomplished by generating force isometrically at near 

optimum length of the force-length relationship which allowed for whole muscle length 

changes to occur from length changes of elastic elements.  The contractile elements of RF 

runner behaved more concentrically but length change was still relatively low (Hof et al., 

2002).  If the MF running pattern is an intermediate between RF and FF running, FF 

running may also result in near-isometric muscle force development and utilization of 

elastic energy which may decrease the metabolic cost compared to the muscle contracting 

concentrically.   

 

 
 
Figure 6.1: Triceps surae muscle complex is comprised of the gastrocnemius and the soleus muscles. 

 

The FF pattern is characterized by making initial contact with the ground on the 

metatarsal heads and preventing the heel from making contact with the ground whereas in 

the RF pattern, initial ground contact is with the heel.  It has been suggested that FF 

running requires eccentric contraction of the gastrocnemius and soleus in order to control 
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the lowering of the heel to the ground after impact.  This controlled lowering of the heel 

is believed to result in greater Achilles tendon stretch and more elastic energy storage 

than in the RF pattern (Perl et al., 2012; Pratt, 1989).  Despite this potential energy saving 

mechanism, recent investigations have failed to observe greater economy (i.e. lower sub-

maximal rate of oxygen consumption) with a FF running pattern compared to the RF 

pattern (Ardigo et al., 1995; Cunningham et al., 2010; Perl et al., 2012).  Greater plantar 

flexion moments, Achilles tendon forces, and external work occurring with the FF pattern 

have been speculated to negate any energy savings from elastic recoil (Ardigo et al., 

1995; Perl et al., 2012).  However, muscle function during FF running has yet to be 

investigated directly.  It is possible greater plantar flexion moments in FF running are 

accomplished by the muscle fibers behaving at optimal velocities and lengths in order to 

produce force with a lower metabolic cost.  The results from studies that did not find the 

FF pattern to be more economical may be attributed to confounding factors such as the 

novelty of performing an alternate footfall pattern.  

Differences in muscle mechanical work production between running footfall 

patterns have only been investigated through inverse dynamics analysis, motion analysis, 

and mechanical work ratios (Ardigo et al., 1995; Perl et al., 2012).  These techniques may 

be inadequate to accurately determine the differences in muscle function between footfall 

patterns and how it relates to metabolic energy expenditure (Sasaki et al., 2009).  Direct 

measurements of individual muscle behavior and energetics in vivo (e.g. blood flow, 

tendon buckles, magnetic resonance spectroscopy) are ideal methods to investigate 

muscle function (Umberger and Rubenson, 2011).  However, such methods are 

impractical in humans because they require invasive surgical procedures or specialized 
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equipment.  A muscle model may be more appropriate to evaluate the differences in 

muscle function between footfall patterns and their relation to running economy in 

humans.  Therefore, the purpose of this study was to compare the mechanical muscle 

work and muscle metabolic cost of the triceps surae muscle group between footfall 

patterns using a musculoskeletal modeling approach.  It was hypothesized that RF 

running would result in the triceps surae producing more mechanical work from the 

muscle contractile element whereas FF running would result in the triceps surae 

producing more mechanical work from in series elastic structures (i.e. greater elastic 

energy utilization).  Secondly, it was hypothesized that FF running would result in lower 

muscle energy expenditure than RF running due to increased elastic energy utilization. 

 

Methodology 

 

Participant Selection 

Ten healthy natural RF and 10 natural FF runners participated in this study (Table 

6.1).  Participants were required to run a minimum of 16 km per week with a preferred 

speed of approximately 3.5 m•s-1 for long running bouts.  Participants were excluded if 

they had a history of cardiovascular or neurological problems or injury to the lower 

extremity or back within the past year.  The natural footfall pattern of each participant 

was determined by vertical ground reaction forces (GRF) and high speed video 

recordings while running at their preferred running speed.  Participants were classified 

into the RF group if they made initial contact with the heel or if they made contact with a 

semi-dorsiflexed or flat foot position (approximately zero degrees of dorsiflexion or 
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greater) and generated an initial vertical GRF impact peak (n = 1).  Participants were 

entered into the FF group if they made initial contact on the metatarsal heads and did not 

generate an initial vertical GRF impact peak (n = 3).  All participants read and completed 

an informed consent document and questionnaires approved by the University of 

Massachusetts Amherst Institutional Review Board before participating.  A list of 

acronyms and abbreviations used in this study are listed in Table 6.2.  Abbreviations 

specific to the musculoskeletal model are listed in Appendix F.   

 

Table 6.1: Mean ± SD participant characteristics of the rearfoot group (RF) and the forefoot group 
(FF) for the participants included in Study 3. Vሶ O2 is steady state, mass normalized sub-maximal 
oxygen consumption measured at 3.5 m•s-1. Differences between groups were assessed by a student’s 
t-test (α = 0.05). 
 

 
Males/ 

Females 
(#) 

Age 
(yrs) 

Height 
(m) 

Mass 
(kg) 

Pref. 
Speed 
(m•s-1) 

km/week 
(km) 

Vሶ O2 
(ml•kg-1 
•min-1) 

RF group 7/3 27.5 ± 4.8 
1.76 ± 
0.08 

70.55 ± 
9.77 

3.67 ± 
0.40 

40.71 ± 
35.33 

39.86 ± 
2.24 

FF group 9/1 25.5 ± 7.7 
1.79 ± 
0.07 

70.50 ± 
7.10 

3.80 ± 
0.20 

43.52 ± 
22.86 

39.65 ± 
2.26 

p-value - 0.495 0.363 0.991 0.368 0.835 0.837 

 

Table 6.2: Acronyms and abbreviations for each variable. Abbreviations used specifically for the 
musculoskeletal model are listed in Appendix F. 
 

CE contractile element MT muscle-tendon complex 

E metabolic energy expenditure P mechanical power 

FF forefoot RF rearfoot  

GA gastrocnemius SEE series elastic element 

GRF ground reaction force SO soleus 

L muscle component length W mechanical work 

MF mid-foot   
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The groups were matched by body mass and sub-maximal rate of oxygen 

consumption.  Sub-maximal rate of oxygen consumption was measured by indirect 

calorimetry using a metabolic cart (TrueOne, ParvoMedics, Sandy, UT, USA) while the 

participant ran on a motorized treadmill with their preferred footfall pattern at 3.5 m•s-1.  

No difference in sub-maximal oxygen consumption was observed between groups. 

 

Experimental Setup 

Unilateral three-dimensional kinematic data were collected with an eight-camera 

Qualisys Oqus 3-Series optical motion capture system (Qualisys, Inc., Gothenberg, 

Sweden) sampling at 240 Hz.  The cameras surrounded a floor mounted AMTI force 

platform (OR6-5, AMTI Inc., Watertown, MA, USA) located at the center of a 25m 

runway.  The force platform collected GRF and center of pressure with a sampling 

frequency of 1200 Hz.  Photoelectric sensors (Lafayette Instrument Company, Lafayette, 

IN) placed 3 m before and after the force platform were used to monitor running speed. 

Retro-reflective calibration markers were placed on the iliac crests, greater 

trochanters, medial and lateral femoral condyles, medial and lateral malleoli, and the 

heads of the first and fifth metatarsals.  Tracking markers included four non-collinear 

markers secured onto a rigid plate, positioned on the lateral thigh and leg, as well as a 

rigid plate with three non-collinear markers placed on the posterior calcaneus.  Additional 

tracking markers included the right and left anterior superior iliac spine and between the 

5th lumbar-1st sacral vertebrae (McClay and Manal, 1999) (Appendix B).  Participants 

wore form-fitting clothing and neutral racing flat shoes provided by the laboratory (RC 

550, New Balance, Brighton, MA, USA).   
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Protocol 

Participants practiced each footfall pattern at the designated speed until they felt 

comfortable with the protocol.  Each participant performed ten successful trials with each 

footfall pattern while running at 3.5 m•s-1 ±5%.  A trial was considered successful if the 

participant correctly performed the footfall pattern, landed on the force platform with the 

right foot without targeting, and without adjusting speed or stride.  The order of the 

footfall conditions was randomized between participants.   

 

Data Reduction 

Qualisys Track Manager software (Qualisys, Inc., Gothenberg, Sweden) was used 

to track kinematic data and export it in .C3D format for processing with Visual 3D 

software (C-Motion, Inc, Rockville, MD, USA).   Raw kinematic and kinetic data were 

filtered with a 4th order, zero-lag Butterworth digital low-pass filter with a cutoff 

frequency of 12 Hz and 50 Hz respectfully (Winter et al., 1974).  Three dimensional 

ankle and knee joint angles were calculated by a rotation matrix of the distal segment 

with respect to the coordinate system of the proximal segment using a Cardan rotation 

sequence of x (flexion/extension) – y (abduction/adduction) – z (axial rotation) (Cole et 

al., 1993).  

A Newton-Euler inverse dynamics approach was used to calculate three 

dimensional ankle joint moments.  Internal joint moments were calculated with respect to 

the local coordinate system of the proximal segment with positive values indicating 

dorsiflexor, inversion and adductor moments.  Kinematic and kinetic data from initial 



192 

contact to toe-off of each condition were interpolated to 101 data points, with each point 

representing 1% of the stance phase.   

Kinovea Motion Tuner software v. 0.8.15 (www.kinovea.org/en/) was used to 

calculate the static Achilles tendon moment arm length determined by previously 

reported methods (Scholz et al., 2008).  The static Achilles tendon moment arm was 

defined as the shortest distance from the line of action of the AT to the center of rotation 

of the ankle. The Euclidean distance between the center of the lateral malleolus and the 

posterior aspect of the Achilles tendon was determined.     

 

Musculoskeletal Model 

A two-dimensional musculoskeletal model was developed similar to the methods 

of previous studies (Bobbert et al., 1986a; Hof et al., 2002; van Soest and Bobbert, 1993).  

Properties of the muscle-tendon complex (MT) reflected the action of the gastrocnemius 

(GA) and soleus (SO), which together comprise the muscles of the triceps surae.  The 

model consisted of three rigid segments representing the foot, leg and thigh (Appendix E, 

Figure E.1).  Segments were connected by two frictionless hinge joints to represent the 

ankle and knee joints.  A Hill-type muscle model was employed to simulate the action of 

the GA and the soleus SO individually.  Each muscle contained a contractile element 

(CE) and a series elastic element (SEE) in series with the CE.  Although Hill-type muscle 

models are phenomenological models, the CE is primarily associated with the muscle 

fascicles and the SEE is primarily associated with the Achilles tendon, aponeurosis and 

other elastic structures in series with the CE.  Passive elements which act in parallel with 

the muscle fibers, such as muscle fascia, ligaments and joint capsule were represented by 
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a passive moment (Mpas).   The equation developed by Riener and Edrich (1999) was 

used to estimate Mpas as a function of ankle and knee joint angles:  

 

     Mpas=  – exp൫2.1016 + 0.0843φA–  0.0176φK൯ 

   – exp൫– 7.9763 – 0.1949φA+ 0.0008φK൯ –  1.792     (6.1). 

 

The mean ankle angle, knee angle, and ankle joint moment was compiled across trials for 

each participant served as inputs into the muscle model (Figure 6.2).  The model was run 

on each participant individually for the following group-condition combinations: 1) 

natural RF runners performing the RF pattern; 2) natural RF runners performing the FF 

pattern; 3) natural FF runners performing the RF pattern; and 4) natural FF runners 

performing the FF pattern.   

A generic model by Arnold et al. (2010) was used to determine the moment arm 

length (dMT) for the GA and SO.  A plot of dMT as a function of joint angle (θ) for each 

muscle was created based on generic model by Arnold et al. (2010).  dMT for the SO was 

plotted against ankle joint angle.  Plots for the dMT of the GA as a function of knee and 

ankle joint angles were created separately.  Additionally, the plots for dMT of the medial 

and lateral heads of the GA were created separately for each joint angle.  The data from 

the medial and lateral heads of the GA were combined by scaling each muscle by its 

physiological cross sectional area (PCSA).  The modal data were fit to a second-order 

polynomial by a custom MATLAB program (Mathworks, Inc., Natick, MA) and used to 

determine the polynomial coefficients.  A second-order polynomial was the lowest order 

that adequately fit the moment arm data, based on an assessment of the root mean square  
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Figure 6.2: Group mean knee and ankle joint angles and ankle joint moment during the stance phase 
of rearfoot (RF) and forefoot (FF) running in the RF and FF groups. 
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error between the polynomial prediction and the data.  The zeroth-order polynomial 

coefficient was scaled for each subject individually by the static Achilles tendon moment 

arm measurement.   Each dMT polynomial was integrated with respect to the knee and 

ankle joint angle, thus creating third-order polynomials for GA and SO muscle-tendon 

complex length (LMT) as a function of θ.  The zeroth-order coefficients for the LMT 

polynomials were scaled based on the participant’s static   leg length.  The experimental 

joint angle data were entered into these polynomials to determine LMT and dMT for each 

instant of the stance phase.  LMT of the GA and SO was used as a constraint for the model 

by requiring the sum of the CE and SEE lengths equal that of the LMT. 

Active moment (Mact) produced by the GA and SO was determined by subtracting 

Mpas from the ankle joint moment (MA) found by the inverse dynamics procedure.  Mact 

was used to calculate the force generated by the triceps surae as a sum of the forces 

produced by the GA and SO multiplied by their respective moment arms.  Force 

produced by each muscle was partitioned by the ratio of each muscle’s PCSA to the total 

triceps surae PCSA.  A ratio of 1.88:1 SO to GA was used (Arnold et al., 2010).  The 

muscle force in the GA and SO where assumed to be zero when a dorsiflexor moment 

was being produced. 

The amount of force that could be generated by the muscle fibers was dependent 

on the contraction dynamics dictated by three relationships.  The force-length relationship 

(F-L) represents the isometric force potential at any CE length (Gordon et al., 1966).  

Peak isometric force production (F0) occurs when the CE is at optimal length (Lo).  The 

F-L relationship is modeled as a parabola and is scaled down depending on the sub-

maximal activation level.  The F-L relationship also determines the magnitude of F0 used 
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in the force-velocity relationship.  The force velocity relationship (F-V) represents the CE 

force that is produced, based on the CE velocity (i.e. shortening, lengthening or 

isometric) (Hill, 1938).  The F-V relationship is modeled by a rectangular hyperbola and 

is scaled up or down by the amount of activation and the F-L parameters.  The force-

extension relationship (FΔL) of the SEE represents the change in SEE elasticity, or 

stiffness, as SEE length is increased or decreased (Bahler, 1967).  The FΔL relationship is 

modeled as a quadratic function.  Determining the properties in the MT, CE and SEE 

based on the Hill relationships allowed for the activation level to be calculated.  The 

internal states of the muscle model were based on the experimental data and constrained 

by the muscle geometry of the equilibrium condition (LMT = LCE + LSEE and FMT = FCE = 

FSEE).  After determining the MT, CC and SEE dynamics, the metabolic power produced 

by each muscle was calculated as a function of the CE velocity and activation (Minetti 

and Alexander, 1997; Sellers et al., 2003).  Appendix E describes the equations and 

relationships used for the muscle and muscle energy expenditure models.  Appendix F 

lists of all abbreviations that were used in the model.   

 

Data Analysis 

The power output of the MT, CE, and SEE was calculated by multiplying their 

respective force by velocity for each instant in time.  Mechanical work was calculated by 

integrating the power output of the MT, CE, and SEE with respect to time.  The amount 

of elastic energy stored and released during the stance phase was determined by the 

amount of positive and negative mechanical work, respectively, performed by the SEE.  

Metabolic energy expenditure by the CE was calculated by integrating CE metabolic 
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power with respect to time.  Mechanical work of the MT, CE, and SEE as well as the 

metabolic energy expenditure by the CE of the GA and SO were calculated during the 

stance phase and the push-off phase for each participant under the RF and FF pattern 

conditions.  The push-off phase was defined as the first instance the MT was producing 

positive power in the second half of stance. 

 

Statistical Analysis 

Mechanical work and metabolic energy expenditure were compared between the 

RF and FF running footfall patterns across the stance phase and during the push-off 

phase.  Each variable was subjected to a mixed model analysis of variance with footfall 

pattern and group as fixed variables and subject nested within group as a random 

variable.  The differences between footfall patterns (2 levels) and between groups (2 

levels) and the interaction of footfall pattern and group were assessed with a significance 

level of α = 0.05.  When a significant group by pattern interaction was observed, a post-

hoc assessment was performed by partitioning the interaction by group and by pattern.  

Partitioning by group determined the significance between each footfall pattern within 

each group.  Partitioning by pattern determined the significance between groups within 

each footfall pattern.  Effect sizes were also calculated to determine if the differences 

between footfall pattern and groups were biologically meaningful.  An effect size (d) 

greater than 0.3 indicated a small effect, an effect size greater than 0.5 indicated a 

moderate effect and an effect size greater than 0.8 indicated a large effect (Cohen, 1992).  
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Results 

 

Muscle Velocity 

Data presented over the stance phase included an indicator of the start and end of 

when the muscle force was above 25% of the maximum value.  During the first 30% of 

the stance phase, RF running resulted in MTGA shortening (Figure 6.3A & C) while FF 

running resulted in MTGA lengthening (Figures 6.3B & D).  The difference in MTGA 

velocity between footfall patterns in early stance was associated with a higher CEGA 

shortening velocity and an initial increase in the SEEGA lengthening velocity with RF 

running compared to FF running.  Additionally, the FF pattern resulted in near zero CEGA 

velocity from approximately 20 – 40% of stance (Figure 6.3B & D).  Both footfall 

patterns resulted in MTGA and CEGA lengthening after approximately 30% of stance but 

began rapid shortening at approximately 75% and 85% of stance, respectively.  The 

highest shortening velocities occurred after the muscle force had dropped below 25% of 

the maximum value at the end of the stance phase.   The CEGA velocity was close to zero 

for a short period around 25% of stance during the FF pattern (Figure 6.3B & D).  The 

lengthening velocity of the SEEGA decreased from early stance during both footfall 

patterns until approximately 50% of stance then increased shortening velocity for the 

remainder of stance.    
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        A)          B) 

        
        
        C)          D) 

        
 
 
Figure 6.3: Group mean velocity of the muscle-tendon unit (MT), the series elastic element (SEE) and 
contractile element (CE) of the gastrocnemius during the stance phase of rearfoot (RF) and forefoot 
(FF) running in the RF and FF groups. The vertical lines in each panel indicate the range of time 
when the GA was generating greater than 25% of the maximum force produced during the stance 
phase. 
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        A)          B) 

         
        
        C)          D) 

         
        
 
Figure 6.4: Group mean velocity of the muscle-tendon unit (MT), the series elastic element (SEE) and 
contractile element (CE) of the soleus during the stance phase of rearfoot (RF) and forefoot (FF) 
running in the RF and FF groups. The vertical lines in each panel indicate the range of time when the 
SO was generating greater than 25% of the maximum force produced during the stance phase. 
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RF running resulted in MTSO and CESO shortening after ground contact, whereas 

FF running resulted in MTSO, CESO, and SEESO lengthening (Figure 6.4).  The MTSO and 

SEESO began lengthening at approximately 20% of stance during RF running while the 

CESO velocity was near zero from approximately 25 – 75% of stance (Figure 6.4A & C).  

Peak lengthening velocities of the MTSO and the CESO occurring in early stance were 

reduced with the RF pattern compared to the FF pattern but the peak SEESO velocity was 

similar between footfall patterns.  The velocity of the MTSO, CESO, and SEESO were 

similar between footfall patterns when the muscle force was above 25% of the maximum 

value.  Rapid shortening of the MTSO and CESO occurred in late stance of both footfall 

patterns after the muscle force dropped below 25% of the maximum value.  Peak MTSO 

and CESO shortening velocity in late stance were greater with the FF pattern. 

 

Muscle Force 

The model predicted GA or SO force during the first ~20% of the stance phase of 

RF running was zero due to the dorsiflexor moment generated during this time period 

(Figure 6.2).  In FF running, the GA and SO began to produce force at initial ground 

contact.  The SO always produced 61.0% greater force than the GA, consistent with the 

difference in PCSA between muscles.  Peak GA and SO muscle force was 13.8% greater 

during FF running compared to RF running in the RF group (Figure 6.5A & B); whereas, 

peak muscle force was 22.2% greater during FF running compared to RF running in the 

FF group (Figure 6.5C & D).  FF running resulted in greater force production from 0 – 

75% of the stance phase in both the GA and SO and were nearly identical between 

patterns over the final 25% of the stance phase. 
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Figure 6.5: Group mean gastrocnemius and soleus muscle forces during the stance phase of rearfoot 
(RF) and forefoot (FF) running in the RF and FF groups. The vertical lines in each panel indicate the 
range of time when the muscle was generating greater than 25% of the maximum force produced 
during the stance phase. 
 

Muscle Power 

 Both footfall patterns resulted in large negative PMT-GA and PSEE-GA whereas PCE-

GA was positive during early stance (Figure 6.6).  Peak positive PCE-GA in early stance was 

similar between groups and conditions except that it was lower in the RF group during FF 
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footfall patterns.  Peak negative PCE-GA was similar between footfall patterns within each 

group but was greater in the FF group compared to the FF group.   Peak negative PSEE-GA 

was similar between patterns in the RF group (Figures 6.6A & B).  The FF group had 

greater negative PSEE-GA compared to the RF group during both footfall patterns; 

however, negative PSEE-GA was greater in FF running within the FF group (Figures 6.6A 

& B).  Positive and negative PMT-GA were similar between groups within each footfall 

pattern but were greater during FF running.  PSEE-GA was the primary contributor to PMT-

GA throughout the stance phase during both RF and FF running. 

Positive and negative PMT-SO, PCE-SO, and PSEE-SO was considerably less during RF 

running (Figure 6.7A & C) compared to FF running (Figure 6.7B & D).  PSEE-SO was the 

primary contributor to negative PMT-SO during RF running, whereas PCE-SO was the 

primary contributor to negative PMT-SO during FF running.  PCE-SO and PSEE-SO had a near 

equal contribution to positive PMT-SO in the second half of stance of both RF and FF 

running, although positive PCE-SO was slightly greater than positive PSEE-SO in both 

patterns.  Positive and negative PMT-SO and PCE-SO were similar between groups within 

each footfall pattern.  Conversely, the FF group produced more negative PSEE-SO during 

FF running and more positive PSEE-SO during both footfall patterns compared to the RF 

group. 
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        A)          B) 

         
        
        C)          D) 

         
        
 
Figure 6.6: Group mean muscle power production of the muscle-tendon unit (MT), the series elastic 
element (SEE) and contractile element (CE) of the gastrocnemius during the stance phase of rearfoot 
(RF) and forefoot (FF) running in the RF and FF groups. The vertical lines in each panel indicate the 
range of time when the GA was generating greater than 25% of the maximum force produced during 
the stance phase. 
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        A)          B) 

         
        
        C)          D) 

         
        
 
Figure 6.7: Group mean muscle power production of the muscle-tendon unit (MT), the series elastic 
element (SEE) and contractile element (CE) of the soleus during the stance phase of rearfoot (RF) 
and forefoot (FF) running in the RF and FF groups. The vertical lines in each panel indicate the 
range of time when the SO was generating greater than 25% of the maximum force produced during 
the stance phase. 
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Several notable differences in muscle power occurred between the GA and SO.  

The transition between positive and negative PSEE-GA and PSEE-SO occurred at 

approximately 50% of stance during both footfall patterns (Figure 6.6 & 6.7).  However, 

the transition between negative and positive PMT-GA and PCE-GA was delayed until 

approximately 70% and 80% of stance, respectively, during both footfall patterns 

compared to that of the SO.  This delay was a result of the large negative PCE-GA during 

mid-late stance (Figure 6.6).  The transition between positive and negative PMT-SO, PCE-SO, 

and PSEE-SO occurred at approximately 50% of stance during both footfall patterns (Figure 

6.7).  Additionally, positive PSEE-GA was the primary contributor to PMT-GA in the GA, 

whereas PSEE-SO and PCE-SO had a near equal contribution to positive PMT-SO in the SO. 

 

Mechanical Work Production 

Mechanical Work Produced During Stance 

Positive and negative WSEE-GA produced over the stance phase were the only 

mechanical work variables that had a significant group by pattern interaction for the GA 

(p < 0.044); all others were not significant (p > 0.05).  Partitioning the interactions by 

group revealed that FF running resulted in greater positive WSEE-GA and greater negative 

WSEE-GA compared to RF running, with large effect size (p < 0.002, d = 0.7 – 1.0) (Figure 

6.8C–F).  Partitioning the interaction by pattern revealed no difference in positive and 

negative WSEE-GA between groups when performing the RF pattern (p > 0.05, d = 0.3).  

During the FF pattern, positive and negative WSEE-GA had moderately greater magnitudes 

in the FF group compared to the RF group (p < 0.001, d = 0.7).  No significant group 

main effects were observed for any GA mechanical work variable over stance (p > 0.05,  
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Figure 6.8: Group mean mechanical work produced by the muscle-tendon unit (MT), the series 
elastic element (SEE) and the contractile element (CE) of the gastrocnemius during the stance phase 
of rearfoot (RF) and forefoot (FF) running in the RF and FF groups. Error bars are ±1SD. 
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d: 0.0 – 0.7); however, a moderate effect size was observed for the difference in positive 

WCE-GA between groups (d = 0.7).  Significant pattern main effects were observed for 

positive and negative WMT-GA and net WSEE-GA (p < 0.000, d: 0.6 – 1.8) (Figure 6.8).  

Large effect sizes were observed between footfall patterns for net WSEE-GA (d = 1.8) and 

negative WMT-GA (d = 0.8), but positive WSEE-GA only had moderate effect size (d = 0.6).  

No significant differences between footfall patterns were observed for or net, positive or 

negative WCE-GA or net WMT-GA produced over the stance phase (p > 0.05, d: 0.0 – 0.5).  

Net WMT-GA was similar between footfall patterns as a result of similar net WCE-GA and 

near zero net WSEE-GA being done during stance (Figure 6.8A & B).  Although the amount 

of net, positive and negative WCE-GA was similar between patterns, positive and negative 

WMT-GA and WSEE-GA were greater with FF running. 

A significant group by pattern interaction was observed for positive and negative 

WSEE-SO (p < 0.044) (Figure 6.9).  Partitioning the interactions by group revealed that FF 

running resulted in greater positive WSEE-SO and greater negative WSEE-SO compared to RF 

running with large effect size (p < 0.002, d = 0.7 – 1.0) (Figure 6.9C – F).  Partitioning 

the interaction by pattern revealed no difference in positive and negative WSEE-SO 

between groups when performing the RF pattern (p > 0.05, d = 0.3).  However, positive 

and negative WSEE-SO had moderately greater magnitudes in the FF group compared to the 

RF group when performing the FF pattern (p < 0.000, d = 0.7).  No significant group 

main effects were observed for any SO mechanical work variable over stance (p > 0.05, 

d: 0.1 – 0.7).  Significant pattern main effects were observed for all SO mechanical work 

variables over the stance phase (p < 0.000, d: 0.6 – 4.6).  Very large effect sizes were 

observed for all variables (d > 1.0) except positive WCE-SO (d = 0.6).  Net WCE-SO was the  
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Figure 6.9: Group mean mechanical work produced by the muscle-tendon unit (MT), the series 
elastic element (SEE) and the contractile element (CE) of the soleus during the stance phase of 
rearfoot (RF) and forefoot (FF) running in the RF and FF groups. Error bars are ±1SD. 
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primary contributor to net WMT-SO during both patterns because net WSEE-SO was near 

zero (Figure 6.9A & B).  RF running resulted in net WMT-SO and WCE-SO being positive, 

whereas both were negative with FF running.  Positive and negative WMT-SO, WCE-SO, and 

WSEE-SO were all greater during FF running compared to RF running (Figure 6.9C–F). 

Mechanical Work Produced During Push-off 

Significant group by pattern interactions were found for positive WSEE-GA and 

negative WCE-GA produced during push-off (p < 0.030) (Figure 6.10).  Partitioning the 

interaction by group revealed positive WSEE-GA and negative WCE-GA produced during 

push-off were greater in FF running compared to RF running, with large effect sizes (p < 

0.000, d: 0.9 – 1.6).  Partitioning the interaction by pattern revealed no difference in 

either variable between groups when performing the RF pattern (p > 0.05, d = 0.1). 

However, when performing the FF pattern, both variables had moderately greater 

magnitudes in the FF group compared to the RF group (p < 0.020, d = 0.4 – 0.7).  No 

significant group main effects were observed for mechanical work produced during push-

off (p > 0.05, d: 0.1 – 0.4).  A significant pattern main effect was observed for positive 

WMT-GA produced during push-off, with a moderately large effect size (p < 0.000, d = 

0.7).  No significant differences were observed for positive WCE-GA produced during 

push-off (p > 0.05, d = 0.1).  WSEE-GA was the primary contributor to WMT-GA during 

push-off.  However, more mechanical work overall was produced during the push-off 

phase in the FF pattern (Figure 6.10).  The amount of positive WMT-GA and WSEE-GA, and 

negative WCE-GA during the push-off phase were all greater in FF running compared to 

RF running.  
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Figure 6.10: Group mean mechanical work produced by the muscle-tendon unit (MT), the series 
elastic element (SEE) and the contractile element (CE) of the gastrocnemius during the push-off 
phase of rearfoot (RF) and forefoot (FF) running in the A) RF and B) FF groups. Error bars are 
±1SD. 
 

 
 
 
Figure 6.11: Group mean mechanical work produced by the muscle-tendon unit (MT), the series 
elastic element (SEE) and the contractile element (CE) of the soleus during the push-off phase in 
rearfoot (RF) and forefoot (FF) running in the A) RF and B) FF groups. Error bars are ±1SD. 
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More mechanical work was done during push-off in the SO compared to the GA 

(Figures 6.10 and 6.11).  In the GA, WSEE-GA was the largest contributor to WMT-GA 

during push-off (Figure 6.10).  Conversely, the WSEE-SO and WCE-SO were near equal 

contributors to WMT-SO in the SO during push-off (Figure 6.11). 

No significant group by pattern interactions or group main effects were observed 

for any SO mechanical work variable calculated during the push-off phase (p > 0.05) 

(Figure 6.11).  Significant pattern main effects indicated that positive WMT-SO, positive 

WSEE-SO, positive WCE-SO, and negative WCE-SO produced during push-off were greater in 

FF running compared to RF running (p < 0.000, d: 0.5 – 1.0).  All variables had a large 

effect size between footfall patterns (d > 0.9) except for negative WCE-SO (d = 0.5).  WSEE-

SO and WCE-SO had a similar contribution to WMT-SO during push-off in both footfall 

patterns.  Positive WCE-SO was larger than WSEE-SO during push-off in both patterns in the 

RF group while the opposite was true for the FF group (Figure 6.11A vs. B).  Negative 

WCE-SO contributed less than 1.0 J of mechanical work during push-off in both footfall 

patterns. 

 

Metabolic Energy Expenditure 

Metabolic Energy Expenditure During Stance 

No significant interactions or main effects were observed for ECE-GA across the 

stance phase (p > 0.05) (Figure 6.12A, C, E).  However, a large effect size was observed 

in ECE-GA between groups (d = 0.8), which indicated higher ECE-GA in the FF group 

compared to the RF group (Figure 6.12C).  Although FF running resulted in 14% greater 

ECE by the GA compared to RF running, no significant pattern main effect was observed 
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(p > 0.05, d = 0.3) (Figure 6.12C).  The differences between groups and footfall patterns 

in ECE-GA occurred during the first half of the stance phase (Figure 6.12A).  The FF group 

had larger metabolic power during FF running whereas the ECE-GA between groups was 

similar during RF running (Figure 6.12A & C). 

No significant interactions or group main effects were observed for ECE-SO across 

the stance phase (p > 0.05) (Figure 6.12B, D, F).  However, a significant pattern main 

effect was observed for ECE-SO across stance (p < 0.000, d = 1.0).  ECE-SO was 28% greater 

during FF running compared to RF running (Figure 6.12D). 

Metabolic Energy Expenditure During Push-off 

No significant interactions or group main effects were observed for ECE of the GA 

or SO during the push-off phase (p > 0.05, d: 0.1 – 0.2) (Figure 6.12E & F).  No 

significant pattern main effect was observed for ECE-GA during push-off as FF running 

resulted in less than 2% greater ECE-GA compared to RF running (p > 0.05, d = 0.0) 

(Figure 6.12E).  However, a significant pattern main effect was observed for ECE-SO 

during push-off with large effect size (p < 0.001, d = 1.1).  The FF pattern resulted in 

33% greater ECE-SO during push-off than the RF pattern (Figure 6.12F).  Similarly to 

mechanical work, ECE was greater during early stance in the GA and during late stance in 

the SO (Figures 6.12A & B).  Additionally, the contribution to the amount of ECE during 

push-off was considerably greater in the SO compared to the GA (Figures 6.12E & F). 
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Figure 6.12: Group mean gastrocnemius (GA) and soleus (SO) metabolic energy expenditure during 
rearfoot (RF) and forefoot (FF) running in the RF and FF groups. A) GA and B) SO metabolic power 
generated across the stance phase, C) GA and D) SO total metabolic energy produced during the 
stance phase and E) GA and F) metabolic energy produced during the push-off phase. Error bars are 
±1SD. 
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Discussion 

Effective storage and release of elastic strain energy that results in less muscle 

fiber work will reduce muscle metabolic energy consumption (Alexander, 1984; 

Biewener and Roberts, 2000; Cavagna, 1977a; Cavagna et al., 1977b).  A reduction in 

muscle fiber work is accomplished by the CE operating at low contraction velocities and 

results in the SEE being primarily responsible for changes in MTU length.  Decreased CE 

velocities result in more optimal force production and a lower rate of ATP consumption 

(Biewener and Roberts, 2000; Fenn, 1924; Huxley, 1974; Rall, 1985; Roberts et al., 

1997).  It has been suggested that the FF running pattern is more economical than the RF 

pattern because of greater elastic energy utilization (Ardigo et al., 1995; Hasegawa et al., 

2007; Lieberman et al., 2010).  However, this has not been directly assessed previously.  

The purpose of the present study was to compare the mechanical muscle work and 

muscle metabolic cost of the GA and SO between RF and FF running patterns.  The first 

hypothesis was that RF running would result in the GA and SO producing more 

mechanical work from the CE whereas FF running would result in more mechanical work 

produced from the SEE.  This hypothesis was partially supported with respect to the GA 

because FF running resulted in more positive and negative WSEE-GA; however, no 

differences in WCE-GA were observed between footfall patterns (Figure 6.8).  In FF 

running, more mechanical work was done in the GA as a result of greater WSEE-GA and 

thus an increase in elastic energy utilization compared to RF running.  The first 

hypothesis was also partially supported with respect to the SO because FF running 

resulted in greater overall WSEE-SO but also greater overall WCE-SO compared to RF 

running (Figure 6.9).  The substantial difference in negative WCE-SO between footfall 
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patterns resulted in greater overall WCE-SO production verses the overall WSEE-SO 

production during FF running compared to RF running.  Both the GA and SO produced 

more force during the FF pattern which resulted in greater stretch and recoil of the SEE 

compared to the RF pattern.  However, the increased stretch and recoil of the SEE with 

the FF pattern was not accompanied by less overall WCE. 

The current study supports previous suggestions that the controlled lowering of 

the heel after ground impact in FF running will result in greater storage of elastic energy 

(Ardigo et al., 1995; Hasegawa et al., 2007; Lieberman et al., 2010; Perl et al., 2012).  

The present study investigated this claim and hypothesized that FF running would result 

in lower muscle energy expenditure than RF running due to increased elastic energy 

utilization.  Although FF running resulted in greater elastic energy utilization compared 

to RF running, FF running did not result in lower muscle energy expenditure than RF 

running.  Thus the second hypothesis was not supported.   In the GA, greater elastic 

energy recoil found during FF running did not result in reduced WCE-GA.  Consequently, 

more overall work was done in the GA during FF running but at the same metabolic cost 

as RF running.  In the SO, FF running resulted in greater metabolic energy expenditure 

than RF running.  FF running substantially increased overall WCE-SO without a 

comparable increase in WSEE-SO, which may explain the increased metabolic cost.   

The differences in mechanical work production between footfall patterns can be 

explained by the CE velocity and the differences in muscle force production.  RF running 

resulted in high shortening CEGA velocity in early stance compared to FF running (Figure 

6.3A & C).  Although FF running also resulted in lower shortening CEGA velocity in 

early stance compared to RF running, it was followed by a period of near zero CEGA 
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velocity from approximately 20 – 40% of stance (Figure 6.3B & D).  In the RF group, the 

near isometric period of the CEGA contributed to decreased positive PCE-GA in early stance 

during FF running compared to RF running (Figure 6.6A & B).  As a result, reduced 

metabolic energy was expended during FF running in the RF group in the first 30% of 

stance (Figure 6.12A & C).  However, statistical significance in GA metabolic cost 

between footfall patterns was not found when collapsed across both groups.  This result 

may be partially explained by the FF group having smaller differences in GA metabolic 

cost between patterns as well as greater GA metabolic cost during both footfall patterns 

compared to the RF group.  In the FF group, FF running also resulted in the GA having a 

near isometric period in early stance.  However, the positive WCE-GA in early stance was 

similar between footfall patterns and thus resulted in similar metabolic cost between 

patterns in this group (Figure 6.8 and 6.12A & C).   

Typically, greater muscle force production results in a greater muscle metabolic 

energy expenditure because of an increase in the active muscle volume required to meet 

the demands of the task (Biewener and Roberts, 2000; Roberts et al., 1998).  However, in 

the GA, less force was produced during the RF pattern without a comparable decrease in 

the amount of metabolic energy expenditure compared to the FF pattern.  RF running also 

resulted in greater CEGA shortening velocity and no isometric period.  This high CEGA 

shortening velocity occurring with RF running resulted in a lower force generation 

capability, and thus active GA muscle volume and GA metabolic cost, than if CEGA 

velocity was slower or isometric.  Conversely, in FF running, force was produced at 

slower CEGA velocities allowing more force generation with a smaller active muscle 

volume than if the CEGA shortening velocity was increased.  Although the differences in 
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GA metabolic cost was not significantly different between footfall patterns, the velocity 

at which force was produced may explain the trend toward less GA metabolic cost with 

the FF pattern compared to the RF pattern.   

In the SO, CESO velocity was near isometric for the majority of stance during RF 

running whereas FF running resulted in CESO lengthening for the first half of stance 

followed by a brief isometric phase before push-off.  These differences in CESO velocity 

between footfall patterns contributed to more negative WCE-SO in FF running compared to 

RF running (Figure 6.9E & F).  However, the differences in negative WCE-SO cannot 

explain the differences in SO metabolic cost between footfall patterns because metabolic 

cost was similar when negative WCE-SO was being produced (Figure 6.7B & D and Figure 

6.12B).  Metabolic energy of the SO did not differ between footfall patterns until 

approximately 65% of stance but CESO velocity and force production were the same 

between patterns after 70% and 75% of stance, respectively (Figure 6.4B & D and 

6.12B).  The force economy of the different contraction types may explain the similarity 

in SO metabolic cost despite substantial differences in SO force between footfall patterns.   

RF running resulted in isometric force production of the SO, which has been 

identified as the mechanism in which elastic energy recoil reduces metabolic cost.  

However, isometric force production requires a greater metabolic cost and results in a 

lower force production than eccentric contractions (Biewener and Roberts, 2000; Fenn, 

1924).   FF running resulted in greater force production that was produced by less costly 

eccentric contractions.  Therefore, the similarity in SO metabolic cost between footfall 

patterns in the first 65% of stance was a result of  a lower force requirement at a higher 
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metabolic cost in RF running whereas FF running resulted in less costly force production 

but more force was required.   

During the push-off phase, however, SO metabolic cost was different between 

footfall patterns when SO force was similar between footfall patterns.  However, peak 

CESO and MTSO shortening velocity was slightly greater during FF running compared to 

RF running (Figure 6.4).  The increased shortening velocities observed with FF running 

resulted in more positive WMT-SO, WCE-SO, and WSEE-SO in the second half of stance 

compared to RF running (Figure 6.9C & D).  Because SO force during the push-off phase 

was similar between footfall patterns, the difference in shortening velocity and thus 

muscle work during push-off explains the difference in SO metabolic cost between RF 

and FF running.  Thus, muscle work, not force, distinguishes the difference in SO 

metabolic cost between footfall patterns, which supports some previous conclusions on 

the metabolic cost of running (Roberts et al., 1997; Scholz et al., 2008).   

SO metabolic cost was greatest during the push-off phase compared to the rest of 

stance and was greater in FF running compared to RF running (Figure 6.12D & E).  

Positive WMT-SO during push-off was accomplished by both elastic recoil as well as 

positive WCE-SO.  As a result, efficiency (the ratio of MTSO to the SO metabolic cost) of 

the SO during push-off during the RF pattern was 0.49 and 0.55 in the RF and FF groups, 

respectively, and 0.46 and 0.49 during the FF pattern in the RF and FF groups, 

respectively.  The efficiency of the push-off phase was similar to the efficiency of the 

stance phase because nearly all of the metabolic work and all of the positive WMT-SO 

occurred during push-off.  The SO stance phase efficiency was 0.44 and 0.47 during RF 

running for the RF and FF groups, respectively, and was 0.42 and 0.46 during FF running 
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for the RF and FF groups, respectively.  Both stance phase and push-off efficiency were 

greater during RF running because overall WCE-SO contributed less to overall WMT-SO 

production compared to FF running. 

GA metabolic energy expenditure during the push-off phase of either footfall 

pattern was substantially decreased compared to that of the whole stance phase (Figure 

6.12C & E).  The push-off efficiency of the GA (the ratio of MTGA push-off work to the 

push-off metabolic cost) was 1.62 and 1.70 during the RF pattern for the RF and FF 

groups, respectively, and 2.05 and 2.03 during the FF pattern the RF and FF groups, 

respectively.  Efficient GA muscle work production was accomplished during push-off as 

a result of elastic recoil, which was greater during FF running compared to RF running.  

Increased elastic recoil occurring with the FF pattern allowed for more positive WCE-GA to 

be done without an increase in metabolic cost.  Compared to the push-off phase, GA 

stance phase efficiency was 0.43 and 0.32 during RF running in the RF and FF groups, 

respectively, and was 0.63 and 0.44 during FF running for the RF and FF groups, 

respectively.  Stance phase efficiency was less than the push-off efficiency because 

nearly all of the positive WMT-GA and very little metabolic work occurred during push-off.  

The stance phase efficiency was greater in FF running compared to RF running because 

of increased elastic recoil that occurred during push-off during FF running.  

Previous studies have speculated that the FF pattern results in greater force 

transmission through the Achilles tendon and will result in greater elastic energy storage 

(Ardigo et al., 1995; Hasegawa et al., 2007; Nilsson and Thorstensson, 1989; Perl et al., 

2012).  Ardigo et al. (1995) indirectly estimated elastic energy utilization between 

footfall patterns by calculating the ratio between external work and deceleration time to 
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external work and acceleration time (Wext tdec
-1/Wext tacc

-1).  Similar to the present study, 

the authors found that FF running resulted in greater elastic energy utilization compared 

to the RF pattern although no difference in sub-maximal oxygen consumption was 

observed between footfall patterns.  The authors suggested that greater elastic energy 

recoil during FF running compensated for the additional external work observed with this 

pattern.  The present study expands on these results by demonstrating that the greater 

force generation requirement of FF running diminishes any metabolic savings resulting 

from greater elastic energy utilization compared to RF running.  

The present study was consistent with previous studies identifying elastic energy 

utilization as an energy saving mechanism as a result of optimal contraction velocities 

(Cavagna and Kaneko, 1977c; Hof et al., 2002; Ishikawa et al., 2007; Lichtwark and 

Wilson, 2006; Lichtwark and Wilson, 2007a).  Hof et al. (2002) found that a MF runner 

produced force isometrically with less CE work than a RF runner.  However, the present 

study found that FF running resulted in greater WCE in the SO and both footfall patterns 

resulted in some isometric force production.  Between participant variation likely 

explains the differences in results between Hof et al. (2002) and the present study in 

addition to the possible differences in muscle mechanics between MF verses FF running. 

A study by Heise et al. (2011) found that more economical runners tended to 

perform less negative work at the ankle.  The present study found similar results in that 

RF running resulted in lower negative work of the triceps surae muscle-tendon complex 

and also resulted in a lower metabolic cost of the SO.  Although the ankle plantar flexors 

produce more positive joint work in running compared to the hip and the ankle in running 

(Devita et al., 2008; Heise et al., 2011; Stefanyshyn and Nigg, 1998; Winter, 1983), the 
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triceps surae muscle tendon complex has a relatively small active muscle volume in 

running compared to other muscles of the lower extremity.  Therefore, the muscle-tendon 

interactions of other larger, muscles of the lower extremity may have a greater affect on 

running economy than the triceps surae.  For example, one previous study found the 

quadriceps had greater SEE elongation and elastic energy release in more economical 

runners (Albracht and Arampatzis, 2006).  FF running results in less knee flexion at 

ground contact than RF running but knee flexion is similar through the rest of stance 

(Figure 6.2A & B).  However, it is currently unknown how elastic energy contribution or 

metabolic energy cost of the quadriceps differ between footfall patterns.   

An additional source of elastic strain energy is the longitudinal arch of the foot. 

The  longitudinal are can store approximately 17 J of elastic strain energy, which is about 

half of the strain energy stored in the Achilles tendon under the same load (Ker et al., 

1987).  It was recently found that barefoot FF running resulted in greater longitudinal 

arch strain during the stance phase compared to barefoot RF running (Perl et al., 2012).  

The authors concluded that more arch strain during FF running contributes to reduced 

whole body metabolic cost compared to RF running, despite finding no difference in 

whole body metabolic cost between footfall patterns.  The present study demonstrated 

that greater elastic energy utilization does not necessarily result in reduced metabolic cost 

as a result of high muscle forces.  The authors of this previous study failed to question 

whether the increased strain was a result of ground reaction forces with the FF pattern 

and may have resulted in no difference in whole body metabolic cost between patterns 

despite differences in arch strain.   
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Conclusion 

FF running was speculated to improve running economy over that of the RF 

pattern as a result of greater elastic energy utilization by the triceps surae muscle 

complex.  Although FF running did result in greater elastic energy utilization of in both 

the gastrocnemius and the soleus, FF running did not result in lower muscle metabolic 

cost of either muscle because this pattern required greater muscle force production, 

negating any benefit of elastic recoil.  In the soleus, FF running resulted in greater muscle 

metabolic cost as a result of greater contractile element mechanical work.  These results 

suggest that there is no muscle metabolic expenditure benefit of FF running over RF 

running. 
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CHAPTER 7 

IMPACT CHARACTERISTICS AND SHOCK ATTENUATION BETWEEN 

FOOTFALL PATTERNS IN RUNNING 

 

Abstract 

The initial impact peak within the vertical ground reaction force (GRF) 

component that occurs with the rearfoot (RF) running pattern has been implicated as the 

cause of many running injuries.  For this reason, the forefoot (FF) running pattern, which 

does not result in this initial impact peak, has been advocated to reduce the risk of 

running injuries.  However, the differences in vertical GRF profile in the time domain 

suggests that the frequency content of the vertical GRF, and thereby the frequency 

content of the impact shock and how impact shock is attenuated, may also differ.  

Therefore, the purposes of this study were to: 1) determine the difference in impact shock 

wave attenuation between footfall patterns; 2) determine if there is an advantage of 

altering footfall pattern to improve impact shock attenuation; and 3) determine if there 

may be difference in impact shock attenuation mechanisms between footfall patterns.  

Twenty natural RF runners and twenty natural FF runners performed treadmill and over-

ground running with the RF and FF patterns at 3.5 m·s-1 ± 5%.  Tibial and head 

accelerometer data was recorded during treadmill running and used to determine impact 

shock attenuation by using a transfer function of the power spectral density of each 

signal.  Vertical GRF data was recorded during the over-ground conditions and 

transformed into the frequency domain with a discrete Fourier transform.  A mixed-factor 

ANOVA was used to determine the difference in impact shock attenuation and GRF 
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amplitude at frequencies 1 – 50 Hz (α = 0.05).  RF running resulted in significantly 

greater shock attenuation for most frequencies 6 – 48 Hz (p < 0.05).  Additionally, FF 

running resulted in greater vertical GRF amplitudes at frequencies 1 – 16 Hz whereas RF 

running resulted in greater amplitudes at frequencies 18 – 43 Hz (p < 0.05).  The RF 

pattern resulted in greater shock attenuation as a result of greater tibial loading.  Greater 

head power at frequencies 3 – 8 Hz despite less energy to be attenuated with the FF 

pattern suggests that this pattern may result in a reduced capacity for shock attenuation.  

The difference in vertical GRF amplitudes suggests that each footfall pattern may rely on 

different mechanisms in order to attenuate impact shock.   

 

Introduction 

Rearfoot (RF) running footfall pattern results in the presence of an initial impact 

peak (IMP) in the vertical ground reaction force (GRF) component (Cavanagh and 

Lafortune, 1980; Dickinson et al., 1985; Munro et al., 1987).  This vertical IMP is the 

main source of the shock wave transmitted into the foot and through the rest of the body 

(Nigg et al., 1981; Shorten and Winslow, 1992; Voloshin et al., 1985).  Consequently, the 

vertical IMP and tibial shock have been implicated in the development of overuse injuries 

from running (Davis et al., 2010; Grimston et al., 1991; Hreljac et al., 2000; James et al., 

1978; Milner et al., 2006; Paul et al., 1978; Radin et al., 1973; Voloshin and Wosk, 1982; 

Zifchock et al., 2006).   

It has been suggested that reducing the magnitude of the vertical IMP and tibial 

shock may be beneficial for preventing injury (Cavanagh and Lafortune, 1980; Davis et 

al., 2010; James et al., 1978).  Reducing the magnitude of the vertical IMP can be 
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accomplished by changing the position and acceleration of the foot and leg at ground 

contact.  For example, a smaller dorsiflexion angle and a more vertically oriented leg 

when using a RF pattern will decrease the magnitude of the IMP (Gerritsen et al., 1995).  

Changes in segmental position and acceleration can also be achieved by modifying 

running speed, stride length and stride frequency (Bobbert et al., 1991; Clarke et al., 

1985; Derrick et al., 1998; Hamill et al., 1983; Hamill et al., 1995; Mercer et al., 2003; 

Mercer et al., 2002).  Changing from an RF running footfall pattern to a forefoot (FF) 

running footfall pattern has been suggested as an alternative method to modify the 

magnitude of the IMP and reduce injury risk (Cavanagh and Lafortune, 1980; Dickinson 

et al., 1985; Lieberman et al., 2010; Munro et al., 1987).   

The RF and FF patterns differ with respect to the initial portion of the foot that 

makes contact with the ground.  In addition, the vertical IMP seen in the time domain 

with the RF pattern does not typically exist with the FF pattern.  The absence of the 

vertical impact peak has led some to speculate that FF running is beneficial for injury 

prevention (Davis et al., 2010; Laughton et al., 2003; Lieberman et al., 2010; Oakley and 

Pratt, 1988; Pratt, 1989; Williams et al., 2000).  Although RF running results in an initial 

impact peak, FF running results in greater peak vertical active GRF (Cavanagh and 

Lafortune, 1980; Laughton et al., 2003; McClay and Manal, 1995b; Oakley and Pratt, 

1988).  The resulting joint loads from the active force can be 3 – 5 times greater than the 

loads resulting from the impact peak (Burdett, 1982; Harrison et al., 1986; Scott and 

Winter, 1990).  Therefore, these high forces generated during push-off may also be a 

significant contributor to running injury mechanisms (Dickinson et al., 1985; Messier et 

al., 1991; Nigg, 2011; Radin, 1972; Winter, 1983).   
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Inherent differences in kinematics between the RF and FF footfall patterns not 

only dictate the vertical GRF profile but may also contribute to differences in the 

frequency content of the vertical GRF and the impact shock wave.  Previous 

investigations have indicated that the initial GRF impact peak has a frequency content of 

between 10 – 20 Hz (Derrick et al., 1998; Nigg et al., 1981; Nigg and Wakeling, 2001).  

The resulting impact shock measured at the tibia also has a frequency content of 12 – 20 

Hz (Hamill et al., 1995; Shorten and Winslow, 1992).  Therefore, frequency components 

from the vertical GRF or impact shock wave in this range may have lower power during 

FF running due to the absence of the impact peak.  Vertical GRF frequency components 

below 8 Hz are associated to the active force (Potthast et al., 2010; Shorten and Mientjes, 

2003) and resulting impact shock measured at the tibia also has a frequency content of  4 

– 8 Hz (Hamill et al., 1995; Shorten and Winslow, 1992).  The difference in active peak 

magnitude between footfall patterns suggests the vertical GRF and tibial acceleration 

frequency components may have greater power and amplitude in the 4 – 8 Hz range with 

FF running. 

Appropriate attenuation of the impact shock wave is necessary to maintain the 

visual field and head stabilization for adequate vestibular functioning (Pozzo et al., 

1991).  A difference in frequency content of the GRF and impact shock between patterns 

may alter how impact shock is attenuated by the body tissues and the ability to maintain 

head stabilization.  In order to prevent injury to the tissues and maintain head stability, 

the body must be able to respond to a greater impact shock wave by increasing the 

amount of attenuation that occurs.   
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Shock attenuation occurs by absorption of the impact shock wave by the body 

tissues and kinematic adjustments (Bobbert et al., 1992; Chu et al., 1986; Denoth, 1986; 

Nigg et al., 1981; Voloshin et al., 1985).  The body is able to dynamically respond to 

increased impact magnitudes by increasing the reliance of attenuation among the various 

mechanisms.  Passive mechanisms, such as deformation of the heel fat pad, the running 

shoe, ligaments, bone and articular cartilage are responsible for attenuating the high 

frequency waveforms generated at initial ground contact (Chu et al., 1986; Lafortune et 

al., 1996; Nigg et al., 1981; Paul et al., 1978; Voloshin et al., 1985; Williams and 

Cavanagh, 1987).  Previous investigations have found that the heel fat pad has been 

shown to attenuate all frequencies and bone attenuates frequencies greater than 18 Hz 

(Paul et al., 1978).  Although the there is a fat pad under the metatarsal heads, it has not 

as thick as the fat pad under the heel and its shock attenuation properties have yet to be 

investigated.  Because the FF pattern does not take advantage of the heel fat pad or shoe 

cushioning in the heel to attenuate impacts, high frequency components must be 

attenuated by other passive tissues or by active mechanisms. 

Active shock attenuation mechanisms include eccentric muscle contractions, 

increased muscle activation, changes in segment geometry and adjustments in joint 

stiffness (Bobbert et al., 1992; Cole et al., 1996a; Denoth, 1986; Derrick et al., 1998; 

Gerritsen et al., 1995; McMahon et al., 1987).  Active mechanisms are responsible for 

attenuating lower frequency components because muscle latency is too slow to elicit 

muscular reactions during the short impact phase despite pre-activation in late swing to 

prepare for impact (Nigg, 1986; Nigg, 2011; Nigg et al., 1981).  Because muscle latency 

is approximately 30 – 75 ms (Nigg et al., 1981; Simon et al., 1981),  active muscle 
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contractions that are specifically responding to an impact stimulus may only be effective 

at attenuating frequencies below 10 Hz (Paul et al., 1978).  The FF pattern may have a 

greater reliance on active shock attenuation mechanisms since the active force peak is 

greater compared to the RF pattern. 

Differences in impact characteristics between footfall patterns may affect which 

mechanisms are responsible for attenuating impacts, how much attenuation occurs and 

the degree of stress placed on different tissues.  RF running may rely more on passive 

mechanisms such as footwear, cartilage and bone deformation, whereas FF running may 

rely more on active mechanisms such as eccentric contractions of the plantar flexors 

(Pratt, 1989; Williams and Cavanagh, 1987).  The difference in how the body attenuates 

impacts during RF and FF running may subject different tissues to injury and may also 

affect the total amount of attenuation that occurs.  Potential differences in how the body 

attenuates impacts between footfall patterns, and not just the difference in impact 

characteristics, may allow for the ability to assess the potential for FF running at 

preventing injury.   

Since some investigations have found a relationship between time domain vertical 

impact peak variables and the risk of developing running injuries whereas others have not 

(Azevedo et al., 2009; Bredeweg, 2011; McCrory et al., 1999; Pohl et al., 2008; Scott and 

Winter, 1990), examining the frequency content of impact characteristics may identify 

the mechanisms responsible for shock attenuation between footfall patterns and may be a 

better indicator of injury risk than traditional loading characteristics.  Therefore, the 

purposes of this study were to: 1) determine the difference in impact shock wave 

attenuation between footfall patterns; 2) determine if there is an advantage of altering 
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footfall pattern to improve impact shock attenuation; and 3) determine if there may be 

difference in impact shock attenuation mechanisms between footfall patterns.  It was 

hypothesized that RF running would result in greater shock attenuation between the tibia 

and the head than FF running as indicated by reduced power of the frequencies contained 

in the head acceleration signal.  Secondly, RF running takes advantage of the heel fat pad 

and shoe cushioning to attenuate impacts.  Therefore, it was also hypothesized that if RF 

running results in greater shock attenuation, natural RF runners would not increase the 

amount of impact shock attenuation when switching to a FF pattern whereas natural FF 

runners would increase the amount of impact shock attenuated when switching to a RF 

pattern.  The third hypothesis was that the RF pattern would rely more on passive shock 

attenuation mechanisms (e.g. frequencies greater than 10 Hz) whereas the FF pattern 

would rely more on active shock attenuation mechanisms (e.g. frequencies below 10 Hz).  

 

Methodology 

 

Participant Selection 

A list of acronyms and abbreviations used in this study are listed in Table 7.1.  

Twenty natural RF runners and twenty natural FF runners participated in this study 

(Table 7.2).  All male and female participants where healthy, experienced runners and did 

not have a history of cardiovascular or neurological problems.  Inclusion criteria required 

that participants completed at least 16 km per week at a minimum preferred running 

speed of 3.5 m•s-1 and had not developed an injury to the lower extremity or back within 

the past year.  Participants were divided into a RF runners group or a FF runners group 
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based on the footfall pattern habitually performed when distance running.  Habitual 

footfall pattern was determined by recording vertical GRFs and high speed video as each 

participant ran over a force platform at his or her preferred speed.  RF running was 

defined as making initial contact with the heel.  FF running was defined as making initial 

contact on the ball of the foot and preventing the heel from touching the ground.  If a 

participant was classified as a midfoot runner, they were placed in the RF group if they 

made contact with a semi-dorsiflexed or flat foot position (approximately zero degrees of 

dorsiflexion or greater) and generated an initial IMP within the vertical GRF component 

(n = 5).  Midfoot runners were classified into the FF group if they landed with a plantar 

flexed foot position but allowed the heel to touch the ground and did not generate an 

initial impact peak (n = 6).  All participants read and completed an informed consent 

document and questionnaires approved by the University of Massachusetts Amherst 

Institutional Review Board before participating. 

 

Table 7.1: Acronyms and abbreviations for each variable. 
 

ActP vertical ground reaction force active peak MF midfoot  

BW units of body weight PPTA peak positive tibial acceleration 

CT contact time PSD power spectral density 

FF forefoot  RF rearfoot  

GRF ground reaction force RPA rate of positive tibial acceleration 

HP1 first head acceleration peak SL stride length 

HP2 second head acceleration peak SF stride frequency 

IMP vertical ground reaction force impact peak VLR vertical ground reaction force loading rate 
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Table 7.2: Mean ± SD participant characteristics of the rearfoot group (RF) and the forefoot group 
(FF) for the participants included in Study 4. Differences between groups were assessed with a 
student’s t-test (α = 0.05). 
 

 
Males/Females 

(#) 
Age 
(yrs) 

Height 
(m) 

Mass 
(kg) 

Pref. Speed 
(m·s-1) 

Distance/week 
(km) 

RF group 13/7 
26.3 ± 

6.2 
1.76 ± 
0.09 

69.89 ± 
9.78 

3.49 ± 0.88 46.34 ± 32.28 

FF group 
(treadmill) 

14/5 
25.4 ± 

6.2 
1.76 ± 
0.10 

68.78 ± 
9.51 

3.73 ± 0.24 53.18 ± 25.53 

p-value - 0.702 .0726 1.000 0.374 0.662 
FF group 

(over-ground) 
15/5 

25.6 ± 
6.1 

1.76 ± 
0.10 

70.27 ± 
10.66 

3.65 ± 0.34 47.02 ± 26.91 

p-value - 0.702 0.822 0.906 0.453 0.942 
 

Experimental Setup 

Three-dimensional kinematics of the right leg and foot were recorded with an 

eight-camera Qualisys Oqus 3-Series optical motion capture system (Qualisys, Inc., 

Gothenberg, Sweden) sampling at 240 Hz.  Motion of retro-reflective markers placed on 

the foot and leg were used to monitor the footfall pattern performed by each participant 

(Appendix B).  Calibration markers included the medial and lateral femoral condyles, 

medial and lateral malleoli, and the heads of the first and fifth metatarsals.  Tracking 

markers included a rigid plate with three non-collinear markers placed on the lower leg 

and the posterior calcaneus.  Participants wore form-fitting clothing and neutral racing 

flat shoes provided by the laboratory (RC 550, New Balance, Brighton, MA, USA).   

The cameras surrounded an AMTI force platform (OR6-5, AMTI Inc., 

Watertown, MA, USA) mounted flush with the floor surface.  The force platform was 

located in the center of a 25 m runway.  GRFs and center of pressure were recorded at a 

sampling frequency of 1200 Hz and were synchronized with the motion capture data.  

Running speed was monitored with photoelectric sensors (Lafayette Instrument 

Company, Lafayette, IN) placed 3 m before and after the force platform.   
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For collecting the accelerometer data, a treadmill was placed in the center of the 

motion capture space in order for continuous accelerometer data to be captured 

synchronously with kinematics.  A low-mass (<4 grams), uniaxial, piezoelectric 

accelerometers (ICP®, PCB Piezotronics, Depew, NY, USA) were placed in accordance 

with the methods of Valiant et al. (1987).  The head accelerometer was attached to the 

center of the frontal bone and the tibial accelerometer was attached to the anteromedial 

aspect of the distal tibia (Hamill et al., 1995).  Each attachment site was chosen to reduce 

the effects of soft tissue vibration (Valiant et al., 1987; Wosk and Voloshin, 1981).  The 

axis of each accelerometer was aligned with the vertical axis of the laboratory coordinate 

system.  The accelerometers were sampled at 1200 Hz and voltage was amplified by a 

factor of 10. 

 

Protocol 

GRFs and kinematics were recorded while the participants ran over the force 

platform at 3.5 m·s-1 ± 5%.  Ten trials of each condition were performed. Conditions 

included RF and FF running.  The order of the conditions was randomized.  For the FF 

running condition, the participants were instructed to land on the ball of the foot and 

prevent the heel from making contact with the ground.  

After the over-ground conditions were performed, accelerometers were secured to 

the head and anteromedial distal tibia by rubber straps tightened to participant tolerance.  

Participants were then asked to run on a treadmill at 3.5 m·s-1 ± 5% with each footfall 

pattern condition.  The order of conditions performed on the treadmill was also 

randomized.  Participants practiced running on the treadmill with each footfall pattern for 
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several minutes before data was collected.  After sufficient practice was performed, 

participants ran for two minutes on the treadmill before data was collected for each 

condition.  Accelerometer data was collected for 15 seconds during the last minute of 

each condition. 

 

Data Reduction 

Motion capture, GRF and accelerometer data were exported in .C3D format for 

processing with Visual 3D software (C-Motion, Inc, Rockville, MD, USA).  Raw 

kinematic data was filtered with a 4th order, zero-lag Butterworth digital low-pass filter 

with a cutoff frequency of 12 (Winter et al., 1974).  Joint angles were calculated using a 

rotation matrix of the distal segment with respect to proximal segment with a Cardan 

rotation sequence of x (flexion/extension; dorsiflexion/plantar flexion) – y 

(abduction/adduction; inversion/eversion) – z (axial rotation) (Cole et al., 1993).  The 

sagittal plane ankle angles during the stance phase of each condition were analyzed in 

order to confirm the footfall pattern performed during each condition.  Kinematic data 

were interpolated from heel-strike to toe-off to 101 data points, with each point 

representing 1% of the stance phase.  Ground contact time was calculated as the time 

from initial ground contact to toe-off. 

Sagittal plane ankle joint and leg segment angles were also determined from the 

motion capture data collected during the treadmill conditions using the same procedures 

as with the over ground data.  Stride frequency (SF; strides per minute) was determined 

from the treadmill conditions by multiplying the number of strides occurring during the 

15 second recording of each treadmill condition by four.  Stride length (SL; m) was 
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calculated by dividing the running speed set on the treadmill by the SF.  Contact time 

(CT) was calculated for both the over ground and treadmill conditions as the time 

between initial ground contact and toe-off. 

Time domain and frequency parameters from the vertical GRF and tibia and head 

accelerometers were calculated using a custom MATLAB program (Mathworks, Inc., 

Natick, MA).  Data were filtered with a second order Butterworth low-pass filter with a 

cut-off frequency of 50 Hz.  In the time domain, impact peak (IMP) and active peak 

(ActP) of the vertical GRF (in units of body weights, BW) was determined during the 

stance phase of over-ground running.  Since the FF pattern does not result in an impact 

peak, IMP during the FF pattern was calculated by determining the magnitude of the 

vertical GRF at 25 ms of the stance phase.  The selected timing of the impact peak was 

based on previous studies investigating vertical GRF characteristics at a similar running 

speed (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Munro et al., 1987).  The 

active peak was calculated by determining the maximum of the vertical GRF across the 

stance phase.  Vertical GRF loading rate (VLR) was calculated from the slope of the line 

between 20-80% of the time before the first peak of the GRF was reached during the RF 

pattern.  VLR during the FF pattern was calculated between 20 – 80% of the first 25 ms 

of the stance phase (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Munro et al., 

1987).   

Time domain parameters from the tibia and head accelerometers were determined 

from 15 stance phases in each condition during treadmill running.  A least-squares best fit 

line was subtracted from the raw data of each signal to remove any linear trend (Shorten 

and Winslow, 1992).  Data where then filtered with a second order Butterworth low-pass 
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filter with a cut-off frequency of 60 Hz (Hennig and Lafortune, 1991).  The first (HP1) 

and second (HP2) peak of the head acceleration signal were identified as the peak 

between 1 – 30% of stance and 31 – 101% of stance, respectively.  Impact shock 

characteristics were determined by calculating peak positive tibial acceleration (PPTA) 

and rate of positive tibial acceleration (RPA).  RPA was calculated from the slope of line 

between 10-90% of the time before peak acceleration is reached (Lafortune, 1991). 

The frequency content of the vertical GRF, tibia acceleration and head 

acceleration was determined by expressing the signal in the frequency domain (Shorten 

and Winslow, 1992).  Unfiltered, detrended were zero padded data to 2048 data points 

then transformed into the frequency domain by a discrete Fourier Transform (DFT).  A 

DFT was performed on each trial or stance phase then normalized to 1 Hz bins.  The 

amplitude at each frequency 1 – 50 Hz was averaged across all stance phases and 

participants.  The criteria for differentiating between passive and active shock attenuation 

mechanisms were based on suggestions from previous studies (Derrick et al., 1998).  This 

criteria was that GRF frequencies above 10 Hz indicated impact was attenuated by 

passive mechanisms and frequencies below 10 Hz indicated impact was attenuated by 

active mechanisms. 

The degree of shock attenuation occurring during the stance phase with each 

footfall pattern was calculated by first using the frequency data of the tibia and head 

acceleration to determine the power spectral density (PSD) at frequencies 0 to the 

Nyquist frequency (Nyquist, FN = one half of sampling rate, therefore FN = 600) (Derrick 

et al., 1998; Hamill et al., 1995).  Powers from each stance phase were normalized into 1 

Hz bins (Winter, 1997).  After binning, the PSD was normalized in order for the sum of 
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the powers from 0 to FN to be equal to the mean squared amplitude of the data in the time 

domain.  Normalizing allowed for a group average to be calculated for each frequency 

bin.  A transfer function was then calculated to determine the degree of shock attenuation 

occurring between the tibia to the head by: 

 

Shock Attenuation = 10· log10(PSDhead/PSDtibia)   (7.1). 

 
For each frequency, the transfer function calculated the gain or attenuation, in decibels, 

between the tibia and head signals.  Positive values indicated a gain, or increase in signal 

strength between signals, and negative values indicated attenuation, or decrease in signal 

strength (Derrick et al., 1998; Hamill et al., 1995; Shorten and Winslow, 1992). 

 

Statistical Analysis 

Differences in each of the following variables were assessed between footfall 

from the over-ground running conditions: sagittal plane ankle and knee joint angle at 

initial contact, CT, IMP, ActP, VLR and the amplitude of the vertical GRF in the 

frequency domain from frequencies 1-50 Hz.  Additionally, the differences between 

footfall patterns in the following variables were assessed from the treadmill conditions: 

sagittal plane ankle joint and leg segment angles at initial contact, SF, SL, CT, HP1, HP2, 

PPTA, RPA, tibia and head acceleration in the frequency domain from frequencies 1-50 

Hz and the transfer function between the tibia and head.  Each variable was subjected to a 

mixed model analysis of variance with footfall pattern and group as fixed variables and 

subject nested within group as a random variable.  The differences between footfall 

patterns (2 levels) and between groups (2 levels) and the interaction of footfall pattern 
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and group were assessed with a significance level of α = 0.05.  When a significant group 

by pattern interaction was observed, a post-hoc assessment was performed by partitioning 

the interaction by group and by pattern.  Partitioning by group determined the 

significance between each footfall pattern within each group.  Partitioning by pattern 

determined the significance between groups within each footfall pattern.  Effect sizes 

were also calculated to determine if the differences between footfall pattern and groups 

were biologically meaningful.  An effect size (d) greater than 0.3 indicated a small effect, 

an effect size greater than 0.5 indicated a moderate effect and an effect size greater than 

0.8 indicated a large effect (Cohen, 1992).   

 

Results 

 

Treadmill Running Conditions 

Kinematics 

A significant group by pattern interaction was observed for the sagittal plane 

ankle angle at touchdown meaning that the RF and FF groups did not have a consistent 

change between patterns (p = 0.015) (Table 7.3).  Partitioning the interaction by pattern 

revealed that the RF group had a greater dorsiflexion angle during the RF pattern and a 

greater plantar flexion angle during the FF pattern compared to the FF group, although 

the differences between groups within each footfall pattern were not significant (RF 

pattern: p = 0.077, d = 0.7; FF pattern: p = 0.082, d = 0.4).  Partitioning the interaction by 

group revealed that the sagittal plane ankle angle was significantly different between 

patterns within each group (RF group: p < 0.001, d = 4.8; FF group: p < 0.001, d = 4.2).  
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Characteristically, the RF pattern resulted in a dorsiflexion angle at touchdown whereas 

the FF pattern resulted in a plantar flexion angle (Table 7.3).   

There was no significant group by pattern interaction (p = 0.456) or significant 

group main effect for sagittal plan leg angle at initial contact.  A significant pattern main 

effect indicated that the leg was oriented more vertically at touchdown during the FF 

pattern in both groups (p < 0.001; d = 0.9) (Table 7.3).  

 

Table 7.3:  Mean ± SD for the kinematic parameters measured from the treadmill conditions when 
performing the rearfoot (RF) and forefoot (FF) patterns.  Parameters include the sagittal plane ankle 
angle at touchdown (Ankle), the sagittal plane leg angle at touchdown (Leg), stride length (SL), stride 
frequency (SF) and contact time (CT).  Listed statistics include the p-value for the group by pattern 
interaction (GxP) and the p-value (d) for the group main effect (G) and the pattern main effect (P) if 
the interaction was not significant. 
 

RF Group FF Group GxP G P 

RF FF RF FF  

Ankle (deg) 
10.20 ± 

3.23 
-10.39 ± 

5.25 
7.94 ± 
2.98 

-8.16 ± 
4.69 

0.015 - - 

Leg (deg) 
-9.82 ± 

2.23 
-7.09 ±  

3.17 
-8.28 ± 

2.57 
-6.08 ± 

2.75 
0.456 

0.125 
(0.5) 

0.001 
(0.9) 

SL (m) 
2.47 ± 
0.17 

2.43 ± 
0.16 

2.47 ± 
0.16 

2.50 ± 
0.22 

0.029 - - 

SF 
(strides/s) 

85.50 ± 
5.66 

86.95 ± 
5.73 

85.81 ± 
5.14 

85.80 ± 
6.29 

0.066 
0.816 
(0.1) 

0.072 
(0.1) 

CT (s) 
0.25 ± 
0.02 

0.23 ± 
0.01 

0.24 ±  
0.02 

0.22 ± 
0.02 

0.631 
0.237 
(0.4) 

0.001 
(1.0) 

 

There was a significant group by pattern interaction for SL (p = 0.029) (Table 

7.3).  Partitioning the interaction by group revealed no significant differences in SL 

between patterns within the RF or FF groups (RF group: p = 0.081, d = 0.3; FF group: p 

= 0.160, d = 0.2).  Partitioning the interaction by pattern revealed that there was no 

significant difference in SL between groups when performing the RF pattern (p = 0.905, 

d < 0.1).  However, a significant difference between groups was observed during the FF 
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pattern (p = 0.004, d = 0.4).  The RF group decreased SL when performing the FF pattern 

compared to the RF pattern whereas the FF group increased SL with the FF pattern.  

There were no significant main effects or interactions observed for SF (p > 0.05, d = 0.1).  

No significant group by pattern interaction (p = 0.631) or main effect of group (p 

= 0.237; d = 0.4) was observed for CT (Table 7.3).  A significant pattern main effect 

revealed CT was greater during the RF pattern compared to the FF pattern (p < 0.001; d = 

1.0).  

 

Table 7.4:  Mean ± SD for the accelerometer characteristics measured from the treadmill conditions 
when performing the rearfoot (RF) and forefoot (FF) patterns.  Parameters include the first (HP1) 
and second (HP2) peak of the head acceleration signal, peak positive tibial acceleration (PPTA) and 
rate of positive tibial acceleration (RPA).  Listed statistics include the p-value for the group by 
pattern interaction (GxP) and the p-value (d) for the group main effect (G) and the pattern main 
effect (P) if the interaction was not significant. 
 

RF Group FF Group GxP G P 

RF FF RF  FF   

HP1 (g) 
0.51 ± 
0.28 

0.40 ± 
0.19 

0.52 ± 
0.22 

0.47 ± 
0.19 

0.425 
 

0.886 
(0.2) 

0.344 
(0.4) 

HP2 (g) 
1.01 ± 
0.24 

1.00 ± 
0.23 

1.01 ± 
0.25 

1.06 ± 
0.26 

0.055 
 

0.494 
(0.1) 

0.054 
(0.1) 

PPTA 
(g) 

5.07 ± 
1.46 

4.53 ± 
1.21 

5.31 ± 
1.35 

3.87 ± 
1.36 

0.020 
 

0.550 
(0.2) 

<0.001 
(0.7) 

RPA (g) 
220.16 ± 

86.66 
219.74 ± 

81.16 
206.08 ± 

66.53 
196.24 ± 

97.77 
0.644 

 
0.375 
(0.2) 

0.661 
(0.1) 

 

Head and Tibial Acceleration in the Time Domain 

No significant interactions or main effects were observed for HP1, HP2, and RPA 

(p>0.05) (Table 7.4) (Figure 7.1).  A significant group by pattern interaction was 

observed for PPTA (p = 0.020).  Partitioning the interaction by group revealed that RF 

running resulted in significantly greater PPTA compared to FF running within the RF 

group (p=0.046, d=0.4) and FF group (p< 0.001, d=1.1) (Table 7.4) (Figure 7.1C).  

Partitioning the interaction by pattern showed that the PPTA resulting from each footfall 
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pattern did not differ between groups when performing the RF pattern (p=0.362, d=0.2) 

but was significantly greater in the RF group compared to the FF group when performing 

the FF pattern (p=0.016, d=0.5) (Figure 7.1C & D). 

 

 

 

 
 
Figure 7.1:  Group mean time series of the head and tibial accelerometer data from the rearfoot (RF) 
and forefoot (FF) groups performing the RF and FF patterns.   
 

Head and Tibial Acceleration FFT Results 

A significant group by pattern interaction was observed for head acceleration 

amplitude at 31 Hz (p = 0.021) but at no other frequencies (p > 0.05) (Figure 7.2A & B).  

Partitioning the interaction by group revealed RF running resulted in greater head 
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acceleration amplitude at this frequency in the RF group (p = 0.013, d = 0.8) (Figure 

7.2A) but there was no difference between patterns in the FF group (p = 0.425, d = 0.3) 

(Figure 7.2B).  Partitioning the interaction by pattern revealed no significant differences 

between groups within each pattern that this frequency (p > 0.05, d < 0.6). 

 

 

 

 
 
Figure 7.2:  Group mean amplitude spectra of the head and tibia acceleration signal in the frequency 
domain compared between the rearfoot (RF) and forefoot (FF) patterns performed by the RF and FF 
groups 

 

No significant group main effects were observed for the head acceleration signal 

amplitude for frequencies between 1 – 50 Hz (p > 0.05, d < 0.2) (Figure 7.2A & B).  
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at frequencies 1 – 3, 6 – 8, 11, 13, 14, 17 – 24, 27 – 29, 34, 35, 44, 45 and 49 Hz (p < 

0.05).  The pattern main effect was not significant at all other frequencies (p > 0.05).  The 

frequencies at which a significant pattern main effect was observed indicated that RF 

running resulted in greater head acceleration amplitude for frequencies 1 – 4 Hz and 12 – 

32 Hz whereas FF running resulted in greater head acceleration amplitude for frequencies 

5 – 11 Hz and 33 – 50 Hz.  Large biological significance was observed at 7 and 8 Hz (d > 

0.8) but the difference was moderate or low for all other frequencies (d < 0.7).   

A significant group by pattern interaction was observed for tibial acceleration 

amplitude at frequencies 12 and 23 – 26 Hz (p < 0.05) whereas no other frequencies 

resulted in a significant interaction (p > 0.05) (Figure 7.2C & D).  Partitioning the 

interaction by group revealed that in the RF group, RF running resulted in significantly 

greater tibial acceleration amplitude for frequencies 12 and 23 Hz (p < 0.05, d: 0.8 – 2.5) 

but not 24 – 26 Hz (p > 0.05, d: 0.0 – 0.3) (Figure 7.2C).  In the FF group, RF running 

resulted in significantly greater tibial acceleration amplitude for each of these frequencies 

(p < 0.05, d: 1.2 – 2.1) (Figure 7.2D).  Partitioning the interaction by pattern revealed 

that, during RF running, the FF group had greater tibial acceleration amplitude at 12 Hz 

compared to the RF group (p < 0.05, d = 0.8) but the differences were not significant for 

23 – 26 Hz (p < 0.05, d: 0.2 – 0.3).   During FF running, the RF group had significantly 

greater tibial acceleration amplitude compared to the FF group at 23 – 26 Hz (p < 0.05, d: 

1.1 – 1.4) but not at 12 Hz (p > 0.05, d = 0.4) (Figure 7.2C & D). 

Significant group main effects were observed for the tibial acceleration amplitude 

for frequencies 27 – 30, 46, and 47 Hz (p < 0.05, d: 0.6 – 0.9) (Figure 7.2C & D).  The 

RF group had greater tibial acceleration amplitudes for these frequencies compared to the 
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FF group (p < 0.05, d = 0.6 – 0.9).  No significant group main effects were observed at 

any other frequency (p > 0.05).  Significant pattern main effects were observed for tibial 

acceleration amplitude for frequencies 1 – 22, 30 – 33, and 41 – 48 Hz (p < 0.05).  The 

RF pattern resulted in greater tibial acceleration amplitudes compared to the FF pattern at 

these frequencies.  Large biological significance was observed for frequencies 2 – 8 Hz 

and 10 – 24 Hz (d: 0.8 – 2.3) whereas all other frequencies that showed a significant 

pattern main effect had moderate or low biological significance (d: 0.4 – 0.7).  All other 

frequencies did not result in a significant pattern main effect (p > 0.05).  Additionally, no 

significant interaction or pattern main effects were observed for tibial acceleration 

amplitude at 34 – 40 and 49 – 50 Hz (p > 0.05). 

Head and Tibial Acceleration PSD Results 

The PSD analysis of the head acceleration signal revealed a significant group by 

pattern interaction at 17, 30, 34 and 43 Hz (p < 0.05) but at no other frequency (p > 0.05) 

(Figure 7.3A & B).  Partitioning the interaction by group revealed that the RF group had 

greater head acceleration power at 17 and 30 Hz during RF running compared to FF 

running (p < 0.003, d: 0.7 – 1.0) but no differences between patterns were observed at 34 

and 43 Hz (p > 0.05; d: 0.1 – 0.2) (Figure 7.3A).  For the FF group, the opposite was 

observed: no significant difference between patterns was observed at 17 and 30 Hz (p > 

0.05, d = 0.1 – 0.3) but FF running resulted in greater head acceleration power at 34 and 

43 Hz (p < 0.001, d = 1.1 – 1.3) (Figure 7.3B).  Partitioning the interaction by pattern 

revealed no significant difference between groups when performing the RF pattern (p > 

0.05, d: 0.2 – 0.6).  However, when performing the FF pattern, the FF group had greater 

head acceleration power at 17, 34 and 43 Hz (p < 0.035, d: 0.5 – 07).  However, no 
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difference was observed between groups at 30 Hz despite a large biological significance 

at 30 Hz (p = 0.077, d = 0.9). 

 

 

 

 
 
Figure 7.3:  Group mean power spectra of the head and tibia acceleration signals in the frequency 
domain compared between the rearfoot (RF) and forefoot (FF) patterns performed by the RF and FF 
groups. 
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11, 13, 18, 20 – 23, 33 – 39, 42 – 44 and 46 – 48 Hz (p < 0.013, d: 0.2 – 1.1) but at no 

other frequency (p > 0.05).  RF running resulted in greater head acceleration power at 

frequencies 1 – 3, 13, 18, and 20 – 23 Hz whereas FF running resulted in greater head 

acceleration power at frequencies 5 – 11, 33 – 39, 42 – 44 and 46 – 48 Hz.  Large 

biological significance was observed at 6 – 8, 10, 37 and 38 Hz (d: 0.8 – 1.1). 

PSD analysis of the tibia acceleration signal revealed a significant group by 

pattern interaction at 5, 6, 11, 12, 24 and 25 Hz (p < 0.05) (Figure 7.3C & D).  

Partitioning the interaction by group revealed that both groups had significantly greater 

tibial acceleration power when running with a RF pattern compared to the FF pattern  for 

frequencies 5, 6, 11, and 12 Hz (p < 0.001, d: 1.2 – 2.1).  However, no significant 

difference between patterns was observed in the RF group for frequencies 24 and 25 Hz 

(p > 0.05, d: 0.1 – 0.3) (Figure 7.3C) whereas the RF pattern resulted in greater tibial 

acceleration power in the FF group at these frequencies (p = 0.001, d = 1.3) (Figure 

7.3D).  Partitioning the interaction by pattern revealed the RF group had greater tibial 

acceleration power compared to the FF group for frequencies 5, 6, 11, and 12 Hz when 

performing the RF pattern (p < 0.002, d: 0.6 – 0.8) but no significant difference was 

observed between groups when performing the RF pattern for frequencies 24 and 25 Hz 

(p > 0.05, d = 0.2 – 0.3).  During the FF pattern, there was no significant difference 

between groups in tibial acceleration power at 5, 6, 11, and 12 Hz (p > 0.05, d = 0.1- 0.4) 

but the RF group had significantly greater tibial acceleration power compared to the FF 

group at 24 and 25 Hz (p < 0.044, d = 1.4). 

For frequencies at which no significant interaction was found, PSD analysis of the 

tibia acceleration signal revealed group main effects at 27 – 29 Hz (p < 0.05, d: 0.6 – 
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0.7).  The RF group had greater tibial acceleration power at these frequencies compared 

to the FF group (Figure 7.3C).  No significant group main effects were observed at any 

other frequency (p > 0.05).  A significant pattern main effect was observed for tibial 

acceleration power at frequencies 1, 2, 4, 7, 8, 10, 13 – 23, 26, 30 – 32 and 41 – 48 Hz (p 

< 0.033, d: 0.4 – 2.2).  Large biological significance was observed for frequencies 1, 2, 4, 

7, and 13 - 23 Hz (d: 0.8 – 2.2) whereas moderate to small biological significance was 

observed for frequencies 8, 10, 26, 30 – 32 and 41 – 48 Hz (d: 0.4 – 0.7).  The RF pattern 

resulted in greater tibial acceleration power for all frequencies in which a significant 

pattern main effect was found except 1 and 2 Hz in which the FF pattern resulted in 

greater tibial acceleration power.   

Impact Shock Attenuation 

For both running patterns, there was a gain in the head signal relative to the tibia 

for frequencies below approximately 6 Hz and all other frequencies showed attenuation 

in the head signal relative to the tibia (Figure 7.4).  However, the first frequency at which 

attenuation in the signal was observed differed between running patterns and groups.  In 

the RF group, attenuation began at 5 Hz during RF running but began at 6 Hz during FF 

running (Figure 7.4A).  In the FF group, attenuation began at 6 Hz during RF running and 

7 Hz during FF running (Figure 7.4B). 

A significant group by pattern interaction was observed for the transfer function at 

frequencies 13, 23, 26, 34, 35 and 49 Hz (p < 0.05).  Partitioning the interaction by group 

revealed no significant difference in shock attenuation between patterns in the RF group 

at these frequencies (p > 0.05, d < 0.5) (Figure 7.4A) whereas the FF group had greater 

shock attenuation when performing the RF pattern compared to the FF pattern (p < 0.05, 
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d: 0.7 – 1.2) (Figure 7.4B).  Partitioning the interaction by pattern revealed no significant 

difference between groups when performing the RF pattern at frequencies at these 

frequencies (p > 0.05, d: 0.0 – 0.6).  However, when performing the FF pattern, the RF 

group had greater shock attenuation then the FF group at these frequencies (p < 0.05, d: 

0.5 – 1.2) except at 35 Hz in which no difference was found (p > 0.05, d = 0.5). 

 

 

 
 
Figure 7.4:  Group mean transfer function between leg and head accelerometers compared between 
the rearfoot (RF) and forefoot (FF) patterns performed by the RF and FF groups. 
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greater shock attenuation at these frequencies compared to the FF group (Figure 7.4A & 

B).  A significant group main effect was not observed for the transfer function at any 

other frequency (p > 0.05).  A significant pattern main effect was observed for 

frequencies 1, 2, 4 – 8, 10 – 12, 14 – 22, 32, 33, 36, 38 – 40, 42 – 48 Hz (p < 0.05, d: 0.4 
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– 1.1).  RF running resulted in a greater gain in the head signal relative to the tibia for 

frequencies 1 and 2 Hz whereas FF running resulted in a greater gain for frequencies 4 – 

6 Hz.  Additionally, RF running resulted in greater attenuation in the head signal relative 

to the tibia for all frequencies above 6 Hz in which a significant pattern main effect was 

found.   

 

Over-ground Running Conditions 

Kinematics  

During the over-ground running conditions, no significant group by pattern 

interactions or group main effects were observed for the sagittal plane ankle and knee 

joint angles at touchdown (p > 0.05, d < 0.2).  These results indicate that both groups 

were able to successfully replicate the kinematics of the alternative pattern (Table 7.5).  A 

significant pattern main effect was observed for both sagittal plane ankle (p < 0.001, d = 

6.1) and knee (p < 0.001, d = 0.5) joint angles at touchdown.  Characteristically, the RF 

pattern resulted in a dorsiflexed position at touchdown whereas the FF pattern resulted in 

a plantar flexed position.  FF running resulted in a greater knee flexion angle at 

touchdown compared to RF running, but with only moderate biological significance (d = 

0.5).   

No significant group main effects or group by pattern interactions were found for 

contact time during the over ground conditions (p > 0.05, d = 0.5) (Table 7.5).  However, 

a significant pattern main effect was observed with large biological significance (p < 

0.001, d = 0.8).  RF running resulted in a longer contact time compared to FF running. 
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Table 7.5:  Mean ± SD for the kinematic parameters measured from the over-ground running 
conditions when performing the rearfoot (RF) and forefoot (FF) patterns.  Parameters include the 
ankle angle at touchdown (Ankle), knee angle at touchdown (Knee) and contact time (CT).  Listed 
statistics include the p-value for the group by pattern interaction (GxP) and the p-value (d) for the 
group main effect (G) and the pattern main effect (P) if the interaction was not significant. 
 

RF Group FF Group GxP G P 

RF FF RF FF  

Ankle (deg) 
15.18 ± 

3.28 
-12.35 ± 

4.63 
15.04 ± 

4.61 
-10.66 ± 

4.98 
0.210 

 
0.422 
(0.2) 

<0.001 
(6.1) 

Knee (deg) 
13.81 ± 

4.61 
17.28 ± 

5.85 
13.97 ± 

3.48 
15.53 ± 

4.40 
0.076 

 
0.623 
(0.2) 

<0.001 
(0.5) 

CT (s) 
0.24 ± 
0.02 

0.23 ± 
0.01 

0.23 ± 
0.02 

0.22 ± 
0.02 

0.545 
 

0.111 
(0.5) 

<0.001 
(0.8) 

 

Vertical Ground Reaction Force Characteristics 

The IMP only occurred during the RF pattern condition (Figure 7.5).  No 

significant group by pattern interaction (p = 0.986) or a group main effect (p = 0.068, d = 

0.4) was observed for the IMP (Table 7.6).  However, a significant pattern main effect 

was observed reflecting that RF running resulted in a greater IMP compared to FF 

running (p < 0.001, d = 3.1). 

 

Table 7.6:  Mean ± SD for the vertical ground reaction force (GRF) characteristics measured from 
the over-ground running conditions when performing the rearfoot (RF) and forefoot (FF) patterns.  
Parameters include the magnitude of the impact (IMP) and active (ActP) peaks and the vertical 
loading rate (VLR).  Listed statistics include the p-value for the group by pattern interaction (GxP) 
and the p-value (d) for the group main effect (G) and the pattern main effect (P) if the interaction 
was not significant. 
 

RF Group FF Group GxP G P 

RF FF RF FF  

IMP (BW) 
1.71 ± 
0.29 

0.95 ± 
0.23 

1.82 ± 
0.23 

1.06 ± 
0.23 

0.986 
 

0.068 
(0.4) 

<0.001 
(3.1) 

ActP (BW) 
2.44 ± 
0.17 

2.55 ± 
0.20 

2.52 ± 
0.21 

2.70 ± 
0.22 

0.126 
 

0.044 
(0.6) 

<0.001 
(0.7) 

VLR (BW/s) 
67.91 ± 
20.21 

38.11 ± 
8.89 

70.06 ± 
15.63 

41.92 ± 
8.21 

0.737 
 

0.307 
(0.2) 

<0.001 
(2.2) 
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No significant group by pattern interaction was observed for the ActP (p = 0.126).  

However, a significant group main effect was observed (p = 0.044, d = 0.6) (Figure 7.5) 

(Table 7.6).  The ActP was greater in the FF group compared to the RF group.  A 

significant pattern main effect was also observed for ActP reflecting that the ActP was 

greater during with the FF pattern (p < 0.001, d = 0.7).   

No significant group by pattern interaction (p = 0.737) or a group main effect (p = 

0.307, d = 0.2) were observed for VLR (Table 7.6).  However, RF running resulted in a 

greater VLR compared to FF running as reflected by a significant pattern main effect (p < 

0.001, d = 2.2).   

 

 

 
 
Figure 7.5:  Group mean vertical ground reaction force (GRF) of the vertical ground reaction force 
in the time domain compared between  the rearfoot (RF) and forefoot (FF) patterns performed by 
the RF and FF groups. 
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Figure 7.6:  Group mean amplitude spectra of the vertical ground reaction force (GRF) in the 
frequency domain compared between the rearfoot (RF) and forefoot (FF) patterns performed by the 
RF and FF groups. 
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except for 17 Hz (p < 0.05, d: 0.3 – 1.9).  FF running resulted in greater vertical GRF 

amplitudes for frequencies 1 – 16 Hz compared to RF running; however, RF running 

resulted in greater amplitudes for frequencies 18 – 43 Hz compared to FF running.  

Differences between patterns with the largest biological significance (i.e. d > 1.0) 

included 5 – 8, 10 – 14, and 22 – 36 Hz.   

 

Discussion 

The first purpose of this study was to determine the difference in impact shock 

attenuation between footfall patterns.  The first hypothesis, that RF running would result 

in greater shock attenuation between the tibia and the head than FF running, was 

supported.  RF running resulted in greater shock attenuation of most frequencies between 

6 – 26 Hz and 32 – 49 Hz.  A greater degree of shock attenuation during RF running may 

be a result of the body responding to an increased foot-ground impact (Derrick et al., 

1998; Hamill et al., 1995; Shorten and Winslow, 1992).  Tibial acceleration and 

amplitude were greater at nearly all frequencies with the RF pattern, which may reflect a 

greater impact load on the system with this footfall pattern.  However, RF running 

resulted in greater PPTA of the tibia, which may only explain the increased tibia 

acceleration amplitude and powers at frequencies between 12 – 20 Hz (Hamill et al., 

1995; Shorten and Winslow, 1992).  Frequencies below 8 Hz, representing the active 

peak (Derrick et al., 1998; Shorten and Winslow, 1992), had greater tibial amplitude and 

power with the RF pattern despite the FF pattern resulting in greater ActP.  Therefore, 

differences in leg segment motion may explain why the RF pattern had greater tibial 

amplitude and power at frequencies lower than 8 Hz (Clarke et al., 1985; Derrick et al., 
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1998; Hamill et al., 1995; Shorten and Winslow, 1992).  Interestingly, tibial acceleration 

amplitude and power were not different between footfall patterns for frequencies between 

34 – 40 Hz yet RF running resulted in greater attenuation of the frequencies in this range.  

The source of tibial acceleration frequencies between 20 – 60 Hz has not been well 

documented thus it is unknown why these frequencies had different amplitudes and 

powers between footfall patterns.  However, studies have shown that kinematic 

adjustments and muscular contractions may be responsible for attenuating these 

frequencies (Boyer and Nigg, 2007; Lafortune et al., 1995; Lafortune et al., 1996; Nigg et 

al., 1981; Voloshin et al., 1985).  Therefore, the RF pattern may result in greater 

attenuation by these mechanisms since attenuation was greater with this pattern for 

frequencies 32 – 49 Hz. 

The RF pattern uses the heel of the shoe and the shoe fat pad for attenuating some 

impact shock.  Therefore, the second purpose of this study was to determine impact shock 

attenuation was improved if natural FF runners performed the RF pattern.  It was 

hypothesized that natural FF runners would increase the amount of impact shock 

attenuation when switching to a RF pattern and natural RF runners would not increase the 

amount of impact shock attenuation when switching to a FF pattern.  In both groups, RF 

running resulted in greater shock attenuation of frequencies 6 – 26 Hz and 32–49 Hz, 

which supports this hypothesis.  However, the natural RF and FF groups did not have a 

consistent response in shock attenuation between patterns for the frequencies of 13, 23, 

26, 34, 35 and 49 Hz.  At these frequencies, the FF group had greater shock attenuation 

with large a large effect size, and thus a large biological relevance, when performing the 

RF pattern compared to the FF pattern.  However, the RF group did not have a significant 



259 

difference in shock attenuation between patterns at these frequencies but moderate effect 

size was observed, suggesting the differences may have some biological relevance.  

Additionally, significant differences between groups within a single footfall pattern 

occurred with six or less individual head or tibial frequencies between 1–50 Hz.  

However, both groups were able to successfully replicate the alternate footfall pattern as 

indicated from the ankle joint angle.  The kinematic similarities suggest that these 

differences may be a result of normal variation between participants and groups.  

Identifying differences in frequency ranges may be more meaningful than examining 

individual frequencies.  

Previous investigations have shown that shock attenuation increases with greater 

impact magnitudes in order to maintain head stabilization (Derrick et al., 1998; Hamill et 

al., 1995; Shorten and Winslow, 1992).  In the present study, the RF pattern resulted in 

greater head acceleration power and amplitude at frequencies of 13 – 24 Hz frequencies, 

which represent the impact peak (Derrick et al., 1998; Hamill et al., 1995; Nigg et al., 

1981; Nigg and Wakeling, 2001; Shorten and Winslow, 1992).  Increased amplitude and 

power at these frequencies may be a result of greater PPTA with the RF pattern.  

However, the difference in head acceleration in the frequency domain between patterns 

had a small to moderate effect size in this frequency range.  A low effect size suggests 

that the statistical differences observed in head acceleration in the time and frequency 

domains may not be biologically meaningful.  Additionally, HP1, which occurred with a 

similar time course as the PPTA, was not different between footfall patterns.  This 

finding suggests that the differences between footfall patterns in head acceleration for 

frequencies representing the impact peak may not be biologically meaningful.  Therefore, 
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the increased amount of attenuation occurring with the RF pattern may be sufficient to 

compensate for greater loading of the tibia and maintain adequate head acceleration as a 

result of the impact phase. 

HP2 was also not different between footfall patterns although FF running resulted 

in greater head acceleration powers in the 5 – 11 Hz range, most with a large effect size.  

This frequency range spans those that represent the active peak and active movement of 

the leg during stance (Bobbert et al., 1991; Hamill et al., 1995; Shorten and Winslow, 

1992).  Greater head acceleration powers in this range may be a result of greater vertical 

GRF active peak generated with FF running (Laughton et al., 2003; Oakley and Pratt, 

1988).  Although head acceleration power was greater with the FF pattern between 5 – 11 

Hz, the degree of shock attenuation was greater with the RF pattern in this range because 

of the relative difference in tibia and head acceleration signal power.  Therefore, RF 

running resulted in greater shock attenuation because tibial acceleration power was also 

greater with this pattern.  Findings from previous studies have suggested the body may 

have a reduced capacity for attenuating frequencies between 3 – 8 Hz (Derrick et al., 

1998; Lafortune et al., 1996).  Despite RF running resulting in greater tibial acceleration 

power of frequencies in this range, head acceleration power in this range was decreased 

compared to the FF pattern.  These findings may suggest that FF running may not be as 

effective at attenuating these low frequency components and reducing head acceleration 

as a result of greater active GRFs.   Alternatively, attenuation of frequencies between 3 – 

8 Hz may have been lower with the FF pattern because the tibial acceleration power in 

this range was also lower. 
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The tibial acceleration results support previous findings that the RF pattern results 

in increased tibial acceleration in the time domain (Laughton et al., 2003; Oakley and 

Pratt, 1988).  The present study demonstrated that there is an increase in shock 

attenuation with the RF pattern in order to compensate for the increased tibial load to 

prevent excessive head acceleration.  However, the mechanisms used to attenuate the 

impact shock may be different between footfall patterns.  Therefore, the third purpose of 

this study was to determine if there was a difference in impact shock attenuation 

mechanisms between footfall patterns.  The present study examined the frequency 

content of the vertical GRF for this purpose because the impact shock wave, and thus the 

frequencies that must be attenuated, depends on the magnitude and timing of the GRF 

(Lafortune et al., 1995).  It was hypothesized that the RF pattern would have a greater 

reliance on passive shock attenuation mechanisms whereas the FF pattern would have a 

greater reliance on active shock attenuation mechanisms.  RF running resulted in greater 

vertical GRF amplitudes at frequencies 18 – 43 Hz.  These higher frequency components 

are believed to be attenuated by passive mechanisms such as deformation of the shoe and 

body tissues such as the heel fat pad, ligaments, bone and articular cartilage (Chu et al., 

1986; Paul et al., 1978).  Therefore, RF running may have an increased reliance on these 

passive mechanisms to attenuate vertical GRFs and impact shock.  Conversely, FF 

pattern resulted in greater vertical GRF amplitudes at frequencies between 1 – 16 Hz.  

Active mechanisms, such as muscle activity and joint position, may be responsible for 

attenuating low frequency components (Paul et al., 1978).  Therefore, FF running may 

have an increased reliance on muscle actions to attenuate vertical GRF frequencies, 
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especially those in the 4 – 8 Hz range, which are generated by active forces (Nigg et al., 

1981; Potthast et al., 2010; Shorten and Mientjes, 2003).   

Both footfall patterns resulted in high amplitudes above 10 Hz, which was used to 

discriminate between shock attenuation mechanisms.  A combination of active and 

passive mechanisms will be used for shock attenuation with both footfall patterns.  

However, the RF pattern may result in a greater reliance on passive mechanisms because 

it resulted in greater amplitudes of frequencies above 18 Hz.  Conversely, the FF pattern 

may have an increased reliance on active mechanisms because it resulted in greater GRF 

amplitudes of frequencies below 10 Hz, despite it also resulting in greater amplitudes for 

frequencies between 10 – 16 Hz.  These differences in frequency amplitude between 

footfall patterns may affect how specific tissues adapt or are injured with each footfall 

pattern. 

Previous studies have indicated that bone is responsible for absorbing frequencies 

above 18 Hz (Paul et al., 1978).  Bone may be more susceptible to higher frequency 

accelerations because movement of rigid structures occurs over a shorter time interval 

then other tissues such as muscle.  Bone is subjected to high accelerations at impact while 

absorption of lower frequencies through movement of soft tissue is delayed (Nigg, 2011).  

The forces generated from running impact loads result in increased bone mass (Carter et 

al., 1981; Frost, 1986; Martin and Burr, 1989; Nigg, 2011).  However, strain rate and 

signal frequency may be a stronger predictor of bone mass than impact magnitude (Nigg, 

2011; O'Connor et al., 1982; Qin et al., 1998; Rubin et al., 2001).  In particular, loading 

from frequencies greater than 15 Hz may be required to maintain adequate bone density 

(McLeod and Rubin, 1990).  Therefore, RF running may be superior for bone health 
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because impact magnitude, vertical loading rate, and the amplitude of vertical GRF 

frequencies above 18 Hz were found to be greater with RF running whereas FF running 

resulted in greater amplitudes for frequencies below 16 Hz.  

Despite the beneficial adaptations of loading, increased attenuation will result in 

injury if a tissue is overloaded (Voloshin and Wosk, 1982; Voloshin et al., 1981).  

Although bone strain due to impact forces generated with RF running is typically below 

cortical bone failure limits (Burr et al., 1996; Milgrom et al., 2000; Milgrom et al., 2002; 

Nigg, 2011), some studies have found that greater loading may be related to tibial stress 

fracture (Edwards et al., 2008; Grimston et al., 1991; Milner et al., 2006).  However, 

loading has not been related to tibial stress fracture in all studies (Bennell et al., 2004; 

Crossley et al., 1999).  Both RF and FF patterns generate frequencies that will cause the 

micro-damage required for increasing bone density.  However, neither footfall pattern 

will prevent bone injury if sufficient time for remodeling between bouts is not given.   

The bones at which the impact shock is initially applied may also affect injury 

mechanisms and shock wave transmission because of bone size, density, and elastic 

properties (Kinsler and Frey, 1950; Radin and Paul, 1970).  In RF running, plantar 

pressure is applied to the heel fat pad and calcaneus at initial ground contact and shifts to 

under the metatarsal heads during push-off.  Metatarsal stress fractures from running are 

more common than calcaneus stress fractures (Fourchet et al., 2011; Fredericson et al., 

2006), likely as a result of the metatarsal heads experience greater plantar pressures 

during the push-off phase of RF running compared to the pressures applied to the 

calcaneus at impact (Maiwald et al., 2008).  Conversely, in FF running, high plantar 

pressure is applied to the metatarsal pad and metatarsal heads throughout the stance 
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phase.  Although metatarsal plantar pressure at impact has yet to be investigated in FF 

running, the amount of time at which force is applied to the metatarsals during the stance 

phase is much longer than with RF running.  Therefore, the small bones of the 

metatarsals may not be able to withstand the strain caused by both impact and push-off 

which may lead to an increase in metatarsal injury rates with FF running.     

Other passive mechanisms that attenuate impact shock include deformation of the 

shoe, heel fat pad, ligaments, synovial fluid and articular cartilage (Chu et al., 1986; Paul 

et al., 1978; Radin and Paul, 1970).  The heel is a significant contributor to shock 

attenuation in RF running because it absorbs approximately 85% of the energy resulting 

from impact and may attenuate all frequencies (Cavanagh et al., 1984; Paul et al., 1978).  

The material properties of shoe cushioning in the heel are also able to reduce impact 

acceleration by up to 38% and substantially reduces loading compared to RF running 

when barefoot running (De Wit et al., 2000; Frederick et al., 1984; Light et al., 1980; 

MacLellan and Vyvyan, 1981; Oakley and Pratt, 1988).  The FF pattern cannot take 

advantage of the heel fat pad or shoe cushioning in the heel to reduce impact shock which 

will result in increased attenuation by other tissues.  Preventing heel contact may be a 

contributing factor to the reduced shock attenuation occurring with FF running compared 

to RF running in the present study.   Therefore, reduced loading with the FF pattern may 

not necessarily result in injury prevention compared to RF running. 

In addition to passive mechanisms, active shock attenuation mechanisms such as 

muscle contractions may also responsible for attenuating large amounts of impact shock 

(Radin and Paul, 1970).  Muscle contractions that specifically responded to an impact 

stimulus may only be effective at attenuating frequencies below 10 Hz (Paul et al., 1978) 
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and thus may have a greater role in attenuating shock in FF running.  However, the 

intensity, timing and frequency of muscle activation will vary before and after impact to 

change the material properties and increase damping of impact shock wave frequencies 

greater than 40 or 50 Hz (Boyer and Nigg, 2007).  These variations in muscle activation 

will affect the stiffness amount of joint stiffness during running and the capacity to 

perform negative work and attenuate impact shock (Hamill et al., 2000). Reduced leg or 

joint stiffness results in an increase in shock attenuation (McMahon et al., 1987).  Results 

from previous studies on leg and joint stiffness in RF and FF running suggest that  a 

compliant ankle is responsible for active shock attenuation during FF running and a 

compliant knee is responsible for active shock attenuation during RF running (Hamill et 

al., 2000; Laughton et al., 2003).  The knee has a greater capacity for shock absorption 

because of its wide range of possible joint positions as well as having more shock 

absorbing structural components compared to the ankle (Christiansen et al., 2008; Radin 

and Paul, 1970).   These observations from previous studies may explain the greater 

shock attenuation occurring with the RF pattern in the present study.  Previous studies 

have also found that increased stiffness may result in bony injuries whereas increased 

compliance may result in soft tissue injuries (Butler et al., 2003; Milner et al., 2006; 

Milner et al., 2007).  Together with the present study, these findings suggest that the FF 

pattern may not reduce the risk of developing injuries more so than the RF pattern.  

However, prospective studies relating joint stiffness and injury have yet to be performed.   

Kinematic adjustments are an additional active shock attenuation mechanism, 

particularly for frequencies above 5 Hz (Clarke et al., 1984; Derrick et al., 1998; 

Lafortune et al., 1996a; Lafortune et al., 1996; Winter, 1983).  Different segment and 
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joint positions can also affect the transmissibility of the impact shock (Griffin, 1990; 

Lafortune et al., 1996).  Greater dorsiflexion and knee flexion angles at initial contact in 

RF running have been shown to decrease the magnitude of the impact peak and increase 

shock absorption by increasing eccentric activity of the tibialis anterior and quadriceps, 

respectively (Derrick et al., 1998; Gerritsen et al., 1995; Lafortune et al., 1996a; 

Lafortune et al., 1996).  Although shock attenuation was not measured during the over-

ground conditions in the present study, FF running resulted in a greater knee flexion 

angle at touchdown.  If the knee is too extended, the knee extensor muscles cannot 

contribute to shock attenuation which may result in a greater reliance or overload of 

passive mechanisms, especially in the hip or back (Derrick et al., 1998; Voloshin and 

Wosk, 1982).  It has been suggested that increasing knee flexion may shift the amount of 

shock attenuation from passive tissue to muscular contractions (Edwards et al., In Press).  

Therefore, the FF pattern may utilize knee flexion angles at impact to attenuate impact 

shock, but decreased knee stiffness resulting from the knee range of motion and joint 

moments may result in the RF pattern having a greater capacity for shock attenuation.  

Previous studies have shown that increased stride length results in greater knee 

flexion angles and greater shock attenuation (Bobbert et al., 1991; Bobbert et al., 1992; 

Clarke et al., 1985; Derrick et al., 1998; Hamill et al., 1995; Mercer et al., 2003).   In the 

present study, stride length and stride frequency measured during the treadmill conditions 

were not statistically different between footfall patterns, which is consistent with previous 

studies (Ardigo et al., 1995).  Similar stride parameters between footfall patterns suggests 

that the differences in frequency components of the vertical GRF and acceleration 

measures were a result of the footfall pattern specifically rather than a consequential 
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change in stride length or stride frequency.  It may also be unlikely that the differences in 

shock attenuation between footfall patterns can be attributed to the small and non-

significant differences in stride parameters.  

Regardless of the mechanism, an over-reliance on one mechanism or tissue for 

attenuation may lead to inadequate shock absorption and tissue damage (Derrick et al., 

1998; Voloshin and Wosk, 1982; Wosk and Voloshin, 1981).  Varying amounts of shock 

attenuation between footfall patterns suggests that the body has the capacity to manage a 

range of impulsive loads in order to protect the head from excessive acceleration.  It is 

possible that the increased requirement of the body tissues to attenuate greater impulsive 

loads may be detrimental.  It is also possible that the tissues adapt to greater impulsive 

loads in a beneficial manner; similar to skeletal muscle adaptation to high intensity 

resistance training.  In addition to increased bone density, other tissues, such as muscle 

and tendon, have also been shown to adapt beneficially to loading from running (Rosager 

et al., 2002; Stone et al., 1996).  However, the threshold between injury and adaptation is 

currently unknown.   

Previous literature has focused on impact related variables as a major contributor 

to running injuries.  The absence of the vertical IMP with FF running is the basis for the 

argument promoting that this pattern is beneficial for injury prevention (Cavanagh and 

Lafortune, 1980; Davis et al., 2010; Laughton et al., 2003; Lieberman et al., 2010; 

Oakley and Pratt, 1988; Pratt, 1989; Williams et al., 2000).  However, results from the 

present study showed that the frequencies representative of the IMP were present in both 

footfall patterns.  This result suggests that the FF pattern contains an IMP that is not 

visible in the time domain.  Therefore, claims that suggest FF running may prevent 
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injuries due to the absence of the impact peak may be unjustified.  It is more likely that 

the difference in time domain impact variables between patterns do not result in one 

pattern being more injurious than another, but that the injuries each pattern may be 

susceptible to may be different. 

Frequencies representing the impact peak span 10 – 20 Hz because the magnitude 

and timing of the impact peak can change with running speed, stride frequency and joint 

position (Bobbert et al., 1992; Cavanagh and Lafortune, 1980; Clarke et al., 1985; 

Gerritsen et al., 1995; Hamill et al., 1983).  Greater amplitudes at the low end of the 10 – 

20 Hz range in FF running may suggest that the time course and magnitude of the impact 

peak may be reduced compared to the RF pattern.  Greater amplitudes at the high end of 

this range in RF may be due to greater IMP and VLR observed with RF running in the 

present study.  These results must be interpreted cautiously because the timing of the IMP 

during FF running was estimated to occur at approximately 25 ms (Bobbert et al., 1992; 

Cavanagh and Lafortune, 1980; Munro et al., 1987).  Although this estimation was 

similar to the time-to-peak IMP observed during RF running, the GRF frequency data 

from the present study suggest that the timing and amplitude of the IMP was different 

between footfall patterns.  A previous study calculated IMP and VLR from a small shift 

in the IMP observed in FF running and found no significant differences compared to the 

RF pattern (Laughton et al., 2003).  This shift in the impact peak is further evidence that 

the IMP is present in FF running but observing this shift may not be possible with every 

trial.  Therefore, calculating VLR from the summated vertical GRF profile may not be 

accurate or meaningful.  Decomposing the vertical GRF profile into its separate 
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waveform components may be necessary to accurately identify the true timing and 

magnitude of the IMP in FF running. 

It may be argued that FF running remains a preventative technique for running 

injuries because it resulted in reduced IMP and VLR compared to RF running.  Although 

several human studies have suggested tibial shock and impact peak magnitude or loading 

rate are related to developing running injuries (Davis et al., 2010; Hreljac et al., 2000; 

Milner et al., 2006; Voloshin and Wosk, 1982; Zifchock et al., 2006), several other 

studies have not identified this relationship (Azevedo et al., 2009; Bredeweg, 2011; 

McCrory et al., 1999; Nigg, 1997; Pohl et al., 2008; Scott and Winter, 1990).  

Additionally, in some studies reporting a relationship between IMP or VLR and injury 

reported differences in IMP of less than 0.5 body-weights (Davis et al., 2010; Hreljac et 

al., 2000; Milner et al., 2006).  In other words, a non-injured individual may have the 

same impact related characteristics as an injured individual.  It is likely that running 

injuries are a result of many interrelated variables such as loading magnitude, loading 

rate, and the total dose (Edwards et al., 2008; Milner et al., 2006).  Although impact 

forces are claimed to be the main contributor to running injuries, injuries are more likely 

due to a combination of anatomical and biomechanical abnormalities (Hreljac, 2004).  

Impact forces may only result in injury when combined with abnormal anatomy, 

kinematics and training errors such as excessive duration or inadequate rest (Derrick, 

2004).   

Other loading parameters seem to be ignored in the running injury literature.  

Joint loading resulting from the active peak can be 3 – 5 times greater than the loads 

resulting from the impact peak (Burdett, 1982; Harrison et al., 1986; Scott and Winter, 
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1990).  Additionally, nearly 75% of running injuries, including shin splints, stress 

fractures, plantar fasciitis and chondromalacia, may occur because of the large forces 

generated during propulsion when the joint forces across the knee and ankle are greatest 

(Dickinson et al., 1985; Winter, 1983).  These findings suggest the active vertical GRF 

may also be a significant contributor to running injury mechanisms (Dickinson et al., 

1985; Messier et al., 1991; Nigg, 2011; Radin, 1972; Winter, 1983) which may have 

greater implications with FF running compared to RF running.  Therefore, the FF pattern 

may not be as beneficial for preventing running injuries as previously suggested.  It is 

likely that injury from repetitive loading is a function of the method or effectiveness of 

shock absorption rather than the magnitude or rate of the load itself.   Despite the 

mechanical or anatomical parameter investigated, there is currently no consensus as to 

what will prevent or cause a running injury (Hreljac, 2004). 

 

Conclusion 

Although greater impact force characteristics and tibial shock were found with the 

RF pattern in the present study, greater amplitudes of low frequency components with the 

FF pattern suggest that it may result in a greater reliance of active shock attenuation 

mechanisms.  Conversely, greater amplitudes of high frequency components with the RF 

pattern suggest that it may result in a greater reliance of passive shock attenuation 

mechanisms.  Therefore, it is possible that injury from repetitive impact loading is a 

function of the method or effectiveness of shock absorption rather than the magnitude or 

rate of the load itself. 
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CHAPTER 8 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

The forefoot (FF) running footfall pattern has been advocated to improve running 

economy and reduce the risk of developing running related injuries (Cavanagh and 

Lafortune, 1980; Davis et al., 2010; Hasegawa et al., 2007; Lieberman et al., 2010; Pratt, 

1989).  The fastest competitive runners in short and middle distance events tend to land 

on the anterior portion of the foot suggesting that FF running may enhance performance 

by improving running economy or running speed (Hasegawa et al., 2007; Payne, 1983).  

It has been suggested that the FF pattern improves running economy compared to the 

rearfoot (RF) footfall pattern as a result of increased elastic energy storage (Ardigo et al., 

1995; Hasegawa et al., 2007; Lieberman et al., 2010; Perl et al., 2012).  However, the RF 

pattern results in gait mechanics found to be related to more economical runners (Heise et 

al., 2011; Williams and Cavanagh, 1987).  Previous studies have not found overwhelming 

evidence to support one footfall pattern as being more economical than the other (Ardigo 

et al., 1995; Cunningham et al., 2010; Perl et al., 2012; Slavin, 1992). Additionally, the 

mechanisms that may explain why one footfall pattern is more economical have not been 

identified.   

The RF running pattern results in an initial impact peak transient which is thought 

to be related to the development of running overuse injuries (Cavanagh and Lafortune, 

1980; Davis et al., 2010; Hreljac et al., 2000; Milner et al., 2006; Zifchock et al., 2006).  

However, this finding has not been supported by all studies (Azevedo et al., 2009; 
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Bredeweg, 2011; McCrory et al., 1999; Nigg, 1997; Pohl et al., 2008; Scott and Winter, 

1990).  Differences in the vertical ground reaction force (GRF) component between 

footfall patterns suggest there may also be a difference in the vertical GRF frequency 

content and the frequency content of the impact shock wave which travels through the 

body.  Altering the frequency content may overload tissues responsible for attenuation 

and result in injury (Voloshin and Wosk, 1982; Voloshin et al., 1981).  Conflicting 

evidence exists regarding the damaging effects of the impact transient.  Examining 

frequency domain variables, rather than time domain variables, may provide more insight 

to the mechanisms of developing running related injuries. 

 

Study 1 

The first study of this dissertation found that, when comparing each group 

performing their natural footfall pattern at each speed, no differences in rate of oxygen 

consumption or cost of transport existed.  Additionally, it was found that RF running was 

more economical than FF running in a group of natural RF runners.  Natural FF runners, 

however, did not have a significant difference in rate of oxygen consumption or cost of 

transport between footfall patterns at the slow and medium speeds.  At the fast speed, RF 

running resulted in lower rates of oxygen consumption and cost of transport across both 

groups.  In the RF group, the differences in running economy variables were large 

enough to suggest that training with the FF pattern would not ultimately result in it 

becoming more economical than the RF pattern.  However, task novelty may explain why 

no differences in running economy were observed in the FF group and that training with 

the RF pattern may improve economy in this group.  Additionally, there may be an 
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optimal speed in which one footfall pattern becomes more economical than the other.  

Since both groups were trained runners with their respective footfall patterns, this finding 

suggests that there may not be an economical benefit of either RF or FF running patterns. 

 

Study 2 

The second study aimed to identify if the static Achilles tendon (AT) moment arm 

or the difference in dynamic AT moment arm length related to running economy.  Only 

weak to moderate relationships were found between AT moment arm length and running 

economy variables.  Less than 25% of the variance in running economy was explained by 

either static or dynamic AT moment arm.  Previous studies have suggested that a shorter 

AT moment arm may improve running economy by requiring greater force production 

but more elastic energy storage by the triceps surae muscle tendon complex (Scholz et al., 

2008).  However, a consequence of greater force transmission through the AT is an 

increased risk of injury due to increased tendon stress.  The second study also found that 

FF running results in significantly greater AT forces, and thus a greater risk of tendon 

injury, compared to the RF pattern.   

 

Study 3 

The third study used a muscle model to examine the triceps surae muscle-tendon 

interactions and effects of elastic energy utilization in RF and FF running.  It was found 

that FF running resulted in greater elastic energy recoil in the gastrocnemius (GA) and 

the soleus (SO) compared to RF running.  However, greater elastic energy recoil did not 

result in decreased metabolic cost.  In the GA, the contractile element work (WCE-GA) and 
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GA metabolic cost was similar between footfall patterns.  These results can be explained 

by the difference in force production and contractile velocities between footfall patterns.  

The RF pattern resulted in higher shortening velocities which resulted in lower force 

generation capacity but at a greater metabolic cost.  Conversely, the FF pattern resulted in 

slower shortening velocities as well as a period of isometric contraction, both of which 

result in a lower metabolic cost and greater force production capability than high 

shortening velocities.  The differences in contraction velocity, which dictated the force 

production and metabolic cost, resulted in no difference in GA metabolic cost between 

footfall patterns.  The increased force generation during FF running negated any 

metabolic benefit of more optimal contractile velocities.  In the SO, the RF pattern 

resulted in isometric contractions during mid-stance and a lower force production; 

therefore, overall WCE-SO and SO metabolic cost was significantly decreased in the RF 

pattern compared to the FF pattern.  However, the difference in overall WCE-SO between 

footfall patterns did not fully explain the differences in metabolic cost.  The FF pattern 

required greater SO muscle-tendon work (WMT-SO) during the second half of stance 

compared to RF running.  Greater WMT-SO was accomplished by an increase in both and 

series elastic element work (WSEE-SO) and WCE-SO.  Although FF running resulted in 

greater elastic recoil indicated by greater positive WSEE-SO, greater WCE-SO resulted in an 

increase in SO metabolic cost in FF running compared to RF running. 

 

Study 4 

The fourth study examined the frequency content of the vertical GRF and the 

degree of shock attenuation between RF and FF running.  RF running resulted in greater 
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amplitudes and powers of GRF frequencies that represent the impact peak whereas the FF 

pattern resulted in greater amplitudes and powers of GRF frequencies that represent the 

active peak.  These differences in frequency content may suggest that different tissues act 

as the primary shock attenuators with each footfall pattern.  For example, bone is 

responsible for attenuating high frequency components (Paul et al., 1978), thus it may be 

the primary tissue attenuating shock with the RF pattern.  Conversely, muscle and joint 

actions may be the primary mechanism for shock attenuation in FF running because they 

attenuate lower frequency components (Derrick et al., 1998; Lafortune et al., 1996; Paul 

et al., 1978).  It was also found that RF running resulted in greater attenuation of 

frequency components of the tibia relative to the head compared to FF running.  Greater 

impact shock attenuation with RF running was a result of a peak positive tibial 

acceleration and greater amplitude and power of the tibial acceleration signal.  It is 

currently unknown whether the increased shock attenuation occurring with RF running is 

detrimental or increases the risk of injury.  Unlike the FF pattern, RF running uses the 

heel fat pad and shoe cushioning in the heel to attenuate impacts.  Therefore the increased 

attenuation occurring with the RF pattern may be compensated by using these additional 

mechanisms.  In FF running, the frequencies that would otherwise be absorbed by the 

shoe or heel fat pad must be absorbed by other mechanisms.  If the impact shock wave is 

not appropriately attenuated, then a tissue may become overloaded (Voloshin et al., 

1981).  However, subjecting a tissue to a greater stimulus may also result in beneficial 

tissue adaptation (McLeod et al., 1998; Rosager et al., 2002; Stone et al., 1996).  

However, the threshold between tissue injury and tissue adaptation is currently unknown. 
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Summary of Dissertation Results 

These four studies provide empirical evidence related to the efficacy of switching 

footfall patterns in order to improve running performance and decrease injury risk.  

Contrary to previous speculation, these studies have shown that the FF running footfall 

pattern was not more economical than the RF pattern.  Additionally, the absence of the 

initial impact peak transient in the time domain does not lead to protection against 

developing running related injuries.  Rather, the differences in vertical ground reaction 

force frequency components may suggest that different tissues have the potential to be 

overloaded with each footfall pattern.  It is unlikely that one footfall pattern is more 

protective against developing injury than the other, but that each footfall pattern results in 

a different susceptibility to different injuries.  Therefore, the present study does not 

support recommendations for one to alter footfall pattern in hopes of improving 

performance or preventing running injury. 

 

Future Directions 

Further research is needed to identify the mechanisms for running economy and 

injury with each footfall pattern.  The present study incorporated both natural RF and 

natural FF runners in which each group can be a surrogate for training with the alternate 

footfall pattern.  Although this was the first step in determining the efficacy for altering 

footfall pattern, longitudinal training studies may be needed to investigate if training with 

an alternate footfall pattern results in an improvement in running economy.  The present 

study hypothesized that the FF group would improve economy by training with the RF 

pattern.  However, a training study is needed in order to support or refute this hypothesis. 
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It is currently unknown why individuals naturally select a specific footfall pattern.  

Future studies should examine the morphological considerations for why one may 

naturally select a specific footfall pattern.  Morphological characteristics such as tendon 

stiffness, muscle moment arms, and others may cause on individual to naturally select a 

specific footfall pattern.  As suggested in study 2, the muscle forces required by the FF 

pattern may result in tendon adaptations such as increased cross sectional area.  

Identifying morphological characteristics and adaptations may provide additional 

evidence for the factors relating to running economy and risk of developing different 

types of injuries.  Future research should examine different mechanical aspects of each 

footfall pattern such as muscle mechanical advantage, elastic energy storage of other 

muscles, and gear ratios.  Additionally, there are currently no studies investigating the 

neuromuscular aspects of each footfall pattern.  Mechanical, neuromuscular, and 

morphological considerations together will provide understanding for the mechanisms of 

selecting a footfall pattern and their potential benefits.   

Longitudinal prospective studies are also needed to identify the injuries resulting 

from each footfall pattern.  Several of the participants of the present study anecdotally 

reported that habituating to the FF pattern eliminated symptoms of ilio-tibial band 

syndrome.  Additionally, emerging evidence has found that the FF pattern may increase 

the risk of developing metatarsal stress fractures (Giuliani et al., 2011).  Therefore, each 

footfall pattern may result in the risk of different types of injuries. 

The present study investigated several differences between RF and FF running 

footfall patterns.  However, a third footfall pattern, the midfoot (MF) pattern, also exists.  

The MF pattern is considered an intermediate between the RF and FF patterns and could 



288 

incorporate the benefits of the other footfall patterns.  For example, the metabolic 

benefits of increased elastic energy storage resulting from the FF pattern were negated as 

a result of high muscle force demands.  The MF pattern may utilize the increased elastic 

energy storage of the FF pattern but the low force demands of the RF pattern.  

Additionally, some ambiguity exists for the definitions of each footfall pattern.  Some 

researchers differentiate between MF and FF running by whether or not the heel contacts 

the ground.  Other definitions of the MF pattern have described it as an initial midfoot 

contact with either the whole foot making ground contact at nearly the same time or a 

slight delay between midfoot and heel contact.  These seemingly insignificant differences 

between definitions may have functional implications.  Therefore, studies investigating 

the variation in each of the three footfall patterns are needed.   
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APPENDIX A 

INFORMED CONSENT DOCUMENTS 
 

PROJECT DESCRIPTION: 
 

Biomechanical differences between rearfoot and forefoot landing patterns in running. 
 
  The study of forefoot (FF) and rearfoot (RF) strike patterns in running has included ground 
reaction force and metabolic cost differences between individuals with different strike patterns 
(Cavangh and LaFortune, 1980; Ardigo, et al., 1995; Cunningham et al., 2010). Some running 
experts and elite running coaches believe the forefoot running pattern will improve running 
economy and reduce the risk of overuse injuries. Many have speculated that the FF pattern may 
reduce the risk of impact related injury due to the lack of the impact transient and reductions in 
vertical tibial acceleration and loading rates (Oakley & Pratt, 1988; Williams et al., 2000). 
Because of differences in kinematic patterns between RF and FF running, impact shock 
attenuation may be controlled through different mechanisms (Pratt, 1989; Williams & Cavanagh, 
1987). Williams and Cavanagh (1987) found lower strike index was associated with running 
economy. They speculate economy is lower in RF running because of the reliance of footwear to 
attenuate impact forces whereas FF running must rely on muscular contractions. However, a 
recent study has looked at the effect of forefoot and rearfoot strike patterns on race performance 
(Hasegawa, Yamauchi, & Kraemer, 2007). These researchers examined 283 runners at the 15 km 
point during a half marathon and determined 74.9% of all analyzed runners were rearfoot 
strikers, 23.7% were midfoot strikers, and 1.4% were forefoot strikers. When the runners were 
divided into groups of 50 based on placement order, it was observed that the percentage of 
rearfoot runners decreased and the percentage of midfoot runners increased as placement order 
increased.  Inversion of the foot was observed in 42% of all runners; however the midfoot 
runners had the greatest within group percentage of inversion compared to the other strike 
patterns. The decreased inversion was shown to be coupled with a shorter contact time, leading 
the researchers to conclude that these two factors may contribute to running economy. While 
previous research has typically observed subjects’ natural running patterns, the purpose of this 
study is to examine the effect of altering running footfall patterns on kinematic and kinetic 
parameters as well as metabolic cost, impact shock and electromyography (EMG) in healthy 
runners.   
  Thirty healthy young adult males and females between the ages of 18-45 yrs will participate 
in this study. All subjects will be healthy runners and have not experienced an injury or surgery 
to the lower extremity or back in the last year. Additional exclusion criteria include 
cardiovascular or neurological problems or disease, diabetes, and smoking. Each subject will be 
asked to participate in two testing sessions, lasting approximately 2 hours each.  At the beginning 
of the first test session, the subject will complete: 1) an informed consent form; 2) a Physical 
Activity Readiness Questionnaire; and 3) a demographic information form. The session will 
begin with measurements of body mass and height. During the first testing session, reflective 
markers will be placed on the subjects’ foot, leg, thigh, and hip in order to record gait 
kinematics. Motion analysis cameras will record the position of the reflective markers as the 
subjects perform each condition. A force plate in the center of the collection volume of the 
cameras will measure ground reaction forces. Subjects will be asked to run across the floor and 
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over a force plate under each footfall condition: 1) rearfoot and 2) forefoot. Both conditions will 
be performed at three different running speeds (3.0, 3.5 and 4.0 m/s).  Ten trials of each 
condition performed at each of the three speeds will be completed. Subjects will be able to rest 
ad libitum between each trial. The order of speeds and conditions will be randomized. Kinematic 
and kinetic variables will be compared between subjects to determine the differences in ground 
reaction forces and running mechanics between footfall conditions. 

For the second testing session, subjects will be asked to repeat each of the footfall and speed 
combinations on a treadmill. The order of the conditions will be randomized. Reflective markers 
will be placed on the heel and toe of each foot to determine touchdown and toe-off of each stance 
phase.  Electromyography (EMG) data will be recorded by measuring the amount of muscle 
activity in both legs during running.  Muscle activity will be recorded by placing surface 
electrodes on several muscles of the leg, including: tibialis anterior, medial and lateral heads of 
the gastrocnemius, soleus, vastus medialis and lateralis, rectus femoris, biceps femoris, and 
gluteus maximus.  A metabolic cart will be used to measure oxygen consumption while running.  
An accelerometer will be placed on the midfoot on the outside of the shoe, on the lower leg and 
on the head.  The accelerometer will measure impact shock at each location. Subjects will 
perform each speed and footfall condition for 5-10 minutes. EMG, accelerometer data and 
metabolic cost of each condition will be compared within and between subjects to better 
understand the differences between the two footfall patterns.    
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Participant Number_____________ 
 
 

INFORMED CONSENT FORM 
Biomechanics Laboratory, Department of Kinesiology 

University of Massachusetts 
Amherst, MA 01003 

 
Title:  Biomechanical differences between rearfoot and forefoot landing patterns in 
running. 
 
Principal Investigator: Allison Gruber, M.A.; Joseph Hamill, Ph.D. 
 
Purpose: To identify the effect of altering running footfall patterns on running 
mechanics, oxygen consumption, the force of impact and muscle activity in healthy 
runners.   
 
 Requirements: You have been asked to participate in this study because you are a 
healthy and active male or female of age 18-45 yrs, have not suffered any injuries or 
surgery to the lower extremity in the past year, do not wear orthotics, or have any 
cardiovascular problems. You should also have not eaten a meal during the period of 2 
hours preceding a data collection.  
 
Study Duration: You will be required to make a minimum of two (2) visits to the testing 
laboratory, lasting approximately 2 hours each. The total time that you are expected to be 
enrolled in the study is approximately two (2) days. 
 
General Testing Procedures:  
 
Visit 1: 
 

1. You will be asked to read and sign this Informed Consent Form, Modified 
Physical Activity Readiness Questionnaire, and Demographic Questionnaire. 
 

2. If, after all questionnaires have been completed, you are deemed qualified to 
participate, you will be asked to participate in one testing session, lasting 
approximately 2 hours. 
 

3. The testing session will begin with measurements of body mass and height. 
 

4. To be prepared for data collection, you will be asked to change into form fitting 
clothing and running shoes provided by the laboratory.  
 
 

 
Participant’s initials_____________ 
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Participant Number_____________ 
 

5. Next, reflective markers will be placed on your feet legs, thighs, and hips in order 
to record 3-D gait kinematics. The position of the reflective markers will be 
recorded by high-speed infrared cameras circling the data collection space you 
will run through. 

 
6. Once markers have been placed, you will be asked to stand in the data collection 

space to record a standing calibration trial of the markers. The standing 
calibration trial will be used to create a computer model of you on which data 
analysis will be performed.  
 

7. Next, you will be instructed on how to run through the data collection volume at 
the appropriate speed and so your right leg will land on the force platform in the 
center of the collection volume. You will be able to practice several times before 
data collection begins. 
 

8. Once you are comfortable running through the collection volume, you will be 
asked to run through the data collection volume with either a rearfoot footfall 
pattern or a forefoot footfall pattern at each of three different speeds (3.0, 3.5 and 
4.0 m/s). The order of the conditions will be determined randomly. 
 

9. You will perform ten successful trials for each condition and speed combination. 
A successful trial means that your running speed is within +/-5% of the target 
speed and your right foot lands completely on the force platform without targeting 
or adjusting your stride. You will be allowed to rest between trials for as long as 
necessary. 
 

10. After you complete all conditions, all of the equipment will be removed and a 
staff member will inform you of your next appointment time 
 

Visit 2: 
  

1. You will arrive at the study facility as instructed and will be asked about any 
changes in your health. All changes to your health will be recorded. 
 

2. Next, you will be prepared for data collection by first placing an accelerometer 
onto the middle of your foot, on your lower leg and on your head. The 
accelerometers will be secured with a rubber strap which will be tightened but so 
that you are still comfortable. 
 
 
 
 
 

Participant’s initials_____________ 
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Participant Number_____________ 
 

3. Small electrodes will be placed on the surface of your skin in order to measure 
muscle activity while you run. The electrodes will be placed on several muscles of 
your lower leg (tibialis anterior, medial and lateral heads of the gastrocnemius, 
soleus) and several muscles of your thigh and hip (vastus medialis and lateralis, 
rectus femoris, biceps femoris, and gluteus maximus).   
 

4. Reflective markers will be placed on your toe and heel in order to record when 
your foot lands on the treadmill and when it is lifted off of the treadmill while 
running. 
 

5. You will be asked to breathe into a mouth piece while you are running.  The 
mouth piece is similar to a rubber mouth guard and you will be able to breathe 
normally.  The mouth piece allows you to breathe-in air from the room but it will 
send the air you breathe-out into a tube connected to a machine.  The machine 
will measure the amount of air you breathed-out.  A foam clip will be placed on 
your noise to make sure the air you breathe is only going into and out of your 
mouth.  
 

6. To begin the data collection, a baseline measurement of your oxygen consumption 
will be taken while you stand quietly for 3-5 minutes. During this measurement, a 
mask will be placed over your nose and mouth area. 
 

7. Next, you will be asked to perform either a rearfoot footfall pattern or a forefoot 
footfall pattern at each of three different speeds (3.0, 3.5 and 4.0 m/s). The order 
of the conditions will be determined randomly. Each footfall and speed condition 
will be performed for 5-10 minutes. 
 

8. After you complete all conditions, all of the equipment will be removed and you 
will then be dismissed from the study. 
 

9. You may be asked to return to the laboratory to repeat testing procedures if 
necessary. You are not required to return for additional testing if you do not wish. 
 

Additional Costs: There are no costs for participation in this study. 
 
Females of Childbearing Potential: You may not participate in this study if you are 
pregnant. 
 
Benefits: You may not directly benefit from this research; however, we hope that your 
participation in this study may help in the understanding of the effects of speed on the 
mechanics of running and oxygen consumption. 

 
 

Participant’s initials_____________ 
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Participant Number_____________ 
 
Expected Risks or Discomforts: During any type of exercise there are slight health 
risks.  These include the possibility of fatigue and muscle soreness.  However, any health 
risks are small in subjects who have no prior history of cardiovascular, respiratory or 
musculoskeletal disease or injury.  Any ordinary fatigue or muscle soreness is temporary. 
In the unlikely event that medical treatment is required as a result of this study, study 
personnel will assist you in getting treatment. The University of Massachusetts does not 
have a program for compensation subjects for injury or complications related to human 
subjects’ research. 
 
Compensation: The University of Massachusetts does not have a program for 
compensation subjects for injury or complications related to human subjects’ research but 
the study personnel will assist you in getting treatment. There is no monetary 
compensation for participating in this study. 
 
Alternative Procedures: There are no reasonable alternatives for this procedure.  These 
procedures are standard for this type of equipment and these measures. 
 
Confidentiality: Information concerning you that is obtained in connection with this 
study will be kept confidential by the testing facility. The records will be coded to protect 
your identity. In addition, the Investigational Review Board may inspect the records of 
this study. Information obtained in the study may be used for medical or scientific 
publication, but your identity will remain confidential. Data will be stored in a locked 
filing cabinet in a locked office. Only staff involved in this study will have access to the 
data. 
 
Informing of New Findings: You will be informed of any new findings concerning this 
study that could directly affect you. 
 
Questions and Answers: Any questions concerning testing procedures, risks, benefits, or 
participant’s rights will be answered by investigators. 
 
Subject Enrollment: It is expected that 30 male and female subjects aged 18-40 will 
take part in this study.  The study is expected to last three months but your participation 
will only be for about 60 – 90 minutes for two days of testing. 
 
Participation/Withdrawal: You are under no obligation to participate in this project.  
You are free to withdrawal your consent and participation at any time, for any reason. 
 
 
 
 
 
 

Participant’s initials_____________ 
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Participant Number_____________ 
 
Additional Information: Should you have any questions about your treatment or any 
other matter relative to your participation in this project or if you experience a research 
related injury at any time during this study you may contact Dr. Joseph Hamill via email 
(jhamill@kin.umass.edu).  If you would like to discuss your rights as a participant in a 
research study or to speak with someone not directly involved with this study, you may 
contact the office of Research Affairs at the University of Massachusetts via email 
(humansubjects@ora.umass.edu); by telephone (413-545-3428); or by mail (Office of 
Research Affairs, Research Administration Building, University of Massachusetts 
Amherst, 70 Butterfield Terrace, Amherst, MA 01003.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Participant’s initials_____________ 
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Participant Number_____________ 
 

Statement and Participant Signature (study copy) 
 
The investigators have read and understood the General Guidelines for the Right and 
Welfare of Human Subjects (Sen. Doc. 79-012) and agree to fulfill these guidelines to the 
best of their ability. 
 
Investigator signature __________________________ Date ________________ 
 
When signing this form, I am agreeing to voluntarily enter this study.  I understand that, 
by signing this document, I do not waive any of my legal rights.  I have read and 
understood the Informed Consent Document and it was explained to me in a language 
that I use and understand.  I have had the opportunity to ask questions and have received 
satisfactory answers.  A copy of this document has been given to me. 
 
Participant Name ______________________________ 
 
 
Participant Signature ___________________________ Date ________________ 
 
 
Address _____________________________________ 
  
   _____________________________________ 
 
Telephone ___________________________________ 
 
Witness Name ________________________________ 
 
Witness Signature _____________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Participant’s initials_____________ 
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Participant Number_____________ 
 

 
Statement and Participant Signature (participant copy) 

 
The investigators have read and understood the General Guidelines for the Right and 
Welfare of Human Subjects (Sen. Doc. 79-012) and agree to fulfill these guidelines to the 
best of their ability. 
 
Investigator signature __________________________ Date ________________ 
 
When signing this form, I am agreeing to voluntarily enter this study.  I understand that, 
by signing this document, I do not waive any of my legal rights.  I have read and 
understood the Informed Consent Document and it was explained to me in a language 
that I use and understand.  I have had the opportunity to ask questions and have received 
satisfactory answers.  A copy of this document has been given to me. 
 
Participant Name ______________________________ 
 
 
Participant Signature ___________________________ Date ________________ 
 
 
Address _____________________________________ 
  
   _____________________________________ 
 
Telephone ___________________________________ 
 
Witness Name ________________________________ 
 
Witness Signature _____________________________ 
 
 
 
 
 
 
 
 
 
 
 
 
       Participant’s initials_____________ 
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Participant Number_____________ 
 

Modified Physical Activity Readiness Questionnaire 
 
 

Date ______________________________ 
 
Please answer the following questions to the best of your knowledge (circle YES or NO) 
 
YES NO Has a doctor ever said you have a heart condition and  

recommended only medically supervised activity? 
 

YES NO Do you ever suffer pains in your chest brought on by physical  
activity 

 
YES NO Have you developed chest pain in the last month? 
 
YES NO Do you ever feel faint or have spells of severe dizziness, passed  

out, Palpitations or rapid heart beat? 
 

YES NO Has the doctor ever told you that your blood pressure was too high?  
(systolic > 160 mm Hg or diastolic > 90 mm Hg on at least two separate  
occasions?) 

 
YES NO Do you smoke cigarettes? 
 
YES NO Do you have a bone or joint that could be aggravated by the proposed 

physical activity? 
 

YES NO Do you have diabetes? 
 
YES NO Do you have a family history of coronary or other atherosclerotic disease 

in parents or siblings prior to age 55? 
 
YES NO Has your serum cholesterol ever been elevated? 
 
YES NO Is there any physical reason not mentioned hee why you should not follow 

an activity program even if you wanted to? 
 
Please provide an explanation below for any of the questions to which you answered 
YES: 
 
 
 
 
       Participant’s initials _____________ 



302 

Participant Number_____________ 
 

Demographic Questionnaire 
 

Date _________________________ 
 
Age (in years) _________________ 
 
Gender (circle one) M F 
 
Height _____ feet _____ inches or __________cm 
 
Weight _____________ lbs  or __________ kg 
 
 
Please circle one: 
 
Do you use any specialized insoles or foot orthotics?   YES NO 
 
Do you have any injuries that may affect the way you walk or run?  YES NO 
 
If YES, please describe the injury, and when it happened: 
 
 

 

 
 

Did you injure your lower extremity in the last year? YES NO 
 
If YES, please describe the injury and when it happened: 

 
 
 
 

 

 

 
 
       Participant’s initials_____________ 
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APPENDIX B 

DIAGRAM OF REFLECTIVE MARKER PLACEMENT 
 
 
 

Calibration Markers Location 
 Right and left iliac crest 
 Right and left greater trochanter 
 Medial and lateral knee joint line 
 Medial and lateral malleoli 
 1st Metatarsal head 
 5th Metatarsal head 

 
Tracking Markers 

 Right and left anterior superior iliac spine 
 5th Lumbar vertebrae/1st sacral vertebrae 
 Thigh plate 
 Leg plate 
 Foot plate 
 Heel plate 
 Toe 
 
 
Marker placement is based on  
McClay and Manal (1999). 
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APPENDIX C 

DETAILED STATISTICAL TABLES FOR THE RESULTS FROM STUDY 1 

 

Table C.1: P-value (d) for each partition of the interaction for the rate of oxygen consumption (VO2) 
at the slow and medium speeds (interaction at the fast speed was not significant).  Mean ± SD and 
percent difference are given for the rearfoot (RF) and forefoot (FF) patterns performed by each 
group. Negative percent difference indicates larger magnitudes when performing the FF pattern. 
 

Speed Partition Group Pattern Net VO2 
L•min-1 

Net VO2 
ml•kg-1•min-1 

Gross VO2 

L•min-1 
Gross VO2 

ml•kg-1•min-1 
Slow  RF RF 2.09 ± 0.36 29.60 ± 1.80 2.42 ± 0.40 34.19 ± 1.93 

   FF 2.21 ± 0.36 31.27 ± 1.83 2.53 ± 0.41 35.86 ± 1.99 
 Group  RF vs. FF <0.001(0.3) <0.001(0.9) <0.001(0.3) <0.001(0.9) 
   % -5.4 -5.5 -4.7 -4.8 
  FF RF 2.02 ± 0.36 29.36 ± 2.53 2.34 ± 0.40 33.95 ± 2.71 
   FF 2.03 ± 0.34 29.49 ± 2.56 2.35 ± 0.38 34.08 ± 2.71 
 Group  RF vs. FF 0.731(0.0) 0.663(0.1) 0.736(0.0) 0.663(0.0) 
   % -0.4 -0.4 -0.3 -0.4 
 Pattern RF vs. FF RF 0.003(0.2) 0.431(0.1) 0.001(0.2) 0.424(0.1) 
 Pattern RF vs. FF FF <0.001(0.5) <0.001(0.8) <0.001(0.5) 0.001(0.8) 

Med.  RF RF 2.44 ± 0.38 34.79 ± 1.85 2.76 ± 0.42 39.36 ± 2.00 
   FF 2.53 ± 0.42 36.05 ± 1.80 2.85 ± 0.46 40.62 ± 2.02 
 Group  RF vs. FF <0.001(0.2) <0.001(0.7) <0.001(0.2) <0.001(0.6) 
   % -3.7 -3.6 -3.3 -3.2 
  FF RF 2.32 ± 0.38 33.66 ± 2.39 2.63 ± 0.42 38.25 ± 2.61 
   FF 2.34 ± 0.39 33.93 ± 2.51 2.65 ± 0.43 38.51 ± 2.63 
 Group  RF vs. FF 0.245(0.1) 0.255(0.1) 0.239(0.0) 0.255(0.1) 
   % -0.9 -0.8 -0.8 -0.7 
 Pattern RF vs. FF RF <0.001(0.3) <0.001(0.5) <0.001(0.3) <0.001(0.5) 
 Pattern RF vs. FF FF <0.001(0.5) <0.001(1.0) <0.001(0.4) <0.001(0.9) 
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Table C.2: P-value (d) for each partition of the interaction for the cost of transport (COT) at the slow 
and medium speeds (interactions at the fast speed were not significant).  Mean ± SD and percent 
difference are given for the rearfoot (RF) and forefoot (FF) patterns performed by each group. 
Negative percent difference indicates larger magnitudes when performing the FF pattern. 
 

Speed Partition group pattern 
Net COT 

J•m-1 
Net COT 

J•m-1•kg-1 
Gross COT 

J•m-1 
Gross COT 
J•m-1•kg-1 

Slow  RF RF 237.3 ± 39.9 3.36 ± 0.20 274.0 ± 45.0 3.88 ± 0.22 
   FF 251.7 ± 41.2 3.56 ± 0.22 288.5 ± 46.6 4.09 ± 0.24 
 Group  RF vs. FF <0.001(0.4) <0.001(1.0) <0.001(0.3) <0.001(0.9) 
   %  -5.9 -5.9 -5.2 -5.2 
  FF RF 231.1 ± 41.4 3.36 ± 0.29 267.1 ± 46.3 3.88 ± 0.31 
   FF 231.2 ± 39.1 3.36 ± 0.29 267.2 ± 44.0 3.89 ± 0.31 
 Group  RF vs. FF 0.955(0.0) 0.835(0.0) 0.974(0.0) 0.856(0.0) 
   %  -0.1 -0.2 < -0.1 -0.2 
 Pattern RF vs. FF RF 0.028(0.2) 0.970(0.0) 0.018(0.2) 0.950(0.0) 
 Pattern RF vs. FF FF <0.001(0.5) <0.001(0.8) <0.001(0.5) <0.001(0.7) 

Med.  RF RF 241.3 ± 36.1 3.45 ± 0.20 273.1 ± 40.6 3.90 ± 0.22 
   FF 251.2 ± 40.1 3.58 ± 0.18 283.0 ± 44.8 4.03 ± 0.21 
 Group  RF vs. FF <0.001(0.3) <0.001(0.7) <0.001(0.2) <0.001(0.6) 
   % -4.0 -3.8 -3.6 -3.4 
  FF RF 229.2 ± 37.4 3.33 ± 0.24 260.4 ± 41.8 3.79 ± 0.26 
   FF 231.1 ± 38.3 3.36 ± 0.26 262.4 ± 42.4 3.82 ± 0.27 
 Group  RF vs. FF 0.272(0.1) 0.239(0.1) 0.269(0.0) 0.232(0.1) 
   % -0.9 -0.9 -0.8 -0.8 
 Pattern RF vs. FF RF <0.001(0.3) <0.001(0.5) <0.001(0.3) <0.001(0.5) 
 Pattern RF vs. FF FF <0.001(0.5) <0.001(1.0) <0.001(0.5) <0.001(0.9) 
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Table C.3: Statistical results for the rate of oxygen consumption (VO2) and cost of transport (COT) 
at the fast speed. Mean ± SD (percent difference) are given for the rearfoot (RF) and forefoot (FF) 
patterns performed by each group. Negative percent difference indicates larger magnitudes when 
performing the FF pattern. Listed ANOVA results include the p-value for the group by pattern 
interaction (GxP), the p-value (d) for the group main effect (G) and the pattern main effect (P). 
 

RF Group FF Group 
GxP G P 

RF FF RF FF 

Net VO2 
L•min-1 

2.88 ± 
0.46 

2.95 ± 
0.45 

2.70 ± 
0.42 

2.76 ± 
0.45 0.670 

0.402 
(0.4) 

<0.001 
(0.1) 

-2.3% -1.9% 

Net VO2 

ml•kg-1•min-1 

40.19 ± 
2.13 

41.12 ± 
1.86 

38.80 ± 
2.25 

39.54 ± 
2.67 

0.641 
0.102 
(0.7) 

<0.001 
(0.4) 

-2.3% -1.9% 

Gross VO2 
L•min-1 

3.21 ± 
0.50 

3.28 ± 
0.50 

3.03 ± 
0.47 

3.08 ± 
0.49 

0.667 
0.450 
(0.4) 

<0.001 
(0.1) 

-2.0% -1.7% 

Gross VO2 
ml•kg-1•min-1 

44.77 ± 
2.26 

45.71 ± 
1.96 

43.42 ± 
2.48 

44.15 ± 
2.87 

0.641 
0.150 
(0.6) 

<0.001 
(0.3) 

-2.1% -1.7% 

Net COT 
J•m-1 

253.8 ± 
38.6 

260.3 ± 
37.7 

237.8 ± 
36.4 

242.8 ± 
39.1 

0.585 
0.358 
(0.4) 

<0.001 
(0.2) 

-2.5% -2.1% 

Net COT 

J•m-1•kg-1 

3.54 ± 
0.18 

36.4 ± 
0.16 

3.43 ± 
0.19 

3.49 ± 
0.23 

0.527 
0.089 
(0.7) 

<0.001 
(0.4) 

-2.6% -2.0% 

Gross COT 

J•m-1 

282.7 ± 
42.3 

289.2 ± 
41.4 

266.1 ± 
40.0 

271.1 ± 
42.6 

0.578 
0.401 
(0.4) 

<0.001 
(0.1) 

-2.3% -1.9% 

Gross COT 
J•m-1•kg-1 

3.95 ± 
0.20 

4.04 ± 
0.17 

3.83 ± 
0.21 

3.90 ± 
0.24 

0.518 
0.130 
(0.6) 

<0.001 
(0.4) 

-2.3% -1.8% 
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Table C.4: P-value (d) for each partition of the interaction for the absolute (gCHO) and relative 
(%CHO) rates of carbohydrate oxidation at the slow and medium speeds. Results for the medium 
and fast speeds are presented in Table C.5. Mean ± SD and percent difference are given for the 
rearfoot (RF) and forefoot (FF) patterns performed by each group. Negative percent difference 
indicates larger magnitudes when performing the FF pattern. 
 

Speed 
Partitio

n 
group pattern 

gCHO 
g•hr-1 

%CHO 

% 
Slow  RF RF 88.89 ± 23.41 51.3 ± 12.7 

   FF 104.68 ± 31.53 56.7 ± 13.1 
 Group  RF vs. FF 0.001(0.6) 0.009(0.4) 
   %  -16.3% -10.0% 
  FF RF 104.67 ± 25.78 61.1 ± 10.5 
   FF 100.23 ± 21.76 58.5 ± 8.3 
 Group  RF vs. FF 0.313(0.2) 0.191(0.3) 
   %  4.3% 4.4% 
 Pattern RF vs. FF RF 0.001(0.6) <0.001(0.8) 
 Pattern RF vs. FF FF 0.312(0.2) 0.359(0.2) 

Med.  RF RF 131.17 ± 39.65  
   FF 144.28 ± 43.76  
 Group  RF vs. FF <0.001(0.3)  
   % -9.5%  
  FF RF 137.18 ± 31.61  
   FF 140.08 ± 33.00  
 Group  RF vs. FF 0.371(0.1)  
   % -2.1%  
 Pattern RF vs. FF RF 0.064(0.2)  
 Pattern RF vs. FF FF 0.191(0.1)  

 

Table C.5: Statistical results for the absolute carbohydrate oxidation (gCHO) at the fast speed and 
relative carbohydrate oxidation (%CHO) at the medium and fast speeds. Mean ± SD (percent 
difference) are given for the rearfoot (RF) and forefoot (FF) patterns performed by each group. 
Negative percent difference indicates larger magnitudes when performing the FF pattern. Listed 
ANOVA results include the p-value for the group by pattern interaction (GxP), the p-value (d) for the 
group main effect (G) and the pattern main effect (P).  
 

RF Group FF Group 
GxP G P 

RF FF RF FF 

gCHO 
g•hr-1 

(fast speed) 

187.87 ± 
58.05 

199.99 ± 
60.16 

178.85 ± 
37.92 

186.12 ± 
39.82 0.552 

0.710 
(0.2) 

0.028 
(0.2) 

-6.2% -4.0% 

%CHO 
% 

(fast speed) 

77.9 ± 
16.8 

80.8 ± 
16.9 

79.1 ± 
11.8 

80.9 ± 
11.8 0.730 

0.893 
(0.0) 

0.114 
(0.2) 

-3.6% -2.3% 

%CHO 
% 

(med. speed) 

64.7 ± 
15.5 

68.5 ± 
14.9 

70.4 ± 
10.3 

71.3 ± 
11.4 0.153 

0.326 
(0.3) 

0.022 
(0.2) 

-5.7% -1.3% 
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APPENDIX D 

COMPLETE CORRELATION TABLES FOR THE RESULTS FROM STUDY 2 

 

The aims of Study 2 (Chapter 5) was to determine the Achilles tendon (AT) 

moment arm length during the stance phase of running, to investigate the relationship 

between moment arm length and running economy, and to determine the difference in AT 

force between rearfoot (RF) and forefoot (FF) running patterns in natural RF and natural 

FF runners.   

The results presented in the tables are the correlation results between the 

following variables: net and gross rate of oxygen consumption (VO2), the net and gross 

cost of transport (COT), the static AT moment arm measured during standing (dmt0), the 

dynamic AT moment arm (dmt10), AT force (AT10), active ankle joint moment (AM10), 

and the ankle joint moment found by the inverse dynamics procedure (InvM10).  dmt0, 

dmt10, AT10, AM10, and InvM10 were determined by taking the average of each variable 

over the period of stance in which the AT force was greater than ±10% of the maximum.  

Tables B.1 and B.2 list the results for the absolute (not normalized) variables in 

the RF group and the FF group, respectively.  Tables B.3 and B.4 list the results for the 

relative (mass normalized) variables in the RF group and the FF group, respectively.   
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Table B.1: Correlation tables for absolute data of the RF group when performing the (A) RF pattern 
and the (B) FF pattern.  
 

(A)  
Net 
VO2 

L•min-1 

Gross 
VO2 

L•min-1 

Net 
COT 
J•m-1 

Gross 
COT 
J•m-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
AT10 

N 
InvM10

N•m 

Net VO2 
L•min-1 

r 1.000 0.998 0.988 0.985 0.483 0.484 -0.849 0.560 -0.876 
p  <.0001 <.0001 <.0001 0.036 0.036 <.0001 0.013 <.0001 

Gross VO2 
L•min-1 

r 0.998 1.000 0.987 0.988 0.489 0.488 -0.847 0.553 -0.875 
p <.0001  <.0001 <.0001 0.034 0.034 <.0001 0.014 <.0001 

Net COT 
J•m-1 

r 0.988 0.987 1.000 0.998 0.426 0.431 -0.837 0.588 -0.861 
p <.0001 <.0001  <.0001 0.069 0.066 <.0001 0.008 <.0001 

Gross COT 
J•m-1 

r 0.985 0.988 0.998 1.000 0.432 0.434 -0.834 0.580 -0.859 
p <.0001 <.0001 <.0001  0.065 0.064 <.0001 0.009 <.0001 

dmt0 
cm 

r 0.483 0.489 0.426 0.432 1.000 0.981 -0.529 -0.244 -0.557 
p 0.036 0.034 0.069 0.065  <.0001 0.020 0.314 0.013 

dmt10 
cm 

r 0.484 0.488 0.431 0.434 0.981 1.000 -0.569 -0.216 -0.567 
p 0.036 0.034 0.066 0.064 <.0001  0.011 0.374 0.011 

AM10 

N•m 
r -0.849 -0.847 -0.837 -0.834 -0.529 -0.569 1.000 -0.672 0.986 
p <.0001 <.0001 <.0001 <.0001 0.020 0.011  0.002 <.0001 

AT10 
N 

r 0.560 0.553 0.588 0.580 -0.244 -0.216 -0.672 1.000 -0.663 
p 0.013 0.014 0.008 0.009 0.314 0.374 0.002  0.002 

InvM10 

N•m 
r -0.876 -0.875 -0.861 -0.859 -0.557 -0.567 0.986 -0.663 1.000 

p <.0001 <.0001 <.0001 <.0001 0.013 0.011 <.0001 0.002  
 

(B)  
Net 
VO2 

L•min-1 

Gross 
VO2 

L•min-1 

Net 
COT 
J•m-1 

Gross 
COT 
J•m-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
AT10 

N 
InvM10

N•m 

Net VO2 
L•min-1 

r 1.000 0.999 0.991 0.988 0.466 0.452 -0.934 0.655 -0.944 
p  <.0001 <.0001 <.0001 0.045 0.052 <.0001 0.002 <.0001 

Gross VO2 
L•min-1 

r 0.999 1.000 0.991 0.991 0.471 0.458 -0.937 0.653 -0.947 
p <.0001  <.0001 <.0001 0.042 0.049 <.0001 0.002 <.0001 

Net COT 
J•m-1 

r 0.991 0.991 1.000 0.999 0.421 0.412 -0.939 0.691 -0.950 
p <.0001 <.0001  <.0001 0.073 0.079 <.0001 0.001 <.0001 

Gross COT 
J•m-1 

r 0.988 0.991 0.999 1.000 0.425 0.417 -0.940 0.688 -0.951 
p <.0001 <.0001 <.0001  0.070 0.075 <.0001 0.001 <.0001 

dmt0 
cm 

r 0.466 0.471 0.421 0.425 1.000 0.982 -0.488 -0.258 -0.481 
p 0.045 0.042 0.073 0.070  <.0001 0.034 0.286 0.037 

dmt10 
cm 

r 0.452 0.458 0.412 0.417 0.982 1.000 -0.503 -0.260 -0.477 
p 0.052 0.049 0.079 0.075 <.0001  0.028 0.282 0.039 

AM10 

N•m 
r -0.934 -0.937 -0.939 -0.940 -0.488 -0.503 1.000 -0.696 0.995 
p <.0001 <.0001 <.0001 <.0001 0.034 0.028  0.001 <.0001 

AT10 
N 

r 0.655 0.653 0.691 0.688 -0.258 -0.260 -0.696 1.000 -0.714 
p 0.002 0.002 0.001 0.001 0.286 0.282 0.001  0.001 

InvM10 

N•m 
r -0.944 -0.947 -0.950 -0.951 -0.481 -0.477 0.995 -0.714 1.000 
p <.0001 <.0001 <.0001 <.0001 0.037 0.039 <.0001 0.001  

 
 
 
  



310 

Table B.2: Correlation tables for absolute data of FF group when performing the (A) RF pattern and 
the (B) FF pattern.  
 

(A)  
Net 
VO2 

L•min-1 

Gross 
VO2 

L•min-1 

Net 
COT 
J•m-1 

Gross 
COT 
J•m-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
AT10 

N 
InvM10

N•m 

Net VO2 
L•min-1 

r 1.000 0.994 0.996 0.994 0.070 -0.099 -0.560 0.611 -0.600 
p <.0001 <.0001 <.0001 0.784 0.695 0.016 0.007 0.009 

Gross VO2 
L•min-1 

r 0.994 1.000 0.987 0.996 0.137 -0.050 -0.600 0.631 -0.639 
p <.0001 <.0001 <.0001 0.589 0.843 0.008 0.005 0.004 

Net COT 
J•m-1 

r 0.996 0.987 1.000 0.994 0.028 -0.138 -0.517 0.580 -0.559 
p <.0001 <.0001 <.0001 0.912 0.584 0.028 0.012 0.016 

Gross COT 
J•m-1 

r 0.994 0.996 0.994 1.000 0.094 -0.090 -0.559 0.602 -0.600 
p <.0001 <.0001 <.0001 0.711 0.722 0.016 0.008 0.009 

dmt0 
cm 

r 0.070 0.137 0.028 0.094 1.000 0.916 -0.392 0.077 -0.352 
p 0.784 0.589 0.912 0.711 <.0001 0.108 0.761 0.152 

dmt10 
cm 

r -0.099 -0.050 -0.138 -0.090 0.916 1.000 -0.253 -0.100 -0.175 
p 0.695 0.843 0.584 0.722 <.0001 0.310 0.692 0.488 

AM10 

N•m 
r -0.560 -0.600 -0.517 -0.559 -0.392 -0.253 1.000 -0.932 0.993 
p 0.016 0.008 0.028 0.016 0.108 0.310 <.0001 <.0001 

AT10 
N 

r 0.611 0.631 0.580 0.602 0.077 -0.100 -0.932 1.000 -0.953 
p 0.007 0.005 0.012 0.008 0.761 0.692 <.0001 <.0001 

InvM10 

N•m 
r -0.600 -0.639 -0.559 -0.600 -0.352 -0.175 0.993 -0.953 1.000 
p 0.009 0.004 0.016 0.009 0.152 0.488 <.0001 <.0001  

 

(B)  
Net 
VO2 

L•min-1 

Gross 
VO2 

L•min-1 

Net 
COT 
J•m-1 

Gross 
COT 
J•m-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
AT10 

N 
InvM10

N•m 

Net VO2 
L•min-1 

r 1.000 0.994 0.997 0.994 0.011 -0.140 -0.675 0.677 -0.677 
p  <.0001 <.0001 <.0001 0.966 0.579 0.002 0.002 0.002 

Gross VO2 
L•min-1 

r 0.994 1.000 0.988 0.997 0.083 -0.092 -0.705 0.687 -0.709 
p <.0001  <.0001 <.0001 0.744 0.718 0.001 0.002 0.001 

Net COT 
J•m-1 

r 0.997 0.988 1.000 0.994 -0.028 -0.172 -0.661 0.675 -0.664 
p <.0001 <.0001  <.0001 0.912 0.495 0.003 0.002 0.003 

Gross COT 
J•m-1 

r 0.994 0.997 0.994 1.000 0.042 -0.125 -0.692 0.687 -0.697 
p <.0001 <.0001 <.0001  0.867 0.621 0.002 0.002 0.001 

dmt0 
cm 

r 0.011 0.083 -0.028 0.042 1.000 0.908 -0.209 -0.107 -0.196 
p 0.966 0.744 0.912 0.867  <.0001 0.405 0.671 0.437 

dmt10 
cm 

r -0.140 -0.092 -0.172 -0.125 0.908 1.000 0.019 -0.356 0.055 
p 0.579 0.718 0.495 0.621 <.0001  0.940 0.147 0.828 

AM10 

N•m 
r -0.675 -0.705 -0.661 -0.692 -0.209 0.019 1.000 -0.936 0.997 
p 0.002 0.001 0.003 0.002 0.405 0.940  <.0001 <.0001 

AT10 
N 

r 0.677 0.687 0.675 0.687 -0.107 -0.356 -0.936 1.000 -0.947 
p 0.002 0.002 0.002 0.002 0.671 0.147 <.0001  <.0001 

InvM10 

N•m 
r -0.677 -0.709 -0.664 -0.697 -0.196 0.055 0.997 -0.947 1.000 

p 0.002 0.001 0.003 0.001 0.437 0.828 <.0001 <.0001  
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Table B.3: Correlation tables for relative data of RF group when performing the (A) RF pattern and 
the (B) FF pattern.  
 

(A)  
Net VO2 
ml•kg-1 

•min-1 

Gross 
VO2 

ml•kg-1 

•min-1 

Net 
COT 
J•m-1 

•kg-1 

Gross 
COT 
J•m-1 

•kg-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
•kg-1 

AT10 
N•kg-1 

InvM10 

N•m 
•kg-1 

Net VO2 
ml•kg-1 

•min-1 

r 1.000 0.983 0.921 0.904 -0.042 -0.043 0.030 -0.006 -0.006 

p 
 

<.0001 <.0001 <.0001 0.866 0.862 0.903 0.980 0.981 

Gross VO2 
ml•kg-1 

•min-1 

r 0.983 1.000 0.901 0.914 -0.029 -0.038 -0.005 0.015 0.009 

p <.0001 
 

<.0001 <.0001 0.906 0.877 0.983 0.953 0.972 

Net COT 
J·m-1•kg-1 

r 0.921 0.901 1.000 0.986 -0.219 -0.205 0.221 -0.026 -0.033 
p <.0001 <.0001 <.0001 0.368 0.400 0.364 0.915 0.892 

Gross COT 
J·m-1•kg-1 

r 0.904 0.914 0.986 1.000 -0.214 -0.206 0.196 -0.010 -0.022 
p <.0001 <.0001 <.0001 0.380 0.397 0.421 0.968 0.929 

dmt0 
cm 

r -0.042 -0.029 -0.219 -0.214 1.000 0.981 -0.737 -0.378 -0.387 
p 0.866 0.906 0.368 0.380 <.0001 0.000 0.110 0.102 

dmt10 
cm 

r -0.043 -0.038 -0.205 -0.206 0.981 1.000 -0.702 -0.455 -0.409 
p 0.862 0.877 0.400 0.397 <.0001 0.001 0.050 0.082 

AM10 

N•m•kg-1 
r 0.030 -0.005 0.221 0.196 -0.737 -0.702 1.000 -0.297 -0.300 
p 0.903 0.983 0.364 0.421 0.000 0.001 0.217 0.212 

AT10 
N•kg-1 

r -0.006 0.015 -0.026 -0.010 -0.378 -0.455 -0.297 1.000 0.944 
p 0.980 0.953 0.915 0.968 0.110 0.050 0.217 <.0001 

InvM10 

N•m•kg-1 
r -0.006 0.009 -0.033 -0.022 -0.387 -0.409 -0.300 0.944 1.000 
p 0.981 0.972 0.892 0.929 0.102 0.082 0.212 <.0001  

 

(B)  
Net VO2 
ml•kg-1 

•min-1 

Gross 
VO2 

ml•kg-1 

•min-1 

Net 
COT 
J•m-1 

•kg-1 

Gross 
COT 
J•m-1 

•kg-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
•kg-1 

AT10 
N•kg-1 

InvM10 

N•m 
•kg-1 

Net VO2 
ml•kg-1 

•min-1 

r 1.000 0.985 0.915 0.896 0.008 0.025 0.230 -0.436 -0.458 

p 
 

<.0001 <.0001 <.0001 0.974 0.919 0.344 0.062 0.048 

Gross VO2 
ml•kg-1 

•min-1 

r 0.985 1.000 0.904 0.914 0.016 0.034 0.217 -0.436 -0.465 

p <.0001 
 

<.0001 <.0001 0.947 0.891 0.372 0.062 0.045 

Net COT 
J·m-1•kg-1 

r 0.915 0.904 1.000 0.987 -0.161 -0.119 0.366 -0.429 -0.454 
p <.0001 <.0001 <.0001 0.511 0.628 0.124 0.067 0.051 

Gross COT 
J·m-1•kg-1 

r 0.896 0.914 0.987 1.000 -0.154 -0.111 0.353 -0.428 -0.458 
p <.0001 <.0001 <.0001 0.530 0.650 0.138 0.068 0.049 

dmt0 
cm 

r 0.008 0.016 -0.161 -0.154 1.000 0.982 -0.741 -0.334 -0.293 
p 0.974 0.947 0.511 0.530 <.0001 0.000 0.163 0.224 

dmt10 
cm 

r 0.025 0.034 -0.119 -0.111 0.982 1.000 -0.722 -0.388 -0.318 
p 0.919 0.891 0.628 0.650 <.0001 0.001 0.101 0.185 

AM10 

N•m•kg-1 
r 0.230 0.217 0.366 0.353 -0.741 -0.722 1.000 -0.336 -0.395 
p 0.344 0.372 0.124 0.138 0.000 0.001 0.159 0.094 

AT10 
N•kg-1 

r -0.436 -0.436 -0.429 -0.428 -0.334 -0.388 -0.336 1.000 0.980 
p 0.062 0.062 0.067 0.068 0.163 0.101 0.159 <.0001 

InvM10 

N•m•kg-1 
r -0.458 -0.465 -0.454 -0.458 -0.293 -0.318 -0.395 0.980 1.000 
p 0.048 0.045 0.051 0.049 0.224 0.185 0.094 <.0001  
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Table B.4: Correlation tables for relative data of the FF group when performing the (A) RF pattern 
and the (B) FF pattern.  
 

(A)  
Net VO2 
ml•kg-1 

•min-1 

Gross 
VO2 

ml•kg-1 

•min-1 

Net 
COT 
J•m-1 

•kg-1 

Gross 
COT 
J•m-1 

•kg-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
•kg-1 

AT10 
N•kg-1 

InvM10 

N•m 
•kg-1 

Net VO2 
ml•kg-1 

•min-1 

r 1.000 0.971 0.994 0.979 -0.274 -0.449 -0.221 0.473 0.389 

p 
 

<.0001 <.0001 <.0001 0.271 0.061 0.379 0.048 0.110 

Gross VO2 
ml•kg-1 

•min-1 

r 0.971 1.000 0.952 0.993 -0.124 -0.346 -0.180 0.375 0.290 

p <.0001 
 

<.0001 <.0001 0.623 0.160 0.476 0.125 0.243 

Net COT 
J·m-1•kg-1 

r 0.994 0.952 1.000 0.973 -0.338 -0.494 -0.246 0.516 0.431 
p <.0001 <.0001 <.0001 0.170 0.037 0.326 0.028 0.074 

Gross COT 
J·m-1•kg-1 

r 0.979 0.993 0.973 1.000 -0.199 -0.401 -0.209 0.429 0.341 
p <.0001 <.0001 <.0001 0.430 0.099 0.404 0.076 0.166 

dmt0 
cm 

r -0.274 -0.124 -0.338 -0.199 1.000 0.916 -0.072 -0.378 -0.312 
p 0.271 0.623 0.170 0.430 <.0001 0.776 0.122 0.207 

dmt10 
cm 

r -0.449 -0.346 -0.494 -0.401 0.916 1.000 -0.217 -0.280 -0.166 
p 0.061 0.160 0.037 0.099 <.0001 0.387 0.260 0.510 

AM10 

N•m•kg-1 
r -0.221 -0.180 -0.246 -0.209 -0.072 -0.217 1.000 -0.872 -0.911 
p 0.379 0.476 0.326 0.404 0.776 0.387 <.0001 <.0001 

AT10 
N•kg-1 

r 0.473 0.375 0.516 0.429 -0.378 -0.280 -0.872 1.000 0.982 
p 0.048 0.125 0.028 0.076 0.122 0.260 <.0001 <.0001 

InvM10 

N•m•kg-1 
r 0.389 0.290 0.431 0.341 -0.312 -0.166 -0.911 0.982 1.000 
p 0.110 0.243 0.074 0.166 0.207 0.510 <.0001 <.0001  

 

(B)  
Net VO2 
ml•kg-1 

•min-1 

Gross 
VO2 

ml•kg-1 

•min-1 

Net 
COT 
J•m-1 

•kg-1 

Gross 
COT 
J•m-1 

•kg-1 

dmt0 
cm 

dmt10 
cm 

AM10 

N•m 
•kg-1 

AT10 
N•kg-1 

InvM10 

N•m 
•kg-1 

Net VO2 
ml•kg-1 

•min-1 

r 1.000 0.970 0.993 0.969 -0.381 -0.439 0.099 0.185 0.157 

p 
 

<.0001 <.0001 <.0001 0.119 0.068 0.696 0.462 0.535 

Gross VO2 
ml•kg-1 

•min-1 

r 0.970 1.000 0.958 0.992 -0.237 -0.350 0.096 0.134 0.098 

p <.0001 
 

<.0001 <.0001 0.344 0.155 0.706 0.595 0.698 

Net COT 
J·m-1•kg-1 

r 0.993 0.958 1.000 0.972 -0.444 -0.492 0.134 0.173 0.141 
p <.0001 <.0001 <.0001 0.065 0.038 0.596 0.493 0.577 

Gross COT 
J·m-1•kg-1 

r 0.969 0.992 0.972 1.000 -0.312 -0.413 0.135 0.123 0.084 
p <.0001 <.0001 <.0001 0.207 0.089 0.594 0.626 0.741 

dmt0 
cm 

r -0.381 -0.237 -0.444 -0.312 1.000 0.908 -0.364 -0.101 -0.070 
p 0.119 0.344 0.065 0.207 <.0001 0.138 0.691 0.783 

dmt10 
cm 

r -0.439 -0.350 -0.492 -0.413 0.908 1.000 -0.585 0.116 0.178 
p 0.068 0.155 0.038 0.089 <.0001 0.011 0.647 0.480 

AM10 

N•m•kg-1 
r 0.099 0.096 0.134 0.135 -0.364 -0.585 1.000 -0.869 -0.893 
p 0.696 0.706 0.596 0.594 0.138 0.011 <.0001 <.0001 

AT10 
N•kg-1 

r 0.185 0.134 0.173 0.123 -0.101 0.116 -0.869 1.000 0.991 
p 0.462 0.595 0.493 0.626 0.691 0.647 <.0001 <.0001 

InvM10 

N•m•kg-1 
r 0.157 0.098 0.141 0.084 -0.070 0.178 -0.893 0.991 1.000 
p 0.535 0.698 0.577 0.741 0.783 0.480 <.0001 <.0001  
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APPENDIX E 

DESCRIPTION OF MUSCULOSKELETAL & ENERGETICS MODELS 

 

Musculoskeletal Model 

The musculoskeletal model that was used in Study 3 was adapted from those used 

in similar studies investigating triceps surae muscle function in running or jumping 

(Bobbert et al., 1986a; Hof et al., 2002; van Soest and Bobbert, 1993).  The metabolic 

work used a previously published model (Minetti and Alexander, 1997; Sellers et al., 

2003).  The muscle parameter AREL took muscle fiber type into consideration thereby 

improving the representation of the power capability of the muscles (Umberger et al., 

2003; Umberger et al., 2006).   The model consisted of three rigid segments representing 

the foot, leg and thigh (Figure E.1).  Inputs to the model included the experimental ankle 

joint moment, ankle and knee joint angles and static Achilles tendon moment arm lengths 

calculated from the data in Study 2.  All variables determined by the model were 

calculated for the gastrocnemius (GA) and soleus (SO) individually as well as each 

participant individually.  Muscle parameter values specific to the GA and SO are listed in 

Table E.1.  Refer to Appendix F for a list of all abbreviations used in the model. 

 

Table E.1: Parameter values used to determine muscle properties.  Maximum isometric force 
production at optimum fiber length (F0) was taken from Hof et al. (2002). Optimum fiber length (L0) 
was taken from Out et al. (1996). Tendon slack length (LS) and physiological cross sectional area 
(PCSA) were taken from Arnold et al.  (2010).  Maximum length range for force production relative 
to L0 (w) and percent fast twitch muscle fibers (%FT) were taken from Umberger et al. (2006). The 
normalized Hill constant a (AREL) was calculated from %FT. The normalized Hill constant b (BREL) 
was calculated from AREL and a maximum shortening velocity of 15 L0•s

-1. 

 
F0  
(N) 

L0  
(cm) 

LS  
(cm)

PSCA 
(cm) 

w %FT AREL BREL 

GA 2900 4.9 39.1 31.3 0.56 50 0.30 4.50 
SO 7500 4.3 27.9 58.8 0.56 20 0.18 2.75 
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Figure E.1: A) Link segment model representing the foot, leg, thigh, gastrocnemius, soleus, and 
passive moment (Mpas) (Adapted from Nagano et al., 2001).  B) Elements of the Hill-type model 
representing each muscle. 

 

The moment arm length (dMT) of each muscle was based on the generic model 

described by Arnold et al. (2010) and was expressed as a function of joint angle (θ) 

(Grieve et al., 1978).  A plot of dMT as a function of joint angle was created for the GA 

and SO from the Arnold et al. (2010) data.  The model data were fit to a second-order 

polynomial by a custom MATLAB program (Mathworks, Inc., Natick, MA) and used to 

determine the polynomial coefficients.  A second-order polynomial was the lowest order 

that adequately fit the moment arm data, based on an assessment of the root mean square 

error between the polynomial prediction and the data.  The polynomials representing the 

relationship between dMT and θ which took the form: 

 

dMT-GA= a0+ a1θank+ a2θank
2        (E1)  

 dMT-SO= a0+ a1θank+ a2θank
2 + a3θank

3     (E2) 
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The zeroth-order polynomial coefficient was scaled for each subject individually by the 

static Achilles tendon moment arm measurement.  Equations E1 and E2 were integrated 

with respect to the knee and ankle joint angle, thus creating third-order polynomials for 

GA and SO muscle tendon length (LMT) as a function θ: 

 

LMT-GA= c0- a0θank+ 
a1θank

2

2
+ 

a2θank
3

3
 +  b0θkn+ 

b1θkn
2

2
+ 

b2θkn
3

3
  

(E3) 
 

LMT-SO= c0- a0θank+ 
a1θank

2

2
+ 

a2θank
3

3
 

    (E4) 
 

where c0 was the LMT when the ankle and knee angles were zero (Arnold et al., 2010).  

LMT was defined as the length between the muscle origin and insertion, and was 

expressed as a function of the joint angle (θ) (Grieve et al., 1978).  The zeroth-order 

coefficients for the LMT polynomials were scaled based on the participant’s static leg 

length.  Equations E3 and E4 were differentiated with respect to time to determine the 

muscle velocity (VMT) as a function of θ:  

 

VMT-GA=  -a0θank – b0θkn – 2b1θankθank – 2b1θknθkn – 3a2θank
2 θank – 3b2θkn

2 θkn      (E5) 

 

VMT-SO=  -1(a0 + 2 a1θank+ 3a2θank
2 θank)   (E6). 

 

The force produced in each muscle was determined from the ankle joint moment 

(MA), determined by inverse dynamics procedure from Study 2.  MA was defined as the 
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net sum of the active plantar flexor muscles and all passive structures acting about the 

ankle joint.  A passive moment (Mpas) was used to represent the passive resistance by the 

muscle fascia, ligaments, joint capsule and joint contact forces (Hatze, 1997).  Mpas was a 

function of the ankle and knee joint angles (Riener and Edrich, 1999) and was equal to: 

 

     Mpas=  – exp൫2.1016 + 0.0843φA–  0.0176φK൯ 

   – exp൫– 7.9763 – 0.1949φA+ 0.0008φK൯ –  1.792                 (E7) 

 

where φA and φK are the ankle and knee joints, respectively.  Therefore, the active 

contribution (Mact) to the ankle joint moment was calculated by:  

 

Mact = MA – Mpas     (E8). 

 

The active contribution to the ankle joint moment was used to calculate the force 

generated by the triceps surae as a sum of the forces produced by the GA (FGA) and SO 

(FSO).   

 

Mact = FGA • dMT-GA + FSO • dMT-SO    (E9) 

 

where the force generated by the GA and SO was a proportion of each muscle’s 

physiological cross sectional area (PCSA) to the PCSA of the triceps surae.  The ratio 

between GA and SO PCSA 1.8786:1, therefore the force produced by each muscle was:   
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1.8786FGA = FSO     (E10). 

 

The force produced by each muscle-tendon complex (FMT) was equal to the force 

generated by the contractile element (FCE).  FCE is transmitted completely through the 

series elastic element (SEE), therefore the FCE and the FSEE are equal and must satisfy the 

equation: 

 

FMT = FCE = FSEE          (E11). 

 

The length of the SEE (LSEE) was calculated from FSEE, which is modeled as a 

nonlinear spring (van Soest and Bobbert, 1993).  The amount of force that the SEE can 

produce depends on the LSEE.  The SEE can only produce force when LSEE is greater than 

the slack length (LS), which is the minimum length the SEE can transmit force.  When 

LSEE ≥ LS, then:  

 

L
SEE

 = L
S
 +  

(F
SEE

 )0.5

(K
SEE

 )0.5 

       (E12) 

where 

KSEE = 
F0

(UMAX · LS)2  · UMAX             (E13) 

 

and where KSEE was the stiffness and UMAX was the relative elongation of the SEE at F0 

which was equal to 0.04 (Ettema and Huijing, 1989); and F0 was the maximum isometric 
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force produced at optimal CE length (L0).  The length of the LSEE and contractile element 

length (LCE) were constrained to equal the LMT found for each muscle.  Therefore, LCE 

was found by: 

 

LCE = LMT –  LSEE     (E14), 

 

and thus LCE and LSEE are dependent on the force within each element.   

Muscle contraction dynamics of the force-length relationship was used to 

calculate the length of the CE (LCE) for each muscle.  The force-length relationship 

simulates the amount of force production capability based on muscle length and was 

calculated as: 

 

FISOM = c · ቀLCE

L0
ቁ

2
- 2c · ቀLCE

L0
ቁ + c + 1     (E15) 

where 

c = 
-1

w2      (E16) 

 

and where FIOSM was the force relative to F0 that would be produced isometrically at any 

length of the CE relative to L0; and w was the maximum length range for force 

production relative to L0 (van Soest and Bobbert, 1993).  The variable w was equal to 

0.61 for the GA and 0.80 for the SO (Umberger et al., 2006) (Table E.1).  LCE was 

between (1 – w)·L0 and (1 + w)·L0 (van Soest and Bobbert, 1993). 

The velocity of each SEE of each muscle (VSEE) was determined by 

differentiating LSEE with respect to time (t):  
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VSEE = 
d(LSEEሻ

d(t)
 

     (E17) 
 

The velocity of the CE (VCE) can then be calculated by:  

 

VCE = VMT – VSEE     (E18). 

 

The power produced by each muscle (PMT) was the product of the muscle force 

and muscle velocity: 

 

PMT = FMT · VMT     (E19) 

 PCE = FCE · VCE     (E20) 

PSEE = FSEE · VSEE     (E21). 

 

The amount of mechanical work produced by the MT, CE, and SEE were calculated by 

trapezoidal numerical integration of the power generation with respect to t during the 

stance phase: 

 

 P • dt      (E22) 

 

Net mechanical work was the sum of all mechanical work produced during the stance 

phase.  Positive mechanical work indicated energy generation and was the total of the 

positive area of the power-time curve.  Similarly, negative work, indicating energy 

absorption, was the total of the negative area of the power-time curve. 
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The amount of muscle force generation was dependent on the level of muscle 

activation (ACT) as well as the kinematic state of the muscle.  Therefore, ACT can be 

calculated by first determining the force potential of the muscle given its kinematic state.  

The calculation of ACT began with determining the dynamic force (Fdyn) production if 

LCE = L0 given the instantaneous VCE (Epstein and Herzog, 1998) by the following 

equation representing the Hill (1938) force-velocity relationship:  

 

Fdyn= 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ

0                                                                           if VCE ≤ -V0

F0b + 
VCEa

-VCE+ b
                                         if VCE > -V0and VCE ≤ 0

F0Fasympt –  0.5 
F0b′ – VCEa′

VCE+ b
൨                if VCE >0 and VCE ≤ F0

b'

a'

F0Fasympt                                                               if VCE > F0
b'

a'

 

(E23) 
 

where a and b were the Hill constants, a’ = 0.1a, b’ = 0.1b, V0 was the magnitude of the 

maximum CE velocity, F0 was the maximum isometric force production at L0, and Fasympt 

was the asymptotic maximum force value in the eccentric phase (relative to F0).  Fasympt 

was equal 1.5 (Joyce and Rack, 1969; van Soest and Bobbert, 1993).  The shape of the 

force-velocity curve and the magnitude of the V0 where dictated by the value of AREL and 

BREL (Umberger et al., 2003).  AREL and BREL were the normalized Hill constants a and b 

(van Soest and Bobbert, 1993).  Due to slow twitch muscle fibers being recruited at low 

activation levels and their low force generation capability, AREL and BREL were adjusted 
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to account for fiber type composition (Umberger et al., 2003; Winters and Stark, 1988) 

by the following equations: 

 

AREL = 0.1 + 0.4(%FT/100)     (E24) 

BREL = ARELV෩0     (E25) 

where 

V෩CE = VCE/L0      (E26) 

 

and where %FT was the percentage of fast twitch muscle fibers in the muscle and V෩0was 

V0 expressed relative to L0 with units L0•s
-1.  AREL was equal to 0.3 and 0.18 for the GA 

and SO respectively (Umberger et al., 2006) and BREL was equal to 4.5 and 2.75 for the 

GA and SO respectively (Table D1).  Therefore, V෩0 was equal to 15 L0•s
-1 in this model.  

Previous simulations of human muscle have used maximum shortening velocities of 

between 8 -14 L0•s
-1 (Epstein and Herzog, 1998; Lichtwark and Wilson, 2006).  After 

determining Fdyn, ACT could then be calculated from the instantaneous FCE relative to 

Fdyn: 

 

ACT = 
FCE

Fpotential
 

     (E27) 
where 

Fpotential = Fdyn•FISOM         (E28). 
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where Fpotential was Fdyn adjusted by FISOM.  As described above, Fdyn was the dynamic 

force production if LCE = L0 given the instantaneous VCE, and FIOSM was the force relative 

to F0 that would be produced isometrically at any length of the CE relative to L0. 

 

Muscle Energy Expenditure Model 

The muscle energy expenditure model that was used for Study 3 was adapted 

from previous studies (Minetti and Alexander, 1997; Sellers et al., 2003).  Energy 

expenditure from the GA and SO was calculated separately for each individual 

participant.   

ACT was used to determine the metabolic power of the muscle for each instant of 

the stance phase.  Metabolic power was expended when the muscle fibers were activated 

and generated force.  The amount of metabolic power/energy consumption was 

dependent on ACT and VCE.  Therefore, the amount of metabolic power (PMET) can be 

determined as a function of activation (ACT), maximum isometric force production (F0), 

and relative VCE (VCE/V0) (Minetti and Alexander, 1997; Sellers et al., 2003):  

 

PMET = ACT F0V0Φ ൬
VCE

V0
൰ 

    (E29) 
where 

 

Φ ൬
VCE

V0
൰  = 

0.054 + 0.506 ቀെ
VCE
V0

ቁ  + 2.46 ቀെ
VCE
V0

ቁ
2

1 - 1.13 ቀെ
VCE
V0

ቁ + 12.8 ቀെ
VCE
V0

ቁ
2

–  1.64 ቀെ
VCE
V0

ቁ
3 

  (E30). 
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Equation E29 was found by Minetti and Alexander (1997) who fit an algebraic equation 

to the data from Ma and Zahalak (1991).  The data by Ma and Zahalak (1991) were 

experimental values of PMET as a function of relative CE velocity (VCE/V0).  CE 

metabolic energy expenditure was then calculated by integrating PMET with respect to 

time. 

 

 PMET • dt     (E31) 

 

  



324 

References 

1. Arnold EM, Ward SR, Lieber RL, Delp SL. A Model of the Lower Limb for 
Analysis of Human Movement. Ann Biomed Eng. 2010; 38(2):269-279. 

2. Bobbert MF, Huijing PA, van Ingen Schenau GJ. A Model of the Human Triceps 
Surae Muscle-Tendon Complex Applied to Jumping. J Biomech. 1986a; 
19(11):887-898. 

3. Epstein M and Herzog W. Theoretical Models of Skeletal Muscle: Biological and 
Mathematical Considerations. John Wiley & Sons, 1998. 

4. Ettema GJC and Huijing PA. Properties of Tendinous Structures and Series 
Elastic Componets of Edl Muscle Tendon Complex of the Rat. J Biomech. 1989; 
22(1209-1215. 

5. Grieve DW, Pheasant S, Cavanagh PR. Prediction of Gastrocnemius Length from 
Knee and Ankle Joint Posture. Biomechanics Vi-A. E. Asmussen, K. Jorgensen 
and (Eds.).  University Park Press, Baltimore,,1978. 405-412. 

6. Hatze H. A Three-Dimensional Multivariate Model of Passive Human Joint 
Torques and Articular Boundaries. Clin Biomech (Bristol, Avon). 1997; 
12(2):128-135. 

7. Hill AV. The Heat of Shortening and the Dynamic Constants of Muscle. Proc 
Royal Soc. 1938; 126B(136-195. 

8. Hof AL, Van Zandwijk JP, Bobbert MF. Mechanics of Human Triceps Surae 
Muscle in Walking, Running and Jumping. Acta Physiol Scand. 2002; 
174(1):17-30. 

9. Joyce GC and Rack PM. Isotonic Lengthening and Shortening Movements of Cat 
Soleus Muscle. J Physiol. 1969; 204(2):475-491. 

10. Lichtwark GA and Wilson AM. Interactions between the Human Gastrocnemius 
Muscle and the Achilles Tendon During Incline, Level and Decline Locomotion. 
J Exp Biol. 2006; 209(Pt 21):4379-4388. 

11. Ma SP and Zahalak GI. A Distribution-Moment Model of Energetics in Skeletal 
Muscle. J Biomech. 1991; 24(1):21-35. 

12. Minetti AE and Alexander RM. A Theory of Metabolic Costs for Bipedal Gaits. J 
Theor Biol. 1997; 186(4):467-476. 

13. Out L, Vrijkotte TG, van Soest AJ, Bobbert MF. Influence of the Parameters of a 
Human Triceps Surae Muscle Model on the Isometric Torque-Angle Relationship. 
J Biomech Eng. 1996; 118(1):17-25. 



325 

14. Sellers WI, Dennis LA, Crompton RH. Predicting the Metabolic Energy Costs of 
Bipedalism Using Evolutionary Robotics. J Exp Biol. 2003; 206(Pt 7):1127-
1136. 

15. Umberger BR, Gerritsen KG, Martin PE. A Model of Human Muscle Energy 
Expenditure. Comput Methods Biomech Biomed Engin. 2003; 6(2):99-111. 

16. Umberger BR, Gerritsen KG, Martin PE. Muscle Fiber Type Effects on 
Energetically Optimal Cadences in Cycling. J Biomech. 2006; 39(8):1472-1479. 

17. van Soest AJ and Bobbert MF. The Contribution of Muscle Properties in the 
Control of Explosive Movements. Biol Cybern. 1993; 69(3):195-204. 

18. Winters JM and Stark L. Estimated Mechanical Properties of Synergistic Muscles 
Involved in Movements of a Variety of Human Joints. J Biomech. 1988; 
21(12):1027-1041. 

 
 



326 

APPENDIX F 

MODEL ABBREVIATIONS 

 

a Hill constant 
ACT muscle active state; activation level 
AREL normalized Hill constant a 
b Hill constant 
BREL normalized Hill constant b 
CE contractile element 
dMT Moment arm of the muscle-tendon complex 
ECE Metabolic energy expenditure 
F Force generated given the instantaneous muscle length and velocity 
FCE force produced by the contractile element 
F0 Maximum isometric force production at optimal contractile element length 
FGA force produced by the gastrocnemius muscle 
Fasympt Asymptotic maximum eccentric force in the force-velocity relation 
Fdyn Dynamic force production if LCE = L0 and the instantaneous VCE 
FISOM Force relative to the maximum isometric force that can be produced isometrically 

given the relative length of the contractile element 
FMT force produced by the muscle-tendon complex 
FSEE force produced by the series elastic element 
FSO force produced by the soleus muscle 
FT Fast twitch muscle fibers 
GA gastrocnemius muscle 
KSEE  Relative elongation of the SEE at F0 
LCE length of the contractile element 
LMT length of the muscle-tendon complex 
LSEE length of the series elastic element 
LS Series elastic element slack length 
L0 Optimal length of the contractile element for maximal isometric force production 
MA Ankle joint moment 
Mact  Moment produced by active forces of the triceps surae 
Mpas  Moment produced by passive structures and forces 
MT Muscle-tendon complex 
P Muscle mechanical power 
PCE Power produced by the contractile element 
PCSA Physiological cross-sectional area 
PMET Muscle metabolic power 
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PMT Power produced by each muscle-tendon complex 
PSEE Power produced by the series elastic element 
φ Ankle or knee joint angle used in the passive joint moment equation 
SEE series elastic element 
SO soleus muscle 
θ Joint angle 
UMAX Relative elongation of SEE at F0 

V Velocity relative to L0 
VCE velocity of the contractile element 
VMT velocity of the muscle-tendon complex 
V0 Maximum contractile element velocity 
VSEE velocity of the series elastic element 
w Maximum length range for force production relative to L0; Width of the parabola 

for the force-length relationship relative to L0  
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