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ABSTRACT

DRIVEN MORPHOLOGICAL EVOLUTION OF
CRYSTAL SURFACES, EPITAXIAL THIN FILMS, AND

TWO-DIMENSIONAL MATERIALS:
MORPHOLOGICAL STABILITY AND

PATTERN FORMATION

FEBRUARY 2018

LIN DU

B.E., DALIAN UNIVERSITY OF TECHNOLOGY

M.S., DALIAN UNIVERSITY OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Dimitrios Maroudas

Mass transport in solid materials driven by externally applied �elds, such as

mechanical stresses, electric �elds, and temperature gradients, can cause morpholog-

ical instabilities, leading to failure of materials used in electronic and optoelectronic

devices. However, properly controlled applied �elds can also stabilize planar surface

morphology, reduce surface roughness, and drive the formation of intriguing nanoscale

morphological features, providing a path toward precise nanopatterning for the de-

velopment of electronic and photonic materials with optimal functionality.

Toward this end, we have studied the surface morphological evolution of stressed

crystalline solids and thin �lms based on a continuum model of driven surface mass

transport that accounts for stresses, electric �elds, temperature gradients, surface en-
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ergy, wetting potential, and surface di�usional anisotropy. Based on linear stability

analysis and self-consistent dynamical simulations, we found that long-wavelength

plane-wave perturbations from the planar surface of a uniaxially stressed solid can

trigger not only the Asaro-Tiller/Grinfeld (ATG) instability but also a nonlinear

tip-splitting instability, while su�ciently strong and well controlled electric �elds and

thermal gradients can alone or synergistically stabilize the planar surface morphology.

For conducting thin �lms with nanoscale surface roughness, we established the electri-

cal stressing of the �lms as a viable physical processing strategy for surface roughness

reduction and optimized this strategy to minimize the electric �eld strength require-

ment. For heteroepitaxial thin �lms, we found that burying quantum dot (QD) arrays

in the corresponding substrates can be used to engineer the initial surface morphologi-

cal perturbation of the strained epitaxial �lm in order to form quantum dot molecules

(QDMs) by design. We also found that thermal annealing of epitaxial QDs can induce

additional stress due to thermal mismatch, leading to further morphological evolution

of the QDs and their transformation to nanorings, or multiple concentric nanorings,

and eventually to multiple QDs. The study provides a promising way to stabilize

the planar surface morphology and smoothen the surface of thin �lms, and also sets

the stage for precise engineering of tunable-size nanoscale surface features in strained

thin �lm growth by exploiting �lm surface nonlinear pattern forming phenomena.

Moreover, we have conducted a systematic analysis of pore-edge interactions in

graphene nanoribbons (GNRs) using �rst-principles density functional theory (DFT)

calculations, as well as molecular-statics (MS) and molecular-dynamics (MD) sim-

ulations based on reliable interatomic potentials. We identi�ed and parameterized

the strongly attractive pore-edge interactions for nanopores in the vicinity of GNR

edges, which can drive nanopores to migrate toward and coalesce with the GNR

edges. The post-coalescence morphological evolution of an armchair GNR edge leads

to the formation of a V-shaped edge pattern consisting of zigzag linear segments
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(facets). DFT calculations show that the zigzag segments forming at the armchair

edges can be used to tune the electronic band structure of the GNR. The bandgap of

the patterned GNRs exhibits a linear dependence on the density of the zigzag edge

atoms, which is controlled by the size and concentration of the pores introduced in

the defect-engineered GNR.
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anisotropy parameters m = 3, A = 12, and � = �15�, and
di�erent combinations of thermal and electric �eld orientations.
(a) E1 = E1x̂ and rTx = jrTxjx̂; (b) E1 = �E1x̂ and
rTx = jrTxjx̂; (c) E1 = �E1x̂ and rTx = �jrTxjx̂; and (d)
E1 = E1x̂ and rTx = �jrTxjx̂. The surface pro�le snapshots
correspond to (a) t = 0, 0.20, 0.33, 0.35, 0.55, 0.64, 0.77, 0.93,
0.98, 1.11, 1.17, and 1.20 �10�1� ; (b) t = 0, 0.12, 0.15, 0.17, 0.18,
0.20, 0.29, 0.32, 0.39, 0.42, 0.45, and 0.46 �10�1� ; (c) t = 0, 0.20,
0.26, 0.61, 0.69, 0.75, 0.90, 1.23, 1.30, 1.31, 1.32, and 1.43 �10�1� ;
and (d) t = 0, 0.36, 0.42, 0.50, 0.64, 0.78, 0.94, 1.24, 1.55, 2.26,
3.70, and 6.18 �10�1� . In all cases, (a)-(d), �E = 0:3 and
� = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
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2.7 [(a), (b)] Surface morphological evolution, ~h(~x; ~t), starting with a
sinusoidal perturbation from a planar surface morphology,
~h(~x; 0) = ~�0 sin(~k~x), for ~k = 0:7, ~�0=~� = 0:01, and surface
di�usional anisotropy parameters m = 3, A = 12, and � = �15�,
at (a) �E = 0:05 and � = 0:1, and (b) �E = 0:1 and � = 10. The
surface pro�le snapshots correspond to (a) t = 0, 0.18, 0.19, 0.20,
0.21, 0.70, 1.01, 1.32, 1.40, 1.49, 1.70, and 1.97 �10�1� and (b)
t = 0, 0.12, 0.21, 0.29, 0.36, 0.45, 0.62, 0.87, 1.80, 2.16, 2.48, and
2.71 �10�1� . [(c), (d)] Evolution of the perturbation amplitude, ~�,
for (c) case (a) and (d) case (b) and an additional case with
�E = 0:1 and � = 5 denoted by �-marks and crosses, respectively.
Symbols (crosses and �-marks) represent the simulation results
according to the nonlinear model, while the solid lines correspond
to the predictions of the linear stability theory for the same
parameter sets and initial surface morphology. . . . . . . . . . . . . . . . . . . . . 37

2.8 (a) Evolution of the perturbation amplitude, ~�, of an initially
sinusoidal perturbation from a planar surface morphology,
~h(~x; 0) = ~�0 sin(~k~x), for ~k = 0:7, ~�0=~� = 0:01, and surface
di�usional anisotropy parameters m = 3, A = 12, and � = �15�,
at �e� = 0:055 (�-marks) and �e� = 0:075 (open circles). Symbols
and solid lines correspond to the numerical simulation results and
the predictions of the linear stability theory, respectively. The
inset highlights the exponential growth of the perturbation
amplitude at the early evolution stage, where the symbols denote
simulation results and the solid straight lines are the �ts to the
simulation predictions. (b) Evolution of ~� under the same
conditions used in (a) as a function of ln(1� ~t=~tf ) with ~tf
denoting the dimensionless time to failure. (c) Evolution of ~�,
plotted as a function of ln(1� ~t=~tf ) near the time to failure, under
the same conditions used in (a) with the symbols and solid lines
corresponding to the simulation results and their linear �ts,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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2.9 (a) Comparison of the predictions of the linear stability theory (solid
line) with those of numerical simulations (symbols) for the initial
growth or decay rate of sinusoidal perturbations with the
maximally unstable wavelength, !(~kmax). Open circles and open
squares correspond to � = 0:5 and � = 15, respectively. The value
of �e� corresponding to !(~kmax) = 0 determines the critical
strength of the e�ective external �eld that stabilizes the planar
surface of the stressed solid against the ATG instability. The ~kmax
predicted by the linear stability theory is used; for stable
responses at �e� > �e�,c, ~kmax = 0:75 is used. The insets (at
� = 0:5) are plots of ln( ~�= ~�0) as a function of time for �e� = 0
(upper inset) and �e� = 0:38 (lower inset), which highlight the
exponential growth and decay, respectively, of the perturbation at
early stages of the surface morphological evolution and the
computation of !(~kmax) by calculating the slopes of the linear �ts
(solid lines) of the simulation results (crosses). The initial
amplitude of the perturbation is low, ~�0=~� = 0:01, and the
surface di�usional anisotropy parameters are m = 3, A = 12, and
� = �15�. (b) Dependence of the critical electric �led
strength�E;c on �, with the solid curve and the open circles
representing the predictions of the linear stability theory and of
the numerical simulations, respectively. The inset compares the
predictions of �e�,c from numerical simulations at di�erent values
of � (open circles) with those from linear stability theory (solid
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
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2.10 [(a), (b)] Surface morphological evolution, ~h(~x; ~t), starting with a
sinusoidal perturbation from a planar surface morphology,
~h(~x; 0) = ~�0 sin(~k~x), for ~�0=~� = 0:01, (a) ~k = 1:41 and (b)
~k = 0:75, and surface di�usional anisotropy parameters m = 3,
A = 12, and � = �15� at (a) �e� = 0:05 and � = 0:5 and (b)
�e� = 0:58 and � = 0:5. The surface pro�le snapshots correspond
to (a) t = 0, 0.19, 0.25, 0.30, 0.34, 0.52, 0.66, 0.79, 0.93, 1.06,
1.21, and 1.27 �10�1� and (b) t = 0, 0.22, 0.30, 0.37, 0.51, 0.67,
0.81, 0.96, 1.12, 1.64, 2.96, and 4.89 �10�1� . (c) Comparison of
the predictions of the linear stability theory accounting for (solid
line) and not accounting for (dot-dashed line) the temperature
dependence of the surface di�usivity with those of numerical
simulations (symbols) for the initial growth or decay rate of
sinusoidal perturbations with the maximally unstable wavelength,
!(~kmax). Growth or decay rates at di�erent surface locations are
plotted: open triangles, squares, and circles denote the !(~kmax)
rates at x=� = �1, x=� = 0, and x=� = 1, respectively. The value
of �e� that corresponds to !(~kmax) = 0 determines the critical
strength of the e�ective external �eld that stabilizes the planar
surface of the stressed solid against the ATG instability. The ~kmax
predicted by the linear stability theory is used; for stable
responses at �e� > �e�,c, ~kmax = 0:75 is used. The insets are plots
of ln( ~�= ~�0) as a function of time for �e� = 0 (upper inset) and
�e� = 0:38 > �e�,c (lower inset), which highlight the exponential
growth or decay of the perturbation at the early stages of surface
morphological evolution and the computation of !(~kmax) by
calculating the slopes of the linear �ts (solid lines) to the
simulation results (�-marks). (d) Local evolution rate ! of the
surface perturbation as a function of position ~x at �e� = 0:38 and
� = 0:5. The open circles represent numerical simulation results,
while the solid straight line is a linear �t to the simulation
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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2.11 [(a), (b), (c)] Predictions according to linear stability theory,
Eq. (2.5), of the critical e�ective �eld strength, �e�,c, for complete
inhibition of the ATG instability as a function of the
misorientation angle, �, for surface di�usional anisotropy strength
A = 15 and (a) <110>-oriented, (b) <100>-oriented, and (c)
<111>-oriented surfaces with m = 1, 2, and 3, respectively. (d)
Band of misorientation angles corresponding to stable surface
morphological response as a fraction of the entire range of possible
misorientation angles, ��, as a function of the applied e�ective
�eld strength, �e�, for surface di�usional anisotropy parameters
A = 15, � = �opt, and m = 1, 2, and 3. (e) Critical e�ective �eld
strength, �e�,c(� = �opt), for complete inhibition of the ATG
instability, as a function of the surface di�usional anisotropy
strength, A, for m = 1, 2, and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Dispersion relations for two values of the dimensionless electric-�eld
strength, �E, giving the dependence of the growth or decay rate,
!, of a shape perturbation from the planar surface morphology of
a uniaxially stressed solid on the dimensionless wave number, k,
of the perturbation. (1) �E = 0:88�E;c and (2) �E = 1:1�E;c. The
dashed vertical lines indicate that in case (1), where �E < �E;c,
an initial perturbation with k = 0:4 in the low-k linearly stable
region may induce unstable sub-harmonics of 2k = 0:8 and
3k = 1:2. The inset gives the dispersion relation for �E = 0,
indicating an ATG surface instability. The surface di�usional
anisotropy parameters are A = 12, m = 3, and � = �15�. . . . . . . . . . . 68

3.2 Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx) at �E = 0 with k = 0:91 and �0=� = 0:001,
as predicted by (a) numerical simulation and (b) weakly nonlinear
theory for a solid under uniaxial tension applied along x. The
initial low-amplitude sinusoidal perturbations are identical in
both cases, (a) and (b). The evolved surface morphology with the
split tip is shown after t = 4:0� for both (a) and (b). Surface
di�usional anisotropy e�ects are neglected in both cases. . . . . . . . . . . . 72
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3.3 Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0 with (a1)
k = 0:75, (b1) k = 0:44, (c1) k = 0:34, and (d1) k = 0:29. The
evolution sequences are from the bottom to the top, and the
stress is tensile and applied uniaxially along x. The surface
pro�les shown correspond to (a1) t = 0, 0.46, 0.94, 1.46, 2.04,
2.52, 2.95, 3.39, 3.71, 4.06, 4.35, and 4.50 � ; (b1) t = 0, 1.16, 2.40,
3.19, 4.00, 4.95, 5.31, 5.79, 6.12, 6.55, 7.08, and 7.31 � ; (c1) t = 0,
1.28, 2.70, 4.32, 5.71, 7.06, 8.23, 9.10, 9.57, 9.95, 10.30, and 10.60
� ; and (d1) t = 0, 1.36, 2.94, 3.99, 5.09, 6.25, 7.28, 8.25, 9.09,
9.72, 10.72, and 11.60 � . In (a2), (b2), (c2), and (d2) magni�ed
views are depicted of the regions marked by the rectangles in (a1),
(b1), (c1), and (d1), respectively, highlighting the resulting
tip-split surface morphologies characterized by certain patterns of
secondary ripples. Surface di�usional anisotropy e�ects are
neglected in all of the four simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Number of secondary ripples formed on the uniaxially stressed solid
surface morphology, n, as a function of the initial perturbation
wavelength scaled by the maximally unstable wavelength, �=�max.
Solid lines and open circles denote theoretical predictions and
simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with
�0=� = 0:001 at �E = 0 in all the simulations. Surface di�usional
anisotropy e�ects are neglected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0 with (a1)
k = 0:75, (b1) k = 0:44, (c1) k = 0:34, and (d1) k = 0:29. The
evolution sequences are from the bottom to the top, and the
stress is tensile and applied uniaxially along x. The surface
pro�les shown correspond to (a1) t = 0, 0.06, 0.11, 0.16, 0.25,
0.36, 0.41, 0.44, 0.46, 0.51, 0.55, and 0.59 � ; (b1) t = 0, 0.15, 0.27,
0.38, 0.50, 0.59, 0.68, 0.73, 0.77, 0.82, 0.93, and 1.00 � ; (c1) t = 0,
0.25, 0.47, 0.66, 0.88, 1.10, 1.16, 1.21, 1.30, 1.34, 1.37, and 1.44 � ;
and (d1) t = 0, 0.34, 0.56, 0.78, 0.97, 1.17, 1.24, 1.30, 1.40, 1.49,
1.56, and 1.61 � . In (a2), (b2), (c2), and (d2) magni�ed views are
depicted of the regions marked by the rectangles in (a1), (b1),
(c1), and (d1), respectively, highlighting the resulting tip-split
surface morphologies characterized by certain patterns of
secondary ripples. In all four cases, the surface di�usional
anisotropy parameters are A = 12, m = 3, and � = �15�. . . . . . . . . . . 79
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3.6 Number of secondary ripples formed on the uniaxially stressed solid
surface morphology, n, as a function of the initial perturbation
wavelength scaled by the maximally unstable wavelength, �=�max.
Solid lines and open circles denote theoretical predictions and
simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with
�0=� = 0:001 at �E = 0 for all the simulations. The surface
di�usional anisotropy parameters are A = 12, m = 3, and
� = �15�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0:1 with (a1)
k = 0:58, (b1) k = 0:42, (c1) k = 0:29, and (d1) k = 0:25. The
evolution sequences are from the bottom to the top, and the
stress is tensile and applied uniaxially along x. The surface
pro�les shown correspond to (a1) t = 0, 0.18, 0.35, 0.51, 0.70,
0.90, 1.10, 1.25, 1.42, 1.59, 1.76, and 2.06 � ; (b1) t = 0, 0.54, 0.93,
1.20, 1.49, 1.80, 1.94, 2.10, 2.25, 2.40, 2.58, and 2.88 � ; (c1) t = 0,
1.02, 1.51, 1.94, 2.39, 2.60, 2.81, 3.23, 3.63, 3.96, 4.10, and 4.26 � ;
and (d1) t = 0, 0.97, 1.52, 2.00, 2.50, 3.08, 3.58, 4.02, 4.48, 4.89,
5.23, and 5.47 � . In (a2), (b2), (c2), and (d2) magni�ed views are
depicted of the regions marked by the rectangles in (a1), (b1),
(c1), and (d1), respectively, highlighting the resulting tip-split
surface morphologies characterized by certain patterns of
secondary ripples. In all four cases, the surface di�usional
anisotropy parameters are A = 12, m = 3, and � = �15�. . . . . . . . . . . 83

3.8 Number of secondary ripples formed on the uniaxially stressed solid
surface morphology, n, as a function of the initial perturbation
wavelength scaled by the maximally unstable wavelength, �=�max.
Solid lines and open circles denote theoretical predictions and
simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with
�0=� = 0:001 at �E = 0:1 for all the simulations. The surface
di�usional anisotropy parameters are A = 12, m = 3, and
� = �15�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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3.9 Surface morphological evolution, h(x; t), starting with a perturbation
from the planar surface morphology consisting of a superposition
of three sub-harmonics, namely,
h(x; 0) = �0 cos(2kx) + 0:4�0 cos(3kx) + 0:3�0 cos(5kx), where
�0=� = 0:001, at �E = 0 with k = 0:17. Surface di�usional
anisotropy is not accounted for. The evolution sequences are from
the bottom to the top, and the stress is tensile and applied
uniaxially along x. The surface pro�les shown correspond to t =
0, 1.01, 2.06, 3.20, 3.52, 3.96, 4.51, 4.97, and 5.01 � . . . . . . . . . . . . . . . . 86

4.1 (Color online) Schematic representation of a heteroepitaxial
conducting thin �lm on a substrate layer subjected to an
equibiaxial compressive stress of magnitude �0 and an external
electric �eld E0. Both the thickness of the �lm, h0, and its surface
roughness have been ampli�ed for clarity. . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 (Color online) Top views of the �rst layers of (a1) {110}, (b1) {100},
and (c1) {111} surfaces of fcc metals, and plots, (a2), (b2), and
(c2), respectively, of the surface di�usional anisotropy function for
a planar surface morphology in the x- and y-direction, �x = 0 and
�y = 0, respectively, as functions of the misorientation angle �x.
94

4.3 (Color online) Contour maps of the growth or decay rate, !, as a
function of the surface plane-wave perturbation wave vector
(kx; ky) on a {110} surface with (a1) �E = �E;c and (a2)
�E = 0:6 �E;c, on a {100} surface with (b1) �E = �E;c and (b2)
�E = 0:6 �E;c, and on a {111} surface with (c1) �E = �E;c, and
(c2) �E = 0:6 �E;c. Expressing the perturbation wave vector as
(k; �k), ! is plotted as a function of (a3, b3, c3) k with �k = 0 and
of (a4, b4, c4) �k with k = 1 for (a3, a4) {110}, (b3, b4) {100},
and (c3, c4) {111} surfaces. In the plots of (a3, a4), (b3, b4), and
(c3, c4), the strengths of the applied electric �elds are: (1)
�E = 0, (2) �E = 0:6 �E;c, (3) �E = �E;c, and (4) �E = 1:6 �E;c.
In all cases, the other parameter values are: �W = 0:05,
�x = �10�, �E = 20�, and A = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4 (Color online) Critical electric �eld strength requirement for surface
smoothening (stabilization of the planar surface morphology),
�E;c, as a function of the electric �eld alignment angle, �E. Plots
of the critical electric �eld strength (�d

E;c(�k)) that can stabilize
all the plane-wave perturbations with wave vector in the �k
direction, as a function of �k, with �E = 10�, 20�, 45�, 70�, and
80�, respectively. Anisotropy parameters: A = 10, m = 2, and
�x = �15�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.5 (Color online) 2D contour maps of simulated evolving surface
morphology, h(x; y; t), of a stressed metallic thin �lm starting
with a rough surface under (a1-a4) no electric �eld action, and
under the action of an electric �eld with (b1-b4) �E = 0:20 < �E;c
and (c1-c4) �E = 0:49 > �E;c at (a1,b1,c1) t = 0, (a2,b2,c2)
t = 0:58, (a3,b3,c3) t = 1:18, and (a4,b4,c4) t = 3:00. 1D surface
pro�les, h(x; y; t), along the black solid lines marked on the 2D
maps are plotted in the insets. Parameter values: �W = 0:064,
h0 = 0:1, A = 10, m = 3, �x = �y = �15�, and �E = 45� in
(b1-b4) and (c1-c4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 (Color online) Simulated evolution of surface RMS roughness of
metallic thin �lm under (1) no electric �eld action and (2, 3) the
action of an electric �eld with strength (2) �E = 0:20 < �E;c and
(3) �E = 0:49 > �E;c. Parameter values: identical to those of
Fig. 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.7 (Color online) 2D contour maps of simulated evolving surface
morphology, h(x; y; t), of a stressed metallic thin �lm starting with
a rough surface under the action of an electric �eld with (a1-a4)
�E = 0:03 < �E;c at t = 0, t = 0:95, t = 2:45, and t = 20:00;
(b1-b4) �E = 0:23 < �E;c at t = 0, t = 8, t = 18, and t = 38:00;
(c1-c4) �E = 0:43 > �E;c at t = 0, t = 0:09, t = 0:49, and t = 2:00;
and (d1-d4) �E = 0:43 > �E;c at t = 0, t = 0:09, t = 0:49, and
t = 2:00. In all cases, 1D surface pro�les, h(x; y; t), along the
black solid lines marked on the 2D maps are plotted in the insets.
The initial surface con�gurations of (a1), (b1), and (c1) exhibit
nanoscale roughness, while that of (d1) is merely characterized by
atomic-scale roughness due to thermal �uctuations. Parameter
values: �W = 0:1, A = 10, m = 2, �x = �25�, and �E = 49�. . . . . . . 108

4.8 (Color online) Simulated evolution of surface RMS roughness of a
stressed metallic thin �lm under the action of an electric �eld
with (1) �E = 0:03 < �E;c, (2) �E = 0:23 < �E;c, and (3) and (4)
�E = 0:43 > �E;c. In cases (1), (2), and (3), the initial surface
con�guration exhibits nanoscale roughness, while in case (4) it is
merely characterized by atomic-scale roughness due to thermal
�uctuations. Parameter values: identical to those of Fig. 4.7. . . . . . . 110
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4.9 (Color online) (a) Simulation predictions of whether the �lm surface
roughness grows (black solid squares) or decays (light yellow solid
squares) at di�erent combinations of electric �eld strength, �E,
and its direction expressed by the alignment angle, �E. The open
circle represents the prediction of the linear stability theory for
the critical electric �eld strength and its optimal alignment angle.
Parameter values: A = 10, m = 2, �x = �10�, and �W = 0:1. (b,
c, d) Comparison of critical electric �eld strength �E;c (in red over
the range shown in the left vertical axis) and its optimal
alignment angle, �E;o (in blue over the range shown in the right
vertical axis) predicted by the linear stability theory, represented
by solid curves, with those predicted by self-consistent dynamical
simulations, represented by solid squares for �E;c and open circles
for �E;o, at varied misorientation angle, �x, for (b) {110}, (c)
{100}, and (d) {111} surfaces. Parameter values: A = 10 and
�W = 0:1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10 (Color online) Predicted critical electric �eld strength requirement
�E;c as a function of �lm thickness, h0, for {110}, {100}, and
{111} surfaces with m = 1, m = 2, and m = 3, respectively. The
angles �x and �E are chosen to minimize �E;c. Speci�cally, for
m = 1, �x = �45� and �E = 45�; for m = 2, �x = �36:57� and
�E = 45�; and for m = 3, �x = �15� and �E = 45�. Other
parameter values: A = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.11 (Color online) Predicted critical electric �eld strength requirement
�E;c as a function of surface di�usional anisotropy strength, A, for
{110}, {100}, and {111} surfaces with m = 1, m = 2, and m = 3,
respectively. The angles �x and �E are chosen to minimize �E;c,
and are identical with those in Fig. 4.10. Other parameter values:
�W = 0:1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 2D contour maps of simulated evolving surface morphology, h(x; y; t),
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the advancement of nanofabrication technologies, obtaining a fundamental

understanding of the e�ects of macroscopic forces, such as mechanical stress, electric

�elds, or thermal gradients, on the surface morphology of crystalline metallic con-

ductors or semiconductors is becoming increasingly important. The ability to control

pattern formation on material surfaces and to inhibit surface morphological insta-

bilities by the use of external forcing can have major fundamental and technological

impact on improving materials function and reliability and developing innovative,

directed-assembly processes for nanotechnology. These challenges have motivated a

number of recent theoretical studies on driven surface stabilization and pattern for-

mation [1�3].

In this dissertation, we focus on the study of the driven surface morphological evo-

lution of bulk and thin-�lm structures of common face-centered cubic (fcc) metallic

crystals (such as Al, Cu, Ag, Au) and semiconductor materials (such as Si, Ge, and

III-V compound semiconductors), as well as the edges of 2D materials with emphasis

on graphene. The three typical systems we will study are the surfaces of uniaxially

stressed bulk crystals, coherently strained epitaxial thin �lms, and 2D materials in-

cluding single-layer graphene sheets and graphene nanoribbons (GNRs), as shown

schematically in Fig. 1.1(a), (b), and (c), respectively. The driving forces considered

are mechanical stresses, electric �elds, thermal gradients, as well as thermodynamic

driving forces.
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(a) (b) (c)

Figure 1.1: Schematic representations of (a) the surface of a uniaxially stressed bulk
solid, (b) the surface of a coherently strained heteroepitaxial thin �lm, and (c) a
single-layer graphene sheet.

Speci�cally, we are interested in four closely related problems:

(1) Driven surface stabilization of uniaxially stressed bulk solids. The motivation

for this research stems from the stress-induced surface morphological instabilities that

can cause mechanical failures of solid materials, such as instability phenomena asso-

ciated with the voiding of metallic interconnects in microelectronic chips [4]. We will

study the e�ects of the application of electric �elds and/or thermal gradients on sur-

face morphological stabilization and develop viable strategies for surface stabilization

by the action of externally applied �elds. The strained bulk solids are represented

schematically by a 2D model as shown in Fig. 1.1(a), where the surface is perturbed

from its planar morphology by a low-amplitude sinusoidal perturbation.

(2) Surface roughness reduction of deposited thin �lms by electric current treat-

ment. This problem is motivated by the fact that the surface roughness of micro- and

nano-scale materials a�ects signi�cantly their optoelectronic [5�9] and thermal prop-

erties [10�12]. We will explore the e�ects of electric current on the surface roughness

reduction of deposited thin �lms and optimize the application of the electric �eld

aiming at lowering the �eld strength requirement for surface roughness reduction.

The �lm and substrate system (�lm deposited or epitaxially grown on the substrate

material) is shown schematically by a 3D model in Fig. 1.1(b) with the �lm surface

perturbed from its planar morphology again by a low-amplitude perturbation.
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(3) Surface nanopatterning induced by nonlinear instabilities. The motivation

for this research originates from the observation of various stress-induced surface

nanopatterns in both simulations and experiments, which cannot be explained or pre-

dicted by linear stability theory. Examples of these nanopatterns include secondary

ripples from the tip splitting of surface ripples [13], multiple quantum dots (QDs)

also known as quantum dot molecules [14], and heteroepitaxial nanorings [15, 16]. In

this research, we will establish a weakly nonlinear theory for a fundamental under-

standing of the complex pattern formation resulting from the nonlinear instabilities,

and develop a practical guide for the fabrication of nanopatterns by design (precisely

controlled nanopatterns).

(4) Thermodynamic-force-driven edge patterning of defect-engineered graphene sheets

and nanoribbons. This research is motivated by the interesting dynamics of defects,

such as single vacancies [17, 18], divacancies [19, 20], and nanopores [21], in single-

layer graphene and the dynamics of GNR edges [22]. Although the defect dynamics is

usually characterized by high activation barriers, the short di�usion lengths involved

can facilitate patterning over laboratory time scales at high temperature. We will

study nanopore dynamics driven by thermodynamic forces in graphene sheets and

GNRs, focusing on the interactions between nanopores in GNRs and the edges of

GNRs. Emphasis will be placed on identifying the possible nanopatterns emerging

from the migration of nanopores and their coalescence with GNR edges, and under-

standing their corresponding e�ects on electronic properties of GNRs. A schematic

of a single-layer graphene sheet is shown in Fig. 1.1(c).

1.2 State of Knowledge in the Field

Over the past two decades, driven morphological evolution phenomena have at-

tracted signi�cant attention and resulted in numerous experimental and theoretical
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studies. In the rest of this section, a concise review of the state of our knowledge is

presented toward addressing the aforementioned four problems.

1.2.1 Planar Surface Stabilization in Stressed Bulk Solids

Stressed crystalline conducting materials are commonly found in microelectronic

devices and are involved in numerous nano-scale technologies. The surface morpho-

logical response of these materials to mechanical stresses and externally applied �elds,

such as electric �elds and thermal gradients, may limit severely the functionality and

reliability of the devices made of these materials. Failure of these materials under

stress and conditions that promote surface di�usion is commonly mediated by the

well-known Asaro-Tiller/Grinfeld (ATG) instability, a surface morphological insta-

bility that results from the competition between surface energy and elastic strain

energy and leads to the formation of cusp-like surface features with deep grooves

that propagate fast into the solid and, eventually, cause the surface cracking of the

material [23�25].

The ATG instability has been studied both theoretically [26] and experimentally

[27]. In earlier studies, it was demonstrated that surface electromigration driven by a

su�ciently strong and properly directed electric �eld can suppress the ATG instabil-

ity and stabilize the planar surface of a uniaxially stressed crystalline solid [1, 28�31].

A promising strategy of current-induced surface stabilization for the planar surface of

a coherently biaxially strained epitaxial thin �lm on a substrate against the Stranski-

Krastanow (SK) instability also was demonstrated [32�34]. Consistent with the above

theoretical predictions for the bene�cial action of an electric �eld on the stressed solid

surface morphology, recent experiments have demonstrated that surface electromigra-

tion can reduce substantially surface roughness in Cu thin �lms [35]. Furthermore,

it is well known that a thermal gradient can drive surface atomic transport in solids

through thermomigration [36�38]. In spite of its potential bene�ts of practical imple-
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mentation and application e�ciency, an exclusively thermally induced surface stabi-

lization of stressed solids has not yet been examined. As demonstrated in the case of

epitaxial �lms, employing substrate engineering techniques in conjunction with the

action of an electric �eld can reduce the critical strength requirement substantially

[32�34]. Another fundamentally interesting and technologically important question

to be asked is whether two externally applied �elds, an electric �eld and a thermal

gradient, can work synergistically when acting on the material simultaneously for the

more e�cient stabilization of the surface morphology.

1.2.2 Surface Roughness Reduction of Deposited Thin Films

Surface roughness a�ects many physical properties of materials, including thin

�lms of metals and semiconductors, such as their thermal conductance [11, 39, 40],

electrical conductance [9, 41, 42], and optical properties [43]. Such reduction of ther-

mal and electrical conductance becomes increasingly signi�cant as the miniaturization

of devices drives the device features to the nanometer scale [44, 45], which is char-

acteristic of the dimensions of copper interconnects in modern integrated circuits.

Ab initio calculations [46] show that even atomic-scale roughness on an otherwise

perfectly smooth planar surface leads to a substantial reduction in the electrical con-

ductivity of copper �lms. Moreover, surface roughness can reduce the structural

integrity and mechanical reliability of the thin �lms as it may cause surface cracking

under the action of the �lm’s residual stress and/or electromigration conditions [2].

Nanoscale surface roughness can arise easily due to thermal annealing, which

enhances surface atomic transport driven by residual compressive stresses in the ma-

terials or by electric currents that pass through them. Continuum models of driven

surface mass transport have been employed widely in the study of surface morpho-

logical evolution [1, 29, 31, 32, 47, 48], and can provide a fundamental understanding

and design principles toward controlling surface morphology and roughness. It is well
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known that electric current can drive mass �uxes on metallic �lm surfaces that can

change the surface morphology [49]. Theoretical analyses [1, 29, 31, 32, 50] have pro-

posed that the planar surface morphology of conducting metallic thin �lms can be

stabilized by externally applied electric �elds due to the induced surface electromigra-

tion �uxes. Experimental observations of surface roughness reduction in copper thin

�lms by electrical stressing treatment [35] have demonstrated the bene�cial e�ects of

electric �eld-driven �lm surface engineering.

1.2.3 Surface Nanopatterning of Bulk and Thin-�lm Materials Induced

by Nonlinear Instabilities

Both the groove patterns on strained bulk solid surfaces induced by the ATG

instability and the 3D islands on heteroepitaxial thin �lms induced by the SK insta-

bility can be understood and predicted by linear stability theories based on continuum

driven surface mass transport models. However, other more complex patterns that

have been observed on surfaces of strained bulk solids and coherently strained epi-

taxial thin �lms are well beyond the scope of linear stability theory.

One such complex nonlinear dynamical phenomenon is the formation of a pat-

tern of secondary surface ripples upon long-wavelength surface perturbations that

have been observed in dynamical simulations [1, 13, 30]. This tip-splitting instability,

which leads to formation of shorter-wavelength ripples, is di�erent from the ATG in-

stability and has been reported in continuum mechanical theoretical and simulation

studies [51, 52]. However, the origin of this secondary rippling instability has not been

investigated and the surface morphological dynamics after the instability is triggered

has not been characterized or explored systematically. Earlier numerical simulation

studies of the secondary rippling instability [13, 30] characterized the resulting sur-

face patterns and examined the e�ects of surface di�usional anisotropy, application

of electric �elds, and initial surface perturbation wavelength and amplitude. Never-
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theless, an analytical theory of secondary rippling that elucidates the origin of the

instability and can guide simulation and experimental studies for additional insights

into the nature and character of the instability is still lacking.

Another example of complex surface nanopatterns is that of multiple quantum dots

(QDs) or quantum dot molecules, characterized by two or more closely spaced QDs,

which form on coherently strained heteroepitaxial thin �lms. Such multiple QDs have

been reported in experimental studies, including �dumbbell-shaped QDs� observed

in the growth of InSb layers on GaSb substrates [53], �multiple QDs� grown in the

InSb/GaAs and InSb:N/InAs systems [54], and �QD pairs� formed in the epitaxy of

InAs on GaAs substrates for both patterned and unpatterned GaAs substrate surfaces

[55, 56]. In all of these cases, the formed QDs are characterized by split tips of variable

height.

In addition to the quantum dot molecules, another interesting complex nanopat-

tern that has also been observed in heteroepitaxially strained material systems is that

of self-assembled nanorings [57�61]. Similar to quantum dot molecules, the unique

electronic con�nement of nanorings makes these nano-scale structures very promising

for the fabrication of optoelectronic [62, 63] and sensing devices [64, 65]. Although

the formation of nanorings usually involves the intermixing and alloying of two or

three components, nanorings also can form in single-component epitaxial �lms purely

due to the competition between surface energy and elastic strain energy [15, 16].

Though seemingly di�erent, all of the three complex surface nanopatterns dis-

cussed above involve the same driving forces, which may imply that they share similar

underlying mechanisms. However, these mechanisms remain elusive.

1.2.4 Defect Engineering of Graphene-based 2D Materials

Graphene is a two-dimensional (2D) material, consisting of an atomic layer of car-

bon atoms arranged in a honeycomb lattice, that exhibits unique electronic [66�70],
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thermal [71�74], mechanical [75�78], and other properties [79, 80]. Over the past

decade, this 2D material has been revolutionizing materials nanoscience and nan-

otechnology, promising a broad range of technological applications in numerous areas

including nanoelectronics [81, 82], composite materials manufacturing [83], renew-

able energy harvesting and storage [84, 85], and chemical sensing [86]. Of particular

recent research interest is the precise tailoring of graphene properties toward optimiz-

ing its functionality using approaches such as chemical functionalization and defect

engineering.

Defect engineering of graphene is a promising approach toward fabrication of

carbon-based 2D materials with unique properties and function [87�89]. The en-

gineered defects, including vacancies and vacancy clusters or nanopores, are usually

introduced into the graphene sheet by plasma etching [90, 91], ozone exposure [92], ox-

idation [93], or energetic irradiation by ions [94, 95], protons [96], or electrons [97, 98].

At high temperatures, under the action of thermodynamic driving forces, such defects

exhibit interesting dynamics such as migration [19], and coalescence [18] of vacancies,

and edge reconstruction of graphene nanoribbons (GNRs) [22]. These defect dy-

namical phenomena are of particular interest for developing patterning strategies in

graphene sheets and GNRs (GNRs). Toward this end, a fundamental understanding

of defect interactions is required in graphene sheets and GNRs to enable defect-

mediated patterning strategies that can be used to tune 2D material properties and

optimize their functionality.

1.3 Research Objectives

The major research goal of this thesis is to develop a fundamental understanding

and enable quantitative prediction of the driven morphological evolution of surfaces

of bulk solids and epitaxial thin �lms, as well as defect-engineered 2D materials

and explore the complex patterns formed by the driven morphological dynamics.
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Such dynamics is driven by the action of various externally applied �elds, such as

mechanical stresses, electric �elds, and thermal gradients, as well as thermodynamic

driving forces such as the interactions between defects and graphene edges in defect-

engineered graphene. Our theoretical analyses and computational predictions aim at

developing viable physical processing strategies for surface (or edge of nanostructural

features of 2D materials) morphological stabilization and nanopatterning. To achieve

this broader goal, we will pursue the following speci�c objectives:

� Developing a strategy for the surface stabilization of uniaxially stressed bulk

solids by applying thermal gradients and/or electric �elds: the criticality con-

ditions for surface stabilization will be identi�ed using linear stability analysis

according to a continuum-scale driven surface evolution model and the theoret-

ical predictions will be validated by self-consistent dynamical simulations.

� Establishing the electric current treatment of a thin �lm surface as a viable

approach for surface roughness reduction: linear stability analysis will be car-

ried out in conjunction with self-consistent dynamical simulations based on a

3D continuum-scale model of deposited �lm surface evolution, aiming at opti-

mizing the electric �eld application and, hence, identifying the conditions for

minimizing the electric �eld strength requirement for surface roughness reduc-

tion.

� Analyzing stress-driven nonlinear morphological instabilities and post-instability

pattern formation in strained solid surfaces and coherently strained heteroepi-

taxial thin �lms (nonlinear tip-splitting instabilities) that lead to formation

of �ne-scale surface features, such as quantum dot molecules and nanorings,

based on a 3D continuum-scale model of epitaxial �lm surface morphological

evolution. The analysis aims at identifying the conditions for the formation of

di�erent nanopaterns that can be precisely controlled.
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� Exploring edge patterning of defect-engineered graphene nanoribbons (GNRs)

by exploiting the interactions between nanopores (vacancy cluster defects) in the

GNRs with the GNR edges: this will be accomplished by combining molecular-

dynamics (MD) simulations with �rst-principles density functional theory (DFT)

calculations and aim at tuning the GNR electronic band structure by controlling

defect size.

1.4 Organization of Dissertation

The dissertation is organized as follows.

In Chapter 2, we demonstrate the stabilization of the surface morphology of

stressed solids using electric �elds and/or thermal gradients. We have examined

the surface morphological stability of thermally conducting crystalline elastic solids

in uniaxial tension under the action of a temperature gradient. We have used linear

stability theory and self-consistent dynamical simulations based on a surface mass

transport model that accounts for surface thermomigration induced by the applied

thermal gradient, surface di�usional anisotropy, and the temperature dependence of

the surface di�usivity. We have found that a properly directed thermal gradient of

magnitude higher than a critical value can stabilize the planar surface morphology.

Under conditions typical of metallic thin-�lm interconnects, the required critical ther-

mal gradient is on the order of 100 K/cm. This work has been published in Applied

Physics Letters.

We have also analyzed the combined e�ect of electric �elds and thermal gradients

on the surface morphological stability of bulk conducting face-centered cubic (fcc)

crystalline solids in uniaxial tension. The analysis has been based on self-consistent

dynamical simulations in conjunction with linear stability theory. Our simulation

results have validated the �ndings of linear stability theory and established that the

electric �eld and the thermal gradient, if properly directed, can work synergistically
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to stabilize the planar surface morphology against the ATG instability when the

strength of the resulting e�ective external �eld is higher than a critical level. We

have also shown that the temperature dependence of the surface di�usivity does not

change the criticality criterion for surface stabilization but only a�ects the rate of

growth or decay of the surface morphological perturbation from its planar state.

Furthermore, we have established that, in fcc crystals, the morphological response of

<111>-oriented surfaces is superior to that of di�erently oriented surfaces. In case

of failure due to the ATG instability, the super-exponential growth of the surface

perturbation amplitude exhibits a logarithmic singularity as the time to failure is

approached. Our study has provided an e�ective practical solution to inhibit the

surface cracking of crystalline conducting solids based on the optimal combination

of the simultaneous action of externally applied electric �elds and thermal gradients.

This work has been published in the Journal of Applied Physics.

In Chapter 3, we establish the theory for the nonlinear tip-splitting instability

in surfaces of stressed solids. Numerical simulations of the surface morphological

evolution of uniaxially stressed elastic crystalline solids have demonstrated that, in

addition to ATG (surface cracking) instabilities, long-wavelength perturbations from

the planar surface morphology can trigger a nonlinear tip-splitting instability that

causes formation of a pattern of secondary ripples, which cannot be explained by

linear stability theory. We have developed a weakly nonlinear stability theory, which

can explain the occurrence of such secondary rippling instabilities and predict the

number of secondary ripples that form on the surface as a function of perturbation

wavelength. The theory has shown that this type of surface pattern formation arises

entirely due to the competition between surface energy and elastic strain energy,

regardless of surface di�usional anisotropy or the action of externally applied �elds.

The origin of secondary rippling is explained through nonlinear terms included in

the analysis that generate sub-harmonic ripples in the surface morphology with wave
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numbers that are multiples of the original surface perturbation wave number. Based

on the weakly nonlinear theory, we have developed simple analytical expressions that

predict the critical wavelength for the onset of secondary rippling, the increase of the

number of secondary ripples with increasing perturbation wavelength, and how the

onset of the nonlinear secondary rippling instability and the rippled surface pattern

are a�ected by surface di�usional anisotropy and the action of an applied electric �eld.

The conclusions of the theory have been validated by systematic comparisons with

results of self-consistent dynamical simulations of surface morphological evolution.

This work has been published in the Journal of Applied Physics.

In Chapter 4, we establish the theory of current-induced surface roughness re-

duction in conducting thin �lms. We have developed a continuum model of surface

morphological evolution of crystalline conducting thin �lms that accounts for the

residual stress in the �lm, surface di�usional anisotropy and �lm texture, the �lm’s

wetting of the layer that is deposited on, and surface electromigration. Supported by

linear stability theory, self-consistent dynamical simulations based on the model have

demonstrated that the action over several hours of a su�ciently strong and properly

directed electric �eld on a conducting thin �lm can reduce its surface roughness and

lead to a smooth planar �lm surface. The modeling predictions are in agreement with

experimental measurements on copper thin �lms deposited on silicon nitride layers.

These modeling results have established the electrical surface treatment of conduct-

ing thin �lms as a viable physical processing strategy for surface roughness reduction.

Some of this work has been published in Applied Physics Letters, while the rest of the

work is in preparation for submission for publication in Physical Review Applied.

In Chapter 5, we discuss the formation of multiple quantum dots or quantum

dot molecules in heteroepitaxial thin �lms. Based on the weakly nonlinear theory

described above, we have developed a theory for the experimentally observed for-

mation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on
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surface morphological stability analysis of a coherently strained epitaxial thin �lm on

a crystalline substrate. Using a fully nonlinear model of surface morphological evo-

lution that accounts for a wetting potential contribution to the epitaxial �lm’s free

energy as well as surface di�usional anisotropy, we have demonstrated the formation

of multiple QD patterns in self-consistent dynamical simulations of the evolution of

the epitaxial �lm surface perturbed from its planar state. The simulation predictions

are supported by weakly nonlinear analysis of the epitaxial �lm surface morphologi-

cal stability. We have found that, in addition to the SK instability, long-wavelength

perturbations from the planar �lm surface morphology can trigger a nonlinear insta-

bility, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and

predict the critical wavelength of the �lm surface perturbation for the onset of the

nonlinear tip-splitting instability. The theory has provided a fundamental interpre-

tation for the observations of �QD pairs� or �double QDs� and other multiple QDs

reported in experimental studies of epitaxial growth of semiconductor strained layers

and set the stage for precise engineering of tunable-size nanoscale surface features

in strained-layer heteroepitaxy by exploiting �lm surface nonlinear, pattern forming

phenomena. This work has been published in Applied Physics Letters.

We have also demonstrated that due to the di�erence in the thermal expansion

coe�cients between the �lm and substrate materials, the temperature increase dur-

ing the thermal annealing of the �lm induces additional biaxial strain in the �lm

due to thermal mismatch, which can drive further morphological evolution of the

nanoclusters their transformation into nanorings. Our simulation results provide a

fundamental comprehensive interpretation of the experimental reports in the litera-

ture. We have found that the annealing temperature, the size of the nanocluster prior

to thermal annealing, and the thickness of the wetting layer of the heteroepitaxial

system have a strong e�ect on the morphological evolution of the nanoclusters during

thermal annealing. Our dynamical simulations demonstrate that multiple concentric
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nanorings, structurally similar with the reported concentric nanorings fabricated by

liquid droplet epitaxy, can form from su�ciently large nanoclusters at su�ciently

high annealing temperatures. We have also provided a fundamental explanation of

multiple concentric nanoring formation from quantum dots on epitaxial �lm surfaces

based on weakly nonlinear stability analysis. This work is currently in preparation

to be submitted for publication.

In Chapter 6, we have studied the defected engineering of GNRs with an objective

of tuning the electronic band structures with edge patterning based on atomic model.

With systematic molecular static calculations, we have found that there is an attrac-

tive interaction between the nanopore and the GNR edge, which can drive the migra-

tion of the nanopore toward the edge and its coalescence with the edge, followed by

the formation of a V-shaped pattern consisting of linear zigzag segments for armchair-

edged GNRs. With �rst-principles calculations based on DFT we have demonstrated

a (linear) monotonic dependence of the bandgap of the patterned armchair-edged

GNRs on the linear density of the zigzag edge atoms, which is tuned by controlling

the size and concentration of the pores introduced in the defect-engineered GNR.

This work has been submitted for publication in Physical Review B and is currently

under review.

Chapter 7 summarizes the key contributions of this dissertation to this �eld of

research toward a fundamental understanding of the surface morphological stability

of uniaxially stressed solids and biaxially stressed epitaxial thin �lms and the result-

ing post-instability surface pattern formation, as well as the e�ects on the electronic

band structure of GNRs of GNR edge patterning driven by defect-edge interactions.

A concise discussion of several futures directions in this area of research is also pre-

sented.
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CHAPTER 2

STABILIZATION OF THE SURFACE MORPHOLOGY OF
STRESSED SOLIDS USING SIMULTANEOUSLY
APPLIED ELECTRIC FIELDS AND THERMAL

GRADIENTS

2.1 Introduction

Stress-induced surface morphological instability causes reliability and functional-

ity problems to materials used widely in microelectronics and nanotechnology. The

well-known Asaro-Tiller or Grinfeld (ATG) instability [23�25], due to the competi-

tion between strain and surface energy in stressed elastic solids, has been shown both

experimentally [27] and theoretically [26] to cause surface cracking through the rapid

evolution to a cusped surface morphology with smooth tops and deep grooves. We

have demonstrated that surface electromigration driven by a properly directed and

su�ciently strong electric �eld can inhibit the ATG and Stranski-Krastanow instabil-

ities and stabilize the planar surface of a stressed bulk solid [1, 13, 28�31] and of an

epitaxial thin �lm on a substrate [32�34], respectively. Consistently with our theo-

retical predictions [1, 13, 28�34], recent experiments have demonstrated that current

stressing through surface electromigration can reduce substantially surface roughness

in Cu thin �lms [35]. Surface thermomigration driven by temperature gradients has

been reported in thin-�lm interconnects [36�38]. In a recent study [99, 100], using

linear stability theory, we have proposed that an electric �eld and a thermal gradient,

acting simultaneously on a uniaxially stressed solid and being properly directed and

su�ciently strong, can work synergistically to inhibit the ATG instability more e�-

ciently. However, a systematic validation of the linear stability theory is still lacking.
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Moreover, in spite of its potential bene�ts of practical implementation and applica-

tion e�ciency, an exclusively thermally induced surface stabilization of stressed solids

has not yet been examined.

In this study, we develop a surface mass transport model that accounts for sur-

face electromigration and thermomigration, surface di�usional anisotropy, and the

temperature dependence of surface di�usivity. We establish the possibility of sta-

bilizing planar surfaces of stressed crystalline solids through the sole application of

an external thermal gradient, using linear stability theory in conjunction with self-

consistent numerical dynamical simulations according to continuum model. We also

report the results of a comprehensive analysis of the surface morphological response

of a stressed, thermally and electrically conducting crystalline solid to the action of

an electric �eld and a thermal gradient that are applied simultaneously, focusing on a

systematic assessment of the validity of the linear stability theory of Refs. 99, 100 by

comparing its predictions with the results of fully nonlinear self-consistent numerical

simulations.

2.2 Fully Nonlinear Model and Analysis Methodology

2.2.1 Model

We carry out a theoretical and computational analysis of the morphological stabil-

ity of a planar surface based on a continuum model of driven surface mass transport

under the simultaneous action of mechanical stress, an electric �eld, and a tempera-

ture gradient, which induce stress-driven surface di�usion, surface electromigration,

and surface thermomigration, respectively. We consider an electrically and thermally

conducting, single-crystalline, elastic body that extends in�nitely in the �y-direction

of a Cartesian frame of reference with a thermally insulated and traction-free sur-

face. This elastic body is acted on simultaneously by a uniform uniaxial stress of

magnitude �1, an electric �eld of constant magnitude E1, and a thermal gradient of

16



constant magnitude jrTxj, all directed along the x-axis. A schematic representation

of the solid material under this mechanical, electrical, and thermal forcing is given in

Fig. 2.1.

Figure 2.1: Schematic representation of the solid material under uniaxial stress, an
applied electric �eld, and an applied thermal gradient, highlighting the problem ge-
ometry and important parameters. A surface morphology perturbed from the planar
one by a plane wave is depicted. The perturbation amplitude has been ampli�ed for
clarity.

The surface atomic �ux, Js = Jsŝ, can be expressed by a Nernst-Einstein equation as

Js =
Ds�s


kBT

(

�Esq�s +
@�
@s

+
Q�

T
@T
@s

)

: (2.1)

In Eq. (2.1), Ds is the surface atomic di�usivity, �s=
 is the number of surface atoms

per unit area, 
 is the atomic volume, kB is the Boltzmann constant, T is the local

surface temperature, � is the chemical potential of a surface atom, Q� is the heat

of transport [101], and s is the arc length along the surface with ŝ being the unit

tangent vector in a two-dimensional (2D) representation assuming no morphological

variation along Z. The model accounts for surface di�usional anisotropy, which is

expressed by a well-established anisotropy function for face-entered cubic (fcc) met-

als: f(�) = 1 + A cos2[m(� + �)] � 1 [102, 103], where � = tan�1(dy=dx), A is the

strength of the anisotropy, m is the number of symmetry directions of fast surface
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di�usion, and � is the misorientation angle of a symmetry direction with respect to

the x-direction, which is the direction of the imposed external �elds in the case un-

der consideration. Taking into account the Arrhenius temperature dependence of the

surface di�usivity in addition to the surface di�usional anisotropy, the surface di�u-

sivity can be expressed as Ds = Ds(�; T ) = Ds;min(T )f(�) = D0 exp(�Ea=kBT )f(�),

where Ds;min(T ) is the minimum surface di�usivity at a given surface orientation at

temperature T . Assuming that the crystalline material responds to stress according

to isotropic linear elasticity, we can express the chemical potential � as

�(x) = �0 � 

�(x) +



2M
�2
�� (x) ; (2.2)

where �0 is the chemical potential for a perfectly planar unstressed surface, 
 is the

isotropic surface free energy per unit area [102], � is the local surface curvature, M

is the elastic modulus of the material [99, 100], and ��� is the local stress component

tangential to the surface. We parameterize the surface morphology using the height

function, y = h(x; t), with h(x; t) = 0 corresponding to the planar surface morphology.

The local curvature is expressed as � = �(@2y=@x2)=[1 + (@y=@x)2]3=2. The height

(i.e., surface morphological) evolution is governed by mass conservation according to

the continuity equation,
@h
@t

= �

@Js
@x

: (2.3)

The evolution of the crystalline solid surface is described fully by the model of

Eqs. (2.1)-(2.3), in which the �eld variables ��� , Es, and T are obtained by solving

self-consistently the corresponding elastostatic, electrostatic, and thermal boundary-

value problems (BVPs). The surface morphology h(x; t) is propagated in time by

integrating Eq. (2.3) with the computed �eld variables used to determine the surface

atomic �ux Js based on Eqs. (2.1) and (2.2). The above model is employed both

for linear stability analysis of the planar surface state and for fully self-consistent

dynamical numerical simulation of the driven surface morphological evolution.
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2.2.2 Linear Stability Analysis

To analyze the morphological stability of the planar surface state, we �rst per-

turb the planar surface with a low-amplitude plane-wave perturbation, h(x; t) =

�(t) exp(ikx) with �0k � 1 and �0 = �(t = 0), and then let the surface pro-

�le evolve. In the linear stability theory, we use the leading-order analytical so-

lutions to the elastostatic, electrostatic, and thermal BVPs, which are given by

�2
�� (x; t) = �2

1[1 + 4�(t)k exp(ikx)] [25], Es = E1 cos � [1, 104], and T (x; t) =

T0 + jrTxj[x + i�(t) exp(ikx)] [99, 100], respectively. For simplicity in the analy-

sis, we �rst assume that all the physical properties of the material are independent

of temperature and use their values at a reference temperature Tref, T0 � Tref � T1,

where T0 and T1 are the lowest and highest temperature levels in the material, re-

spectively. The e�ects on the morphological evolution of the temperature dependence

of the material properties are considered next.

We substitute the above expressions for ��� , Es, and T into Eqs. (2.1)-(2.3) and

introduce the di�usional time scale � � kBTrefl4=[Ds;min(Tref)�s

], the length scale

l � 
M=�2
1, and the dimensionless variables ~h � h=l, ~x � x=l, ~� � �=l, ~k � kl, and

~t � t=� . Linearizing Eq. (2.3) within the small-slope approximation, @~h=@~x� 1, we

obtain the dimensionless linearized evolution equation

@~h
@~t

=
 
E1q�s l2




�
Q�jrTxjl2



Tref

! 
df
d�

�����
�=0

!
@2~h
@~x2 � f(� = 0)

@4~h
@~x4

+ 2f(� = 0)
 
�2
1l

M

!
~�(~t)~k3 exp(i~k~x)

� f(� = 0)
Q�jrTxjl2



Tref
i ~�(~t)~k2 exp(i~k~x) ; (2.4)

where � = 0 corresponds to the planar surface morphology. Substituting into Eq. (2.4)

the solution ~�(~t) = ~�0 exp(!~t) for the amplitude of ~h gives the dispersion relation

Re(!(~k)) = �
 
df
d�

�����
�=0

!

�e�~k2 + 2f(� = 0)~k3 � f(� = 0)~k4 ; (2.5)
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for the real part of the rate of growth or decay of the perturbation, !; perturbation

growth [Re(!) > 0] and decay [Re(!) < 0] imply instability and stability, respectively,

of the planar surface morphology. For notational brevity, hereafter we use ! to

denote Re(!(~k)). In Eq. (2.5), �e� is the e�ective external �eld strength due to the

combined action of both the electric �eld and the thermal gradient and is de�ned as

�e� � (1� �)�E, with � � �T=�E,

�E �
E1q�s




 

M
�2
1

!2

and �T �
Q�jrTxj


Tref

 

M
�2
1

!2

; (2.6)

with �E and �T expressing the relative strength, with respect to the stress, of the

electric �eld and the thermal gradient, respectively. In the above analysis, we have

not yet speci�ed the orientations of the electric �eld and the thermal gradient along

the x-direction. There are four possible di�erent combinations of these orientations:

(1) E1 = �E1x̂ and rTx = jrTxjx̂, (2) E1 = �E1x̂ and rTx = �jrTxjx̂, (3)

E1 = E1x̂ and rTx = jrTxjx̂, and (4) E1 = E1x̂ and rTx = �jrTxjx̂, where x̂ is

the unit vector along the x-direction. Accordingly, the factor multiplying �E in the

de�nition of �e� is (�1��), (�1+�), (1��), and (1+�) for orientation combinations

of types (1), (2), (3), and (4), respectively; in the de�nition of �e� given before Eq.

(6), an orientation combination of type (3) is assumed as depicted in Fig. 2.1.

When the metallic material is acted on by a thermal gradient, the physical prop-

erties of the metal are no longer uniform throughout the material. For applications

in microelectronics and nanofabrication, the small material domain sizes involved (

� 1 nm) require only a small temperature di�erence over the material structure to

generate the desired thermal gradient. Such small temperature di�erences allow us to

practically neglect all the variations in the material properties over the material di-

mensions compared to that of the surface di�usivity that is characterized by a strong

Arrhenius temperature dependence. Taking Tref = T0, de�ning " � (T1�T0)=T0 � 1,

~T � (T � T0)=(T1 � T0) = O(1), and � � (Ea=(kBT0) � 1) = O(1), and truncat-
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ing the Taylor expansion of Ds;min(T ) about T = T0 , we obtain Ds;min(T )=T =

(Ds;min(T0)=T0)[1 + �" ~T +O("2)]. Substituting this expression into Eq. (2.1), and fol-

lowing the approach employed in the linear stability analysis above for the derivation

of Eq. (2.5), we obtain in this case the dispersion relation [99, 100]

!(~k) = (1 + �" ~T )
"

�
 
df
d�

�����
�=0

!

�e�~k2 + 2f(� = 0)~k3 � f(� = 0)~k4
#

: (2.7)

Equation (2.7) shows that the temperature dependence of the surface di�usivity only

ampli�es the perturbation growth or decay rate by a factor of (1 + �" ~T ), without

a�ecting the condition for the determination of the critical e�ective external �eld

strength �e�,c (the outcome of setting ! = 0).

2.2.3 Simulation Methods

To explore the multiply driven surface morphological response and verify the

main predictions and implications of the linear stability theory, we carried out self-

consistent numerical dynamical simulations based on the fully non-linear model of

Eqs. (2.1)-(2.3) coupled with the corresponding elastostatic, electrostatic, and ther-

mal BVPs. In the simulations, the evolving surface morphology is expressed by

using a local coordinate system (ŝ; n̂) with ŝ and n̂ being the unit tangent and

unit normal vectors at a point on the surface, ŝ � n̂ = 0, and the surface is dis-

cretized adaptively during its driven evolution. The electrostatic potential (�) and

elastic displacement (u) �elds are computed by solving the electrostatic and elasto-

static BVP, respectively, described in Ref. 101 through a Galerkin boundary-integral

method [1, 102, 105] coupled self-consistently with the evolving surface morphology;

the BVP for the temperature �eld T and the numerical technique used to solve it are

similar to those for �, since both �eld variables are governed by Laplace’s equation

[1, 13, 28, 30, 31, 99, 100]. The displacement �eld u is used to calculate the strain

tensor �eld " in the small-displacement kinematic limit and the stress tensor �eld �
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is computed from " according to isotropic linear elasticity [105]; at every point on the

surface, the electric �eld E is computed as the local gradient of � [105]. The propa-

gation of the surface is monitored using the front tracking method of Refs. 2, 102 and

[106] by time stepping Eq. (2.3) expressed as @un=@t = �
@Js=@s, where un is the

local displacement component normal to the surface. At a given set of parameters

(�E, �T , A, m, �, ~k), the surface morphology ~h(~x; ~t) is monitored starting from its

initial (perturbed from planar) pro�le ~h(~x; 0) = ~�0 sin(~k~x) with a low perturbation

amplitude ~�0~k � 1.

2.3 Results and Discussion

2.3.1 Stabilization of the Surface Morphology Using Only Thermal Gra-

dients

It is of interest to explore whether the thermal gradient alone can stabilize the

surface morphology of stressed solid. With only the thermal gradient applied, the

linear stability analysis in Section 2.2.2 is still valid, with �e� = �T . The results of

Eq. (2.5) for a representative parameter set are plotted in Fig. 2.2. The inset gives

the dispersion relation for �T = 0 in the limit jrTxj = 0, where, for long-wavelength

perturbations (~k < 2), the ATG instability is triggered. From the results of Fig. 2.2,

it is evident that increasing �T narrows the range of ~k that leads to unstable response.

For �T > �T;c, where �T;c is the critical value of �T for which !(~k) = 0 in Eq. (2.5)

has two double roots, the unstable ~k range vanishes and the planar surface becomes

stable for perturbations of any wavelength. It should be mentioned that if the thermal

gradient were in the +x̂ direction, it would intensify rather than inhibit the instability.

Using Al as a representative fcc metal at Tref = 500 K and under mechanical stress of

100-150 MPa that is typical of thin-�lm interconnects [102] with Q� � 1 eV [37, 101],


 � 1 J/m2, and M = 70 GPa, our linear stability theory, Eqs. (2.5) and (2.6),

predicts a critical thermal gradient on the order of 100 K/cm for planar surface
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morphology stabilization. Equation (2.7) shows that temperature dependence of the

surface di�usivity only ampli�es the growth or decay rate of the perturbation by a

factor of (1 + �" ~T ) while the derived critical �T;c remains unaltered.
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Figure 2.2: Dispersion relations for increasing values of �T giving the dependence
of the growth or decay rate, !, of a shape perturbation from the planar surface
morphology on the dimensionless wave number, ~k, of the perturbation. (1) �T =
0:8�T;c, (2) �T = �T;c, (3) �T = 1:2�T;c, and (4) �T = 2:2�T;c. The inset gives the
dispersion relation for �T = 0, indicating an ATG surface instability. The anisotropy
parameters are A = 12, m = 3, and � = �15�.
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Figure 2.3: Surface morphological evolution, ~h(~x; ~t), starting with a perturbation
~h(~x; 0) = ~�0 sin(~k~x) at (a) �T = 0:05 for ~k = 0:7 and ~�0=~� = 0:01 and (b) �T = 0:56
for ~k = 0:75 and ~�0=~� = 0:01. The evolution sequences are from the bottom to the
top, the thermal gradient is in the �x̂ direction, and the stress is tensile and applied
uniaxially along x. The snapshots correspond to (a) t = 0, 0.19, 0.20, 0.21, 0.24, 0.97,
1.07, 1.34, 1.49, 1.70, 1.94, and 1.98 �10�1� ; and (b) t = 0, 0.28, 0.33, 0.44, 0.57, 0.84,
1.12, 1.54, 1.82, 2.51, 3.51, and 4.61�10�1� . (c) and (d) Evolution of the perturbation
amplitude, ~�, for cases (a) and (b), respectively; solid lines and symbols correspond
to theoretical predictions and simulation results, respectively, for the same parameter
sets and initial surface morphologies. (e) Comparison of the predictions of the linear
stability theory (solid curve) with those of numerical simulations (open circles) for the
initial growth or decay rate of sinusoidal perturbations with the maximally unstable
wavelength, !(~kmax). In all the simulations, the anisotropy parameters are the same
with those that yielded the results of Fig. 2.2 and the surface di�usivity is taken
to be temperature independent. The value of �T that corresponds to !(~kmax) = 0
determines the critical thermal gradient magnitude that stabilizes the planar surface
of the stressed solid against the ATG instability. The ~kmax predicted by linear stability
theory is used; for stable responses at �T > �T;c, ~kmax = 0:75 is used. The insets are
plots of ln( ~�= ~�0) as a function of time for �T = 0 (upper inset) and �T = 0:32 > �T;c
(lower inset), which highlight the exponential growth or decay of the perturbation at
early stages and the computation of !(~kmax) by calculating the slopes of the linear
�ts (solid lines) to the simulation results (cross symbols).

To validate the above theoretical predictions, we carried out self-consistent dynam-

ical simulations. First, the simulations were carried out assuming that all material

properties remain constant throughout the domain. Representative results are shown

in Fig. 2.3. Figure 2.3(a) shows snapshots from the surface morphological evolution

at �T = 0:05 < �T;c. The initial sinusoidal perturbation evolves into sharp cusp-like

grooves, which facilitates the ATG instability and eventual surface cracking. How-

ever, a su�ciently strong thermal gradient can stabilize the planar morphology, as

shown in Fig. 2.3(b), where �T = 0:58 > �T;c. This con�rms the main qualitative

prediction of the linear stability theory. The simulation predictions (cross symbols)

for the evolution of the perturbation amplitude in the cases of Figs. 2.3(a) and 2.3(b)

are compared with the theoretical predictions (solid curves) in Figs. 2.3(c) and 2.3(d),

respectively. In the stable response of Fig. 2.3(d), the simulation results agree well

with the theoretical predictions. However, in the unstable response of Fig. 2.3(c), the
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agreement is good only at a very early stage where the perturbation amplitude grows

exponentially, but eventually the amplitude grows super-exponentially.

The criticality condition for the instability onset is the most important prediction

of the linear stability theory. To validate this prediction of �T;c, we carried out a

series of simulations over a broad range of �T . The maximally unstable wavelength

~k = ~kmax is chosen for the perturbation and the computed rates !(~kmax) are plotted

as a function of �T in Fig. 2.3(e) for the anisotropy parameters of Fig. 2.2. The upper

and lower insets in Fig. 2.3(e) highlight the computation of the early-stage growth and

decay rates, respectively. In the insets, the symbols and the straight lines represent

the simulation results and the least-squares linear �ts to these results, respectively.

The �ts are excellent and the slopes give the corresponding !(~kmax). The main plot

of Fig. 2.3(e) demonstrates good agreement between the simulation results (open

circles) and the theoretical predictions (solid curve), Eq. (2.5). Most importantly, the

theoretical prediction for �T;c is in good quantitative agreement (within 10%) with

the prediction of the fully nonlinear numerical simulations.
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Figure 2.4: Surface morphological evolution, ~h(~x; ~t), starting with a perturbation
~h(~x; 0) = ~�0 sin(~k~x) at (a) �T = 0:08 for ~k = 0:7 and ~�0=~� = 0:01 and (b) �T = 0:58
for ~k = 0:75 and ~�0=~� = 0:01. The evolution sequences are from the bottom to the
top, the thermal gradient is in the �x̂ direction, and the stress is tensile and applied
uniaxially along x. The snapshots correspond to (a) t = 0, 0.21, 0.22, 0.23, 0.37, 0.70,
0.96, 1.09, 1.33, 1.69, 1.90, and 2.08 �10�1� ; and (b) t = 0, 0.22, 0.30, 0.37, 0.52, 0.66,
0.81, 0.96, 1.12, 1.64, 2.96, and 4.89�10�1� . (c) and (d) Evolution of the perturbation
amplitude, ~�, for cases (a) and (b), respectively; solid lines and symbols correspond
to theoretical predictions and simulation results at x=� = 0, respectively, for the same
parameter sets and initial surface morphologies. (e) Comparison of the predictions of
the linear stability theory (solid curve) with those of numerical simulations (symbols)
for the initial growth or decay rate of sinusoidal perturbations with the maximally
unstable wavelength, !(~kmax). In all the simulations, the anisotropy parameters are
the same with those that yielded the results of Fig. 2.2 and the surface di�usivity is
taken to be an Arrhenius function of temperature. Growth or decay rates at di�erent
surface locations are plotted: open triangles, squares, and circles denote the !(~kmax)
rates at x=� = �1, x=� = 0, and x=� = 1, respectively. The value of �T that
corresponds to !(~kmax) = 0 determines the critical thermal gradient magnitude that
stabilizes the planar surface of the stressed solid against the ATG instability. The
~kmax predicted by linear stability theory is used; for stable responses at �T > �T;c,
~kmax = 0:75 is used. The insets are plots of ln( ~�= ~�0) as a function of time for �T = 0
(upper inset) and �T = 0:38 > �T;c (lower inset), which highlight the exponential
growth or decay of the perturbation at early stages and the computation of !(~kmax)
by calculating the slopes of the linear �ts (solid lines) to the simulation results (cross
symbols).

Next, we introduce the Arrhenius T dependence Ds;min(T ) = D0 exp(�Ea=kBT )

into the simulations and compare the numerical results with the corresponding theo-

retical predictions from Eq. (2.7). In the simulations, before time stepping the surface

morphology, we solve the thermal BVP to obtain T , and update Ds;min(T ). Represen-

tative results are shown in Fig. 2.4. Figure 2.4(a) shows snapshots from the surface

morphological evolution at �T = 0:08 < �T;c starting with a sinusoidal perturbation.

The surface undergoes the ATG instability and develops a pro�le exhibiting cusp-

like features. Figure 2.4(b) shows analogous snapshots at �T = 0:58 > �T;c. The

amplitude of the initial perturbation decays and eventually vanishes. This con�rms

qualitatively that the temperature dependence of the surface di�usivity does not af-

fect the stabilization of the surface by a su�ciently strong thermal gradient. The
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evolution of the perturbation amplitude at x=� = 0, where ~T = 0:5, in the cases of

Fig. 2.4(a) and Fig. 2.4(b) is compared with the corresponding theoretical predictions

in Figs. 2.4(c) and 2.4(d), respectively. It is evident that, in spite of the temperature

dependence of the surface di�usivity introduced into the model, at the early stage of

the unstable surface morphological response and throughout the entire stage of the

stable response the amplitude grows or decays exponentially, respectively, at a rate

that can be predicted very well by the linear stability theory, Eq. (2.7).

Figure 2.4(e) compares the growth or decay rates of the perturbation amplitudes

at x=� = �1 (triangles), x=� = 0 (squares), and x=� = 1 (circles) over a broad range

of �T values for a shape perturbation with ~k = ~kmax. The theoretical predictions for

!(~kmax) at the domain center, x=� = 0 (dashed curve), with the surface di�usivity

treated as a constant also are shown together with those according to the dispersion

relation of Eq. (2.7) (solid curve), where Ds;min(T ) is an Arrhenius function. The

insets in Fig. 2.4(e) highlight the early-stage exponential growth or decay of the

perturbation at x=� = 0 for �T = 0 (upper inset) and �T = 0:38 > �T;c (lower

inset) and the computation of their rates corresponding to the slopes of the linear

�ts. At low thermal gradients, the dashed and solid curves almost overlap, but they

gradually diverge as the thermal gradient increases since " in Eq. (2.7) increases with

increasing thermal gradient. Most importantly, the two curves intersect the �T axis

at the same point, implying that, in spite of the temperature dependence e�ect on

the growth/decay rate, the critical thermal gradient strength required to inhibit the

ATG instability is identical in both cases. We also see that the three di�erent sets

of symbols, corresponding to rates at di�erent surface locations, overlap very well at

lower thermal gradients, but at �T > �T;c, the di�erent symbols diverge increasingly

with increasing �T with j!(x=� = �1)j > j!(x=� = 0)j > j!(x=� = 1)j. With

the thermal gradient applied in the �x̂ direction, ~T (x=� = �1) > ~T (x=� = 0) >

~T (x=� = 1) in the prefactor of the polynomial of ~k in the dispersion relation of
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Eq. (2.7), which agrees very well with the simulation results. It is seen that at higher

thermal gradients, the accuracy of the theoretical predictions for !(~kmax) is relatively

lower due to the higher value of " and the resulting O("2) error in the approximation

for Ds;min(T ). However, the �T;c predicted from the simulations at the three di�erent

surface locations are identical and also identical with the simulation predictions in

Fig. 2.3(e). The simulation prediction for �T;c also is very close to the theoretical

prediction. This con�rms the implications of the linear stability theory when the

temperature dependence of the surface di�usivity is taken into account, Eq. (2.7).

In general, linear stability theory is found to predict the critical strength of thermal

gradient �T;c with an error of less than 10%.

2.3.2 Stabilization of the Surface Morphology Using Simultaneously Ap-

plied Electric Fields and Thermal Gradients

The dispersion relation of Eq. (2.5) is plotted in Fig. 2.5(a) for the surface di�u-

sional anisotropy parameter set (m = 3, A = 12, and � = �15�) at di�erent values

of �e�. The inset gives a plot of the dispersion relation in the absence of applica-

tion of any electric �elds or thermal gradients, which indicates the occurrence of the

ATG instability for long-wavelength perturbations. It is evident from Fig. 2.5(a) that

the action of external electric �elds and/or thermal gradients on the material results

in two nontrivial roots, ~k1;c and ~k2;c > ~k1;c, for the equation !(~k) = 0. The range

of unstable wave numbers, R � ~k2;c � ~k1;c, becomes narrower with increasing �e�

and vanishes at �e� � �e�,c, implying that there is a critical e�ective external �eld

strength, beyond which perturbations of all possible wavelengths can be stabilized,

and the ATG instability is suppressed. In Fig. 2.5(b), we plot R as a function of �E

for all the four di�erent orientation combinations of the two external �elds, as well as

the case where only an electric �eld is applied in the absence of a thermal gradient,

in order to examine the surface morphological response under all possible orientation
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combinations of the externally applied electric �eld and thermal gradient and the

synergistic or competitive action of the two �elds in each case of their combination.

The intersection of the R(�E) curves with the �E axis are the corresponding values of

the critical electric �eld strength, �E;c, required for stabilization of the planar surface

morphology of the stressed solid. The plot in the inset depicts the case of orientation

combination type (1) [electric �eld and thermal gradient oriented along �x̂ and +x̂,

respectively], which indicates that R increases monotonically with increasing �E, and

never vanishes. Curves (2) and (3) in Fig. 2.5(b), correspond to orientation combina-

tions of type (2) [both electric �eld and thermal gradient oriented along �x̂] and (3)

[both electric �eld and thermal gradient oriented along +x̂], respectively. Although

both R(�E) curves (2) and (3) decrease monotonically with�E and intersect with the

�E axis, the resulting critical electric �eld strengths, �E;c2 and �E;c3 are higher than

�E;c5 , which is the critical electric �eld strength in the absence of an applied thermal

gradient. This implies that the imposed thermal gradient counteracts the electric �eld

in these two cases and, therefore, competes with it instead of acting synergistically

toward planar surface stabilization. Only curve (4), corresponding to the case of ori-

entation combination type (4) [electric �eld and thermal gradient oriented along +x̂

and �x̂, respectively], shows a critical electric �led strength �E;c4 lower than �E;c5 ,

implying that only this orientation combination allows the applied thermal gradient

to work synergistically with the electric �eld for the stabilization of the planar surface

morphology and lower the electric �eld strength requirement for surface stabilization.

Using Al as a representative fcc metal at Tref = 500 K and under mechanical stress

of 100-150 MPa that is typical of thin-�lm interconnects with Q� � 1 eV [36, 107],


 � 1 J/m2, and M = 70 GPa, the linear stability theory predicts that with the si-

multaneous application of a thermal gradient of � 50 K/cm, the critical requirement

for the electric �eld strength for planar surface morphology stabilization is reduced

by 50%.
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Figure 2.5: (a) Dispersion relations for increasing values of �e� giving the dependence
of the evolution rate, !, of a shape perturbation from the planar surface morphology
on the dimensionless wave number, ~k, of the perturbation. (1) �e� = 0:88�e�,c,
(2) �e� = �e�,c, (3) �e� = 1:2�e�,c, and (4) �e� = 2:8�e�,c. The inset gives the
dispersion relation for �e� = 0, indicating an ATG surface instability. (b) Dependence
of the range of unstable wave numbers, R � ~k2;c� ~k1;c, on the dimensionless strength
of the applied electric �eld, �E, for di�erent combinations of thermal gradient and
electric �eld orientations. (1) E1 = �E1x̂ and rTx = jrTxjx̂ with � = 0:15; (2)
E1 = �E1x̂ and rTx = �jrTxjx̂ with � = 1:25; (3) E1 = E1x̂ and rTx = jrTxjx̂
with � = 0:6; (4) E1 = E1x̂ and rTx = �jrTxjx̂ with � = 0:6; and (5) E1 = E1x̂
and rTx = 0, i.e., in the absence of an applied thermal gradient. The parameters
used in both (a) and (b) are m = 3, A = 12, and � = �15�.
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Equation (2.7) shows that the temperature dependence of the surface di�usivity

only ampli�es the perturbation growth or decay rate by a factor of (1+�" ~T ), without

a�ecting the condition for the determination of the critical e�ective external �eld

strength �e�,c (the outcome of setting ! = 0).

The simulations conducted in this study aim mainly at investigating the surface

morphological response to the action of simultaneously applied electric �elds and

thermal gradients. In the simulations, special emphasis is placed on the validation

of the main predictions of the linear stability theory, namely, the orientation combi-

nation(s) of the electric �eld and the thermal gradient for synergistic action toward

surface stabilization, the evolution (growth or decay) rates of the surface morpholog-

ical perturbation amplitude, the value of the critical e�ective external �eld strength

�e�,c, and the e�ects on the predicted �e�,c of the relative strength of the thermal

gradient with respect to the electric �eld, �.
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Figure 2.6: Surface morphological evolution, ~h(~x; ~t), starting with a sinusoidal per-
turbation from a planar surface morphology, ~h(~x; 0) = ~�0 sin(~k~x), for ~k = 0:7,
~�0=~� = 0:01, surface di�usional anisotropy parametersm = 3, A = 12, and � = �15�,
and di�erent combinations of thermal and electric �eld orientations. (a) E1 = E1x̂
and rTx = jrTxjx̂; (b) E1 = �E1x̂ and rTx = jrTxjx̂; (c) E1 = �E1x̂ and
rTx = �jrTxjx̂; and (d) E1 = E1x̂ and rTx = �jrTxjx̂. The surface pro�le
snapshots correspond to (a) t = 0, 0.20, 0.33, 0.35, 0.55, 0.64, 0.77, 0.93, 0.98, 1.11,
1.17, and 1.20 �10�1� ; (b) t = 0, 0.12, 0.15, 0.17, 0.18, 0.20, 0.29, 0.32, 0.39, 0.42,
0.45, and 0.46 �10�1� ; (c) t = 0, 0.20, 0.26, 0.61, 0.69, 0.75, 0.90, 1.23, 1.30, 1.31,
1.32, and 1.43 �10�1� ; and (d) t = 0, 0.36, 0.42, 0.50, 0.64, 0.78, 0.94, 1.24, 1.55,
2.26, 3.70, and 6.18 �10�1� . In all cases, (a)-(d), �E = 0:3 and � = 1.
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The simulations are �rst carried out assuming that all the material properties

remain constant throughout the domain in spite of the nonuniform temperature dis-

tribution. We have conducted simulation protocols for all the four possible orientation

combinations of the electric �eld with the temperature gradient, and representative

simulation results for the surface morphological evolution in each case are shown in

Fig. 2.6. In all four cases shown in Fig. 2.6, the dimensionless strengths of the ap-

plied electric �eld and thermal gradient are equal to 0.3 (i.e., �E = �T = 0:3), but

their orientation combinations are di�erent, from type (1) to type (4); the surface

di�usional anisotropy parameters are the same in all cases and equal to those that

yielded the results of Fig. 2.5 (m = 3, A = 12, and � = �15�). In the case of

Fig. 2.6(a), the applied electric �eld E1 directed along x̂ alone, i.e., in the absence

of the temperature gradient, could stabilize the surface disturbance from the planar

morphology [1]; however, with the rTx also applied along the x̂ direction, orientation

combination type (3), these two external �elds compete with each other and fail to

stabilize the planar surface morphology. Consequently, as seen in Fig. 2.6(a), the

ATG instability is triggered and sharp cusp-like grooves form on the surface leading

eventually to surface cracking. Similarly, in the case of Fig. 2.6(c), where both E1

and rTx are applied along the �x̂ direction, orientation combination type (2), the

surface morphological evolution outcome is the same as in the case of Fig. 2.6(a),

i.e., the two external �elds compete with each other failing to stabilize the surface

and triggering the ATG instability; in both cases, Figs. 2.6(a) and 2.6(c), the surface

perturbation amplitude evolution rates are comparable. In Fig. 2.6(b), E1 = �E1x̂

and rTx = jrTxjx̂, orientation combination type (1), both of the external �elds,

individually as well as collectively, intensify rather than inhibiting the ATG surface

morphological instability; thus, the amplitude of the surface perturbation grows much

faster than those in Figs. 2.6(a) and 2.6(c). In the case of Fig. 2.6(d), E1 = E1x̂

and rTx = �jrTxjx̂, orientation combination type (4), both the applied electric
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�eld and thermal gradient are su�ciently strong and properly directed to stabilize

the surface when acting individually; hence, their combined synergistic action pro-

duces an e�ective external �eld strength �e� = 0:6, larger than the critical e�ective

�eld strength (�e�,c � 0:2), required for surface stabilization in this case. Thus, the

perturbed surface returns to the planar state again and the planar morphology is

stabilized at a rate faster than if each stabilizing external �eld acted on the surface

individually. We conclude that the numerical simulation results agree qualitatively

with the predictions of the linear stability theory that only when the applied electric

�eld and the applied thermal gradient are oriented properly, namely, in the +x̂ and

in the �x̂ direction, respectively, they can work synergistically to stabilize the planar

surface morphology of stressed solids against the ATG instability. With this key qual-

itative response demonstrated, hereafter, the directions of the applied electric �eld

and thermal gradient in the simulation results shown are +x̂ and �x̂, respectively,

i.e., an orientation combination of type (4) in our notation.
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Figure 2.7: [(a), (b)] Surface morphological evolution, ~h(~x; ~t), starting with a si-
nusoidal perturbation from a planar surface morphology, ~h(~x; 0) = ~�0 sin(~k~x), for
~k = 0:7, ~�0=~� = 0:01, and surface di�usional anisotropy parameters m = 3, A = 12,
and � = �15�, at (a) �E = 0:05 and � = 0:1, and (b) �E = 0:1 and � = 10. The
surface pro�le snapshots correspond to (a) t = 0, 0.18, 0.19, 0.20, 0.21, 0.70, 1.01,
1.32, 1.40, 1.49, 1.70, and 1.97 �10�1� and (b) t = 0, 0.12, 0.21, 0.29, 0.36, 0.45,
0.62, 0.87, 1.80, 2.16, 2.48, and 2.71 �10�1� . [(c), (d)] Evolution of the perturbation
amplitude, ~�, for (c) case (a) and (d) case (b) and an additional case with �E = 0:1
and � = 5 denoted by �-marks and crosses, respectively. Symbols (crosses and �-
marks) represent the simulation results according to the nonlinear model, while the
solid lines correspond to the predictions of the linear stability theory for the same
parameter sets and initial surface morphology.

According to the linear stability theory, when the two external �elds (electric �eld

and thermal gradient) are properly directed and oriented with respect to each other,

their combined e�ective strength is required to be higher than the predicted critical

37



value �e�,c for inhibiting the ATG instability. To study the dynamics in both cases of

stable and unstable surface morphological response, we conducted simulations at both

weaker-than-critical e�ective external �eld (�e� < �e�,c) and stronger-than-critical ef-

fective external �eld (�e� > �e�,c), with the critical value as predicted by the linear

stability theory. Representative results of driven surface morphological response are

shown in Fig. 2.7 for the same anisotropy parameter set that yielded the results

of Figs. 2.5 and 2.6. Figure 2.7(a) shows the corresponding surface morphological

evolution through a sequence of surface pro�les at �E = 0:05 and � = 0:1. The

resulting dimensionless e�ective external �eld strength is �e� = 0:055, which is lower

than the critical value �e�,c � 0:2 predicted from the linear stability theory. Con-

sistently with the theoretical prediction, the simulation results show that the ATG

instability is triggered and the initial surface perturbation grows into forming cusp-

like grooves toward surface cracking. Figure 2.7(c) shows the corresponding evolution

of the amplitude of the surface morphological disturbance that caused the morpholog-

ical evolution of Fig. 2.7(a); cross symbols are used to denote the simulation results,

which are compared with the corresponding prediction of the linear stability theory,

~�(~t) = ~�0 exp(!~t), represented by the solid line in Fig. 2.7(c). At the initial stage of

morphological evolution, it is seen that the cross symbols fall exactly onto the solid

line, but, gradually, the simulation results diverge from the theoretical prediction,

showing a much larger (super-exponential) growth rate of the perturbation ampli-

tude than the linear stability theory predicts. This super-exponential evolution of

the amplitude is caused by the much higher concentration of stress in the vicinity of

the cusp-like regions of the surface in the later evolution stage, which is not accounted

for in the derivation of the linear stability result, where the perturbation amplitude is

considered to be low. The opposite type of driven morphological response is depicted

in Fig. 2.7(b), which shows the evolution of the surface morphology from the same

initial perturbation, but at stronger external �elds, �E = 0:1 and � = 10, which
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generates an e�ective external �eld, �e� = 1:1, that is stronger than the theoreti-

cally predicted �e�,c in this case. Consistently with the theoretical predictions, the

ATG instability is inhibited and the perturbed surface morphology returns to its pla-

nar state. The corresponding evolution of the perturbation amplitude is shown in

Fig. 2.7(d); the simulation results and the theoretical prediction are represented by

the symbols and the solid line, respectively. In Fig. 2.7(d), the amplitude evolution

at �E = 0:1 and � = 5 also is shown, demonstrating again excellent agreement be-

tween the simulation results and the theoretical prediction. This is because of the

low perturbation amplitude assumption that was made in the derivation of the lin-

ear stability results, which, in this case of stable surface morphological response, is

satis�ed very well throughout the entire surface evolution process in the simulations.
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Figure 2.8: (a) Evolution of the perturbation amplitude, ~�, of an initially sinusoidal
perturbation from a planar surface morphology, ~h(~x; 0) = ~�0 sin(~k~x), for ~k = 0:7,
~�0=~� = 0:01, and surface di�usional anisotropy parameters m = 3, A = 12, and
� = �15�, at �e� = 0:055 (�-marks) and �e� = 0:075 (open circles). Symbols and
solid lines correspond to the numerical simulation results and the predictions of the
linear stability theory, respectively. The inset highlights the exponential growth of
the perturbation amplitude at the early evolution stage, where the symbols denote
simulation results and the solid straight lines are the �ts to the simulation predictions.
(b) Evolution of ~� under the same conditions used in (a) as a function of ln(1� ~t=~tf )
with ~tf denoting the dimensionless time to failure. (c) Evolution of ~�, plotted as a
function of ln(1 � ~t=~tf ) near the time to failure, under the same conditions used in
(a) with the symbols and solid lines corresponding to the simulation results and their
linear �ts, respectively.

The dynamics of the unstable surface morphological response under the action

of a weaker-than-critical e�ective external �eld is studied further, focusing on both

the initial stage of surface morphological evolution and the stage where the failure

of the material is approached; representative results of such dynamics are shown in

Fig. 2.8. Figure 2.8(a) depicts the evolution of the surface perturbation amplitude

at �e� = 0:055 (�-marks) and �e� = 0:075 (open circles) over the entire time period

until the time to failure, ~tf , is reached; the surface di�usional anisotropy parameters

are the same with those that yielded the results of Figs. 2.1-2.6. ~tf is determined

by the asymptotes to the amplitude evolution curves: ~�= ~�0 ! 1 as ~t ! ~tf . In

Fig. 2.8(a), the symbols denote the numerical simulation results while the solid lines

represent the predictions of the linear stability theory. At the very initial stage

of the surface morphological evolution, ~t ! 0, the simulation results are in very

good agreement with the theoretical predictions, indicating that, in the ~t ! 0 limit,

the perturbation amplitude grows exponentially, as predicted by the linear stability

theory, i.e., ~� = ~�0 exp(~!~t). This is highlighted in the inset in Fig. 2.8(a), where

ln( ~�= ~�0) is plotted as a function of ~t, and the solid straight lines are the least-square

�ts to the simulation results (symbols). The excellent �ts con�rm the exponential

growth of the perturbation amplitude at this initial stage of surface morphological
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evolution. To analyze the dynamics of the surface morphological response as the time

to failure is approached, we plot in Fig. 2.8(b) the perturbation amplitude ~�= ~�0 as

a function of ln(1 � ~t=~tf ), where the dependence of the perturbation amplitude as

~�= ~�0 ! +1 on ln(1� ~t=~tf ) is seen to be linear as ln(1� ~t=~tf )! �1. This trend,

~�= ~�0 � ln(1� ~t=~tf ) near the time to failure, is highlighted in Fig. 2.8(c), where the

symbols represent the numerical simulation results and the straight solid lines give

the least-square �ts to the simulation results. The excellent �ts con�rm that when

~t ! ~tf , the surface perturbation amplitude approaches a logarithmic singularity,

which is consistent with other earlier theoretical �ndings on surface electromigration-

induced failure [31, 108].
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Figure 2.9: (a) Comparison of the predictions of the linear stability theory (solid
line) with those of numerical simulations (symbols) for the initial growth or decay
rate of sinusoidal perturbations with the maximally unstable wavelength, !(~kmax).
Open circles and open squares correspond to � = 0:5 and � = 15, respectively. The
value of �e� corresponding to !(~kmax) = 0 determines the critical strength of the
e�ective external �eld that stabilizes the planar surface of the stressed solid against
the ATG instability. The ~kmax predicted by the linear stability theory is used; for
stable responses at �e� > �e�,c, ~kmax = 0:75 is used. The insets (at � = 0:5) are plots
of ln( ~�= ~�0) as a function of time for �e� = 0 (upper inset) and �e� = 0:38 (lower
inset), which highlight the exponential growth and decay, respectively, of the pertur-
bation at early stages of the surface morphological evolution and the computation
of !(~kmax) by calculating the slopes of the linear �ts (solid lines) of the simulation
results (crosses). The initial amplitude of the perturbation is low, ~�0=~� = 0:01, and
the surface di�usional anisotropy parameters are m = 3, A = 12, and � = �15�. (b)
Dependence of the critical electric �led strength�E;c on �, with the solid curve and
the open circles representing the predictions of the linear stability theory and of the
numerical simulations, respectively. The inset compares the predictions of �e�,c from
numerical simulations at di�erent values of � (open circles) with those from linear
stability theory (solid line).

The most important �nding of the linear stability theory is the prediction of the

critical e�ective external �eld strength required to stabilize the planar surface mor-

phology for perturbations of all possible wavelengths. To validate the linear stability

theory and assess the precision of its predictions, we carried out a series of simulations

over a broad range of �e� both for moderate values �, where the strengths of both ex-

ternal �elds are comparable, and for high values of �, where the applied temperature

gradient is very strong compared to the electric �eld. The maximally unstable wave

number ~kmax predicted by the linear stability theory is chosen for the perturbation

for unstable surface morphological response at �e� < �e�,c, while for stable response

at �e� > �e�,c, ~kmax = 0:75 is used. Representative simulation results for !(~kmax)

as a function of �e� are shown in Fig. 2.9(a), where open circles and open squares

represent the computed rates of !(~kmax) for � = 0:5 and � = 15, respectively, and the

solid curve represents the outcome of the linear stability theory, a prediction that is

the same regardless of the value of �. The upper and lower insets in Fig. 2.9(a) high-

light the computation of the growth and the decay rates of the surface perturbation.

43



In these insets, solid lines represent least-square �ts to the simulation results and

their slopes in the ~t! 0 limit give the corresponding evolution (perturbation growth

or decay) rates. From the results of Fig. 2.9(a), it is evident that the �ndings from

the numerical simulations are in good qualitative agreement with the predictions of

the linear stability theory. Most importantly, the numerical results at � = 0:5 and

� = 15 give an almost identical value of �e�,c at !(~kmax) = 0, which is very close to

the point where the solid curve intersects the �e� axis, meaning that the prediction of

the linear stability theory for �e�,c is in good quantitative agreement (within � 10%)

with the corresponding prediction from the fully self-consistent nonlinear numerical

simulations.

The results of Fig. 2.9(a) imply that the perturbation evolution rates at the same

value �e� but two widely di�erent values of � are very close to each other and yield

practically identical predictions of �e�,c over a wide range of �. However, the exter-

nally applied electric �eld and thermal gradient act as two di�erent driving forces

that induce two di�erent modes of surface atomic transport, electromigration and

thermomigration, respectively. Therefore, the e�ect of the relative strength � of the

two external �elds on the prediction of �e�,c obtained through the self-consistent dy-

namical simulations is worth studying. To this end, we computed �e�,c through a

systematic protocol of numerical simulations over a broad range of �, obtained the

corresponding values of �E;c following the approach we used in Fig. 2.9(a), and plot-

ted the results for the critical external �eld strengths as a function of � in Fig. 2.9(b).

Open circles and solid lines in Fig. 2.9(b) represent the numerical simulation results

and the predictions of the linear stability theory, respectively; the inset in Fig. 2.9(b)

gives a plot of �e�,c as a function of �. From the results of Fig. 2.9(b), it is evi-

dent that enhancing the contribution of the thermal gradient in the e�ective external

�eld or, equivalently, changing the relative strength of the two external �elds (when

applied synergistically) will not alter the critical e�ective �eld strength requirement
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for planar surface stabilization, consistently with the predictions of the linear stabil-

ity theory. The results of Fig. 2.9(b) also demonstrate that enhancing the thermal

gradient strength, for a thermal gradient acting synergistically with the electric �eld,

reduces the critical electric �eld strength �E,c requirement dramatically, with the fully

nonlinear self-consistent dynamical simulation results being in very good agreement

with the linear stability theory predictions.
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Figure 2.10: [(a), (b)] Surface morphological evolution, ~h(~x; ~t), starting with a si-
nusoidal perturbation from a planar surface morphology, ~h(~x; 0) = ~�0 sin(~k~x), for
~�0=~� = 0:01, (a) ~k = 1:41 and (b) ~k = 0:75, and surface di�usional anisotropy pa-
rameters m = 3, A = 12, and � = �15� at (a) �e� = 0:05 and � = 0:5 and (b)
�e� = 0:58 and � = 0:5. The surface pro�le snapshots correspond to (a) t = 0, 0.19,
0.25, 0.30, 0.34, 0.52, 0.66, 0.79, 0.93, 1.06, 1.21, and 1.27 �10�1� and (b) t = 0, 0.22,
0.30, 0.37, 0.51, 0.67, 0.81, 0.96, 1.12, 1.64, 2.96, and 4.89 �10�1� . (c) Comparison
of the predictions of the linear stability theory accounting for (solid line) and not ac-
counting for (dot-dashed line) the temperature dependence of the surface di�usivity
with those of numerical simulations (symbols) for the initial growth or decay rate of
sinusoidal perturbations with the maximally unstable wavelength, !(~kmax). Growth
or decay rates at di�erent surface locations are plotted: open triangles, squares, and
circles denote the !(~kmax) rates at x=� = �1, x=� = 0, and x=� = 1, respectively. The
value of �e� that corresponds to !(~kmax) = 0 determines the critical strength of the ef-
fective external �eld that stabilizes the planar surface of the stressed solid against the
ATG instability. The ~kmax predicted by the linear stability theory is used; for stable
responses at �e� > �e�,c, ~kmax = 0:75 is used. The insets are plots of ln( ~�= ~�0) as a
function of time for �e� = 0 (upper inset) and �e� = 0:38 > �e�,c (lower inset), which
highlight the exponential growth or decay of the perturbation at the early stages of
surface morphological evolution and the computation of !(~kmax) by calculating the
slopes of the linear �ts (solid lines) to the simulation results (�-marks). (d) Local
evolution rate ! of the surface perturbation as a function of position ~x at �e� = 0:38
and � = 0:5. The open circles represent numerical simulation results, while the solid
straight line is a linear �t to the simulation results.

Upon application of an external thermal gradient, the e�ects of the temperature

dependence of the material properties due to the nonuniform temperature distribu-

tion (thermal �eld) in the material on the conclusions of the linear stability theory

need to be examined. We only introduce the Arrhenius temperature dependence of

the surface di�usivity Ds;min(T ) = D0 exp(�Ea=kBT ) into the fully nonlinear model.

In such a problem formulation, in the simulations, the time stepping of the surface

morphology takes into account the nonuniform T pro�le in the material in updat-

ing Ds;min(T ) accordingly. Since we have con�rmed that both in the linear stability

theory and in the self-consistent numerical simulations a change in � does not a�ect

the prediction of the critical electric �eld strength �E;c, we use the constant value

� = 0:5 in all the simulations reported here to examine the e�ect on the surface

morphological response of the temperature dependence of the material properties.
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Representative numerical simulation results and linear stability theory predictions

are shown in Fig. 2.10. Figure 2.10(a) depicts the surface morphological evolution at

�e� = 0:05, which is lower than �e�,c and not su�cient to stabilize the surface mor-

phological response against the ATG instability; thus, the perturbation amplitude

keeps growing over time. Figure 2.10(b) shows the surface morphological evolution

at �e� = 0:58 , which is higher than �e�,c, and, hence, the amplitude of the initial

perturbation decays and eventually vanishes as the surface morphology returns to

its planar state. The amplitude evolution rates are di�erent at di�erent locations

on the perturbed surface because of the temperature nonuniformity due to the im-

posed temperature gradient and the resulting nonuniformity in Ds;min(T ), but these

di�erences are insigni�cant for a low applied temperature gradient. This explains the

insigni�cant di�erences between the amplitudes at di�erent locations on the surface

in Figs. 2.10(a) and 2.10(b). A more important implication of the linear stability

theory when the e�ect of the temperature dependence of the material properties is

considered is that the temperature variation due to the imposed temperature gra-

dient will only change the evolution rate at di�erent locations on the surface, but

the critical e�ective �eld strength required to stabilize the planar surface morphol-

ogy remains the same. This is validated in Fig. 2.10(c), where the evolution rates

!(~kmax) at the three surface locations, x=� = �1 (open triangles), x=� = 0 (open

squares), and x=� = 1 (open circles), predicted from a series of simulations conducted

over a broad range of �e� are plotted as a function of �e�; the numerical results are

compared with the linear stability theory predictions obtained by considering the

Arrhenius temperature dependence of the surface di�usivity, Eq. (2.7), at ~T = 0:5

(solid line) and by neglecting the e�ect of this temperature dependence, Eq. (2.5),

(dashed line). The solid line and the dashed line overlap very well over the range of

low �e�, intersect with the �e� axis at the same point, and diverge gradually as �e�

increases beyond �e�,c. For a constant �, a low value of �e� corresponds to a low
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value of �T , which implies a small temperature gradient and, hence, a small variation

in temperature across the material. Given that the thermal gradient is applied in the

�x̂ direction, ~T (x=� = �1) > ~T (x=� = 0) > ~T (x=� = 1), which is re�ected in the

prefactor of 1+�" ~T of the polynomial of ~k in the dispersion relation of Eq. (2.7). This

explains why the perturbation amplitude evolution rates, !(~kmax), at di�erent loca-

tions on the surface are almost identical at low applied thermal gradient or low �e�,

but show signi�cant di�erences at high applied thermal gradient due to the higher

value of " and the resulting O(�2) error in the approximation for Ds;min(T ). However,

the critical e�ective �eld strength remains unaltered at di�erent surface locations

even after considering the temperature dependence of the surface di�usivity. This is

con�rmed very well by the numerical simulation results: the three di�erent types of

symbols corresponding to the above three di�erent surface locations overlap in the

low �e� range, diverge increasingly with increasing �e� over �e�,c, and yield identical

predictions of �e�,c. The insets in Fig. 2.10(c) are shown to serve the same purpose

with those in Fig. 2.9(a), i.e., to demonstrate the computation of the perturbation

amplitude evolution rates; in the insets in Fig. 2.10(c), this is done at x=� = 0.

Linear stability theory, Eq. (2.7), predicts that the perturbation amplitude evolu-

tion rate is approximately a linear function of temperature, with temperature being

approximately a linear function of position for an imposed temperature gradient of

constant magnitude. Therefore, Eq. (2.7) implies that the amplitude evolution rate

is approximately a linear function of position, a prediction with an error of O("2)

accuracy. To validate this linear variation of perturbation amplitude evolution rate

with surface location x, in Fig. 2.10(d) we plot !(~kmax) as a function of x=� for sur-

face morphological evolution at �e� = 0:38. In Fig. 2.10(d), the open circles represent

the numerical simulation predictions and the solid straight line corresponds to the

least-squares �t to these numerical results. The excellent linear �t con�rms that the
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linear stability theory prediction of Eq. (2.7) provides a very good approximation of

local amplitude evolution rates on the surface.
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Figure 2.11: [(a), (b), (c)] Predictions according to linear stability theory, Eq. (2.5), of
the critical e�ective �eld strength, �e�,c, for complete inhibition of the ATG instability
as a function of the misorientation angle, �, for surface di�usional anisotropy strength
A = 15 and (a) <110>-oriented, (b) <100>-oriented, and (c) <111>-oriented sur-
faces with m = 1, 2, and 3, respectively. (d) Band of misorientation angles corre-
sponding to stable surface morphological response as a fraction of the entire range of
possible misorientation angles, ��, as a function of the applied e�ective �eld strength,
�e�, for surface di�usional anisotropy parameters A = 15, � = �opt, and m = 1, 2,
and 3. (e) Critical e�ective �eld strength, �e�,c(� = �opt), for complete inhibition of
the ATG instability, as a function of the surface di�usional anisotropy strength, A,
for m = 1, 2, and 3.

For consistency, the same set of surface di�usional anisotropy parameters (m =

3, A = 12, and � = �15�) has been used in all the numerical simulation results

presented so far, with m = 3 corresponding to a <111> surface of the fcc crystal.

Having validated the predictions of the linear stability theory, the e�ects of the surface

di�usional anisotropy parameters on the driven surface morphological response can be

explored systematically based on the theoretical predictions according to Eq. (2.5);

the choice of Eq. (2.5) is made because of the emphasis placed on the anisotropy

e�ects on the criticality condition for the e�ective external �eld strength requirement

for planar surface stabilization. The critical strength, �e�,c, of the external �eld

required for the stabilization of <100>-, <110>- and <111>-oriented surfaces is

plotted as a function of the misorientation angle � in Figs. 2.11(a), 2.11(b), and

2.11(c), respectively. For all of these three types of surface orientations, �e�,c varies

greatly with varying misorientation angle. In addition, at a given �e�, the range of �

that allows the surface to be fully stabilized, (�2��1), is di�erent for di�erent surface

orientation. From an experimental perspective, (�2��1) re�ects the range of directing

the externally applied �eld for stabilization of the planar surface morphology: the

broader this range is, the less precise control of the applied �eld direction is required to

stabilize the planar surface. To further quantify this range of external �eld direction,

we de�ne the metric �� � (�2��1)=j��maxj, where ��max is the full range of possible
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misorientation angles at a given surface orientation. This metric �� is plotted for

the three types of surfaces examined, m = 1, 2, and 3, as a function of �e� in

Fig. 2.11(d). From the plot of Fig. 2.11(d), it is evident that �� is highest for

<111>-oriented surfaces, allowing the highest �exibility in choosing the direction of

the applied �elds for this surface orientation, m = 3. From Figs. 2.11(a), 2.11(b),

and 2.11(c), it is also worth noticing that, at every surface orientation, there exists

an optimal choice of �, denoted by �opt, that minimizes the critical e�ective �eld

strength, �e�,c, by properly adjusting the direction of the externally applied �eld at

given anisotropy strength A. Finally, in Fig. 2.11(e), we compare the minimum critical

e�ective �eld strength, �e�,c(� = �opt), for the three types of surface orientations

examined as a function of the surface di�usional anisotropy strength A. It is clear from

Fig. 2.11(e) that �e�,c(� = �opt) decreases monotonically with increasing anisotropy

strength for all three surface orientations and that �e�,c(� = �opt) is always lowest for

the <111>-oriented surface. Consequently, <111>-oriented surfaces not only allow

the highest �exibility in manipulating the direction of the externally applied �elds at

given �e�, but also require the weakest possible externally applied �elds for planar

surface stabilization when these external �elds are optimally aligned, i.e., at � = �opt.

2.4 Summary and Conclusions

In summary, we �rst analyzed the morphological stability of planar solid surfaces

of crystalline conducting solids under uniaxial stress and the simultaneous application

of a thermal gradient based on a carefully parameterized, fully nonlinear surface mass

transport model. Using linear stability theory, we found that surface thermomigration

driven by a su�ciently strong and properly directed thermal gradient can inhibit the

ATG instability and stabilize the planar surface and that the Arrhenius temperature

dependence of the surface di�usivity does not a�ect the critical magnitude of the

thermal gradient required for surface stabilization. The theory was validated by self-
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consistent dynamical simulations according to the fully nonlinear model and predicts

a critical temperature gradient for planar surface stabilization of �100 K/cm for fcc

metals under conditions typical of thin-�lm interconnects. Our �ndings motivate the

use of externally applied temperature gradients as an e�cient means of stressed solid

surface stabilization and provide experimentally testable hypotheses for designing

experiments that will generate measurements directly comparable with our theoretical

predictions.

We also studied the surface morphological evolution of uniaxially stressed metal-

lic crystals under the simultaneous action of an electric �eld and a thermal gradient

based on linear stability theory and self-consistent dynamical numerical simulations

according to a well-established fully nonlinear continuum model of driven surface mor-

phological evolution. The analysis demonstrates that an externally applied thermal

gradient can be combined with an externally applied electric �eld as driving forces for

surface atomic transport, resulting in a total e�ective external �eld that can be used

for stabilization of the planar surface morphology against stress-induced morpholog-

ical instabilities. The analysis also demonstrates that from the four possible orien-

tation combinations of the two external �elds, only one (electric �eld oriented along

the +x̂ direction and thermal gradient oriented along the �x̂ direction) allows the

two �elds to work synergistically, resulting in an e�ective �eld stronger than the two

applied �elds for e�cient simultaneous application of electric �elds and temperature

gradients. The linear stability theory predicts that low-amplitude perturbations from

the planar surface morphology grow and decay exponentially at a lower-than-critical

and stronger-than-critical e�ective �eld strength, respectively. Most importantly, the

theory predicts the critical e�ective �eld strength required in order to stabilize the

planar surface morphology of stressed solids for perturbations of any wavelengths,

i.e., the e�ective �eld requirement for suppressing the ATG instability completely.

The relative strength of the two synergistically applied external �elds does not a�ect
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the critical e�ective �eld strength. We also examined the temperature dependence of

the material properties in the surface morphological response under the simultaneous

action of the two external �elds by accounting for the strong Arrhenius temperature

dependence of the surface di�usivity in the linear stability theory. We found that,

due to this temperature dependence, the evolution rate of the surface morphology

is ampli�ed by a factor, but the critical e�ective �eld strength for planar surface

stabilization remains unaltered.

We validated the conclusions of the linear stability theory through the self-consistent

numerical simulations based on the fully nonlinear surface morphological evolution

model, both qualitatively and quantitatively. The simulation results con�rmed the

�eld orientation combination predicted by the theory for the synergistic action of the

two external �elds against the ATG instability. The simulation results agree very well

with the theoretical prediction for the perturbation decay rate of the stable surface

morphological response throughout the course of surface morphological evolution, as

well as with the perturbation growth rate of the unstable response at the early stage

of surface morphological evolution. In the later evolution stage, as the time to fail-

ure is approached, the unstable response exhibits a logarithmic singularity in the

growth of the perturbation amplitude. Most importantly, the simulation results have

validated the prediction of the linear stability theory for the critical e�ective �eld

strength required for planar surface stabilization, and that this is not a�ected by the

relative contribution of the thermal gradient to the e�ective �eld or the temperature

dependence of the material properties. With the validated linear stability theory, we

explored the e�ects on the stressed surface morphological response of the surface di�u-

sional anisotropy parameters and found that the response of <111>-oriented surfaces

is superior to those of <110>- and <100>-oriented surfaces and that the optimal

critical external �eld strength decreases monotonically with increasing anisotropy

strength.
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The �ndings of our morphological stability analysis for surfaces of uniaxially

stressed crystals have signi�cant implications for the stabilization of such surfaces

against stress-induced cracking by the synergistic combination of simultaneously ap-

plied electric �elds and thermal gradients in an optimally e�cient manner. Our

theoretical �ndings constitute experimentally testable hypotheses and can be used

for designing experiments that yield measurements which can be compared directly

with our theoretical predictions and set the stage for external-�eld-enabled surface

engineering toward inhibiting surface cracking.
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CHAPTER 3

WEAKLY NONLINEAR THEORY OF SECONDARY
RIPPLING INSTABILITY IN SURFACES OF STRESSED

SOLIDS

3.1 Introduction

The surface morphological response of stressed elastic solids [2, 109, 110] is a

fundamental surface physics problem that also has major technological importance.

In modern electronic and nanofabrication technologies, solid materials involved are

stressed due to the thermomechanical conditions of processing or device operation and

they may undergo instabilities and evolve morphologically under such conditions that

promote surface di�usional transport. Understanding the underlying morphological

dynamics is very important in developing strategies to stabilize surface morphology

or to control surface patterns that may form after such stress-induced instabilities.

An example of such a surface morphological response in a stressed elastic solid

is the Asaro-Tiller/Grinfeld (ATG) instability. This problem was �rst addressed by

Asaro and Tiller [23, 111], who developed a two-dimensional model and recognized

that the instability was caused by the competition between the elastic strain en-

ergy and the surface energy. Grinfeld [24, 112] later formulated this problem on the

basis of thermodynamic stability arguments and studied this instability in various

solid con�gurations. A large number of experimental [27, 113, 114] and theoretical

[25, 51, 52, 115�119] studies have been conducted in order to characterize and under-

stand fundamentally surface morphological instabilities in stressed elastic solids. In

earlier studies, we focused on the stabilization of the surface morphology of stressed
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elastic crystalline solids using externally applied �elds, such as electric �elds and ther-

mal gradients, and accounting for surface di�usional anisotropy [1, 99, 100, 107, 120].

We developed a linear stability theory, validated it by comparing its predictions with

results of self-consistent dynamical simulations according to a fully nonlinear model,

and established based on the theoretical predictions strategies for stabilizing the pla-

nar surface morphology by using properly directed and su�ciently strong external

�elds [1, 99, 100, 107, 120].

Although the linear stability theory is successful in predicting the onset of the ATG

instability, as well as the critical strength of the external �elds required for the com-

plete stabilization of the planar surface of the stressed elastic solid, it cannot explain

complex nonlinear dynamical phenomena observed in the dynamical simulations, such

as the formation of a pattern of secondary surface ripples for long-wavelength surface

perturbations [1, 13, 30]. This tip-splitting instability, which leads to formation of

shorter-wavelength ripples, is di�erent from the ATG instability and has been re-

ported in continuum mechanical theoretical and simulation studies [51, 52]. However,

the origin of the secondary rippling instability has not been investigated and the

surface morphological dynamics after the instability is triggered has not been charac-

terized or explored systematically. Our numerical simulation studies of the secondary

rippling instability [13, 30] characterized the resulting surface patterns and examined

the e�ects of surface di�usional anisotropy, application of electric �elds, and initial

surface perturbation wavelength and amplitude. Nevertheless, an analytical theory

of secondary rippling that elucidates the origin of the instability and can guide simu-

lation and experimental studies for additional insights into the nature and character

of the instability is still lacking.

In this chapter, we develop an analytical theory for the secondary rippling insta-

bility on the surface of a stressed elastic solid that can capture the rippled surface

pattern formation and predict the critical wavelength of the initial perturbation for

57



the onset of secondary rippling, as well as the �nal number of ripples formed per

original perturbation wavelength. The same model we developed in Section 2.2.1 of

Chapter 2 will be used in this study.

3.2 Calculation of Stress Component Tangent to the Surface

The stress component tangent to the surface, �ss, in the material system of interest

is expressed as

�ss = �11 cos2 � + �22 sin2 � + 2�12 sin � cos � ; (3.1)

where the principal axes 1 and 2 appearing as subscripts in the stress components

of Eq. (3.1) correspond to the x- and y-axes, respectively, in our Cartesian system

of reference, and � is the surface orientation angle. Using the traction-free boundary

condition, Eq. (3.1) can be simpli�ed into

�ss = �11 + �22 : (3.2)

For a surface perturbed from the planar morphology by a perturbation with initial

amplitude �0 � "� 1, approximate analytical solutions for �11 and �22, with O("3)

and higher-order terms neglected, have been derived in Ref. 52. Combining these

expressions with Eq. (3.2) gives

�ss = 1� 2H
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; (3.3)

where theH(�) denotes a Hilbert transform and the subscript x denotes di�erentiation

with respect to x. From Eq. (3.3), neglecting O("3) and higher-order terms, we obtain
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ss = 1� 4H
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: (3.4)

Equation (3.4) for the stress component tangential to the surface is valid for any low-

amplitude plane-wave perturbation from the planar state as the surface morphology
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(height function). For a surface morphology h corresponding to a low-amplitude plane

wave and using H(A exp(ikx) = �iA exp(ikx), we can simplify the expression for the

tangential stress component further to

�2
ss = 1 + 4i

@h
@x
� 8

 
@h
@x

!2

: (3.5)

3.3 Weakly Nonlinear Stability Theory

The evolution of the crystalline solid surface is described fully by the model of

Eqs. (2.1)-(2.3). Neglecting the external �elds, the electric �eld and the thermal gra-

dient, and introducing dimensionless variables by using the length scale l � 
M=�2
1

and time scale � � kBT l4=(Ds�s

), we can rewrite the governing equation as

@~h
@~t

=
@
@~x

"
@
@~s

�
~�+

1
2

~�2
ss

�#

; (3.6)

where ~h � h=l, ~t � t=� , ~x � x=l, ~s � s=l, ~� � �l, and ~�ss � �ss=�1 are all

dimensionless quantities. Henceforth, for notational simplicity, we will omit the tildes

on all of the above dimensionless quantities and follow consistently for the rest of the

article a dimensionless formulation.

To analyze the secondary rippling instability of the planar surface state, we �rst

perturb the planar surface with a low-amplitude plane-wave perturbation, h(x; 0) =

�0 exp(ikx) with �0 � 1, and perform weakly nonlinear stability analysis based

on regular perturbation theory, where an identi�ed small parameter, " , is used for

asymptotic expansion of the height function. From linear stability theory (LST)

used in our previous studies [1, 13, 30], we know that for a low-amplitude shape

perturbation, the strained planar surface is stable for perturbation wave numbers

k > 2 (for isotropic surface di�usion in the absence of an applied electric �eld)

and unstable for long-wavelength perturbation, k < 2, due to the ATG instability;

the ATG instability can be inhibited by applying an external electric �eld stronger
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than a critical value predicted by LST [1, 13, 30]. In simulation studies [13, 30] ,

we have also observed a secondary rippling instability, i.e., formation of secondary

ripples in the surface morphology triggered by a tip splitting instability, for surface

perturbations with wavelengths longer than a critical value, i.e., for wave numbers

k < kc;r < 2, where kc;r is the critical wave number for secondary rippling instability.

For plane-wave surface perturbations with such wave numbers, k < kc;r, we observed

secondary ripple formation which ultimately leads to surface cracking due to the

ATG instability; kc;r has not be predicted analytically but only estimated numerically

[13, 30]. Even under the application of an external electric �eld with strength weaker

than that required for surface stabilization against the ATG instability, we observed

secondary ripple formation that triggered an ATG instability for long-wavelength

perturbations which would otherwise lead to stable morphological response according

to LST. Numerical studies [13, 30] have shown that in all of the above cases, kc;r < 1

with kc;r being close to 1 in the absence of an external �eld.

Our weakly nonlinear theory aims at predicting analytically the onset of the sec-

ondary rippling instability. Therefore, we will focus on an initial shape perturbation

with k = O(1) and identify the small parameter " � �0, i.e., the amplitude of the

initial surface perturbation made dimensionless with the length scale l. The surface

morphological response will be characterized by an amplitude �(t) (to leading or-

der, giving the full morphology h if multiplied by a bounded function of k) that we

will not monitor in the theory when it becomes higher than O("). Consequently, in

our analysis, h, @h=@x, @2h=@x2, @3h=@x3, and @4h=@x4 will be of O("), where the

subscripts are used to denote di�erentiation with respect to x and the number of

subscripts denotes the order of the di�erentiation. We can then represent the height

function h by an asymptotic expansion in " as

h = h(0) + "h(1) + "2h(2) +O("3) : (3.7)
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In the power series of Eq. (3.7), h(0) = 0 corresponds to the base state of the planar

surface morphology. While in linear stability analysis, we are only interested in

the evolution of the O(") term, h(1), here we also are interested in the evolution

of hii and potentially higher-order terms. In this study, we will limit our weakly

nonlinear analysis retaining up to O("2) terms, which will su�ce to predict the onset

of secondary rippling.

NeglectingO("3) and higher-order terms simpli�es the governing equation, Eq. (3.6),

further to
@h
@t

=
@2�
@x2 +

1
2
@2�2

ss

@x2 +O("3) : (3.8)

In Eq. (3.8), the stress component and the curvature depend explicitly on the surface

morphology (height function) and can also be represented as asymptotic expansions

in ". By de�nition of �, the second derivative of the curvature in the right-hand side

of Eq. (3.8)can be written, retaining up to O("2) terms in the expansion, as

@2�
@x2 = �"

@4h(1)

@x4 � "
2@4h(2)

@x4 +O("3) : (3.9)

Substituting into Eq. (3.5) the height function according to the asymptotic ex-

pansion of Eq. (3.7) and neglecting O("3) and higher-order terms gives

�2
ss = 1 + 4i

@h(1)

@x
"+ 4i

@h(2)

@x
"2 � 8

 
@h(1)

@x

!2

"2 : (3.10)

The contribution from this stress component to the governing equation, Eq. (3.8),

is given by

@2�2
ss(x)
@x2 = 4i

@3h(1)

@x3 "+ 4i
@3h(2)

@x3 "2 � 16
 
@2h(1)

@x2

!2

"2 � 16
@h(1)

@x
@3h(1)

@x3 "2 +O("3) :

(3.11)

Substituting Eqs. (3.7), (3.9), and (3.11) into Eq. (3.8) gives

"
@h(1)

@t
+ "2@h(2)

@t
+O("3) = �"

@4h(1)

@x4 � "
2@4h(2)

@x4 + 2i"
@3h(1)

@x3 + 2i"2@3h(2)

@x3
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� 8"2
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!2

� 8"2@h(1)

@x
@3h(1)

@x3 +O("3) : (3.12)

From Eq. (3.12), we can formulate and solve the O(") and O("2) problems with

the corresponding initial conditions identi�ed from Eq. (3.7) and the initial shape

perturbation. The governing equation of the O(") problem is

@h(1)

@t
= �

@4h(1)

@x4 + 2i
@3h(1)

@x3 ; (3.13)

with initial condition h(1)(t = 0) = exp(ikx). As expected, the above problem is

identical to the problem in the linear stability analysis for the ATG instability and

has the solution h(1)(x; t) = exp(!1t) exp(ikx), where !1(k) = �k4 + 2k3, i.e., the

dispersion relation governing the ATG instability for isotropic surface di�usion [1].

The governing equation of the O("2) problem is

@h(2)

@t
= �

@4h(2)

@x4 + 2i
@3h(2)

@x3 � 8
 
@2h(1)

@x2

!2

� 8
@h(1)

@x
@3h(1)

@x3 ; (3.14)

with initial condition h(2)(t = 0) = 0. Note that the above partial di�erential

equation in h(2)(x; t) is linear (though non-homogeneous), given the already avail-

able solution for h(1)(x; t), which is the essence of weakly nonlinear analysis at each

order. The solution to this initial-value problem is h(2)(x; t) = �8k[exp(2!1t) �

exp(!2t)] exp(2ikx)=(7k � 6), where !2(k) = �16k4 + 16k3. Substituting the O(")

and oept results into the asymptotic expansion of Eq. (3.7) gives the height function

h as

h(x; t; ") = " exp(!1t) exp(ikx)� "2 8k
7k � 6

[exp(2!1t)� exp(!2t)] exp(2ikx) +O("3) :

(3.15)

The solution of our conditional (asymptotic) stability theory, Eq. (3.15), is valid

only under the low amplitude assumption. As the amplitude of the perturbation

62



grows, the prediction of Eq. (3.15) for the surface morphology will become increasingly

inaccurate, since the weakly nonlinear solution of Eq. (3.15) cannot predict the full

dynamics (well beyond the instability onset) of the surface morphological evolution,

which is strongly nonlinear in nature. However, the retention of O("2) terms in the

height function gives more accurate predictions for the surface morphology than those

of the linear stability theory and can explain the secondary ripple formation, which

we discuss next. Speci�cally, in Eq. (3.15), we observe that in addition to the initial

perturbation, namely, a plane wave of wave number k, a second sub-harmonic wave,

with wave number 2k, i.e., twice as large as that of the initial perturbation, has

been excited in the evolution of the surface morphology and appears in the height

function due to the contribution of the O("2) terms in the governing equation. If the

evolution rates of the initial surface perturbation and the secondary sub-harmonics

are negative, which is the case when k > 2, the surface perturbation will decay to

return to the planar surface morphology that is stable. As a result, neither the ATG

instability nor the secondary rippling instability will be manifested in this case. If, on

the other hand, the evolution rate of the initial perturbation is positive, but that of

the induced second sub-harmonic (of wave number 2k) is negative or slow compared

to the original perturbation (of wave number k), which is the case when kc;r < k < 2,

we will still not be able to observe the secondary ripple formation. If the evolution

rates of both the initial perturbation and the induced secondary wave are positive,

which is the case when k < kc;r, the amplitudes of both the primary perturbation

wave and the secondary sub-harmonic wave will grow; this will trigger both the ATG

instability and the secondary rippling instability simultaneously.

So far, we have limited our weakly nonlinear theory to O("2) terms only and,

hence, the induced secondary ripple, as predicted by Eq. (3.15), is the only sub-

harmonic of the initial perturbation appearing in the solution for the surface mor-

phology. The signi�cance of including this O("2) contribution to the analysis is that
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it provides analytical understanding about the origin of the secondary wave, through

the second sub-harmonic for simple plane-wave shape perturbation, an important

physical insight into the origin of the secondary rippling instability. To analytically

predict the number of secondary ripples formed starting from a simple plane-wave

perturbation, we need to extend the weakly nonlinear theory to increasingly higher

order terms, O("n) with n > 2, and evaluate the evolution rates of all the resulting

sub-harmonics. Such an analysis constitutes a rather tedious mathematical task due

to the increased complication in formulating and solving the O("n) with n > 2 prob-

lems. Nevertheless, the insights obtained by the O("2) contribution to the analysis

can be used to postulate an ansatz, whose validity can be tested by systematic com-

parisons with results of self-consistent numerical simulations, i.e., with fully nonlinear

analysis. This ansatz consists of three statements:

1. All the sub-harmonics of the basic plane-wave perturbation are excited, due

to the O("n) with n > 2 contributions to the weakly nonlinear analysis, and,

after the surface morphology starts evolving in response to the perturbation,

the height function can be represented in the low-amplitude limit as the super-

position of all the sub-harmonic waves, i.e.,

h(x; t) = �1 exp(!(1)
1 t) exp(ikx) + �2 exp(!(2)

1 t) exp(2ikx)

+ �3 exp(!(3)
1 t) exp(3ikx) + � � � ; (3.16)

2. Each (sub-)harmonic (wave number nk; n = 1, 2, 3, ...) evolves practically

independently from the others and its evolution rate, !(n)
1 , is that predicted by

linear stability theory for the corresponding wave number nk; and,

3. After su�ciently long time, the surface morphology is dominated by the sub-

harmonic with the fastest growth rate, i.e., if !(n)
1 is the fastest of the sub-
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harmonic growth rates then n ripples per original wavelength will eventually be

observed.

The �rst two statements are supported by the mathematical structure of the O("n)

problems in the weakly nonlinear analysis. The third statement is supported by the

low amplitude of the perturbation in a conditional (asymptotic) stability analysis.

This low amplitude results in incremental changes in the morphology at the initial

stage of evolution, prolonging the time to failure (surface cracking), which enables

higher-order unstable sub-harmonics to evolve and eventually dominate the surface

morphology.

Based on the above three statements, we can establish simple analytical relations

between the initial perturbation wave number and the number of the secondary ripples

(ripples per original wavelength of shape perturbation) manifested in the evolving

surface morphology. According to the linear stability theory, the evolution rate of the

nth (sub-)harmonic is

!(n)
1 = �(nk)4 + 2(nk)3 : (3.17)

If the nth sub-harmonic is the fastest growing one, then we have !(n)
1 � !(n�1)

1 and

!(n)
1 � !(n+1)

1 , which brackets, through Eq. (3.17), k as

2
(n+ 1)3 � n3

(n+ 1)4 � n4 � k � 2
n3 � (n� 1)3

n4 � (n� 1)4 ; (3.18)

and gives the initial perturbation wave number range over which the dominant mode

of evolution will lead to formation of n ripples per original wavelength of perturbation.

Substituting n = 2 into Eq. (3.18) gives the critical wave number for secondary

rippling, kc;r = 223�1
24�1 = 14

15 � 0:933, which corresponds to the upper bound on k in

Eq. (3.18) for n = 2 (the minimum number of ripples per original wavelength for �tip

splitting in two� and onset of secondary rippling).
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In the remainder of our theoretical analysis, we increase the complexity of the

dynamical system under consideration but limit the results of the weakly nonlin-

ear theory to the outcomes of the ansatz that we postulated based on the theory,

Eqs. (3.17) and (3.18). So far, we considered in our analysis the surface atomic

di�usivity Ds to be isotropic. Next, we account for surface di�usional anisotropy ex-

pressed by the well-established anisotropy function for face-entered cubic (fcc) metals

f(�) = 1 + A cos2[m(� + �)] � 1 [102, 121], where � = tan�1(dy=dx) is the sur-

face orientation angle. In this parameterization of the anisotropy function, A > 0

is the strength of the anisotropy, m is the number of symmetry directions of fast

surface di�usion, and � is the misorientation angle of a symmetry direction with

respect to the x-direction, which is the direction of the imposed external �elds in

the case under consideration; m = 1, 2, and 3 corresponds to <110>-, <100>-,

and <111>-oriented surfaces respectively. The surface di�usivity can be expressed

as Ds = Ds(�) = Ds;minf(�), where Ds;min is the minimum surface di�usivity; for

anisotropic surface di�usion, Ds;min is the value of the surface di�usivity used in the

de�nition of the time scale � . In such a case, according to the LST result of Ref. 1

(in the absence of an applied electric �eld), Eq. (3.17) can be written as

!(n)
1 = �(nk)4f(� = 0) + 2(nk)3f(� = 0) ; (3.19)

while the result of Eq. (3.18) for the perturbation wave number range that results

in a certain number of secondary ripples does not change. This implies that surface

di�usional anisotropy does not a�ect the �nal number of ripples forming per original

perturbation wavelength. However, Eq. (3.19) implies that anisotropy does a�ect the

perturbation growth rate by a factor of f(� = 0) = 1 +A cos2(m�) � 1. This implies

that surface di�usional anisotropy will accelerate the surface morphological evolution,

thus the secondary rippling phenomenon is expected to occur sooner in a crystalline

material than in the case of an isotropic solid.
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To analyze the formation of secondary ripples under the application of an electric

�eld that also induces electromigration on the surface of a crystalline solid conductor,

we again rely on the outcomes of the ansatz based on the weakly nonlinear theory.

In this case, according to the linear stability theory of Ref. 1, the result of Eq. (3.19)

can be written as

!(n)
1 = �

 
df
d�

�����
�=0

!

�E(nk)2 + 2(nk)3f(� = 0)� (nk)4f(� = 0) ; (3.20)

where

�E �
E1q�s




 

M
�2
1

!2

is the relative strength of the electric �eld with respect to the applied uniaxial stress;

E1 is the strength of the applied electric �eld (directed along x) and q�s is the surface

e�ective charge for electromigration [2]. The relation of Eq. (3.18) for the perturbation

wave number range for the formation of n ripples per original perturbation wavelength

becomes

(n+ 1)3 � n3

(n+ 1)4 � n4 [1 + �(n)] � k �
n3 � (n� 1)3

n4 � (n� 1)4 [1 + �(n� 1)] ; (3.21)

where

�(n) =

vuut1�
[(n+ 1)4 � n4][(n+ 1)2 � n2]

[(n+ 1)3 � n3]2
�E

 
f 0(�)
f(�)

!

�=0
(3.22)

expresses the e�ect of the applied electric �eld on the k(n) relation. Equation

(3.21) generalizes the k(n) relation of Eq. (3.18) to incorporate the e�ect of sur-

face electromigration into the analytical expression. When �E = 0, Eq. (3.22) gives

�(n) = �(n � 1) = 1, which, when substituted into Eq. (3.21), gives an expression

for k(n) identical to that of Eq. (3.18), i.e., it is reduced to the case without the

electric �eld action. Also, substituting n = 2 into Eqs. (3.21) and (3.22) generalizes
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the previously derived prediction for the critical wave number for secondary rippling,

kc;r, to the expression

kc;r =
7
15

2

41 +

vuut1�
45
49

�E

 
f 0(�)
f(�)

!

�=0

3

5 (3.23)

that accounts for the e�ects of surface di�usional anisotropy and the action of an

externally applied electric �eld. Substituting into Eq. (3.23) the anisotropy param-

eters A = 12, m = 3, and � = �15�, and an electric �eld strength �E = 0:1 gives

kc;r = 0:81 < 0:933. This example highlights the main implication of Eq. (3.23),

namely, that the application of an electric �eld helps stabilize the rippling instability

by reducing the range of wave numbers that can cause secondary rippling. Moreover,

an electric �eld with larger-than-critical strength, � > �E;c, as predicted by the LST

[1, 13, 30], can inhibit both the secondary rippling and the ATG instability. How-

ever, under the application of an electric �eld with weaker-than-critical �eld strength,

� < �E;c = 0:194 for this set of anisotropy parameters, the rippling instability will

still be triggered for perturbations with k < kc;r.
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Figure 3.1: Dispersion relations for two values of the dimensionless electric-�eld
strength, �E, giving the dependence of the growth or decay rate, !, of a shape
perturbation from the planar surface morphology of a uniaxially stressed solid on
the dimensionless wave number, k, of the perturbation. (1) �E = 0:88�E;c and (2)
�E = 1:1�E;c. The dashed vertical lines indicate that in case (1), where �E < �E;c,
an initial perturbation with k = 0:4 in the low-k linearly stable region may induce
unstable sub-harmonics of 2k = 0:8 and 3k = 1:2. The inset gives the dispersion
relation for �E = 0, indicating an ATG surface instability. The surface di�usional
anisotropy parameters are A = 12, m = 3, and � = �15�.

This rippling pattern can be best explained through the dispersion curves of

Fig. 3.1 for a representative set of surface di�usional anisotropy parameters. The

inset of Fig. 3.1 shows the dispersion curve for the ATG instability under isotropic

surface di�usion, �E = 0 and A = 0, where every long-wavelength perturbation

with wave number k < 2 is unstable. For an applied electric �eld with strength

�E = 1:1�E;c, i.e., stronger than the critical value required to stabilize the surface,

with dispersion curve (2), ! < 0 resulting in perturbation amplitude decay for every

perturbation wave number k and stabilization of any morphological disturbances. In

the dispersion curve of case (1), the applied electric �eld has strength �E = 0:88�E;c,

i.e., the �eld is weaker than that required to stabilize the planar surface morphol-

ogy. Hence, there exists a range of perturbation wave numbers for which ! > 0 and

the planar surface morphology is unstable according to LST. However, for very-long-

wavelength perturbations, with wave numbers between 0 and the �rst nonzero root of

!k = 0, the perturbation evolution rate is ! < 0, i.e., the planar surface morphology

is stable according to LST. In such cases, our weakly nonlinear theory predicts that

the low-k linearly stable perturbation can induce unstable sub-harmonics that can

trigger the ATG instability mediated by the secondary rippling instability; e.g., a

perturbation with k = 0:4 will induce the unstable sub-harmonics of 2k = 0:8 and

3k = 1:2, as shown by the dashed vertical lines in Fig. 3.1. Our theory also predicts

that of the two unstable sub-harmonics, the one with wave number 3k = 1:2 has

the highest growth rate according to LST and, therefore, three secondary ripples are
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expected to form per original wavelength of the initial perturbation with k = 0:4

prior to growth of the perturbation amplitude to cause surface cracking due to the

ATG instability as the driven surface morphological evolution proceeds. In the next

section, the theoretical predictions of the weakly nonlinear stability analysis will be

tested and validated based on self-consistent dynamical simulations according to the

fully nonlinear surface evolution model.

3.4 Self-Consistent Dynamical Simulations of Secondary Rip-

pling Instability

We have carried out self-consistent dynamical simulations based on the fully non-

linear model and the numerical methods described in Chapter 2. In previous simula-

tion studies [13, 30], we had reported an approximate linear scaling relation between

the number of ripples formed (per original perturbation wavelength) and the per-

turbation wavelength for the characterization of the rippled surface pattern. The

simulations conducted in this study aim primarily at validation of the weakly non-

linear theory of Section 3.3 and assessment of the accuracy of the detailed analytical

results of Eqs. (3.15), (3.18), and (3.21)-(3.23).

3.4.1 Stress-Induced Secondary, Sub-harmonic Ripples

Previous simulation studies [1, 13, 30, 51, 52] have shown or implied that sec-

ondary rippling for a long-wavelength surface perturbation originates due to the com-

petition between surface free energy and elastic strain energy independent of surface

di�usional anisotropy or action of externally applied �elds other than the mechanical

stress. These results are consistent with the �ndings of our weakly nonlinear theory.

Therefore, in our systematic e�ort to assess the validity of the theory, we initially ex-

amined the surface morphological response of a stressed solid where surface di�usion

is isotropic and in the absence of any other external �elds. Initially, we attempt a
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direct qualitative comparison of the theoretical prediction of the surface morphology,

Eq. (3.15), with the corresponding simulation prediction. In this attempt, we notice

that in using Eq. (3.15), we neglect all the higher-than-second-order nonlinear terms,

which may excite sub-harmonic ripples with wave numbers higher than 2k for a sur-

face perturbation from the planar morphology with wave number k. These ripples

cannot be captured by the truncated form of Eq. (3.15), which neglects O("3) and

higher-order terms. Therefore, for a meaningful comparison, we should conduct the

dynamical simulation at a proper initial perturbation wavelength which, according to

the weakly nonlinear theory, can only induce the formation of two ripples per orig-

inal wavelength, i.e., according to Eq. (3.18), the range of the chosen wave number

k should be 38=65 � k � 14=15. We choose the initial perturbation wave number

k = 0:91 as a representative example of morphological response. We choose " = 0:007

to use a low amplitude and keep the growth rate of the primary harmonic slow, delay-

ing the possibility of surface cracking prior to the formation of any secondary ripples.

The snapshots of surface pro�les predicted by dynamical simulation and Eq. (3.15)

are shown in Figs. 3.2(a) and 3.2(b), respectively. The low-amplitude sine waves

in Figs. 3.2(a) and 3.2(b) correspond to the initial (perturbed from planar) surface

morphology at t = 0 and are identical in both cases. The other surface pro�le in

Fig. 3.2(a) corresponds to the surface morphology at t = 4:0� . The valleys of the

initial pro�le are greatly deepened, developing into the crack-like grooves that are

typical of the ATG instability, and each of the surface tips has split into two sec-

ondary ripples. The deepening of the valley due to surface di�usion is a mechanism

to relieve elastic strain energy and the formation of the cusp-like singularity forming

in the bottom of the deep groove is a direct consequence of the stress concentration

at this point. The formation of the secondary, sub-harmonic ripples in the hills of the

surface morphology is another mechanism to reduce the material’s elastic strain en-

ergy. In Fig. 3.2(b), the evolved surface pro�le represents the prediction of Eq. (3.15)
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at the same time t = 4:0� . The valleys of the surface pro�le also have deepened,

and the appearance of secondary ripples at the hills of the surface morphology also is

evident. In general, there is good qualitative agreement in the shape and location of

the ripples in the surface morphology between the analytical prediction and the simu-

lation result. However, at this time, t = 4:0� , the amplitude of the secondary ripples

predicted by Eq. (3.15) as depicted in Fig. 3.2(b) is much higher than the simulation

result as depicted in Fig. 3.2(a). This discrepancy is not surprising since Eq. (3.15)

is accurate as long as the surface morphology deviates only by a low amplitude from

the planar surface, which is violated when the ATG instability is triggered.

-1  0  1

h(
x,

t)

x/l

(a)

-1  0  1
x/l

(b)

Figure 3.2: Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx) at �E = 0 with k = 0:91 and �0=� = 0:001, as predicted by
(a) numerical simulation and (b) weakly nonlinear theory for a solid under uniaxial
tension applied along x. The initial low-amplitude sinusoidal perturbations are iden-
tical in both cases, (a) and (b). The evolved surface morphology with the split tip is
shown after t = 4:0� for both (a) and (b). Surface di�usional anisotropy e�ects are
neglected in both cases.

3.4.2 Secondary Rippling Instability with Isotropic Surface Di�usion with-

out Electric Field Action

In addition to obtaining a fundamental understanding of the origin of the sec-

ondary rippling instability, this study also aims at developing a simple and reliable

theory to predict the �nal number of ripples, n per original perturbation wavelength

in the evolved surface morphology; here, we undertake the systematic testing of the
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theory of Section 3.3. First, we consider the basic case where the elastic solid is only

subject to uniaxial stress and surface di�usion is isotropic. In this case, according to

the theory, the relation between the �nal number of ripples, n, and the correspond-

ing range of the initial perturbation wave number k is expressed by the inequali-

ties of Eq. (3.18). This n(k) relation predicts that n = 2 for k 2 (38=65; 14=15),

n = 3 for k 2 (74=175; 38=65), n = 4 for k 2 (122=369; 74=175), n = 5 for

k 2 (182=671; 122=369), and so on for more ripples according to Eq. (3.18). To

elucidate the dynamics of secondary (sub-harmonic) ripple formation, we discuss the

results of four representative direct dynamical simulations based on the fully nonlinear

surface transport model at four di�erent wave numbers as initial surface morphologies

perturbed from the planar state. For this basic case, A = 0 and �E = 0. The simu-

lation results are depicted in Fig. 3.3. Figures 3.3(a1), 3.3(b1), 3.3(c1), and 3.3(d1)

show snapshots from the surface morphological evolution for initial perturbation wave

number k = 0:75, k = 0:44, k = 0:34, and k = 0:29, respectively. The corresponding

surface pro�les are shifted upwards as the morphological evolution proceeds, starting

from the initial morphology at the bottom of this evolution sequence. Figure 3.3(a1)

shows that the amplitude of the initial perturbation grows slowly at the beginning,

accompanying the slight morphological change: the valleys become deeper and nar-

rower, while the hills (tips) become broader. Such shape change has been reported

in the literature [51, 52], and is attributed to the nonlinear e�ect of the mechanical

stress. It turns out that this morphological change also is the precursor to secondary

rippling. At t = 3:71� , the tip of the evolving wave (per original wavelength) splits

into two secondary ripples, each with a wavelength equal to half of that of the original

sine wave perturbation. This is evidence of secondary ripple formation in agreement

with the theory, Eq. (3.18), that gives n(0:75) = 2. From this point on, the sur-

face morphological evolution is accelerated, with both the original valleys and the

newly-formed ones due to the tip splitting deepening fast. The subsequent evolution
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is dominated by the secondary sub-harmonic, which has a faster evolution rate than

the primary perturbation. The surface morphology develops a cusp-like singularity

rapidly, without forming any more ripples.
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Figure 3.3: Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0 with (a1) k = 0:75, (b1)
k = 0:44, (c1) k = 0:34, and (d1) k = 0:29. The evolution sequences are from the
bottom to the top, and the stress is tensile and applied uniaxially along x. The
surface pro�les shown correspond to (a1) t = 0, 0.46, 0.94, 1.46, 2.04, 2.52, 2.95,
3.39, 3.71, 4.06, 4.35, and 4.50 � ; (b1) t = 0, 1.16, 2.40, 3.19, 4.00, 4.95, 5.31,
5.79, 6.12, 6.55, 7.08, and 7.31 � ; (c1) t = 0, 1.28, 2.70, 4.32, 5.71, 7.06, 8.23, 9.10,
9.57, 9.95, 10.30, and 10.60 � ; and (d1) t = 0, 1.36, 2.94, 3.99, 5.09, 6.25, 7.28,
8.25, 9.09, 9.72, 10.72, and 11.60 � . In (a2), (b2), (c2), and (d2) magni�ed views
are depicted of the regions marked by the rectangles in (a1), (b1), (c1), and (d1),
respectively, highlighting the resulting tip-split surface morphologies characterized
by certain patterns of secondary ripples. Surface di�usional anisotropy e�ects are
neglected in all of the four simulations.

Figure 3.3(b1) shows di�erent dynamics compared to that of Fig. 3.3(a1). In the

beginning of the evolution, the amplitude growth also is slow. While the deepening

and narrowing of the valleys of the surface pro�le occurs, the tips are not broadening

but sharpening. At t = 5:79� , two shoulders have formed on either side of each tip.

This kind of morphology was observed in previous simulation studies [120], but the

cusp singularity in the valleys was reached before manifestation of the further nonlin-
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ear dynamics at the tips of the surface pro�le. In the simulation of Fig. 3.3(b1), we

slowed down the growth of the perturbation by choosing very low initial perturbation

amplitudes. At t = 7:08� , it is evident that two new valleys form at each tip. The

surface morphology is now characterized by three ripples per original wavelength,

each with a wavelength equal to one third of that of the original perturbation. Ac-

cording to our theory, the second sub-harmonic, though it cannot be observed due to

its slow growth rate compared to those of the other modes, also has been excited. The

surface morphology is still dominated by the form of the third sub-harmonic, only

modulated by the original perturbation and the induced second sub-harmonic. After

the formation of the secondary ripples, the evolution (dominated by the excited third

sub-harmonics) and the cusp singularity at the valleys of the surface morphology is

reached rapidly, without showing any further complex dynamics. The �nal number

of secondary ripples per original wavelength agrees with the prediction of Eq. (3.18),

n(0:44) = 3.

To explore the extent of validity of our theory, we have examined the evolution

of perturbations with increasingly long wavelengths that are expected to lead to the

formation of even more ripples according to the theory, which makes the simulation

e�ort increasingly more challenging. The simulation results for k = 0:34 and k = 0:29

are shown in Figs. 3.3(c1) and 3.3(d1), respectively. As expected, we observe the for-

mation of the secondary ripples, with n(0:34) = 4 and n(0:29) = 5 as predicted by

the theory, and the formation of the cusp-like features in the valleys of the surface

morphology after the formation of the ripples. However, two additional dynamical

features also are worth noticing. The �rst is that, for the longer-wavelength per-

turbations, it takes longer time for the secondary ripples to form. This is partly

because the longer-wavelength perturbation results in slower growth rate according

to the linear theory and partly because the dominant sub-harmonic is the higher-

order one induced by the higher-order nonlinearities. Due to the low perturbation
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amplitude, it takes longer for the higher-order nonlinearities to cause any observable

e�ects on the surface morphology. The second dynamical feature is that for the very

long-wavelength perturbations examined in these cases, the secondary ripples form

not only at the tips but also at the valleys of the surface pro�le, as shown by the

snapshots at t = 9:10� in and t = 9:09� in Figs. 3.3(c1) and 3.3(d1), respectively. In

other words, both tip and valley splitting is exhibited in these cases. This is because,

for the very-long-wavelength perturbation, the valley regions are very broad and the

local strain energy in these regions cannot be reduced su�ciently by the deepening

of the valleys. Splitting in these regions occurs under the action of the local stress

�eld. The ripples that form in the valley regions grow faster than those forming in

the tip regions. If the initial perturbation amplitude is not su�ciently low the ripples

forming in the valley regions may grow to form cusp-like singularities very quickly,

even before any secondary ripples form in the tip regions. This was shown in an

earlier study [13, 30], where �0=� = 0:01 was used and resulted in observation of

fewer ripples in the simulation than the present theory predicts.

Figures 3.3(a2), 3.3(b2), 3.3(c2), and 3.3(d2) give magni�ed views of the boxed

regions marked in the surface pro�les of Figs. 3.3(a1), 3.3(b1), 3.3(c1), and 3.3(d1),

respectively, to highlight the detailed features of the rippled surface morphology.

Since surface di�usion is isotropic, the rippled surface pro�le per original wavelength

retains its symmetry with respect to the y-axis in the morphologies of Figs. 3.3(a2)

and 3.3(b2). However, this symmetry is broken in the simulated rippled surface

morphologies of Figs. 3.3(c2) and 3.3(d2), where some ripples have already evolved

toward a cusp-like singularity, while others have just formed. This is because the

longer the initial perturbation wavelength, the stronger the nonlinear e�ect and the

farther the surface morphology deviates from the weakly nonlinear prediction.
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Figure 3.4: Number of secondary ripples formed on the uniaxially stressed solid sur-
face morphology, n, as a function of the initial perturbation wavelength scaled by the
maximally unstable wavelength, �=�max. Solid lines and open circles denote theoreti-
cal predictions and simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with �0=� = 0:001 at �E = 0 in
all the simulations. Surface di�usional anisotropy e�ects are neglected.

An important capability of the secondary rippling theory of Section 3.3 is that

it predicts a sequence of critical initial perturbation wave numbers that trigger the

formation of n = 2, 3, 4, ... secondary sub-harmonic ripples per original pertur-

bation wavelength, starting from kc;r that corresponds to n = 2. To assess the

predictive capabilities of the theory, we have conducted a series of simulations, in

all of which perturbations from the planar surface morphology with the low ampli-

tude �0=� = 0:001 are used. All of the simulations are fully self-consistent, and are

terminated when the cusp-like singularity is approached. We record the number of

ripples per original wavelength in the last snapshot of the simulated morphological

evolution, as discussed for the morphologies of Fig. 3.3, and plot all of these numeri-

cal simulation results in Fig. 3.4 denoted by open circles as a function of the original

perturbation wavelength, � = 2�=k, scaled with the maximally unstable wavelength

�max as expressed in Refs. 1, 13, and 30. For comparison purposes, the theory pre-

dictions according to Eq. (3.18) also are plotted in Fig. 3.4 denoted by solid lines.

In the absence of an electric �eld action, the maximally unstable wave number is
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kmax = 3=2, yielding �max = 4�=3 � 4:19. It is evident from Fig. 3.4 that the theo-

retical predictions for n(�) are in very good agreement with the simulation results,

especially for the lower-n sub-harmonics. The most important critical parameter, the

critical initial perturbation wave number for the occurrence of the rippling instabil-

ity, kc;r, is predicted by the theory to be 14=15 � 0:93, in excellent agreement with

kc;r � 0:98 predicted by the numerical simulations. This error is � 5% with the error

for the theoretical prediction of the critical k for the formation of three secondary

ripples being < 10% and the predictions becoming less accurate for n = 4, 5, etc., for

the reasons mentioned in the discussion of the nonlinear dynamics captured by the

simulation results of Fig. 3.3.

3.4.3 Secondary Rippling Instability with Anisotropic Surface Di�usion

without Electric Field Action

To account for the e�ects of surface di�usional anisotropy on the secondary rip-

pling instability and test the predictive capabilities of our theory when such anisotropy

is important, which is the case for crystalline solids, we have conducted a systematic

protocol of dynamical simulations using the 3-parameter anisotropy function f(�)

typical of fcc metals. Here, we present representative simulation results for the set

of anisotropy parameters A = 12, m = 3, and � = �15�. According to the theoreti-

cal analysis of Section 3.3, the domains of k corresponding to formation of a certain

number n of secondary ripples are not a�ected by the surface di�usional anisotropy.

In the simulations, we use the same low amplitude of initial perturbation from the

planar surface morphology, �0=� = 0:001, and choose the same set of initial per-

turbation wavelengths as in the case where surface di�usion was considered to be

isotropic. Figures 3.5(a1), 3.5(b1), 3.5(c1), and 3.5(d1) depict snapshots from the

surface morphological evolution for the initial perturbation wave numbers k = 0:75,

k = 0:44, k = 0:34, and k = 0:29, respectively. The simulation results indicate that
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there are not any major changes in the surface morphological dynamics in the cases

of Fig. 3.5 compared with their counterparts in Fig. 3.3. The �nal numbers are n =

2, 3, 4, and 5 for the morphological response in Figs. 3.5(a1), 3.5(b1), 3.5(c1), and

3.5(d1), respectively, as predicted by the theory, Eq. (3.18). However, although the

surface di�usional anisotropy does not a�ect the �nal number of ripples formed, it

a�ects the time when these ripples are formed. Comparing the times corresponding

to the snapshots in Fig. 3.5 with those in Fig. 3.3, we �nd that the dynamics of ripple

formation and evolution are accelerated by close to an order of magnitude when the

surface di�usional anisotropy e�ects are accounted for. This is because, as seen by

comparing the rates of Eqs. (3.17) and (3.19), surface di�usional anisotropy acceler-

ates the evolution rate of all the excited harmonics by a factor of f(� = 0, which is

equal to 7 for the set of anisotropy parameters used in the simulations that yielded

the results of Fig. 3.5.
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Figure 3.5: Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0 with (a1) k = 0:75, (b1)
k = 0:44, (c1) k = 0:34, and (d1) k = 0:29. The evolution sequences are from the
bottom to the top, and the stress is tensile and applied uniaxially along x. The surface
pro�les shown correspond to (a1) t = 0, 0.06, 0.11, 0.16, 0.25, 0.36, 0.41, 0.44, 0.46,
0.51, 0.55, and 0.59 � ; (b1) t = 0, 0.15, 0.27, 0.38, 0.50, 0.59, 0.68, 0.73, 0.77, 0.82,
0.93, and 1.00 � ; (c1) t = 0, 0.25, 0.47, 0.66, 0.88, 1.10, 1.16, 1.21, 1.30, 1.34, 1.37,
and 1.44 � ; and (d1) t = 0, 0.34, 0.56, 0.78, 0.97, 1.17, 1.24, 1.30, 1.40, 1.49, 1.56,
and 1.61 � . In (a2), (b2), (c2), and (d2) magni�ed views are depicted of the regions
marked by the rectangles in (a1), (b1), (c1), and (d1), respectively, highlighting the
resulting tip-split surface morphologies characterized by certain patterns of secondary
ripples. In all four cases, the surface di�usional anisotropy parameters are A = 12,
m = 3, and � = �15�.

Our theory, Eqs. (3.17) and (3.19), predicts that the growth rate of all the har-

monics is enhanced equally due to surface di�usional anisotropy. This is because our

theoretical analysis, based on the ansatz following the �ndings of the weakly nonlinear

theory, neglects the nonlinear e�ects of the surface morphological details on surface

di�usional anisotropy at di�erent surface locations. The simulation results demon-

strate that the growth rates of all the excited harmonics are indeed enhanced, but

by slightly di�erent values. These slight di�erences in local growth rates will a�ect

the pro�le features of the evolved surface morphology. As a result, in Figs. 3.5(a2)

and 3.5(b2), depicting magni�ed views of the marked regions of Figs. 3.5(a1) and

3.5(b1), respectively, the ripples do not exhibit the symmetry with respect to the y-

axis exhibited by those in Figs. 3.3(a2) and 3.3(b2). Also, the pro�les of Figs. 3.5(c2)

and 3.5(d2) di�er from those of Figs. 3.3(c2) and 3.3(d2). These di�erences in the

more detailed features of the pro�les (other than number of ripples and corresponding

wavelengths) are caused by the e�ects of surface di�usional anisotropy.
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Figure 3.6: Number of secondary ripples formed on the uniaxially stressed solid sur-
face morphology, n, as a function of the initial perturbation wavelength scaled by the
maximally unstable wavelength, �=�max. Solid lines and open circles denote theoreti-
cal predictions and simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with �0=� = 0:001 at �E = 0 for
all the simulations. The surface di�usional anisotropy parameters are A = 12, m = 3,
and � = �15�.

To examine quantitatively the e�ects of the surface di�usional anisotropy on the

critical values of the initial perturbation wave numbers that trigger the formation of

di�erent numbers of secondary ripples, n, we conducted a systematic protocol of sim-

ulations that generated the results of Fig. 3.6. In Fig. 3.6, the simulation predictions

for the dependence of n on the initial wave number k, expressed again as n(�=�max)

are denoted by open circles with the solid lines representing the predictions of the

theory, Eq. (3.18). There are no major di�erences in comparing the results of Fig. 3.6

with those of Fig. 3.4, con�rming based on the dynamical simulations that surface

di�usional anisotropy does not impact signi�cantly the n(�) relationship. However, as

demonstrated in Figs. 3.5(a2) and 3.5(b2), di�erent sub-harmonic ripples will grow at

di�erent rates as a result of surface di�usional anisotropy. The faster growing ripples

will reach the cusp-like singular morphology faster, not allowing for the formation

of the slower growing ripples prior to failure (surface cracking). Therefore, the pre-

dictive capabilities of the theory of Section 3.3 are reduced when surface di�usional
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anisotropy is accounted for, although its main predictions remain in good agreement

with those of self-consistent dynamical simulation.

3.4.4 Secondary Rippling Instability with Anisotropic Surface Di�usion

and Electric Field Action

Electric �elds can drive surface transport due to electromigration, which can be

utilized to compete with stress-driven surface di�usion and stabilize a planar surface

against the ATG instability [1]. Speci�cally, a larger-than-critical electric �eld can

inhibit the ATG instability for any surface perturbation wavelength [1, 2]. However,

contrary to the prediction of linear stability theory, the surface is not stable against

long-wavelength perturbations that are supposed to decay back to the planar surface

over a certain wavelength range (e.g., k < 0:65 in the case of Fig. 3.1). We have

studied thoroughly through self-consistent numerical simulations the surface mor-

phological response under the action of an electric �eld and over a broad range of

wave numbers in surface perturbations from the planar morphology. It is already un-

derstood that applying weaker-than-critical electric �elds cannot stabilize the planar

surface morphology: although it can stabilize over a certain range of long wavelengths

the planar surface against the primary ATG instability, it cannot avoid the splitting

of the long-wavelength-perturbed surface into secondary ripples that can then evolve

to cause surface cracking instabilities. Here, we aim at analyzing the e�ects of the

electric �eld action on the secondary rippling instability and test the validity of the

theoretical predictions, Eqs. (3.21)-(3.23).
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Figure 3.7: Surface morphological evolution, h(x; t), starting with a perturbation
h(x; 0) = �0 sin(kx), where �0=� = 0:001, at �E = 0:1 with (a1) k = 0:58, (b1)
k = 0:42, (c1) k = 0:29, and (d1) k = 0:25. The evolution sequences are from the
bottom to the top, and the stress is tensile and applied uniaxially along x. The surface
pro�les shown correspond to (a1) t = 0, 0.18, 0.35, 0.51, 0.70, 0.90, 1.10, 1.25, 1.42,
1.59, 1.76, and 2.06 � ; (b1) t = 0, 0.54, 0.93, 1.20, 1.49, 1.80, 1.94, 2.10, 2.25, 2.40,
2.58, and 2.88 � ; (c1) t = 0, 1.02, 1.51, 1.94, 2.39, 2.60, 2.81, 3.23, 3.63, 3.96, 4.10,
and 4.26 � ; and (d1) t = 0, 0.97, 1.52, 2.00, 2.50, 3.08, 3.58, 4.02, 4.48, 4.89, 5.23,
and 5.47 � . In (a2), (b2), (c2), and (d2) magni�ed views are depicted of the regions
marked by the rectangles in (a1), (b1), (c1), and (d1), respectively, highlighting the
resulting tip-split surface morphologies characterized by certain patterns of secondary
ripples. In all four cases, the surface di�usional anisotropy parameters are A = 12,
m = 3, and � = �15�.

The n(k) predictions of the theory of Section 3.3 for secondary ripple forma-

tion under the action of an electric �eld are given by Eqs. (3.21) and (3.22). For

the representative set of surface di�usional anisotropy parameters A = 12, m = 3,

and � = �15�, the critical electric �eld strength for planar surface stabilization is

�E;c = 0:194 [13, 30]. Choosing �E = 0:1 and substituting into the n(k) predictions,

Eqs. (3.21) (3.22) yield that n = 2 for k 2 (0:51; 0:81), n = 3 for k 2 (0:37; 0:51),

n = 4 for k 2 (0:29; 0:37), and n = 5 for k 2 (0:24; 0:29), which shows that the elec-

tric �eld action has reduced the critical values of the sequence of wave numbers for

secondary rippling instability as compared to those predicted in the case of �E = 0,
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Eq. (3.18). The secondary rippling theory of Section 3.3 predicts that for weaker-

than-critical electric �elds the planar surface is not stable upon the long-wavelength

perturbation that implies stable response according to linear stability theory. The

longer the wavelength of the original perturbation, the higher the number of sec-

ondary ripples formed. As we did above, we discuss the results of four representative

dynamical simulations with initial perturbation wave numbers of k = 0:58, k = 0:42,

k = 0:29, and k = 0:25. The corresponding snapshots from the surface morphological

evolution are shown in Figs. 3.7(a1), 3.7(b1), 3.7(c1), and 3.7(d1), respectively. As

predicted by the secondary rippling instability theory, in all of these four cases the

surface morphological response is unstable with the initial single sine wave perturba-

tion eventually evolving into formation of 2, 3, 4 and 5 secondary ripples per original

wavelength, for the cases of Figs. 3.7(a1), 3.7(b1), 3.7(c1), and 3.7(d1), respectively.

Contrary to the morphological evolution shown in Figs. 3.3 and 3.5, the perturbation

amplitudes in the morphological responses of Fig. 3.7 decay initially before secondary

ripples start to form in the surface pro�le. This is because the ATG instability caused

by the initial perturbation can be stabilized by the applied electric �eld. When the

secondary rippling instability starts to dominate the surface morphological evolution,

the perturbation amplitudes start to grow again. Comparing the times for evolu-

tion of the surface pro�les depicted in Fig. 3.7 with those of Fig. 3.5, we see that

the dynamics of the four surfaces in Fig. 3.7 is slower than that of the four sur-

faces in Fig. 3.5 in spite of the same set of di�usional anisotropy parameters used in

both cases. This is because the electric �eld is a stabilizing force for the surfaces of

Fig. 3.7 prior to the onset of secondary ripple formation; Eq. (3.20) shows that the

electric �eld decreases the evolution rate of all of the excited harmonics. However,

the application of the electric �eld will amplify the nonlinear e�ects in the dynamical

system of the evolving surface, enhancing the complexity of the local dynamics at

each surface location. Thus, in the magni�ed views of the �nal surface morphologies
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shown in Figs. 3.7(a2), 3.7(b2), 3.7(c2), and 3.7(d2), we see that the detailed rippled

morphologies di�er farther from those of their counterparts in Figs. 3.5(a2), 3.5(b2),

3.5(c2), and 3.5(d2), respectively, in spite of the agreement in the number (n) and

wavelength (�=n) of the ripples formed.
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Figure 3.8: Number of secondary ripples formed on the uniaxially stressed solid sur-
face morphology, n, as a function of the initial perturbation wavelength scaled by the
maximally unstable wavelength, �=�max. Solid lines and open circles denote theoreti-
cal predictions and simulation results, respectively. The initial perturbation from the
planar surface morphology is h(x; 0) = �0 sin(kx), with �0=� = 0:001 at �E = 0:1
for all the simulations. The surface di�usional anisotropy parameters are A = 12,
m = 3, and � = �15�.

Again, in this case of surface and �eld action, we have conducted a systematic

simulation protocol with di�erent initial perturbation wavelengths under the same

electric �eld strength and set of anisotropy parameters. All the simulations are fully

self-consistent and are terminated when the cusp-like singularity is approached. We

record the number of ripples n formed per original wavelength in the �nal morphol-

ogy and plot the relationship n(�=�max) in Fig. 3.8 denoted by open circles; for the

parameters used in these simulations, �max = 4:83. The predictions of the theory,

Eqs. (3.21) and (3.22), also are plotted in Fig. 3.8 denoted by solid lines. Although

the theory predictions are in reasonably good agreement with the simulation results,

this agreement is worse than that exhibited in Figs. 3.4 and 3.6, in the absence of the

85



electric �eld action. This is due to the increased complexity in the nonlinear dynam-

ics as discussed above and beyond the capabilities of the weakly nonlinear theory.

However, the weakly nonlinear theory still gives a good prediction of the onset of

secondary rippling. In the cases explored in Figs. 3.7 and 3.8, the predictions for kc;r

are 0.81 and 0.69 according to the theory and numerical simulation, respectively.

 0  1

h(
x,

t)

x/l

Figure 3.9: Surface morphological evolution, h(x; t), starting with a perturbation from
the planar surface morphology consisting of a superposition of three sub-harmonics,
namely, h(x; 0) = �0 cos(2kx)+0:4�0 cos(3kx)+0:3�0 cos(5kx), where �0=� = 0:001,
at �E = 0 with k = 0:17. Surface di�usional anisotropy is not accounted for. The
evolution sequences are from the bottom to the top, and the stress is tensile and
applied uniaxially along x. The surface pro�les shown correspond to t = 0, 1.01,
2.06, 3.20, 3.52, 3.96, 4.51, 4.97, and 5.01 � .

In the simulations presented so far, we perturbed a planar surface of a uniaxially

stressed solid with a simple plane-wave perturbation with varied wavelengths and

compared the �nal number of the ripples formed with the prediction of the theory.

However, disturbances from the planar morphology of real solid surfaces are usu-

ally much more complicated than single plane-wave perturbations. To probe the tip

splitting instability leading to secondary ripple formation that is triggered by such a
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more complicated surface perturbation, here, we carry out a representative simulation

with a surface pro�le perturbed from the planar surface morphology by a superpo-

sition of three low-amplitude sub-harmonics. The initial surface pro�le is given by

the height function h(x; 0) = �0 cos(2kx) + 0:4�0 cos(3kx) + 0:3�0 cos(5kx), where

�0=� = 0:001, at �E = 0 with k = 0:17. In this simulation, for simplicity, sur-

face di�usional anisotropy is not accounted for. The resulting surface morphological

evolution is shown in Fig. 3.9. There are no electric �elds applied externally, and

the three sub-harmonics in the initial surface shape perturbation have wave numbers

of 2k = 0:34, 3k = 0:51, and 5k = 0:85, which are all smaller than the maximally

unstable wave number kmax = 3=2. According to the linear stability theory, all of

these three harmonics lead to unstable response. According to our weakly nonlin-

ear stability theory, the critical wave number for secondary rippling instability is

kc;r = 14=15 � 0:93. Therefore, all of these three sub-harmonics, with wavelengths

longer than the critical one for secondary rippling, will be excited leading to secondary

ripple formation due to tip splitting instabilities. Figure 3.9 shows the initial per-

turbation as the superposition of the three low-amplitude harmonics at the bottom

of the morphological evolution sequence. It is evident that the initial growth rates

are low. At t = 2:06� , the appearance of �ve valleys in the surface morphology is

visible, and becomes even more pronounced at t = 3:20� . These �ve valleys re�ect

the evolution of the sub-harmonic with wave number 5k = 0:85 in the initial shape

perturbation. This sub-harmonic has the fastest growth rate among the three waves

in the superposition of the initial perturbation, thus producing the dominant features

in the evolving surface morphology. At t = 4:51� , tip splitting is observed at the hills

of the surface pro�le, forming secondary ripples. This is in accordance with the pre-

diction of the weakly nonlinear theory: the wave number of the dominant harmonic is

5k = 0:85 < kc;r, triggering the formation of two secondary ripples per original wave-

length of this harmonic. Since �ve wavelengths of the harmonic with wave number
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of 0.85 are included in the full wavelength of the original perturbation, ten secondary

ripples are expected to form as the surface morphology evolves. At t = 5:01� , we

observe ten ripples, just as predicted by the theory. Also, it is worth noticing that

when the ripples form the growth rates of their amplitude are much faster than those

of the three initial harmonics and the cusp-like singularity is reached very fast. Figure

3.9 demonstrates that the entire morphological evolution of the surface is dominated

by the sub-harmonic with wave number equal to 5k = 0:85. This is because the

evolution of this harmonic is much faster than the other two in the initial surface per-

turbation. According to the evolution of Fig. 3.3(c1), the time for ripple formation

for the sub-harmonic with wave number equal to 2k = 0:34 is slightly shorter than

8:23� , and according to the evolution of Figs. 3.3(a1) and 3.3(b1), the time for ripple

formation for the harmonic with wave number equal to 3k = 0:51 is 5:25� . Therefore,

before the ripples corresponding to exciting these two sub-harmonics can be formed,

the dominant one has already formed its ripples (at t = 4:51�), which grow very fast

and lead to the cusp-like singularity at t = 5:01� .

3.5 Summary and Conclusions

In summary, we have considered the surface morphological evolution of a uniax-

ially stressed solid, with emphasis on establishing an analytical theory of secondary

rippling, which can predict the onset of the secondary rippling instability and the

number of secondary ripples formed on the surface per original surface perturbation

wavelength. Through weakly nonlinear perturbation theory according to a fully non-

linear surface evolution model, we predict the introduction of sub-harmonic ripples

in the surface morphology and their dependence on the original surface perturba-

tion wavelength. We have also examined the e�ects on the predictions of the the-

ory of surface di�usional anisotropy and external electric �eld action and validated

the theoretical predictions by comparison with the results of self-consistent dynami-
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cal simulations; the theoretical predictions become less accurate with increasing the

initial perturbation wavelength and the complexity of the nonlinear system. Fur-

thermore, we �nd that surface di�usional anisotropy does not a�ect the number of

the formed ripples, but it a�ects the rate of the rippled surface morphological evolu-

tion. Moreover, we �nd that externally applied electric �elds can decrease the critical

perturbation wave number for the onset of the secondary rippling instability, thus

reducing the range of wave numbers that render the surface unstable with respect to

secondary rippling.

The secondary rippling through sub-harmonic surface wave formation investigated

in this study is an intriguing example of surface pattern formation, as a result of

mechanical stress, and can be exploited in controlling feature size scales in the physical

patterning of surfaces by controlling macroscopic forces, such as stresses and electric

�elds. Such secondary rippled surface patterns are not mere theoretical constructions

but they have been observed experimentally [27]. The weakly nonlinear theory of

secondary rippling presented in this study can predict with reasonable accuracy the

onset of the secondary rippling instability and the number of secondary ripples formed

in the evolved surface morphology of a uniaxially stressed solid, but it cannot predict

the exact morphology and dynamics of the rippled surface. Such predictions can be

achieved by a theory that captures strongly nonlinear e�ects and their impact on

the surface morphological dynamics with or without surface di�usional anisotropy

due to crystalline order or externally applied �eld action; we are going to report

such theoretical developments in a forthcoming publication. Both the predictions of

the simple analytical expressions derived in this work based on the weakly nonlinear

analysis and future predictions of more powerful nonlinear theories can be assessed

systematically through direct self-consistent dynamical simulations; these predictions

constitute experimentally testable hypotheses that can be used to design experimental

protocols for advancing the science and technology of physical patterning of surfaces.
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CHAPTER 4

CURRENT-INDUCED SURFACE ROUGHNESS
REDUCTION IN CONDUCTING THIN FILMS

4.1 Introduction

Surface roughness is ubiquitous in metallic thin �lms that are widely used in plas-

monic, [122, 123] electronic, [45, 124] and optoelectronic [125, 126] devices. Surface

roughening occurs during various chemical [127, 128] and physical [129�132] deposi-

tion processes. Even though tuning the deposition conditions can result in slightly

smoother thin �lm surfaces, [133, 134] the thermal annealing, usually an inevitable

process for the relief of stresses and the activation of charge carriers in semiconduc-

tors, will trigger further surface roughening, substantially increasing the roughness of

the metallic thin �lms. [135]

By scattering the phonons and electrons, surface roughness can reduce the thermal

[11, 39, 40] and electrical [9, 41, 42] conductance. As the continuous miniaturization

of the electronic devices, the thickness and width of the metallic thin �lms keep de-

creasing. The adverse impacts of the surface roughness are becoming more signi�cant,

[136] which not only hinders the further enhancement of the integration density of

integrated circuits (ICs), but also leads to stronger Joule heating e�ects, decreasing

the energy e�ciency of the microelectronic devices.

Electromigration, surface mass di�usion in metals driven by electric current, has

long been identi�ed as the culprit of the short-cut or open-circuit failures of ICs,

posing severe challenges on the durability of electronic devices. [137�139] Counterin-

tuitively, it was shown theoretically that electric current, if su�cient strong and well
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controlled, can counteract other surface destabilizing e�ects like the stresses and ther-

mal gradients, to stabilize a planar surface morphology. [1, 29, 31, 32, 120] The thin

�lm surface morphological stabilizing e�ects of electromigration was also observed in

experiments, which demonstrated that a rough copper thin �lm deposited on silicon

nitride substrate became much smoother after electrical treatment. [35] Inspired by

the theoretical and experimental observations, and to establish the electrical treat-

ment as a viable physical processing technique for the conducting thin �lm surface

roughness reduction, we built a three-dimensional (3D) continuum model for surface

morphological evolution, reproduced in the dynamical simulations the experimental

observation, and demonstrated the electric current treatment can e�ectively reduce

the thin �lm surface roughness, which could, otherwise, grow under the action of

residual stresses [140].

The purpose of this study is to establish the electrical treatment of conducting thin

�lm surfaces as an engineering strategy for surface roughness reduction. Using linear

stability theory (LST) and numerical simulations based on a realistic model of surface

morphological evolution of a metallic thin �lm deposited on an elastic substrate with

and without the simultaneous �ow of an electric current through the �lm, we show

that a su�ciently strong and properly directed electric �eld can reduce the �lm surface

roughness and lead to a smooth planar �lm surface over a time period of several

hours. This realistic surface morphological evolution model is fully three-dimensional

(3D) and accounts for the biaxial state of stress in the �lm, the applied electric �eld

direction that can be aligned on the surface to optimize the electric �eld e�ect, as

well as the wetting potential that has additional stabilizing e�ects on the surface

morphology; all of these realistic elements of surface morphological evolution have

not been considered simultaneously in previous detailed 2D models of current-driven

morphological evolution of metallic crystal surfaces. [1, 29, 31, 32, 141, 142] The
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modeling predictions are validated by comparisons with experimental measurements

on electric-current-stressed copper thin �lms deposited on silicon nitride layers.

4.2 Theoretical Model and Analysis Methodology

4.2.1 Model

We consider a metallic thin �lm, with a nominal �lm thickness of h0, deposited

on a thick rigid substrate, as shown schematically in Fig. 4.1. The �lm is subject to

an equibiaxial compressive stress, with nonzero stress components �xx = �yy = �0

in the x- and y-directions, respectively, of a Cartesian frame of reference. The stress

level �0 is typical of the residual stress in deposited copper interconnects, [2, 143] and

lower than the compressive yield strength of copper; [144] thus, plastic deformation

phenomena in the �lm can be safely neglected. An electric �eld E0, parallel to the

xy-plane in the Cartesian reference frame, is applied to the thin �lm and its direction

forms an angle �E with the x-direction. We use the surface height function, h(x; y; t),

to parameterize the surface morphology of the �lm; h = 0 refers to the planar surface

of the substrate.

x
yz

E0

��0
��0

h0

Figure 4.1: (Color online) Schematic representation of a heteroepitaxial conducting
thin �lm on a substrate layer subjected to an equibiaxial compressive stress of mag-
nitude �0 and an external electric �eld E0. Both the thickness of the �lm, h0, and its
surface roughness have been ampli�ed for clarity.
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Following classical phenomenology, the surface atomic �ux is given by a Nernst-

Einstein equation. Expressing mass conservation through a continuity equation in-

volving this �ux gives the height evolution equation

@h
@t

= H 0
"
�s
kBT
rs � (Ds � Esq�s + 
Ds � rs�)

#

: (4.1)

In Eq. (4.1), H 0 = (1 +hx2 +hy2)1=2, [140] where the subscripts denote di�erentiation

with respect to the corresponding Cartesian coordinates, 
 is the atomic volume,

�s=
 is the number of surface atoms per unit area, kB is the Boltzmann constant, T

is temperature, rs represents the surface gradient operator, q�s is a surface e�ective

charge, [2] Es is the component of the local electric �eld tangent to the surface,

i.e., q�sEs expresses the electromigration force on the surface atoms, and � is the

chemical potential of the surface atoms. The chemical potential � is expressed as

� = �0 + UE � 
f� + UW , where �0 is the chemical potential of the atoms in an

unstrained planar surface, UE is the elastic strain energy density, 
f is the surface

tension (surface free energy per unit area) of the �lm, � is the local surface curvature,

and UW is the wetting potential density. The surface di�usivity, Ds, is expressed by

a transversely isotropic tensor [32]

Ds =

2

664
Ds
xx 0

0 Ds
yy

3

775 =

2

664
Ds;min
xx f(�x) 0

0 Ds;min
yy f(�y)

3

775 ; (4.2)

where f(��) = 1+A cos2[m(��+��)], � = x or y, is the surface di�usional anisotropy

function for face-centered cubic (fcc) crystals.[2, 102, 107] The surface orientation

angle �� is formed between the surface tangent vector, t�, and the �-axis, the misori-

entation angle �� is formed between the �-axis and the fast surface di�usion direction,

A is the strength of the anisotropy, and m is the number of fast surface di�usion di-

rections, as indicated by the dashed lines in Figs. 4.2(a1) ,4.2(b1), and 4.2(c1) for
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{110}, {100}, and {111} surfaces, with m = 1, m = 2, and m = 3, respectively. To

minimize the structural complexity of the model, we consider only single crystalline

�lms, but set the �lm surface crystallographic orientation by setting the value of m to

model the textured �lms used for metallic interconnects. The misorientation angle �x

is denoted in Fig. 4.2 and �y can be determined by �x: �y = �90���x for {110} sur-

face, �y = �x for {100} surface, and �y = �30� � �x for {111} surfaces. The wetting

potential density UW is expressed according to the �transition-layer� model,[145, 146]

i.e., a transition of the surface energy density from that of the �lm 
f to that of the

substrate 
s occurs over a thickness b giving

UW =

f � 
sp
1 + h�h�

b
�(b2 + h2)

: (4.3)

In Eq. (4.3), the repeated index � implies summation over x and y.
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Figure 4.2: (Color online) Top views of the �rst layers of (a1) {110}, (b1) {100}, and
(c1) {111} surfaces of fcc metals, and plots, (a2), (b2), and (c2), respectively, of the
surface di�usional anisotropy function for a planar surface morphology in the x- and
y-direction, �x = 0 and �y = 0, respectively, as functions of the misorientation angle
�x.

The �lm surface morphological evolution is monitored by integrating Eq. 4.1 with

Es and UE calculated by solving self-consistently the corresponding 3D boundary-
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value problems (elastostatic and electrostatic, respectively) with the �lm surface con-

stituting a moving domain boundary. Finally, it should be noted that, in the above

model, all the material properties of the crystalline �lm, such as elastic properties

and surface free energy are assumed to be isotropic. Only the surface di�usivity is

taken to be anisotropic, since anisotropy in surface mass transport is the strongest

(kinetic) anisotropy in the conducting crystalline �lms under consideration in this

study [2, 102, 107].

4.2.2 Linear Stability Analysis

The morphological instability of a smooth planar �lm surface leads to surface

roughening. An applied electric �eld that can reduce the �lm surface roughness should

be able to stabilize the smooth planar surface morphology. Thus, a linear stability

analysis for the morphological response of planar �lm surfaces to low-amplitude shape

perturbations can predict the condition for the onset of surface smoothening. Toward

this end, we conduct a linear morphological stability analysis, where the planar sur-

face of a stressed thin �lm is perturbed by a low-amplitude plane wave, �0 exp(ikx),

with wave vector k = (kx; ky). The surface tangential component of the electric �eld,

Es, and the surface elastic strain energy density, UE, can be calculated asymptotically

by solving the corresponding 3D electrostatic and elastostatic boundary-value prob-

lems, based on regular perturbation theory [52, 146, 147]. An analogous asymptotic

expansion with terms U (0)
W , U (1)

W , U (2)
W , and higher-order terms also can be written for

the wetting potential density UW . For linear stability analysis, solutions up to linear

order only are retained, and the curvature is expressed as �(1) = h��. Linearizing

Eq. (4.1) and using a trial solution ~h(~x; ~y; ~t) = ~h0 + ~�0 exp(~!~t) exp(i~k~x), gives the

dispersion relation

~! = �
h
2~k3 � ~k4 � (�W + �E�) ~k2

i
; (4.4)
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where tildes are used to denote dimensionless quantities. The natural length scale for

the stressed �lm’s dynamical response is l � Ms
f
�2

0
, where Ms is the biaxial modulus

of the substrate [147], and the corresponding di�usional time scale is � � kBT l4

�s
Ds;min
xx 
f

.

For a typical Cu/Si3N4 system, i.e., a thin copper �lm deposited on a silicon nitride

layer, l and � are approximately 1 �m and 5.6 h, respectively [140]. Henceforth, tildes

are dropped for notational simplicity, and all physical quantities in the analysis are

made dimensionless using the above length and time scales. In Eq. (4.4), � = (�2 +

1)�1[f(�x = 0) + ��2f(�y = 0)], � � ky=kx, kx 6= 0, k �
q
k2
x + k2

y, � � Ds;min
yy =Ds;min

xx .

�W = [2b(
s � 
f )=(�h3
o
f )](Ms
f=�2

0)2 and �E = [E1q�s=(
s
)](Ms
f=�2
0)2 are the

dimensionless wetting potential strength and electric �eld strength, respectively, both

scaled by the elastic strain energy. � � [cos�E(df(�x = 0)=d�x) + � sin�E(df(�y =

0)=d�y)�2]=[f(�x = 0)+�f(�y = 0)�2] is a parameter representing the e�ect of surface

di�usional anisotropy and the alignment of the electric �eld.

Equation (4.4) predicts the initial growth (! > 0) or decay (! < 0) rate of a plane-

wave perturbation amplitude, and the sign of ! determines if a perturbation of wave

number k will grow or decay over time. As shown in Figs. 4.2(a1)-4.2(c1), di�erent

surface crystallographic orientations correspond to very di�erent atomic arrangements

on the surface plane. The surface di�usional anisotropy function f in Eq. (4.2) has

widely di�erent values as �x is varied at �x = 0 than at �y = 0, as seen in Figs. 4.2(a2)

and 4.2(c2), resulting in the dependence of � and � in Eq.(4.4) on not only the wave

number k but also the direction of the plane-wave perturbation wave vector. Although

� = 1 for {100} surfaces, due to the identical pro�le of f(�x) at �x = 0 with that

at �y = 0, as shown in Fig. 4.2(b1), the parameter � still depends on the plane-wave

perturbation wave vector direction. The critical electric �eld strength required to

stabilize the planar surface morphology, by leading to decay of the surface shape

perturbation amplitude at any perturbation wave number and for any perturbation

wave vector direction, is derived from Eq. (4.4) to be

96



�E;c =
(1� �W )

min�22[0;+1)(�)
: (4.5)

4.2.3 Computational Methods

To assess the validity of the conclusions of the linear stability theory, we compare

the theoretical predictions with the results of self-consistent dynamical simulations.

To solve the boundary-value problems for the stress and electric �elds in the metallic

�lm, we use a spectral collocation method, where the �lm surface is discretized into

128� 128 grid points, and discrete fast Fourier transforms to compute the stress and

strain tensors [146] and the tangential component of the electric �eld at every point

on the �lm surface. For the integration (time stepping) of Eq. (4.1), we employ an

advanced operator splitting-based semi-implicit spectral method [148] with adaptive

time step size. In the simulations, the initial �lm surface con�guration consists of a

random perturbation from the planar morphology to mimic the actual roughness of

the metallic thin �lm surface in Ref. 35; speci�cally, the roughness amplitude of the

initial surface con�guration in the simulations is taken to be consistent with that of

the textured polycrystalline Cu thin �lms of Ref. 35. Properties representative of a

Cu �lm on a Si3N4 barrier layer as in Ref. 35 are used. For validation purposes, we

conducted numerous numerical simulations of surface morphological evolution varying

the strength and alignment of the applied electric �eld.

4.3 Results and Discussion

4.3.1 Morphological Stability Analysis

For a better fundamental understanding of the dependence of ! on the pertur-

bation wave number k and its wave vector direction, we calculate ! as a function

of the wave vector (kx; ky), for {110}, {100}, and {111} surfaces, and plot the re-

sults in Figs. 4.3(a1-a4), 4.3(b1-b4), and 4.3(c1-c4), respectively. Without any loss

of generality, the parameters chosen to plot such representative results in Fig. 4.3
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are �W = 0:05, �x = �10�, �E = 20�, and A = 10. The resulting �E;c can be

easily calculated using Eq. (4.5). Figure 4.3(a1) shows the contour map of ! for

a {110} surface as a function of the plane-wave perturbation wave vector (kx; ky)

with �E = �E;c. The contours are either open curves or elliptically shaped loops,

as opposed to round circular loops that would be the case for isotropic surfaces with

respect to atomic di�usion, indicating that ! changes with both the wave number

k and the wave vector direction of a plane-wave perturbation. If ! is always non-

positive for any wave vector (kx; ky), then the application of an external electric �eld

suppresses completely the growth of surface roughness, which is the case for applied

electric �eld strengths � � �E;c. A lower-than-critical electric �eld is unable to re-

duce the amplitude of long-wavelength perturbations. For the surface of a biaxially

stressed �lm, another possibility is that a lower-than-critical electric �eld can cause

the decay of surface perturbations in some directions only, but not along all wave

vector directions. As seen in Fig. 4.3(a2), the contour map of ! with �E = 0:6 �E;c,

surface perturbations with kx close to zero decay, while those with ky close to zero

row. In this wave-vector landscape, there is a critical electric �eld, �d
E;c(�k), that

guarantees morphological stabilization with respect to perturbations in a particular

direction �k � arctan(ky=kx). The critical electric �eld strength required for the full

planar surface morphological stabilization at any wave vector direction is the maxi-

mum of �d
E;c(�k). In Fig. 4.3(a3), ! is plotted as a function of k with (1) �E = 0,

(2) �E = 0:6 �E;c, (3) �E = �E;c, and (4) �E = 1:6 �E;c, with the perturbation wave

vector directions being at �k = 0. Curves (1) and (2) show that a lower-than-critical

electric �eld is unable to reduce the long-wavelength perturbations, while curves (3)

and (4) show that a larger-than-critical electric �eld can reduce perturbations of any

wave number k. Curve (3) also represents the criticality condition for morphological

stabilization at �k = 0, thus �E;c is equal to �d
E;c(�k = 0). In Fig. 4.3(a4), k = 1, and

! is plotted as a function of �k with (1) �E = 0, (2) �E = 0:6 �E;c, (3) �E = �E;c,
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and (4) �E = 1:6 �E;c. Curve (1) shows that in the absence of an externally applied

electric �eld, surface perturbations in any wave vector direction grow. Curve (2)

shows that with a lower-than-critical electric �eld applied, surface perturbations in

some wave vector directions decay, while those in other wave vector directions still

grow. Curves (3) and (4) show that for a stronger-than-critical electric �eld surface

perturbations decay in all wave vector directions.
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Figure 4.3: (Color online) Contour maps of the growth or decay rate, !, as a function
of the surface plane-wave perturbation wave vector (kx; ky) on a {110} surface with
(a1) �E = �E;c and (a2) �E = 0:6 �E;c, on a {100} surface with (b1) �E = �E;c
and (b2) �E = 0:6 �E;c, and on a {111} surface with (c1) �E = �E;c, and (c2)
�E = 0:6 �E;c. Expressing the perturbation wave vector as (k; �k), ! is plotted as
a function of (a3, b3, c3) k with �k = 0 and of (a4, b4, c4) �k with k = 1 for (a3,
a4) {110}, (b3, b4) {100}, and (c3, c4) {111} surfaces. In the plots of (a3, a4),
(b3, b4), and (c3, c4), the strengths of the applied electric �elds are: (1) �E = 0,
(2) �E = 0:6 �E;c, (3) �E = �E;c, and (4) �E = 1:6 �E;c. In all cases, the other
parameter values are: �W = 0:05, �x = �10�, �E = 20�, and A = 10.

Figures. 4.3(b1-b4) and 4.3(c1-c4) demonstrate the dependence of ! on the wave

number and the wave vector direction of plane-wave perturbations for {100} and

{111} surfaces, respectively. In a manner similar with the response depicted in

Fig. 4.3(a1), Figs. 4.3(b1) and 4.3(c1) show that ! � 0 for all perturbations when

�E � �E;c. For �E < �E;c, Figs. 4.3(b2) and 4.3(c2) exhibit di�erent contours from

those in Fig. 4.3(a2), implying that di�erent patterns may form on perturbed sur-

faces with di�erent crystallographic orientations. Note that in Fig. 4.3(b3), curve (2)

shows that an electric �eld of strength �E = 0:6 �E;c can reduce the amplitude of any

perturbation with �k = 0, meaning that although �E is lower than �E;c in this case,

it is stronger than �d
E;c(�k = 0). However, �E is still weaker than �d

E;c(�k = ��=2)

and, thus, unable to reduce the amplitude of perturbations in the perpendicular di-

rection, �k = ��=2, as shown by curve (2) in Fig. 4.3(b4). In Fig. 4.3(c3), curve

(3) falls completely below the level of ! = 0, meaning that �E = �E;c is stronger

than �d
E;c(�k = 0). Furthermore, curve (2) in Fig. 4.3(c4) shows that �E = 0:6 �E;c

is unable to reduce the amplitude of perturbations with wave number k = 1 in any

wave vector direction on {111} surfaces, contrary to the cases shown in Figs. 4.3(a4)

and 4.3(b4). In general, the results of Fig. 3 emphasize the importance of designing

the external electric �eld application so that the planar surface morphology can be

stabilized against plane-wave perturbations of any wave vector in order to guarantee

surface roughness reduction.
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Figure 4.4: (Color online) Critical electric �eld strength requirement for surface
smoothening (stabilization of the planar surface morphology), �E;c, as a function
of the electric �eld alignment angle, �E. Plots of the critical electric �eld strength
(�d

E;c(�k)) that can stabilize all the plane-wave perturbations with wave vector in the
�k direction, as a function of �k, with �E = 10�, 20�, 45�, 70�, and 80�, respectively.
Anisotropy parameters: A = 10, m = 2, and �x = �15�.

Equation (4.5) can be used to calculate the critical electric �eld strength �E;c

for a particular material system at a known electric �eld direction expressed by the

alignment angle �E. However, we can go beyond this prediction and �nd out the

optimal electric �eld direction, i.e., an alignment angle �E;o that can minimize the

value of the critical electric �eld strength �E;c required to stabilize the smooth planar

surface morphology. The inset in Fig. 4.4 shows plots of the critical electric �eld

strength, �d
E;c(�k), for the reduction of surface plane wave perturbations as a func-

tion of the plane wave perturbation wave-vector direction, �k, with the electric �eld

alignment angle, �E, set at 10�, 20�, 45� 70�, and 80�, respectively. These curves

show that for a particular value of �E, �d
E;c varies with �k. Thus, for a given �E,

the critical electric �eld, �E;c(�E), that can fully stabilize a planar surface for any

perturbation wave vector is the maximum value of �d
E;c, or the peak value of each
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curve. Analyzing all of these curves gives the main plot of Fig. 4.4, where �E;c(�E)

is plotted. The location of the minimum in this plot gives the optimal electric �eld

direction, at an angle �E;o with the x-axis and the corresponding minimum electric

�eld strength �E;c required for planar surface stabilization and roughness reduction.

It is worth noting that �E;o is always the angle that makes �d
E;c a uniform (con-

stant) function of �k, as shown by the curve at �E = 45�, the straight horizontal line

in the inset plot of Fig. 4.4. This criticality condition is expressed analytically as

cos�E df(�x)
d�x

���
�x=0

�f(�y = 0) = � sin�E df(�y)
d�y

���
�y=0

f(�x = 0), which yields the optimal

electric �eld alignment angle as

�E;o = arctan
df(�x)
d�x

���
�x=0

f(�y = 0)
df(�y)
d�y

���
�y=0

f(�x = 0)
(4.6)

and the minimum value of the critical electric �eld strength as

�E;c =
1� �W

sin�E;o
f(�y = 0)
df(�y)
d�y

���
�y=0

: (4.7)

These results are consistent (in the proper asymptotic limits) with those obtained

for the current-driven morphological stabilization of uniaxially stressed bulk solid sur-

faces [1]. For a uniaxial stress applied along the x-axis, � = cos�E df(�x)
d�x

���
�x=0

=f(�x =

0) and the optimal electric �eld alignment is �E;o = 0�. For the stressed bulk solid,

�W = 0. Thus, the critical electric �eld is �E;c = f(�x=0)
df(�x)
d�x j�x=0

, which is exactly the

conclusion in Ref. 1.

4.3.2 Simulations of Surface Morphological Evolution

To validate the conclusions of the linear stability theory (LST), we conducted the

consistent dynamical simulations of the stressed �lm surface morphological evolution

according to the surface evolution model and numerical methods described in Sec-

tion 4.2. We �rst use properties representative of a Cu �lm on a Si3N4 barrier layer
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as in Ref. 35, b = 0:001, and a dimensionless h0 = 0:1, which gives �W = 0:064. We

also use the representative set of surface di�usional anisotropy parameters (A = 10,

m = 3, �x = �15�, �y = �15�, � = 1) in all the simulations. For these material prop-

erties, the theoretical predictions for the optimal electric �eld alignment angle and

the critical electric �eld strength are �E;o = 45� and �E;c =
p

2(1 � �W )=5 = 0:265,

respectively.

Figure 4.5: (Color online) 2D contour maps of simulated evolving surface morphology,
h(x; y; t), of a stressed metallic thin �lm starting with a rough surface under (a1-
a4) no electric �eld action, and under the action of an electric �eld with (b1-b4)
�E = 0:20 < �E;c and (c1-c4) �E = 0:49 > �E;c at (a1,b1,c1) t = 0, (a2,b2,c2)
t = 0:58, (a3,b3,c3) t = 1:18, and (a4,b4,c4) t = 3:00. 1D surface pro�les, h(x; y; t),
along the black solid lines marked on the 2D maps are plotted in the insets. Parameter
values: �W = 0:064, h0 = 0:1, A = 10, m = 3, �x = �y = �15�, and �E = 45� in
(b1-b4) and (c1-c4).
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Figure 4.5 shows the outcomes of three representative simulations at three di�erent

electric �eld strengths, namely, �E = 0, �E = 0:20 < �E;c and �E = 0:49 > �E;c.

The 1D surface pro�les along the black lines marked on the surface are given as insets

in each case. Figure 4.5(a1) shows a rough �lm under no electric �eld action. At

t = 0:58, it is seen in Fig. 4.5(a2) that the roughness amplitude has grown while the

roughness dominant wave number has decreased, corresponding to coarsening of the

rough surface features. This is consistent with the negative growth rates ! shown

by curve (1) in Fig. 4.3(c3) at high k values. Surface features with k � 1:5 exhibit

the fastest growth rate, thus dominating the �lm surface morphology in Fig. 4.5(a2).

At t = 1:18, as seen in Fig. 4.5(a3), the roughness amplitude keeps growing and the

metallic thin �lm resembles a collection of small 3D islands emanating from a very

thin wetting layer of metal on the barrier layer. The thickness of the wetting layer

depends on the strength of the wetting potential. A weak wetting potential may result

in the breaking up of the metallic thin �lm into separate pieces under the action of

the equibiaxial residual stress. For a uniaxial stress state, the �lm morphology is

characterized by parallel grooves that form on the surface and deepen over time. At

t = 3:0, as shown in Fig. 4.5(a4), the morphology of the rough �lm surface has not

changed qualitatively from that at t = 1:18 in Fig. 4.5(a3) due to the stabilizing e�ect

of the su�ciently strong wetting potential that prevents further surface roughening.

Comparing the �lm surface morphologies of Figs. 4.5(b1-b3) with those of Figs. 4.5(a1-

a3), we see that the surface without electric �eld action, �E = 0, is generally rougher

than that at �E = 0:20, for the same evolution times. This shows that the ap-

plied electric �eld has a stabilizing e�ect on the rough surface morphology, reducing

the roughness growth rate !, consistently with the LST prediction of case (2) in

Fig. 4.3(c3). However, since �E < �E;c, the surface roughness continues to grow with

! > 0 over a range of roughness wave numbers. At t = 3:00, the thin �lm again
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reaches a morphology that resembles a collection of 3D islands on a very thin wetting

layer, Fig. 4.5(b4), very similar and of comparable roughness to that of Fig. 4.5(a4).

Consistently with the LST predictions, a stronger-than-critical electric �eld of

�E = 0:49 > �E;c applied to the metallic �lm leads to reduction of the surface rough-

ness, as demonstrated by the sequence of con�gurations in Figs. 4.5(c1-c4) that show

surface smoothening over time. At t = 3:00, the roughness amplitude has decreased

by more than one order of magnitude compared to that of the initial con�guration to

� 1¯, i.e., it has reached atomic-scale dimensions corresponding to a smooth �lm.
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Figure 4.6: (Color online) Simulated evolution of surface RMS roughness of metallic
thin �lm under (1) no electric �eld action and (2, 3) the action of an electric �eld
with strength (2) �E = 0:20 < �E;c and (3) �E = 0:49 > �E;c. Parameter values:
identical to those of Fig. 4.5.

To make quantitative comparisons of the surface roughness evolution in the three

cases of Fig. 4.5, the root mean squared (RMS) roughness of each of the respective

surface morphologies has been calculated according to the equation

RMS(t) =

vuuut
1
N2

NX

i=1

NX

j=1
[h(i; j; t)� h0]2 ; (4.8)
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and the resulting surface RMS roughness is plotted in Fig. 4.6 as a function of time

with the height-height correlation function providing the roughness metric. [146]

Curve (1) shows that, at �E = 0, the surface roughness grows relatively abruptly and

reaches a plateau at about t = 0:6. Curve (2), �E = 0:20 < �E;c, shows that the lower-

than-critical electric �eld slows down the roughness growth rate and the roughness

reaches a plateau at a later time t = 2:5. However, in case (3), �E = 0:49 > �E;c, the

action of a stronger-than-critical electric �eld leads to a continuous reduction of the

surface roughness down to that of a merely atomically rough surface. In general, it

should be mentioned that our numerical simulations show that the initial roughness

amplitude, varied up to � 10% of the �lm thickness, does not a�ect signi�cantly the

accuracy of the LST prediction for the onset of surface roughness reduction; however,

it does a�ect the rate of growth or decay of the surface roughness, consistent with

the �ndings of the detailed 2D analyses of Ref. 141.

Our theoretical and computational predictions are in good agreement with the ex-

perimental results of Ref. 35. For the material properties and experimental conditions

of this Cu/Si3N4 system, the critical electric �eld strength of 0.265 corresponds to a

current density of 2 � 104A/cm2, lower than the current density of 106A/cm2 that

caused the Cu �lm surface roughness reduction in the experiments. [35] It should

be mentioned that deviation by a few tens of degrees from the optimal �E angle

of 45� can increase the critical current density by 1-2 orders of magnitude; because

the Cu �lm of Ref. 35 is actually polycrystalline, the electric �eld alignment can be

optimized for a {111} surface of a given grain of the textured �lm but not for the

entire �lm surface. Also, the time scale of t = 3, i.e., of 16.8 hours, required for

practically full surface roughness reduction in our simulations, Figs. 4.5(c1-c4) and

case (3) in Fig. 4.6, is consistent with the duration of current stressing (� 10 hours)

in the experiments of Ref. 35.
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Figure 4.7: (Color online) 2D contour maps of simulated evolving surface morphology,
h(x; y; t), of a stressed metallic thin �lm starting with a rough surface under the action
of an electric �eld with (a1-a4) �E = 0:03 < �E;c at t = 0, t = 0:95, t = 2:45, and
t = 20:00; (b1-b4) �E = 0:23 < �E;c at t = 0, t = 8, t = 18, and t = 38:00;
(c1-c4) �E = 0:43 > �E;c at t = 0, t = 0:09, t = 0:49, and t = 2:00; and (d1-d4)
�E = 0:43 > �E;c at t = 0, t = 0:09, t = 0:49, and t = 2:00. In all cases, 1D surface
pro�les, h(x; y; t), along the black solid lines marked on the 2D maps are plotted in
the insets. The initial surface con�gurations of (a1), (b1), and (c1) exhibit nanoscale
roughness, while that of (d1) is merely characterized by atomic-scale roughness due
to thermal �uctuations. Parameter values: �W = 0:1, A = 10, m = 2, �x = �25�,
and �E = 49�.

For the purpose of fully assessing the validity of the conclusions of the LST, we use

other set of surface di�usional anisotropy parameters (A = 10, m = 2, �x = �25�),
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a scaled wetting potential �W = 0:1, and a �xed electric �eld direction �E = 49�,

and the results of the �lm surface morphological evolution are shown in Fig. 4.7.

According to Eq. (4.5), for this parameter set, �E;c � 0:357. Figures 4.7(a1-a4) show

top views of con�gurations of the evolving surface morphology under the action of an

electric �eld with �E = 0:03 < �E;c. The initial randomly perturbed planar surface

with nanoscale roughness, as shown in Fig. 4.7(a1), is not morphologically stable

under the action of the biaxial stress in the �lm. The perturbation amplitude grows

and the �lm surface evolves into a rough landscape consisting of 3D islands. During

this surface morphological evolution, the valleys between these islands keep deepening

into the �lm until they reach a very thin barrier layer over the substrate, as seen in the

inset of Fig. 4.7(a4). In the absence of any wetting e�ects between the �lm and the

substrate (i.e.), in the �W ! 0 limit, the �lm would eventually break into pieces under

the action of the biaxial stress. Figures 4.7(b1-b4) show the sequence of con�gurations

in the evolution of the �lm surface morphology under the action of an electric �eld

with �E = 0:23 < �E;c. The initial surface morphology, as shown in Fig. 4.7(b1) is

identical to that of Fig. 4.7(a1) exhibiting the same nanoscale roughness. In this case,

although the electric �eld strength is still weaker than the critical electric �eld for

surface smoothening, it is stronger than �d
E;c(�k) over a broad range of �k, meaning

that the electric �eld is still capable of reducing roughness by causing decay of surface

perturbations over a broad range of perturbation wave vector directions. However,

over a certain narrow range of �k, �E < �d
E;c(�k), resulting in the growth of the

corresponding surface perturbations. Consequently, the initially randomly perturbed

surface evolves gradually into a strip pattern, as shown in Fig. 4.7(b4). Applying

an electric �eld with a strength of �E = 0:43 > �E;c to the same initially nanoscale

rough surface, Fig. 4.7(c1), leads to a gradual reduction of the surface roughness

and evolution of the surface to a smooth planar state, as shown in Figs. 4.7(c1-

c4). In the case of Figs. 4.7(d1-d4), the electric �eld of strength �E = 0:43 was
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applied to a �lm with an initially planar surface perturbed by a very low-amplitude

random shape perturbation corresponding to mere thermal �uctuations, as shown in

Fig. 4.7(d1). The surface morphological evolution leads again to a smooth planar

surface morphology, as shown in Fig. 4.7(d4). This dynamical response demonstrates

that an applied electric �eld with larger-than-critical electric �eld strength can be

used to drive surface mass transport that can reduce even atomic-scale roughness

caused by thermal �uctuations.
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Figure 4.8: (Color online) Simulated evolution of surface RMS roughness of a stressed
metallic thin �lm under the action of an electric �eld with (1) �E = 0:03 < �E;c, (2)
�E = 0:23 < �E;c, and (3) and (4) �E = 0:43 > �E;c. In cases (1), (2), and
(3), the initial surface con�guration exhibits nanoscale roughness, while in case (4)
it is merely characterized by atomic-scale roughness due to thermal �uctuations.
Parameter values: identical to those of Fig. 4.7.

The resulting surface RMS roughness is plotted as a function of time in all four

cases in Fig. 4.8. Curve (1) corresponds to the �lm surface evolution of Figs. 4.7(a1-

a4) and shows that the very weak electric �eld applied in this case is unable to reduce

the surface roughness. Instead, the RMS roughness of the �lm surface grows at a fast

rate, and reaches a plateau value over a time period of about t = 1:5 � . Curve (2)

corresponds to the �lm surface morphological evolution of Figs. 4.7(b1-b4) and shows

that, in this case, the application of the electric �eld slows down the growth rate of the
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surface roughness, although the applied �eld is not su�ciently strong to reduce the

surface roughness; the surface morphology evolves and its RMS roughness reaches a

steady state that corresponds to the striped surface con�guration of Fig. 4.7(b4). On

the contrary, curves (3) and (4), corresponding to the surface morphological evolution

of Figs. 4.7(c1-c4) and (d1-d4), respectively, demonstrate that the application of a

stronger-than-critical electric �eld can continuously reduce the �lm surface roughness

resulting in a continuous decay over time of the surface RMS roughness.

4.3.3 Optimal Electric Field Strength

The most important LST predictions are the optimal electric �eld alignment angle

(direction) given by Eq. (4.6) and the corresponding critical electric �eld strength

requirement given by Eq. (4.7) that prescribe how the electric �eld should be applied

in order to achieve surface roughness reduction. To validate these predictions, for

each pair of optimal values (�E;o, �E;c) predicted by LST, hundreds of dynamical

simulations were conducted with the pair of parameters (�E, �E) chosen to be in the

vicinity of (�E;o, �E;c), to numerically locate the actual (i.e., numerically accurate

according to the fully nonlinear model) optimal values �E;o and �E;c. This approach

is illustrated with an example shown in Fig. 4.9(a) for representative values of the

parameters A, �x, and �W at m = 2. The open circle in the diagram of Fig. 4.9(a)

represents the LST prediction. The solid squares represent the simulation results, with

yellow (black) color indicating the success (failure) of the electric �eld application to

accomplish �lm surface roughness reduction. The solid squares indicate that �E;o lies

over a range of angles from about 38� to 52�, while the numerically predicted �E;c is

practically identical with that predicted by LST.
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Figure 4.9: (Color online) (a) Simulation predictions of whether the �lm surface
roughness grows (black solid squares) or decays (light yellow solid squares) at dif-
ferent combinations of electric �eld strength, �E, and its direction expressed by the
alignment angle, �E. The open circle represents the prediction of the linear stability
theory for the critical electric �eld strength and its optimal alignment angle. Parame-
ter values: A = 10, m = 2, �x = �10�, and �W = 0:1. (b, c, d) Comparison of critical
electric �eld strength �E;c (in red over the range shown in the left vertical axis) and
its optimal alignment angle, �E;o (in blue over the range shown in the right vertical
axis) predicted by the linear stability theory, represented by solid curves, with those
predicted by self-consistent dynamical simulations, represented by solid squares for
�E;c and open circles for �E;o, at varied misorientation angle, �x, for (b) {110}, (c)
{100}, and (d) {111} surfaces. Parameter values: A = 10 and �W = 0:1.

For a given thin �lm, the principal directions of the biaxial stress in the �lm are

always taken to be the x- and y-directions, respectively, with an angle of �x formed

between the x-axis and the closest fast di�usion direction. The value of �x also a�ects

the optimal values of �E;o and �E;o signi�cantly. For a {110} (m = 1) surface, as

the angle �x is varied from -90� to 0�, the value of �E;o changes from 90� to 0�,

while the value of �E;c �rst decreases and then increases, as shown by the curves

(LST prediction) in Fig. 4.9(b). At �x = 45�, �E;c exhibits a minimum, meaning
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that the surface roughness is the easiest to reduce by application of an electric �eld

(minimum electric �eld strength requirement) if the stress acts on this particular

direction with respect to the fast di�usion direction. Five values of �x were chosen,

evenly distributed across the domain of �x, for which the �E;o and �E;c values were

calculated numerically by the approach illustrated in Fig. 4.9(a), and are denoted with

open circles and solid squares, respectively, in Fig. 4.9(b). The comparison of the LST

predictions with the simulation results for �E;o and �E;c shows a good agreement over

a broad range of �x, except for �x values close to its domain ends, i.e., close to -90�

or 0�, where LST overpredicts �E;c compared to the simulation results. For {100}

(m = 2) surfaces, where �x is always equal to �y, �E;o does not vary with �x, and

is always equal to 45�, as shown by the horizontal line in Fig. 4.9(c) which also is in

very good agreement with the simulation predictions. The LST-predicted �E;c(�x)

exhibits a minimum at �x = �36:5�, with the simulation results being in very good

agreement with the LST predictions. Finally, for a {111} (m = 3) surface, the trends

of �E;o and �E;c as functions of �x, as shown in Fig. 4.9(d), are very similar to those

for {110} surfaces. The minimum �E;c is located at �x = �15� with �E;o = 45� in

excellent agreement with the numerical simulation results.
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Figure 4.10: (Color online) Predicted critical electric �eld strength requirement �E;c
as a function of �lm thickness, h0, for {110}, {100}, and {111} surfaces with m = 1,
m = 2, and m = 3, respectively. The angles �x and �E are chosen to minimize �E;c.
Speci�cally, for m = 1, �x = �45� and �E = 45�; for m = 2, �x = �36:57� and
�E = 45�; and for m = 3, �x = �15� and �E = 45�. Other parameter values: A = 10.
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With the above systematic validation of linear stability theory, we then focus on

investigating the e�ects of the �lm thickness analytically using the major conclusions

of the linear stability theory, Eqs. (4.6) and (4.7). In Fig. 4.10, �E;c is plotted as a

function of the �lm thickness h0 (made dimensionless with the natural length scale

l) for all the three surface crystallographic surface orientations examined, m = 1,

m = 2, and m = 3. The angles �x and �E are chosen to minimize �E;c, and their

values correspond to the minima of the �E;c(�x) plots in Figs. 4.9(b), 4.9(c), and 4.9(d)

for m = 1, 2, and 3, respectively. Figure 4.10 shows that when h0 � hc, �E;c is equal

to zero, i.e., no electric �eld is required for surface roughness reduction, which means

that the wetting e�ects can stabilize the planar surface morphology of a �lm that is

thinner than a critical thickness hc. The dimensionless critical thickness, under the

assumption of isotropic surface energy, is independent of the surface crystallographic

orientation and is given by hc = [2b(
s � 
f )=(�
f )]1=3. For �lm thicknesses higher

than hc the electric �eld strength requirement �E;c increases with increasing �lm

thickness. This trend in the �E;c(h0) dependence is exhibited because the wetting

potential at the surface is decreased as the �lm thickness is increased, and a stronger

electric �eld is required to stabilize the planar �lm surface morphology. As the �lm

thickness keeps increasing, the stabilizing e�ect of the wetting potential is gradually

diminished, and the critical electric �eld strength �E;c reaches a plateau value. This

constant value of �E;c depends largely on the surface crystallographic orientation.

The �E;c plateau value for m = 1 is several times higher than that for m = 2 and

m = 3. We also see that, among the surface orientations examined in this study,

the �E;c strength required to stabilize the planar surface morphology is lowest for the

{100} surface, m = 2.
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Figure 4.11: (Color online) Predicted critical electric �eld strength requirement �E;c
as a function of surface di�usional anisotropy strength, A, for {110}, {100}, and {111}
surfaces with m = 1, m = 2, and m = 3, respectively. The angles �x and �E are
chosen to minimize �E;c, and are identical with those in Fig. 4.10. Other parameter
values: �W = 0:1.

The e�ect of the anisotropy strength, A, also studied on the basis of the LST

conclusions for all the three surface crystallographic orientations examined. The cor-

responding plots of �E;c as a function of A are shown in Fig. 4.11. The angles �x and

�E are kept at the same optimal values as those used to yield the results of Fig. 4.10.

The wetting potential is chosen to have the representative values �W = 0:1. In a

similar manner with the trends of Fig. 4.10, {110} surfaces are found to require the

largest �E;c strength for planar surface morphology stabilization among the surface

orientations examined. However, we �nd that a crossover value of approximately 6

exists for A, below which the {111} surface, m = 3, has the lowest �E;c requirement,

and above which the {100} surface, m = 2, has the lowest �E;c requirement for planar

surface morphological stabilization and, therefore, surface roughness reduction.

4.4 Summary and Conclusions

In summary, we have analyzed the surface roughness evolution of a textured metal-

lic thin �lm deposited on an elastic substrate under the action of on externally applied

electric �eld and the �lm’s residual stress, wetting potential, and surface tension us-
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ing linear stability theory and self-consistent dynamical simulations based on a fully

nonlinear model of surface morphological evolution. We found that, in the absence of

electric �eld action, the smooth planar morphology of the strained metallic thin �lm

surface is not stable and the �lm surface becomes increasingly rough under the action

of the residual stress until it reaches a steady state stabilized due to the wetting e�ect.

The action of an externally applied electric �eld can slow down the surface roughening

process, and can reduce the surface roughness by orders of magnitude within a period

of several hours, achieving atomic-scale smoothness, when the electric �eld is su�-

ciently strong and properly directed. Our �ndings are in agreement with experimental

measurements of surface roughness reduction in electrically stressed copper intercon-

nect �lms [35] and establish the electrical treatment of conducting �lm surfaces as a

viable physical processing strategy to reduce their surface roughness.
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CHAPTER 5

PATTERN FORMATION ON SURFACES OF
HETEROEPITAXIAL THIN FILMS

As discussed in Chapter 4 of this thesis, heteroepitaxial thin �lms are subject to

an stress-induced surface morphological instability (SK instability), which can cause

the surface roughening. However, this instability can also lead to the formation of in-

triguing nanostructures with tunable electronic properties in epitaxial thin �lms, and

has a wide range of applications in fabrication of various semiconductor materials.

An example of the nanostructures is the quantum dot (QDs). The continuum model

for the thin �lm morphological evolution and the computational tools we developed

in Chapter 4 are capable to capture the formation of QDs, as seen in Figs. 4.5(a4),

4.5(b4), and 4.7(a4). Other than QDs, more complex nanostructures have been ob-

served in the epitaxial thin �lms. One example is multiple quantum dots or quantum

dot molecules (QDMs), characterized by two or more closely spaced QDs [53�56]. An-

other example is nanorings, characterized by one or more nanoscale concentric ring

structures [15, 149]. These complex nanostructures are beyond the scope of linear

stability theory, and the formation mechanisms remain elusive.

Our earlier numerical simulations of surface morphological evolution of uniaxi-

ally stressed solids demonstrated a complex nonlinear dynamical phenomenon, the

formation of a pattern of secondary surface ripples upon long-wavelength surface per-

turbations [13]. Though seemingly di�erent, this complex surface nanopatterning

phenomenon and the formation of QDMs and nanorings involve the same driving

forces, which may imply that they share similar underlying mechanisms. In this

chapter, we conduct extensive study on the formation of QDMs and nanorings in
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heteroepitaxial thin �lms using the computational tools developed in Chapter 4 and

the knowledge of tip-splitting instability theory developed in Chapter 3.

5.1 Theory of Multiple Quantum Dot Formation in Strained-

Layer Heteroepitaxy

In this section, we develop a theory that describes and explains the multiple quan-

tum dot pattern forming phenomenon in strained-layer epitaxy. Using a fully nonlin-

ear model for the surface morphological evolution of a coherently strained epitaxial

�lm, we explain the formation of multiple QD patterns on the �lm surface as a result

of a nonlinear long-wavelength tip-splitting instability predicted by a weakly nonlin-

ear stability analysis of the epitaxial �lm surface morphology that accompanies the

SK instability. The predictions of the stability theory are validated by self-consistent

dynamical simulations of the surface morphological evolution, which demonstrate the

formation of multiple quantum dot patterns and explain their experimental observa-

tion in epitaxial growth on both patterned and unpatterned substrates.

5.1.1 Model

We use the same model that is developed in Section 4.2 of Chapter 4 for the

study of the morphological evolution of coherently strained heteroepitaxial thin �lms

on a thick substrate. Since the quantum dots and multiple quantum dot pattern

formation are caused by stresses, we do not consider external �elds in this study.

Then the height evolution equation, according to Eq. (4.1), reads

@h
@t

= H 0rs �
"
�s

kBT

Ds � rs(UE � 
f�+ UW )
#

; (5.1)

and the dispersion relation, according to Eq. (4.4), reads

~! = 2�~k3 � �~k4 � �W�~k2 : (5.2)
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Using the Ge/Si system as representative, we obtain values for the length scale, l,

and time scale, � , of approximately 6.58 nm and 272 hrs, respectively. In Eq. (5.2), !

is the growth or decay rate of the perturbation, � = (�2 +1)�1[f(�x = 0)+��2f(�y =

0)], � � ky=kx, kx 6= 0, k �
q
k2
x + k2

y, � � Ds;min
yy =Ds;min

xx , and �W = [2b(
s �


f )=(�h3
o
f )](Ms
f=�2

0)2 is the wetting potential strength scaled by the strain energy.

Henceforth, all quantities are dimensionless and the tildes are dropped for simplicity.

If �W < 1 or h0 is larger than a critical thickness, ! becomes positive in some do-

main of k and the Stranski-Krastanow instability is triggered. Though being able to

predict the morphological stability of stressed �lms’ surfaces and explain the quan-

tum dots formation, the linear stability theory, Eq. (5.2), is unable to explain the

phenomena of the multiple quantum dot pattern formation. To develop a theory for

the multiple quantum dot pattern formation, we take weakly nonlinear analysis and

examine the e�ect of the second order nonlinear terms in the governing equation of

the height function, Eq. (5.1).

5.1.2 Asymptotic Analysis of Surface Morphological Evolution

Within the small-slope approximation, � �
p
h�h� � 1, the elastic strain energy

density in the epitaxial thin �lm, UE, can be expressed by the asymptotic expansion

UE = U (0)
E + U (1)

E + U (2)
E +O(�3) : (5.3)

At the unperturbed planar state of the �lm surface morphology, the elastic strain

energy density is uniform throughout the �lm and given by

U (0)
E =

1� �f
Ef

�2
0 =

2�2
0

Ms

Ms

2(1 + �f )Mf
; (5.4)

whereMf �
Ef

1��2
f
andMs � Es

1��2
s
are the biaxial moduli of the �lm and the substrate,

respectively, and �f is the �lm’s Poisson ratio. Following the approach of Ref. 146

119



and using the �rst- and second-order surface displacements in Fourier space,

û(1)
� = iq�C���0ĥ (5.5)

and

û(2)
� = C��’̂� + C�3�0�̂ ; (5.6)

where ’� = ��(1)
�
 h
, � = h�h�, and C�� is the compliance matrix of the substrate

given in the Appendix of Ref. 146, and the initial plane-wave perturbation, h =

h0 + �0 exp(ikx), we obtain

U (1)
E =

2�2
0

Ms

 

i
kx
k
hx + i

ky
k
hy

!

(5.7)

and

U (2)
E =

2�2
0

Ms

("
Ms

2(1� �f )Mf
+

1� 2�s
1� �s

#

(h2
x + h2

y)

�
kxkyMf

k2Ms

" 

5
kx
ky

+
5ky(1� �f )

2kx

!

h2
x

+5(1 + �f )hxhy +
 

5
ky
kx

+
5kx(1� �f )

2ky

!

h2
y

#)

: (5.8)

We express the wetting potential according to the �transition-layer model� [145],

which gives the wetting potential density, UW , as

UW =

f � 
sp
1 + h�h�

b
�(b2 + h2)

;

where b is a length selected empirically that typically satis�es b=h0 � 1 [145, 146].

UW also can be expressed by an asymptotic expansion as

UW = U (0)
W + U (1)

W + U (2)
W +O(�3) ; (5.9)
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where

U (0)
W =

(
f � 
s)b
�h2

0
; (5.10)

U (1)
W = �

2(
f � 
s)b
�h3

0
(h� h0) ; (5.11)

and

U (2)
W =

(
f � 
s)b
�

"

�
hxhx + hyhy

2h2
0

+
6(h� h0)2

h4
0

#

: (5.12)

Neglecting O(�3) and higher-order terms, the �lm surface height evolution equa-

tion, Eq. (5.1) can be written as

@h
@t

=
�s
Ds;min

xx

kBT

"
@2Etot

@x2 f(�x = 0) +
@2Etot

@y2 f(�y = 0)�
#

; (5.13)

where � � Ds;min
yy =Ds;min

xx and Etot = UE � 
f� + UW . We also can express the

height function, h(x; y; t), that represents the evolving �lm surface morphology by an

asymptotic expansion in � as

h = h0 + h(1) + h(2) +O(�3) : (5.14)

Substituting the �rst- and second-order strain energy and wetting potential density

terms in the corresponding expansions as well as the expressions for the curvature

and the height function into Eq. (5.13) and scaling variables with the time and length

scales previously de�ned, we derive the following two initial-value problems.

(1) O(�) problem:

@h(1)

@t
=
"

2
 

i
kx
k
h(1)
xxx + i

ky
k
h(1)
yxx

!

� (h(1)
xxxx + h(1)

yyxx) + �Wh(1)
xx

#

f(�x = 0)

+
"

2
 

i
kx
k
h(1)
xyy + i

ky
k
h(1)
yyy

!

� (h(1)
xxyy + h(1)

yyyy) + �Wh(1)
yy

#

f(�y = 0)� ;
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with initial condition h(1)(t = 0) = �0 exp(ikxx+ ikyy). The solution to this problem

is

h(1) = �0 exp(!1t+ ikxx+ ikyy) ; (5.15)

where

!1 = 2�k3 � �k4 � �W�k2 ; (5.16)

and � � (�2 + 1)�1[f(�x = 0) + f(�y = 0)��2], � � ky=kx, kx 6= 0, k �
q
k2
x + k2

y, and

�W = [2b(
s � 
f )=(�h3
o
f )](Ms
f=�2

0)2 is the wetting potential strength scaled with

the strain energy.

(2) O(�2) problem:
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2
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with initial condition h(2)(t = 0) = 0. The solution to this problem is

h(2) = B[exp(!2t)� exp(2!1t)] exp(2ikxx+ 2ikyy); (5.17)

where !2 = 16�k3 � 16�k4 � 4�W�k2 and B = �2
0

n
8
h

Ms
2(1��f )Mf

+ 1�2�s
1��s

i
k2

� 2Mf
(1+�2)2Ms

[20(1 + �4) + (35� 5�f )�2] + �W
h0

(h2
0k2 + 12)

o
=(�12k + 14k2 + 2�W ).

Thus, accounting for up to second-order terms, the solution to the height function

evolution equation is

h = h0+�0 exp(!1t+ikxx+ikyy)+B[exp(!2t)�exp(2!1t)] exp(2ikxx+2ikyy); (5.18)

which shows clearly that the second sub-harmonic of the initial plane-wave perturba-

tion is excited, facilitating tip splitting and �double QD� formation.

5.1.3 Theory of Multiple Quantum Dot Formation

The physical signi�cance of the analytical solution is that it contains a second

sub-harmonic ripple, of wave number 2k, that indicates the formation of a double

QD. The analytical solution structure allows for multiple QD formation, in general,

if the asymptotic expansion is carried out to higher-order terms.

To calculate the onset of multiple QD formation, we adopt the ansatz of Ref. 150:

All the sub-harmonics (with wave numbers nk) of the initial plane-wave perturbation

(with wave number k) are excited and evolve independently with the growth rate

of Eq. (5.2) for the corresponding wave number nk and with the actual number of
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ripples (QDs) formed determined by the sub-harmonic that has the highest growth

rate. Therefore, the evolution rate of the sub-harmonic with wave number of nk is

!(n)
1 = 2(nk)3� � (nk)4� � �W (nk)2� : (5.19)

The fastest growing mode, n, satis�es the relations !(n�1)
1 � !(n)

1 � !(n+1)
1 , leading to

(n+ 1)3 � n3

(n+ 1)4 � n4 [1 + �(n)] � k �
n3 � (n� 1)3

n4 � (n� 1)4 [1 + �(n� 1)] ; (5.20)

where �(n) =
r

1 + [(n+1)4�n4][(n+1)2�n2]
[(n+1)3�n3] �W . This relation gives the range of the initial

perturbation wave number k, that will cause the formation of n ripples per original

wavelength. The critical wave number ks;c for the onset of the tip splitting instability

is obtained by substituting n = 2 into Eq. (5.20), giving ks;c = 7
15 [1 +

q
1� 45

49�W ].

5.1.4 Numerical Simulations

We validate the conclusions of the weakly nonlinear stability theory using self-

consistent dynamical simulations with the numerical methods described in section 4.2

In the simulations, we apply either a speci�ed initial perturbation, consisting of a su-

perposition of two plane waves resembling a regular square pattern of surface mounds,

as shown in Fig. 5.1(a1), or a completely random initial perturbation, as shown in

Fig. 5.1(b1). In the initial perturbation of Fig. 5.1(a1), kx = ky = 0:70 < ks;c = 0:905.

According to the weakly nonlinear theory, a tip-splitting instability will occur in both

the x- and y-directions, and a multiple QD consisting of four smaller-size QDs is

expected to form for each low-amplitude �mound� of the original perturbation. At

t = 0:58, Fig. 5.1(a2), the shape of the mound is not symmetric anymore with respect

to the z-axis. This asymmetry is caused by the surface di�usional anisotropy. The

height pro�le in the inset in Fig. 5.1(a2) shows that the amplitude of the perturbation

has grown and each mound in the pattern is taller. At t = 0:84, Fig. 5.1(a3), it is
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evident that the mounds keep growing and the valleys in the �lm surface morphology

become deeper. Most importantly, mound tip splitting has been initiated and four

new tips have now formed per each original mound. The tip splitting is particularly

clear in the pro�le in the inset in Fig. 5.1(a3). Due to surface di�usional anisotropy,

the newly formed tips are asymmetrically arranged within each mound. However, in

simulations where the surface di�usional anisotropy is not accounted for, the observed

tip splitting is symmetric resulting in a multiple QD that is a cluster of four symmet-

rically arranged QDs of equal height. The pro�le in the inset in Fig. 5.1(a3) resembles

strongly the experimentally observed �double QDs� in Ref. 54. The comparison of

the simulation results with the �double QDs� is shown in Fig. 5.2. Fig. 5.2(a) from

Ref. 54 exhibits multiple InSb:N QDs forming on an InAs substrate. Figure 5.2(b) is

the surface con�guration obtained in our simulation at t = 0:86, with initial pertur-

bation and parameters identical with those of Fig. 5.1(a). Both the surface contour

map and the 1D surface pro�le in Fig. 5.2(b) resemble those in Fig. 5.2(a). This

comparison con�rms that double QD formation is caused by the tip splitting instabil-

ity originating, like the Stranski-Krastanow instability, from the competition between

the surface energy and the elastic strain energy in the epitaxial �lm.
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Figure 5.1: 2D contour maps of simulated evolving surface morphology, h(x; y; t),
of coherently strained epitaxial �lm starting with (a1-a4) a speci�ed perturbation,
h = 0:1 + 0:0005[exp(i0:7x) + exp(i0:7y)], at (a1) t = 0, (a2) t = 0:58, (a3) t = 0:84,
and (a4) t = 1:00 and (b1-b4) a random low-amplitude perturbation at (b1) t = 0,
(b2) t = 0:18, (b3) t = 0:68, and (b4) t = 0:78. 1D surface pro�les, h(x; y; t), along
the black solid lines marked on the 2D maps are plotted in the insets. Parameter
values: �W = 0:127, A = 10, m = 2, and �x = �y = �15�.

Figure 5.2: (a) AFM image of a 2.5-ML-thick �lm of InSb:N on an InAs substrate
[from Fig. 3 of Ref. 54]. (b) Contour map of simulated surface morphology, h(x; y; t),
of a coherently strained epitaxial �lm starting with a speci�ed initial perturbation,
h = 0:1 + 0:0005[exp(ikxx) + exp(ikyy)], where kx = ky = 0:7, at t = 0:86. In the
simulations, the parameters used are the same with those that yielded the results of
Fig. 5.1. In both cases, (a) and (b), the corresponding 1D surface height pro�les,
h(x; y; t), along the black solid lines marked on the 2D maps of the �lm surface
morphology are plotted directly below the 2D �lm surface images.

At t = 1:00, Fig. 5.1(a4), the valleys between the smaller-size QDs in each multiple

QD become deeper and the smaller-size QDs become more distinct having grown taller

while retaining di�erent heights. The evolution of the thin �lm morphology in our

simulation with the speci�ed initial perturbation, Figs. 5.1(a1-a4), is very similar to

the experimental observations made in the growth of an InAs �lm on the surface of a

GaAs substrate patterned with embedded InAs QDs, where �QD pairs� form at sites

arranged exactly like the pattern of the embedded InAs QDs, facilitating the lateral

replication of single QDs into QD pairs. [55, 56] The strain �eld developed by the
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embedded InAs QDs induces a long-wavelength perturbation on the grown InAs �lm

surface with the wave number k determined by the lattice parameter of the embedded

QD pattern. As a result, large-size QDs are allowed to form, which, according to our

theory, undergo tip splitting for k < ks;c resulting in the formation of the pattern of

�QD pairs� observed in Refs. 55, 56.

Representative results from simulations starting with a random initial perturba-

tion, Fig. 5.1(b1), from the planar surface morphology are shown in Figs. 5.1(b1-b4).

The formation of QDs in the �lm surface is evident, Fig. 5.1(b2), leading to a pat-

tern of multiple QDs as shown in Figs. 5.1(b3) and 5.1(b4); the connectivity of these

multiple QDs in the form of a QD cluster is clear both in the 2D contour maps of

Figs. 5.1(b3) and 5.1(b4) and the surface height pro�les in the respective insets. How-

ever, in contrast to the multiple QD patterns of Figs. 5.1(a3) and 5.1(a4), these QD

clusters are not identical to each other and they are not arranged in a regular pattern

but a random one. Moreover, the total number of QDs formed in Figs. 5.1(b3) and

5.1(b4) is lower than that formed in Figs. 5.1(a3) and 5.1(a4), respectively, for the

same �lm surface area. These computed �lm surface patterns are consistent with the

experimental observations[55, 56] that multiple QDs of InAs are formed on both pat-

terned and unpatterned GaAs surfaces, but the multiple QDs formed on unpatterned

GaAs surfaces are randomly arranged and fewer per unit area than those formed on

patterned GaAs surfaces.
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Figure 5.3: Contour maps of simulated epitaxial �lm surface morphology, h(x; y; t),
approaching steady state starting with (a) a speci�ed initial low-amplitude perturba-
tion from a planar �lm surface state, h = 0:1 + 0:0005[exp(ikxx) + exp(ikyy)], where
kx = ky = 0:7, at t = 25:3 and (b) a random initial low-amplitude perturbation from
the planar �lm surface morphology at t = 25:3. The nominal initial �lm thickness
is h0 = 0:1. The dimensionless wetting potential is �W = 0:127 and the surface
di�usional anisotropy parameters are A = 10, m = 2, and �x = �y = �15�. In both
cases, a regular array of QDs arranged in a hexagonal lattice pattern (marked by the
yellow dashed lines) has formed on the �lm surface.

Figures 5.1(a1-a4) and 5.1(b1-b4) show sequences of con�gurations of the �lm

surface morphology as it evolves starting with a speci�ed initial perturbation and a

random initial perturbation, respectively, from the planar �lm surface state focusing

on the tip splitting dynamics and the formation of multiple QDs. Here, Fig. 5.3 shows

the steady-state morphology of the epitaxial �lm surface having started from (a) the

speci�ed initial perturbation of Fig. 5.1(a1) and (b) the random initial perturbation

of Fig. 5.1(b1) after a su�ciently long time of morphological evolution, both at t =

25:3. The �lm surface morphologies shown in Figs. 5.3(a) and 5.3(b) are practically

identical, both exhibiting equal-sized QDs in a hexagonal lattice arrangement, as

highlighted by the yellow dashed lines in the �gures. This comparison con�rms that

the steady state reached by the epitaxial �lm surface morphology is independent of

the initial conditions (type of perturbations from the planar surface state used in the

simulations). Nevertheless, as the �lm surface morphology evolves toward its steady

state, various multiple QD patterns develop, such as those shown in Fig. 5.1. These

patterns can be frozen, i.e., trapped kinetically, in the �lm surface by lowering the

substrate temperature and diminishing the rate of di�usional transport.
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Figure 5.4: Number of smaller-sized QDs formed by the splitting of a single QD, n,
as a function of the primary wavelengths of the perturbation from the epitaxial �lm
planar surface morphology, scaled by the maximally unstable wavelength, �x=�max
and �y=�max, as predicted by (a) the weakly nonlinear stability theory and (b) direct
dynamical simulations of epitaxial �lm surface morphological evolution. In all the
simulations, h(t = 0) = 0:1 + 0:0005[exp(i2�x=�x) + exp(i2�y=�y)], �W = 0:127,
A = 10, m = 2, and �x = �y = �15�.

�Double QDs�, �triple QDs�,[54] �quadruple QDs�,[54] and even �6-fold QDs�[56]

have been observed in experiments. Our theory can predict the number of smaller-

size QDs in a multiple QD that forms. For speci�ed initial perturbations such as that

shown in Fig. 5.1(a1), the predictions of Eq. (5.20) for the number, n, of smaller-size

QDs in a multiple QD is plotted in Fig. 5.4(a) for the parameter set that gave the

results of Fig. 5.1 as a function of the wavelengths of the perturbation scaled by the

corresponding maximally unstable wavelength �max. To validate these predictions, we

conduct a systematic protocol of hundreds of surface morphological evolution simula-

tions, with initial perturbation wavelengths �x and �y sampled evenly over the entire

domain of Fig. 5.4(a). The simulation results in Fig. 5.4(b) are in good qualita-

tive and reasonable quantitative agreement with the theoretical results of Fig. 5.4(a).

The critical wave number predicted by the simulations is ks;c = 0:80, in reasonable

agreement with the theoretical prediction of ks;c � 0:91. According to our theory,

the formation of a multiple QD with a large number n of distinct smaller-size QDs

requires longer-wavelength perturbations that will result in larger-size initial QDs.

Such QDs are di�cult to grow on unpatterned substrate surfaces, since tip splitting
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will be triggered when the QD size is su�ciently large, and double QDs will form

preventing the continuous growth of the original QD size. This explains why, in the

experiments, multiple QDs, i.e., large QD clusters with n > 2 are much less com-

monly observed than double QDs (n = 2), but they are easier to form on patterned

substrates.

5.1.5 Summary and Conclusions

In summary, we studied the morphological stability of a coherently strained epitax-

ial thin �lm using weakly nonlinear analysis and self-consistent dynamical simulations

based on a fully nonlinear model of surface morphological evolution that accounts for

the stress state of the �lm, the wetting potential, and surface di�usional anisotropy.

We found that long-wavelength perturbations from the planar �lm surface morphology

can trigger a nonlinear instability that leads to the tip splitting of a single epitaxial

QD, which grows as a result of the Stranski-Krastanow instability, and the forma-

tion of multiple QDs in the form of a QD cluster consisting of several closely located

smaller-sized QDs with individual tips of variable height. The nonlinear instability

occurs independent of the �lm surface di�usional anisotropy, which only a�ects the

resulting QD morphology through an asymmetric splitting of the originally formed

QD. Our theory provides a fundamental interpretation to numerous experimental

observations of multiple quantum dot formation in strained-layer heteroepitaxy on

both patterned and unpatterned substrates. Our �ndings also suggest that nonlin-

ear surface phenomena in strained-layer heteroepitaxy can be exploited for precise

engineering of tunable-size nanoscale surface features resulting in tailored material

properties toward optimal optoelectronic function. In summary, we studied the mor-

phological stability of a coherently strained epitaxial thin �lm using weakly nonlinear

analysis and self-consistent dynamical simulations based on a fully nonlinear model

of surface morphological evolution that accounts for the stress state of the �lm, the
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wetting potential, and surface di�usional anisotropy. We found that long-wavelength

perturbations from the planar �lm surface morphology can trigger a nonlinear insta-

bility that leads to the tip splitting of a single epitaxial QD, which grows as a result of

the Stranski-Krastanow instability, and the formation of multiple QDs in the form of a

QD cluster consisting of several closely located smaller-sized QDs with individual tips

of variable height. The nonlinear instability occurs independent of the �lm surface

di�usional anisotropy, which only a�ects the resulting QD morphology through an

asymmetric splitting of the originally formed QD. Our theory provides a fundamen-

tal interpretation to numerous experimental observations of multiple quantum dot

formation in strained-layer heteroepitaxy on both patterned and unpatterned sub-

strates. Our �ndings also suggest that nonlinear surface phenomena in strained-layer

heteroepitaxy can be exploited for precise engineering of tunable-size nanoscale sur-

face features resulting in tailored material properties toward optimal optoelectronic

function.

5.2 Theory of Nanoring Formation in Stressed Thin Films on

Substrates: From Quantum Dots to Nanorings to Quan-

tum Dot Molecules

Solid material nanostructures in the form of nanorings (NRs) exhibit many in-

teresting properties, including tunable plasmon resonance and spin-polarized current

switching, due to the unique nature of their electronic con�nement. Such nanostruc-

tures have potential for numerous technological applications in optoelectronic and

magnetic data storage devices. Recent experimental studies have reported the for-

mation of gold and silver nanorings from the corresponding epitaxial nanoclusters or

quantum dots upon thermal annealing, as shown in Fig. 5.5. The analysis in this

section aims at a fundamental understanding of the kinetics of formation of such

nanoring structures from quantum dots (QDs) in coherently strained epitaxial �lms
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and at a systematic exploration of the evolution of the resulting nanoring structures

upon variation of the processing conditions.

(a) (b) (c) (d)

Figure 5.5: Atomic force microscopy images of (a) a 25-nm-thick Au �lm sputter-
deposited on an ITO surface, (b) the Au �lm of (a) annealed at 573 K in a N2
environment for 1 h [15], and (c) top and (d) 3D view of a 4-nm-thick Ag �lm
deposited on a fused quartz substrate using electron beam evaporation and annealed
at 900 �C in an Ar environment for 30 min [149].

5.2.1 Numerical Simulations of Nanoring Formation and Evolution

As demonstrated in Section 5.1 of Chapter 5 of this thesis, our continuum model

of Eq. (5.1) can reproduce the formation of quantum dot patterns in a coherently

strained heteroepitaxial thin �lm. Analysis based on the model also reveals that,

regardless of the initial surface morphology, the stressed thin �lm surface will even-

tually reach an equilibrium state featuring a regular array of quantum dots. In the

dimensionless formulation of our model, the temperature appears only in the time

scale, � , and not explicitly in the dimensionless governing equation, meaning that a

variation in the temperature only speeds up or slows down the corresponding dynam-

ics, without a�ecting the observed evolving surface morphology. However, it should

be emphasized that the �lm and the substrate are di�erent materials; in addition to

the lattice mismatch between the two materials, their thermal mismatch, i.e., the

di�erence in the thermal expansion coe�cients between the �lm and substrate mate-

rials, will also play a signi�cant role in the surface morphological evolution, especially

at a high annealing temperature. A reasonable testable hypothesis is that the stress

induced due to this thermal mismatch during the annealing process is the driving
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force responsible for the formation of NRs from the already existing QDs on the

�lm’s surface.
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Figure 5.6: [Color online] 2D contour maps of simulated evolving surface morphology,
h(x; y; t), of coherently strained epitaxial �lm starting with an equilibrium surface
morphology consisting of a periodic arrangement of quantum dots (QDs), where the
top view of one such QD structure shown in the unit cell of the regular QD pattern
with (a1-a8) � = 2:0 at (a1) t = 0, (a2) 1.52, (a3) 2.32, (a4) 3.92, (a6) 7.12, (a7)
7.92, and (a8) 9.088 �10�2� ; (b1-b8) � = 2:4 at (b1) t = 0, (b2) 0.54, (b3) 0.69, (b4)
1.59, (b6) 2.39, (b7) 3.482, and (b8) 8.782 �10�2� ; and (c1-c8) � = 2:8 at (c1) t = 0,
(c2) 0.220, (c3) 0.326, (c4) 0.606, (c6) 1.006, (c7) 1.806, and (c8) 2.578 �10�2� . 1D
surface pro�les, h(x; y; t), along the x-direction and passing through the center of the
unit cell of (a1) and (a4), (b1) and (b4), and (c1) and (c4) are plotted in (a5), (b5),
and (c5), respectively. In the simulations, h0 = 0:009, �W = 0:873, and isotropic
surface di�usivity and surface free energy are assumed.

To test our hypothesis, we conducted systematic self-consistent dynamical sim-

ulations according to the �lm evolution model of Eq. 5.1. The e�ects of surface

crystallographic orientation are neglected and both the surface di�usivity and the

surface energy are assumed to be isotropic. We �rst perturbed a planar �lm surface,

and let the surface evolve until it reached a steady state. Subsequently, taking the

equilibrium quantum dot morphology (regular array of QDs) as the initial surface

morphology, we increased the biaxial stress level �0 in the �lm by a factor of � and

continued the dynamical simulation. The parameter � re�ects the e�ect on the biax-

ial stress in the �lm of the temperature increase �T in the thermal annealing process,

and is directly related to �T in the equibiaxially stressed thin �lm as

� � 1 +
(�f � �s)Ef
(1� �f )�0

�T ; (5.21)

where �f and �s are the thermal expansion coe�cients of the �lm and the substrate

material, respectively, Ef is the Young’s modulus of the �lm, �f is the Poisson ratio

of the �lm, and �0 is the biaxial stress level in the �lm (due to lattice mismatch)

prior to its thermal annealing. Representative con�gurations of the evolving �lm

surface morphology during the thermal annealing process for � = 2:0, � = 2:4, and

� = 2:8 are shown in Figs. 5.6(a1-a8), 5.6(b1-b8), and 5.6(c1-c8), respectively, where
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Figs. 5.6(a1), 5.6(b1), and 5.6(c1) depict the same initial quantum dot morphology in

a unit cell of the periodic QD pattern, i.e., the equilibrium �lm surface morphology

before the �lm’s thermal annealing.

Using the Ag/quartz system as a representative material system for nanoring for-

mation and the deposition conditions in Ref. 149, the length scale, l, and the time

scale, � , are approximately 90 nm and 6 h, respectively. Figure 5.6(a1) shows the top

view of a quantum dot with a diameter of � 360 nm. As seen in Fig. 5.6(a2), under

the action of the increased biaxial stress due to thermal annealing, the diameter of the

QD shrinks. More interestingly, as a result of the increased stress, the QD exhibits a

morphological change, featuring a morphological modulation in the radial direction.

Moreover, the �at wetting layer is not stabilized by the wetting e�ect anymore, under-

going an analogous morphological modulation as a means of relieving the increased

elastic strain energy. Figure 5.6(a3) shows that the modulated QD gradually evolves

into a ring structure with a narrower QD at the ring center. This type of structure

also was predicted by an energetic model and observed experimentally [151]. A larger-

diameter ring is formed by the material in the wetting layer. However, this ring is

much shorter in height and less stable than the one the QD transforms into, and it

quickly breaks into numerous small QDs symmetrically arranged with respect to the

principal biaxial stress axes, namely, the x- and the y-axis of the Cartesian frame of

reference. Henceforth, the intermediate ring structures formed by the wetting layer

are ignored and emphasis is placed on the more stable nanoring structures formed

closer to the rings’ center. As shown in Fig. 5.6(a4), the QD at the central region

of the ring eventually vanishes, leaving a symmetric ring structure, which resembles

strongly both the gold nanorings in Fig. 5.5(b) and the silver nanoring in Fig. 5.5(c).

In Fig. 5.6(a5), the cross-sectional pro�le of the nanoring in Fig. 5.6(a4), represented

by the red curve that corresponds to the surface height pro�le along a horizontal line

(parallel to the x-axis) that goes through the ring’s center, is compared with that of
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the initial QD in Fig. 5.6(a1), represented by the blue curve. The nanoring height

is about twice that of the original QD, while the underneath wetting layer is much

thinner than that in the original QD con�guration. The heights of the nanostructures

are constrained by the amount of the �lm material available satisfying conservation

of mass. Consequently, the height and the width of the nanoring structures can be

precisely controlled by controlling the amount of �lm material deposited on the sub-

strate prior to its thermal annealing. The most interesting feature of the formed NR

con�guration is its radius, which is the outcome of the competition of di�erent driving

forces for mass transport. It is worth noting that the nanoring structure is more sta-

ble and can retain its morphology for longer time than other intermediate structures,

such as that shown in Fig. 5.6(a3). This explains why nanoring structures are easy to

be observed in the thermal annealing experiments of the deposited thin �lms. How-

ever, as shown in Figs. 5.6(a6), 5.6(a7) and 5.6(a8), the nanoring structure is merely

metastable, and eventually breaks into a cluster of four closely located QDs forming

a quantum dot molecule (QDM). This also agrees with the experimental observation

that increasing the duration of the �lms’ thermal annealing causes a decrease of the

observed number of nanorings in the �lms [15].

As shown in Eq. (5.21), � can be tuned precisely by changing the �lm and substrate

materials with di�erent thermal expansion coe�cients or by varying the thermal an-

nealing temperature. It is worth exploring other interesting nanostructures that may

be generated by thermal annealing of stressed deposited thin �lms. Such structures

include multiple concentric nanorings. As shown in Figs. 5.6(b1)-5.6(b4), for � = 2:4,

i.e., for biaxial stress level � = 2:4�0 in the �lm, the same initial QD structure evolves

into a double concentric nanoring. As seen in Fig. 5.6(b5), the inner and outer ring in

this double concentric NR con�guration have diameters of � 1 and � 3, respectively.

As shown in Figs. 5.6(b6)-5.6(b8), the outer ring breaks �rst into 8 QDs; the inner

ring is more stable, but eventually also breaks into 2 QDs. Similarly, as shown in
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Figs. 5.6(c1)-5.6(c4), for � = 2:8, the QD structure evolves into a triple concentric

nanoring. As seen in Fig. 5.6(b5), in this triple concentric NR con�guration, the

diameters of the inner, the middle, and the outer ring are � 0:73, � 2:13, and � 3:49,

respectively. The outer ring breaks �rst into 12 QDs, subsequently the middle ring

breaks into 7 QDs, and �nally the inner ring evolves into a single QD.

5.2.2 Theory of Multiple Concentric Nanoring Formation

Figure 5.6 demonstrates that the stress increase induced by the thermal mismatch

between the �lm and the substrate in the thermal annealing process can trigger

the further evolution of the equilibrium QD structure to transform into a nanoring

structure. It also demonstrates that tuning the parameter � can lead to the formation

of di�erent multiple concentric nanoring structures. Although not included in Fig. 5.6,

our simulations also have revealed that if � is not su�ciently large, the QD will not

transform into a nanoring structure. For example, a value of � = 1:5 retains the QD

structure, albeit with a smaller diameter. In brief, it is evident from the simulations

that there exists a relation between the number of concentric nanorings formed, nNR,

and the increase in the biaxial stress in the �lm due to its thermal mismatch with

the substrate, as expressed by the parameter �.

As seen in Figs. 5.6(a1)-5.6(a4), 5.6(b1)-5.6(b4) and 5.6(c1)-5.6(c4), the mor-

phology of the QD during the �lm surface morphological evolution remains axially

symmetric with a perfectly circular top view before its transformation, with the mor-

phological changes occurring only in the radial direction. This observation allows us

to focus our analysis on the changes of the cross-sectional pro�les of the nanostruc-

tures, as seen in Figs. 5.6(a5), 5.6(b5), and 5.6(c5). These pro�les are very similar to

those of the surfaces of the uniaxially stressed solids that we have extensively analyzed

in Chapter 3. We have established a theory for the nonlinear tip-splitting phenomena

that can be triggered by long wavelength plane-wave perturbations and govern these
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surface morphologies. In an analogous manner, the original QD pro�le can be viewed

as a long-wavelength perturbation, with

~� = 2 ~R ; (5.22)

where ~� is the dimensionless perturbation wavelength and ~R is the dimensionless

QD radius, both of which are made dimensionless by the dynamic length scale, l, of

the material system. This allows for a quick formulation of the relation between the

dimensionless QD radius, ~R, and the number of ripples that the QD pro�le can split

into, n,
n4 � (n� 1)4

n3 � (n� 1)3

�
[1 + �(n� 1)]

� ~R �
(n+ 1)4 � n4

(n+ 1)3 � n3

�
[1 + �(n)]

; (5.23)

where �(n) =
r

1 + [(n+1)4�n4][(n+1)2�n2]
[(n+1)3�n3] �W . Obviously, n = 1 corresponds to the QD

structure, n = 2 corresponds to the single nanoring structure, and n = 3 corresponds

to a nanoring structure with a single QD at the center, as seen in Fig. 5.6(a3). Since

we are only interested in the (meta)stable nanoring structures and the structure

represented in Fig. 5.6(a3) will quickly evolve into a single nanoring, n = 3 also yields

a single nanoring structure. In general, the relation between n and nNR is

nNR =
�n

2

�
; (5.24)

where [�] denotes the integer part, i.e., [3=2] = 1, [5=2] = 2, etc. Equations (5.23) and

(5.24) provide a quantitative relation between the dimensionless QD radius ~R and the

�nal number of concentric nanorings, nNR, in a multiple concentric NR con�guration

that forms as a result of the thermal annealing of the deposited �lm. Note that

~R � R=l ; (5.25)
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and

l �

fMs

�2
0

: (5.26)

Therefore, if the level of biaxial stress in the �lm is increased by a factor of �,

the dynamic length scale l will be decreased by a factor of �2, and ~R will be, in

turn, increased by a factor of �2. The resulting ~R, according to Eq. (5.23), may

be su�ciently large to trigger the nonlinear tip-splitting instability, leading to the

formation of various numbers of rings in multiple concentric nanoring structures from

a QD depending on its value.
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Figure 5.7: Number of concentric nanorings, nNR, formed on the surface of annealed
heteroepitaxial thin �lms as a function of the factor, �, by which the stress in the
thin �lms is increased due to thermal mismatch. Solid lines and open circles denote
theoretical predictions and simulation results, respectively. The processing conditions
in the simulations are the same with those in Fig. 5.6.

To validate the above theory, we conducted a systematic protocol of numerical

simulations using the same conditions as those in Fig. 5.6, with � chosen to vary

between 1.0 and 2.8. The initial QD has a radius of � 1:5, as seen in Fig. 5.6(a5). In

the thermal annealing process, with the increase of the biaxial stress level in the �lm,

the dimensionless QD radius becomes ~R = 1:5�2. In each simulation, we count the

number of the formed concentric nanorings, nNR. The simulation results are plotted

in Fig. 5.7 with open circles, and compared with the theoretical predictions, Eq. 5.1,
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represented by the piecewise continuous (staircase) function consisting of the blue line

segments. The comparison exhibits a very good agreement between the theoretical

predictions and the simulation results, thereby validating the nonlinear stress-driven

tip-splitting morphological instability as a theory of nanoring formation.
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CHAPTER 6

TUNING THE BAND STRUCTURE OF GRAPHENE
NANORIBBONS THROUGH

DEFECT-INTERACTION-DRIVEN EDGE PATTERNING

6.1 Introduction

Graphene nanoribbons (GNRs) with widths narrower than 10 nm have outstand-

ing electronic, thermal, and mechanical properties and are considered as very promis-

ing low-dimensional material structures for both front-end and back-end technolo-

gies in future generations of high-performance and low-power-consumption electron-

ics [152�154]. Although a lot of progress has been made in producing GNRs based

on various physical [155�160] or chemical [161�165] processing techniques, fabricating

GNRs narrower than 10 nm remains a challenge.

Another major challenge toward enabling the use of GNRs in future electronic

device technologies is the ability to �ne-tune their electronic structure for optimizing

device performance. It is well known that the electronic band structure of the GNRs

can be modi�ed and their bandgap can be tuned by controlling the GNR width

and edge structure [156, 166]. It has been reported that the GNR width and edge

structure and morphology can be controlled in the synthesis process by choosing

di�erent molecular precursors, resulting in modi�cations of the GNR electronic band

structure [167]. However, systematic physical processing strategies for precise tuning

of the GNR structural and morphological features that determine their electronic

structure character and control their electronic properties remain elusive.

Structural defects in graphene, generated by irradiation with electrons [168, 169]

or ions [95, 170] and placed accurately at preselected positions with almost atomic
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precision [171], play a key role in modifying the structure of GNRs [17, 172, 173] and

tuning their electronic properties [174]. Real-time dynamics of defects in graphene

has been recorded using aberration-corrected transmission electron microscopy [21].

Furthermore, theoretical studies have predicted and analyzed migration of vacancies

in graphene at high temperature [17, 19, 20]. Thus, exploring structural modi�cations

and systematic patterning of GNR edges, through combinations of defect engineering

and thermal annealing to accelerate defect kinetics, and understanding fundamentally

the resulting e�ects on the GNR electronic band structure are particularly interesting

and timely. In this Letter, based on atomic-scale calculations of pore-edge interac-

tion energetics, we design molecular-dynamics (MD) simulations of defect dynamics

near GNR edges and show how such defect-interaction-driven dynamics can be used

to pattern GNR edges: such patterning introduces, in a controlled manner, GNR

structural and morphological features that are capable of tuning the GNR electronic

structure and properties.

6.2 Model and Simulation Methods

The simulated defect-engineered GNR is represented by a supercell with dimen-

sions of 20 nm in the x-direction (GNR axis, with periodic boundary conditions

applied in this direction) and 5-10 nm in the y-direction (GNR width), with a defect

in the form of a vacancy cluster or nanopore located at the center of the supercell in

the x-direction and at a varying distance, d, from a GNR edge, as shown in Fig. 6.1.

Hydrogen or other edge-passivating atoms are not included in the supercell, as non-

functionalized GNR edges can exist in vacuum [175], especially at high temperatures

[22]. The nanopore is constructed by removing full shells of C atoms starting from

the center of a 6-member C ring; this scheme results in pore sizes of N = 6n2, where n

is the number of shells, yielding clusters of 6, 24, 54, 96, 150, : : : C vacancies inserted

in the GNR.
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Figure 6.1: Schematic representation of a simulation supercell of an armchair-edged
GNR, with a 24-vacancy pore in the vicinity of the upper edge of the GNR; d is the
distance between the pore’s center and the GNR edge.

Pore-edge interaction energetics has been calculated in fully relaxed structures

with molecular-statics (MS) computations using a conjugate-gradient algorithm. Nanopore

dynamics resulting in edge patterning has been explored using molecular-dynamics

(MD) simulations. In both the MS and MD simulations, the interatomic interac-

tions were described according to the adaptive intermolecular reactive bond order

(AIREBO) potential [176], as implemented in the LAMMPS software package [177].

In the MS computations, the simulation box size is adjusted to keep the stress equal

to zero in both the x- and y-directions. To accelerate the kinetics of nanopore and

edge morphological dynamics and capture them within MD time scales, our MD sim-

ulations are carried out at high temperature, T , over the range 2000-3500 K, that

remains signi�cantly lower than the melting temperature of graphene [178]. The clas-

sical equations of motion are integrated using the Verlet algorithm with a time step of

1 fs and a NosØ-Hoover thermostat and barostat is employed to control temperature

at the desired level and stress at zero.

To justify the use of the AIREBO potential in this work and to investigate the

electronic band structures of patterned GNRs, �rst-principles DFT calculations have

been conducted within the generalized gradient approximation (GGA) according to

the PBE functional, with plane-wave basis sets for the wave function expansion and

projector augmented wave (PAW) pseudopotentials for the representation of the ionic

cores as implemented in the QUANTUM ESPRESSO software package [179]. Due
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to the large number of atoms (78 - 186 C atoms) in the supercell, only the � point

was used for sampling the �rst Brillouin zone in the calculations of electron density

distribution, employing an energy cuto� of 45 Ry. Structures were previously relaxed

with respect to the internal atomic positions and supercell axial length within a

force tolerance of 10�5 Ry/Bohr. A vacuum layer of at least 15 ¯ was included

in the supercell to avoid spurious interactions between images. Marzari-Vanderbilt

cold smearing was applied with a smearing factor of 0.020 Ry. Finer k-point meshes

(containing no less than 20 k points along the periodic direction) were employed for

the computation of the density of states.

6.3 Comparison of Pore-GNR-Edge Interaction Energetics

Calculated Using the Classical AIREBO Potential and

First-Principles Density Functional Theory

Calculating pore-edge interaction energetics in defective GNRs containing nanopores

requires large supercells, especially when the pore size is large, to avoid any possible

�nite-size artifacts arising, e.g., due to pore-pore interactions between the pore in the

supercell and its periodic images. This makes �rst-principles structural and energetic

computations particularly demanding and MD simulations even more computation-

ally demanding due to long time scales that may need to be probed. Consequently,

employing a reliable classical interatomic potential would be desirable for such compu-

tations. Toward this end, we employed in our study the widely used reactive empirical

bond order potential, AIREBO, for the MS and MD computations. However, such

empirical potentials require careful testing and validation before reaching physical

conclusions based on their predictions. For such validation of the AIREBO potential

for use in the MS and MD computations in this study, we have analyzed the interac-

tion energetics of a small (6-vacancy) pore with the edge of an armchair-edged GNR

represented by a supercell of 1.56 nm in width and 2.83 nm in length, as shown in
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Fig. 6.2(a-f), where the GNR axis is along the vertical direction, and the left and

right ends are free edges, with periodic boundary conditions applied in the vertical

direction. The nanopore consists of 6 carbon vacancies and the distance, d, from the

nanopore center to the GNR edge varies from (a) 1.35 nm to (f) 0.12 nm. The pore-

edge interaction energy Uc�e as a function of d calculated according to �rst-principles

DFT and according to the AIREBO potential is shown in Figs. 6.2(g) and 6.2(h),

respectively; the zero interaction energy level corresponds to the formation energy of

the 6-vacancy pore away from the GNR edge. The two Uc�e(d) predictions are in

excellent qualitative agreement, showing a strong attractive interaction between the

nanopore and the GNR edge, which becomes stronger as the pore approaches the

edge, and in good quantitative agreement as seen by comparison of the corresponding

Uc�e(d) values in the two plots. Some discrepancy in the resulting interaction forces

when the pore is at close proximity to the GNR edge, d ! 0, is expected to have

only a moderate e�ect on the predicted time scale for pore-edge coalescence by the

two methods.
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(a) (b) (c)

(d) (e) (f)

(h)(g)

Figure 6.2: (a-f) Armchair-edged GNR supercells, with the left and right sides being
the GNR edges and the upper and lower sides being subject to periodic boundary
conditions, containing a 6-vacancy nanopore in the vicinity of the armchair edge (left
side) with a distance, d, from the pore center to the GNR edge of (a) 1.35, (b) 1.11,
(c) 0.86, (d) 0.61, (e) 0.37, and (f) 0.12 nm. (g-h) Pore-edge interaction energy, Uc�e
as a function of d, calculated according to (g) �rst-principles density functional theory
and (h) the AIREBO interatomic potential.

6.4 Pore-edge Attractive Interaction

Representative AIREBO results of pore-edge interaction energetics for a 24-vacancy

pore in the vicinity of an armchair-edged GNR edge are shown in Fig. 6.3(a), where

each data point corresponds to a GNR con�guration with the nanopore center at

a distance d from the edge resulting in an interaction energy Uc�e(d). It is evident

that the interaction is attractive with the attraction becoming stronger as the pore

approaches very close to the edge, d! 0. The inset in Fig. 6.3(a) is a magni�cation
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of the main plot for distances d greater that � 1 nm. For such a distance range, the

interaction energy can be described by Uc�e = A=d�, a scaling relation similar to that

for elastic cluster-sink interactions that scale like 1=d3 [180�183]. A log-log plot of

Uc�e(d) is shown in Fig. 6.3(b) to highlight the above scaling relation (through the

excellent linear �t in the log-log plot). This scaling relation is valid over the range of

pore size N that we examined. The dependence of the scaling parameters � and A

on N is shown in the insets in Fig. 6.3(b). In general, the attractive pore-edge inter-

action becomes stronger with increasing pore size. These conclusions on energetics

are supported by �rst-principles DFT calculations.

(a)

(b)

Figure 6.3: (Color online) (a) Pore-edge interaction energy Uc�e for a 24-vacancy pore
near the edge of an armchair-edged GNR as a function of the distance d between the
pore center and the GNR edge. The inset is the magni�cation of the main plot over
the range of weakly attractive interaction energies. (b) log-log plot of the pore-edge
interaction energy Uc�e(d) plotted in (a); the straight-line �t highlights the power law
Uc�e = A=d�. The �tting parameters � and A are plotted as functions of pore size,
N , in the insets.
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6.5 Defect-Interaction-Driven Pore-Edge Coalescence and Edge

Patterning

To examine the e�ects of the attractive interaction between the nanopore and the

GNR edge on the GNR structure and edge morphology, we conducted a systematic

protocol of MD simulations of pore dynamics in GNRs with pores placed in the vicin-

ity of GNR edges, where the attractive pore-edge interaction is strong. Representative

results for the dynamics of a 24-vacancy pore in the vicinity of an armchair edge of a

GNR annealed at 3500 K are shown in Fig. 6.4. Each con�guration in the sequence

of Fig. 6.4 is mapped onto its corresponding local energy minimum. The dynamical

sequence focuses on the defective region of the GNR only, while the entire simulation

supercell is shown in Fig. 6.1.

(a) (b) (c)

(d) (f)(e)

(g) (i)(h)

Figure 6.4: (Color online) Representative quenched atomic con�gurations from a
MD trajectory capturing the coalescence of a 24-vacancy pore with the edge of an
armchair-edged GNR and the resulting edge faceting and V-shaped pattern formation
at T = 3500 K and times of (a) 0, (b) 0.20, (c) 0.44, (d) 0.46, (e) 1.61, (f) 1.85, (g)
2.22, (h) 6.36, and (i) 12.73 ns. The atoms are colored according to their atomic
coordination, Z: green, gold, and light-blue spheres represent atoms with Z = 3, 2,
and 1, respectively.
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As seen in Fig. 6.4(a), the nanopore is initially very close to the armchair edge.

Under the action of the attractive interaction force, the 6-membered C rings be-

tween the nanopore and the GNR edge reconstruct into the 5-7 ring defect, shown

in Fig. 6.4(b). This is followed by the formation of a large carbon ring between the

nanopore and the edge, in conjunction with the formation of two adatoms on either

side of the ring, shown in Fig. 6.4(c). The large ring then collapses into several

dangling short carbon chains, as shown in Fig. 6.4(d). This defective edge structure

eventually evolves to form a monatomic carbon chain that separates the pore from

the rest of the GNR edge. This monatomic chain migrates along the edge as shown

in Fig. 6.4(f), until it attaches to the bottom of the edge feature corresponding to the

original pore edge, completing the coalescence process of the pore with the GNR edge

and forming the rough trench seen in Fig. 6.4(g). However, over time, this trench

becomes increasingly smoother as seen in Figs. 6.4(h) and 6.4(i). The con�guration

of Fig. 6.4(i) exhibits two straight zigzag facets, i.e., linear segments, in a perfect

V-shaped pattern, revealing a C adatom migrating along the edge. The formation of

such a GNR feature is important in terms of GNR patterning because the edge ori-

entation plays an important role in determining the electronic structure of the GNRs

[156, 166, 184, 185]. The length of these zigzag facets is controlled by the size of the

pore that coalesced with the armchair edge of the GNR.

6.6 Minimum Energy Paths and Energy Barriers of Key Struc-

tural Transformations in Defect-Interaction-Driven GNR

Edge Patterning

A sequence of defective GNR con�gurations along the MD trajectory capturing

defect-interaction-driven GNR edge patterning at high temperature has been shown

in Fig. 6.4. Though the underlying structural transformations (kinetic events) appear

to be fairly complex at the high temperature of 3500 K used in the MD simulations

149



of Fig. 6.4, several key reconstructions appear consistently in all the MD simulations

we have conducted over the range of temperature that we examined. Constructing

the minimum-energy paths (MEPs) and calculating the corresponding activation en-

ergy barriers for these structural transformations are particularly useful in order to

estimate the time scales governing nanopore dynamics and GNR edge morphological

response at di�erent temperatures. Here, we show the MEPs and the energy barriers

for three key structural transformations, obtained by climbing-image nudged elastic

band (CI-NEB) [186] calculations with interatomic interactions described according

to AIREBO. The prescribed tolerance for force convergence in these calculations is

0.01 eV/¯.
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Figure 6.5: CI-NEB-computed optimal pathway and energy barriers for the carbon
ring reconstructions between the pore and the armchair edge at the initial stage of
the GNR edge patterning dynamics driven by the pore-edge attractive interaction,
as seen in Figs. 6.4(a) and 6.4(b). The extrema of the energy landscape along the
optimal pathway and the corresponding atomic con�gurations are labeled by the same
capital letters.
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The �rst structural transformation is the reconstruction of two neighboring 6-

member carbon rings into a 5- and a 7-member ring, between the 24-vacancy nanopore

and the armchair edge, as seen in Figs. 6.4(a) and 6.4(b). In the CI-NEB calculation,

57 replicas are used. As seen in Fig. 6.5, the �rst energy barrier, mediating the

formation of a 10-member ring, Fig. 6.5(C), is 3.18 eV and is the highest barrier of

this process. The second energy barrier is 0.85 eV, resulting in the transformation of

the 10-member ring into two neighboring rings, 5-member and 7-member, respectively,

through atomic displacement and C-C bond formation.
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Figure 6.6: CI-NEB-computed optimal pathway and energy barriers for the migration
of the monatomic carbon chain, as seen in Figs. 6.4(e) and 6.43(f). The extrema
of the energy landscape along the optimal pathway and the corresponding atomic
con�gurations are labeled by the same capital letters.

The second structural transformation is the migration of the monatomic carbon

chain, as seen in Figs. 6.4(e) and 6.4(f), toward forming a rough trench on the GNR

edge. In the CI-NEB calculation, 65 replicas were used, with the �rst and last ones

151



shown in Figs. 6.6(A) and 6.6(I), respectively. As seen in Figs. 6.6(A)-6.6(I), the

migration of the monatomic chain consists of four steps: (1) one end atom of the

chain moves downwards and forms a 4-member ring with another three edge atoms,

(2) the other end atom of the chain also moves downwards and forms a 4-member

ring with edge atoms, (3) the 4-member ring on one end of the chain breaks, and (4)

the 4-member ring on the other end of the chain breaks. The energy barriers for these

steps are 2.92, 2.35, 1.62, and 1.48 eV, respectively, as shown in Fig. 6.6. Thus, the

energy barrier controlling the migration rate of the monatomic carbon chain is just

under 3 eV.
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Figure 6.7: CI-NEB-computed optimal pathway and energy barriers for C adatom
di�usion along the zigzag segment of the V-shaped feature on the GNR edge, as seen
in Fig. 6.4(i). The extrema of the energy landscape along the optimal pathway and
the corresponding atomic con�gurations are labeled by the same capital letters.

The third kinetic process is the di�usion of an adatom along the zigzag facet, as

seen in Fig. 6.4(i). In the CI-NEB calculation for this transformation, 25 replicas were
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used. The MEP is simple, as shown in Fig. 6.7, and involves only two steps: (1) the

formation of a 4-member ring and (2) the breaking of the 4-member ring with energy

barriers of 1.99 eV and 1.38 eV, respectively. Thus, the energy barrier controlling the

rate of adatom di�usion along the zigzag facet is just under 2 eV. This explains the

fast di�usion of adatoms along the zigzag facet at the high temperature of the MD

simulations in this study, which is responsible for the smoothening of these linear

zigzag segments in the GNR edge morphology.

We have constructed the minimum-energy paths (MEPs) and computed the corre-

sponding activation energy barriers for all the kinetic processes identi�ed in the above

dynamical sequence of pore migration, its coalescence with the GNR edge, and the

GNR edge pattern formation. The rate-controlling energy barriers for the ring recon-

struction at the initial stage of nanopore migration, the migration of the monatomic

C chain, and the zigzag facet smoothening adatom migration are 3.18 eV, 2.92 eV,

and 1.99 eV, respectively. Using these barriers in conjunction with transition-state

theory gives a time scale for the dynamics of Fig. 6.4 on the order of nanoseconds,

at the high temperature of 3500 K, which is consistent with the time horizon of the

MD simulation of Fig. 6.4. Using these energy barriers, transition-state theory pre-

dicts a time scale on the order of seconds for the above defect-interaction-driven GNR

patterning to occur at 1200 K, i.e., this patterning process can be completed within

reasonable laboratory time scales at much lower temperatures.

We conclude that our computations of interaction energetics, MD simulations of

nanopore dynamics and GNR edge patterning, and time scale estimations at di�erent

annealing temperatures establish a viable physical processing strategy for patterning

GNR edges. This strategy was demonstrated here through nanopore dynamics near

the edge of an armchair-edged GNR, leading to formation of V-shaped edge patterns

of linear zigzag segments, whose length and density can be controlled precisely by the

size and density of nanopores introduced into the GNR.
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6.7 Band Structure and Integrated Local Density of States

of Edge-patterned GNRs

The electronic properties of GNRs with widths narrower than 10 nm depend

strongly on their edge orientations. The atomic con�guration and the electronic band

structure of a narrow armchair-edged GNR are shown in Figs. 6.8(a1) and 6.8(b1),

respectively. The band structure exhibits a bandgap of � 1 eV, implying a GNR

with semiconducting character. However, a GNR with the same width but zigzag

edges has metallic character, showing no bandgap. In brief, being able to manipulate

the GNR edge type along the GNR edge length provides us with means to tune the

electronic structure and properties of the GNRs.

Figure 6.8: (Color online) (a1-a5) Atomic structures of armchair-edged GNRs pat-
terned with V-shaped edge features consisting of linear zigzag segments of various
lengths and (b1-b5) the corresponding electronic band structures. Contour maps of
the integrated local density of states for (a3) over the ranges of energy depicted by
gray and green rectangles in (b3) close to (c) the end of the valence band (VB) and
(d) the bottom edge of the conduction band (CB). (e) Dependence of the bandgap
(Eg) on the fraction of zigzag atoms in the patterned edges (fz).

In the MD simulations of Fig. 6.4, the length and linear density of zigzag edge

segments introduced into an armchair-edged GNR can be controlled in two ways:
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changing the distance between neighboring nanopores, by adjusting the length of the

supercell in our GNRmodel with the same zigzag facet pattern, as seen in Figs. 6.8(a2)

and 6.8(a3), and changing the size of the nanopores, which results in di�erent lengths

of zigzag facets for the same supercell length, as seen in Figs. 6.8(a3)-6.8(a5).

Figure 6.8(b2) shows that the V-shaped pattern of zigzag segments introduced

into the armchair edge of a GNR changes the GNR band structure dramatically. The

lowest conduction band is a �at mid-gap state close to the top edge of the valence

band, resulting in a bandgap of 0.31 eV, narrower than the original 1 eV bandgap of

the armchair-edged GNR. Increasing the density of this edge pattern, Fig. 6.8(a3), this

lowest conduction band moves closer to the top edge of the valence band, reducing the

bandgap further, to 0.27 eV, Fig. 6.8(b3). With the same pattern density, but longer

zigzag segments, Fig. 6.8(a4), the modi�ed GNR has an even narrower bandgap of

0.043 eV, Fig. 6.8(b4). However, with even longer zigzag segments introduced into the

armchair edge, Fig. 6.8(a5), the bandgap vanishes, and the GNR becomes completely

metallic, Fig. 6.8(b5).

In the con�gurations of Figs. 6.8(a2)-6.8(a5), there is clearly a mixture of zigzag

and armchair sites at the GNR edge. To identify the contributions of each atom

type to the electronic structure, the integrated local density of states (ILDOS) is

computed for the con�guration of Fig. 6.8(a3) over the energy range of the bottom

conduction band and the top valence band, highlighted in Fig. 6.8(b3) in green and

gray, respectively, and the corresponding contour maps are shown in Figs. 6.8(c) and

6.8(d). As seen in Fig. 6.8(c), all the atoms contribute to the valence band, while it

is only the zigzag sites that contribute to the lowest conduction band. Zigzag GNRs

are metallic due to introduction of localized edge states near the Fermi level [184].

These results show that the introduction of a few zigzag sites in the armchair edge is

enough to introduce these states in the electronic structure (responsible for the �at

conduction bands in the band structures depicted in Figs. 6.8(b2)-6.8(b5) and reduce
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the bandgap. Consequently, the controlled introduction of zigzag segments into the

armchair edges can be used as a strategy to tune the bandgap of the GNR. Previous

studies have also shown that an interplay of zigzag and armchair edges in GNRs may

lead to signi�cant changes in the electronic structure of the material [184, 185].

To quantitatively analyze the dependence of the GNR bandgap on the number

of �zigzag atoms� in the armchair edges, we de�ne a metric, fz � Nzz=Ntot, i.e., the

fraction of zigzag edge atoms, where Nzz is the number of zigzag atoms at the GNR

edge and Ntot is the total number of edge atoms in the supercell. The bandgap Eg

of various con�gurations is plotted in Fig. 6.8(e) as a function of the zigzag edge

atom fraction fz. The upper set of points correspond to the shortest zigzag segments

shown in Figs. 6.8(a2) and 6.8(a3), with di�erent supercell lengths, showing that Eg

decreases (linearly) with increasing fz. A similar trend is seen for the bottom set of

points which correspond to edge patterns like that of Fig. 6.8(a4) with varied supercell

lengths. The most interesting conclusion that can be drawn from these Eg(fz) results

is that the two strategies for changing the zigzag edge atom fraction, namely, changing

the length of zigzag segments in the V-shaped edge pattern and changing the linear

density of the V-shaped patterns, provide two scales of tuning of the GNR bandgap, a

�coarse tuning� and a ��ne tuning�. Increasing the zigzag segment length can reduce

the bandgap substantially, as shown by the sharp bandgap reduction between the two

sets of Eg(fz) data points. However, by changing the linear density of the V-shaped

patterns, the bandgap can be tuned (linearly) on a much �ner scale, as shown within

the upper and the lower sets of data points. Computational demands aside (e.g., for

fz < 0:06), it is easy to see how the bandgap of armchair-edged GNRs can be tuned

over the range from 1 eV to 0 by using these patterning strategies.
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6.8 Summary and Conclusions

In summary, we carried out a systematic analysis of pore-edge interaction ener-

getics in GNRs and MD simulations of nanopore dynamics in the vicinity of GNR

edges. We found that there is an attractive interaction between the nanopore and the

GNR edge, which can drive the migration of the nanopore toward the edge and its

coalescence with the edge, which is followed by the formation of a V-shaped pattern

consisting of linear zigzag segments for armchair-edged GNRs. First-principles calcu-

lations based on DFT demonstrated a (linear) monotonic dependence of the bandgap

of the patterned armchair-edged GNRs on the linear density of the zigzag edge atoms,

which is tuned by controlling the size and concentration of the pores introduced in the

defect-engineered GNR. Experimental veri�cation of this physical processing strat-

egy will establish it as a viable approach for modifying the electronic structures of

GNRs synthesized in the laboratory and provide additional manufacturing �exibility

for GNR patterning. The �ndings of this study also set the stage for future research

on band structure engineering of graphene-based nanomaterials through patterning

of defect-engineered graphene structures by exploiting thermodynamic driving forces

due to defect interactions.
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CHAPTER 7

SUMMARY, CONCLUSIONS, AND FUTURE
DIRECTIONS

7.1 Summary and Conclusions

In summary, we have extensively analyzed the surface morphological stability

of uniaxially stressed solids, using linear stability analysis, weakly nonlinear analy-

sis, and self-consistent dynamical simulations, based on a fully nonlinear continuum

model for the surface morphological evolution, accounting for the stresses, electric

�elds, thermal gradients, surface free energy, and surface di�usional anisotropy. We

have aimed at developing a physically viable technique for the surface morphologi-

cal stabilization of stressed solids by using various externally applied mass transport

driving forces, e.g., electric �elds, thermal gradients, alone or simultaneously, and

establishing a weakly nonlinear theory for the understanding of the tip-splitting in-

stability that is triggered by long-wavelength surface morphological perturbations to

the stressed solids.

We have found that surface thermomigration driven by a su�ciently strong and

properly directed thermal gradient can inhibit the Asaro-Tiller/Grinfeld (ATG) insta-

bility and stabilize the planar surface and that the Arrhenius temperature dependence

of the surface di�usivity does not a�ect the critical magnitude of the thermal gra-

dient required for surface stabilization. The theory was validated by self-consistent

dynamical simulations according to the fully nonlinear model and predicts a critical

temperature gradient for planar surface stabilization of �100 K/cm for fcc metals

under conditions typical of thin-�lm interconnects.
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We have also found that externally applied thermal gradients can be combined

with externally applied electric �elds as driving forces for surface atomic transport,

resulting in a total e�ective external �eld that can be used for stabilization of the

planar surface morphology against stress-induced morphological instabilities. We

have demonstrated that from the four possible orientation combinations of the two

external �elds, only one (electric �eld oriented along the +x̂ direction and thermal

gradient oriented along the �x̂ direction) allows the two �elds to work synergisti-

cally, resulting in an e�ective �eld stronger than the two applied �elds for e�cient

simultaneous application of electric �elds and temperature gradients. We have also

calculated the critical e�ective �eld strength required in order to stabilize the pla-

nar surface morphology of stressed solids for perturbations of any wavelengths, i.e.,

the e�ective �eld requirement for suppressing the ATG instability completely. The

relative strength of the two synergistically applied external �elds does not a�ect the

critical e�ective �eld strength. We have explored the e�ects on the stressed surface

morphological response of the surface di�usional anisotropy parameters and found

that the response of <111>-oriented surfaces of face-centered cubic crystals is supe-

rior to those of <110>- and <100>-oriented surfaces and that the optimal critical

external �eld strength decreases monotonically with increasing anisotropy strength.

We have developed an analytical theory of secondary rippling, a nonlinear tip-

splitting instability, which can predict the onset of the secondary rippling instability

and the number of secondary ripples formed on the surface of a uniaxially stressed

crystalline solid per original surface perturbation wavelength. We have also exam-

ined the e�ects on the predictions of the theory of surface di�usional anisotropy and

external electric �eld action and validated the theoretical predictions by comparison

with the results of self-consistent dynamical simulations; the theoretical predictions

become less accurate with increasing the initial perturbation wavelength and the com-

plexity of the nonlinear system. Furthermore, we have found that surface di�usional
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anisotropy does not a�ect the number of the formed ripples, but it a�ects the rate of

the rippled surface morphological evolution. Moreover, we have found that externally

applied electric �elds can decrease the critical perturbation wave number for the onset

of the secondary rippling instability, thus reducing the range of wave numbers that

render the surface unstable with respect to secondary rippling.

We have also analyzed extensively the surface roughening of equibiaxially stressed

thin �lms deposited on substrates based on a three-dimensional fully nonlinear model

of surface morphological evolution, accounting for the biaxially applied stresses, sur-

face free energy , electric �elds, wetting e�ects, and surface di�usional anisotropy. We

have found that, in the absence of electric �eld action, the smooth planar morphology

of the strained metallic thin �lm surface is not stable and the �lm surface becomes

increasingly rough under the action of the residual stress until it reaches a steady

state stabilized due to the wetting e�ect. The action of an externally applied electric

�eld can slow down the surface roughening process, and can reduce the surface rough-

ness by orders of magnitude within a period of several hours, achieving atomic-scale

smoothness, when the electric �eld is su�ciently strong and properly directed. We

have also calculated the optimal electric �eld direction that can minimize the electric

�eld strength required to achieve surface roughness reduction.

Based on the same three-dimensional nonlinear model, applied to coherently

strained epitaxial thin �lms, we have found that long-wavelength perturbations (can

be controlled by pre-patterning the substrate surface with buried quantum dot ar-

rays) from the planar �lm surface morphology can trigger a nonlinear instability that

leads to the tip splitting of a single epitaxial quantum dot, which grows as a result

of the Stranski-Krastanow instability, and the formation of multiple quantum dots in

the form of a quantum dot cluster consisting of several closely located smaller-sized

quantum dots with individual tips of variable height. The nonlinear instability occurs

independent of the �lm surface di�usional anisotropy, which only a�ects the resulting
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quantum dot morphology through an asymmetric splitting of the originally formed

quantum dot.

We have also found that due to the di�erence in the thermal expansion coe�cients

between the �lm and substrate materials, the temperature increase during the ther-

mal annealing of the �lm induces additional biaxial strain in the �lm due to thermal

mismatch, which can drive further morphological evolution of the quantum dots and

cause their transformation into nanorings. Our simulation results provide a funda-

mental comprehensive interpretation of the experimental reports in the literature.

We have found that the annealing temperature, the size of the quantum dot prior to

thermal annealing, and the thickness of the wetting layer of the heteroepitaxial sys-

tem have a strong e�ect on the morphological evolution of the quantum dots during

thermal annealing. Our dynamical simulations demonstrate that multiple concentric

nanorings, structurally similar with the reported concentric nanorings fabricated by

liquid droplet epitaxy, can form from su�ciently large quantum dots at su�ciently

high annealing temperatures. We have also provided a fundamental explanation of

multiple concentric nanoring formation from quantum dots on epitaxial �lm surfaces

based on weakly nonlinear stability analysis.

Finally, we have studied the defect engineering (introduction of nanopores) of

graphene nanoribbons with an objective of tuning their electronic band structures

with edge patterning. With systematic molecular-statics calculations, we have found

that there is an attractive interaction between the nanopore and the graphene nanorib-

bon edge, which can drive the migration of the nanopore toward the edge and its

coalescence with the edge, followed by the formation of a V-shaped pattern con-

sisting of linear zigzag segments for armchair-edged graphene nanoribbons. With

�rst-principles calculations based on density functional theory we have demonstrated

a (linear) monotonic dependence of the bandgap of the patterned armchair-edged

graphene nanoribbons on the linear density of the zigzag edge atoms, which is tuned
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by controlling the size and concentration of the pores introduced in the defect-

engineered graphene nanoribbon.

7.2 Future Research Directions

7.2.1 Directed Formation of Quantum Dot Molecules with Designed Mor-

phology

Quantum dot molecules (QDMs) exhibit highly tunable electronic, magnetic and

photonic properties due to the quantum con�nement e�ect, and have wide appli-

cations including photovoltaics, laser equipment, and quantum computing devices.

Techniques that enable the convenient and precise control of the sizes and morpholo-

gies of QDMs are highly desirable. In Section 5.1 of Chapter 5 in this thesis, we have

demonstrated that the thin �lm morphological evolution model and the computa-

tional tools we developed are capable to capture the formation of quantum dots and

QDMs. We have also developed a theory, which can not only explain the reported

experimental observations of formation of QDMs on the pre-patterned substrate sur-

faces, but also can predict the morphology of the resulting QDM based on the initial

substrate patterns. In future studies, we will develop a technique for the directed

formation of QDMs with designed morphology based on pre-patterned substrate sur-

faces. Speci�cally, we will

1. identify some QDM morphologies of great practical interests reported in litera-

ture;

2. design the corresponding initial substrate surface patterns that can lead to the

formation of the desirable QDMs’ morphologies based on our theory;

3. conduct self-consistent dynamical simulations with the theory predicted initial

substrate surface patterns and further validate the theory by comparing the

simulation results with the desirable QDMs’ morphologies; and
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4. collaborate with expert experimentalists to test the theoretical predictions by

comparison with experimental measurements.

7.2.2 Edge Atomic Di�usion in Graphene Nanoribbons

Edge atomic di�usion underlies numerous transport mechanisms in graphene nanorib-

bons (graphene nanoribbons) and defect-engineered graphene, which can be exploited

to develop patterning processes in graphene-based nanostructures and metamateri-

als. Toward this goal, in future research, we will carry out systematic computational

studies to identify the fundamental mechanisms for edge atomic di�usion at graphene

nanoribbons’ edges. Speci�cally, we will

1. conduct a series of molecular-dynamics (MD) simulations according to a reliable

interatomic interaction potential;

2. analyze MD trajectories in both zigzag- and armchair-edged graphene nanorib-

bons to identify the underlying atomic di�usion mechanisms;

3. compute the respective edge atomic di�usivities as a function of temperature,

and determine the activation energy barriers for edge atomic di�usion through

the corresponding Arrhenius plots;

4. construct the optimal kinetic pathways for these di�usion mechanisms and the

corresponding activation barriers by climbing-image nudged elastic band (NEB)

calculations, providing a comprehensive interpretation to the computed Arrhe-

nius plots for edge di�usion; and

5. validate identi�ed di�usion mechanisms and predicted energy barriers by com-

parisons with predictions of targeted �rst-principles density functional theory

calculations.
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7.2.3 Pore-Pore-Interaction-Driven Single-Layer Graphene Sheet Pattern-

ing

Defect engineering is an important method to tune the properties of single-layer

graphene for applications in composite materials, hydrogen storage, and nano-electronic

devices, etc. Nanopores, or a cluster of vacancies, can be easily introduced to a single-

layer graphene using a high energy electron beam or ion beam. In MD simulations,

we found that at high temperatures, the nanopores can migrate and even coalesce

with each other, facilitated by the edge atomic di�usion at the pore edge. With the

understanding of the edge atomic mass transport mechanisms and the formulation

of the pore-pore attractive interactions, the natural next step to make is to explore

the controlled pattern formation in single-layer graphene sheets driven by pore-pore

interactions. Speci�cally, we will

1. study the e�ects of the pore edge curvature on the edge atomic di�usion;

2. formulate the pore-pore interaction potential;

3. identify the mechanisms of pore-pore coalescence;

4. establish a coarse-grained model of morphological dynamics in defect-engineered

graphene; and

5. study the pore dynamics in graphene sheets over longer time scales and larger

length scales and validate the results with carefully designed MD simulations.

7.2.4 Modeling of Nano-Fuzz Formation in Helium-Ion-Irradiated Tung-

sten

Due to its low hydrogen solubility, low sputtering yield, high melting point, and

high thermal conductivity, tungsten (W) is considered as a suitable plasma-facing

material (PFM) candidate for divertor and �rst-wall systems, capable of tolerating

the extreme conditions of high temperature and particle �ux inside fusion reactors
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[187]. However, experiments have shown that helium (He) from linear and tokamak

plasma devices is responsible for the formation of a nanostructure with a fuzz-like

morphology on the W surface after a few hours of plasma exposure. We are especially

interested in fuzz formation under the operating conditions of temperature, He impact

energy, and He �ux expected for ITER’s divertor, which a�ect the reactor performance

leading to increases in the nucleation of He bubbles, retention of hydrogen isotopes,

and production of high-atomic-number dust.

Modifying the continuum model and the computational tools we developed in

Section 4.2 of Chapter 4 in this thesis, we will be able to conduct a systematic protocol

of self-consistent dynamical simulations of the evolution of the irradiated tungsten

surface morphology with an objective of obtaining a fundamental understanding of

the initial stage of fuzz formation and predicting the surface morphological evolution

of helium-ion-irradiated tungsten considered as a PFM. Speci�cally, we will

1. examine a broad range of operating conditions, including surface temperatures

from 1300 to 2300 K, He ion energies from 10 eV to 1 keV, and He �uxes over

several orders of magnitude from 1016 to 1022 m�2s�1;

2. conduct a sensitivity analysis of the key model parameters, such as He concen-

tration and He nanobubble size;

3. identify the critical range of conditions for nanotendril formation on the surface,

a precursor to fuzz-like surface growth; and

4. further extend the model by comparisons of the model predictions with experi-

mental observations, as well as the anticipated divertor performance.
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