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Abstract

CONTINUOUS FUTURE JOINT KINEMATICS PREDICTION

BASED ON SURFACE ELECTROMYOGRAPHY USING NEURAL

NETWORKS AND HYBRID APPROACHES FOR

REDUCED-LATENCY CONTROL

FEBRUARY 2024

SOUMITRA SITOLE, B.E., UNIVERSITY OF PUNE

M.S.M.E., UNIVERSITY OF MASSACHUSETTS - AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS - AMHERST

Directed by: Professor Frank C. Sup IV

This work focuses on continuous future prediction of human upper limb joint

kinematics from muscle excitations measured with surface electromyography (sEMG)

using a novel neural network training approach. The approach aims at leveraging the

inherent lead in EMG signals over observed limb motions to predict joint kinematics

forward in time over a short horizon. The correlation-causation relationship between

EMG and motion is studied to decode and improve the relationship map between

the variables. Unlike a forecasting problem, the presented approach predicts future

joint kinematics at each time-step over the established horizon. The prediction hori-

zon was quanti�ed using temporal alignment techniques between normalized EMG

excitation signals and motion data. Two studies involving 7 and 10 participants were

performed targeting single and multiple degrees of freedom predictions respectively.
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The proposed training strategy was compared to the general neural network training

approach used in other studies that maps current time EMG inputs to current time

kinematic label data using 2 popular neural network architectures: back-propagation

neural network (BPNN) and time-delayed neural network (TDNN). Models trained

using the presented approach consistently showed better training results. The pre-

diction results also showed an improvement of about 5-10 deg in testing RMSE over

the model trained without the phase lead with identical input signals for all subjects

over multiple motion types and multiple degrees of freedom.

Accuracy and generalization performance improvements were further explored by

using state information and hybrid architectures. The state-informed hybrid TDNN

architecture (SIEMG) substantially improved shoulder and elbow kinematics predic-

tion accuracy to upto 5 deg with respect to the baseline measurements. A hybrid

model that combines neurosmusculoskeletal modeling and neural network architec-

tures was also developed for single DOF elbow motion prediction that improved inter-

subject robustness performance. Data curation methods were further explored to im-

prove intra-subject robustness performance. Also presented is a forward kinematics

model using Denavit-Hartenberg (DH) parameterization of the human arm to convert

the predicted joint kinematics to wrist joint center pose as task space input for robot

teleoperation. Using the proposed SIEMG TDNN models trained with the presented

training strategy, the wrist joint center position was predicted with an accuracy of

� 2-3 cm upto 250 ms forward in time. A real-time prediction framework using pre-

trained o�ine networks was developed in ROS (Robot Operating System) to translate

the o�ine work to online. Simulation results con�rm that the o�ine accuracy can

translate well to real-time implementations. The developed architectures and the

proposed training strategy could facilitate reduced latency control using EMG.
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Organization of the Document

The organization of this document is as follows:

Chapter 1 highlights the nature of the problem, the motivation of the study and

lists the speci�c objectives of the work along with it's broader impact

Chapter 2 presents a literature review of the various methods for motion prediction

using electromyography. The key highlights and inferences from other studies are

listed. Knowledge-gaps and opportunities are identi�ed in this chapter to highlight

the signi�cance of the proposed work in this study

Chapter 3 presents all the research methodology employed in this work. The data

collection process, experimental protocol and the data processing techniques are also

discussed further in this chapter. The techniques for studying the temporal and causal

relationship between the variables are discussed along with the di�erent network

architectural designs to leverage the phase-lead for forward predictions. Methods for

improving accuracy and generalization performance are also presented.

Chapter 4 documents all the results of the research methods employed in this work.

The implications of the results are also discussed in this chapter. The chapter also

presents a summary of the di�erent �ndings and observations in this study.

Chapter 5 lists the futureworks relevant to this study.

Chapter 6 presents the conclusion and broader implications of the work.
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Chapter 1

Introduction

1.1 Research Motivation

Being able to anticipate the movements of a person can enable understanding of intent

and planning for smoother interaction in applications such as human-robot interaction

(HRI) and robotic teleoperation. Anticipation highlights the need for approaches that

can predict human motion in real-time. Motion prediction can improve uency in HRI

by minimizing the controller latency through motion planning that can occur before

motions are observed. Predicting motion trajectories of a person's limbs on a future

horizon can provide additional dynamics information to improve the performance and

e�ciency of control systems. Continuous motion prediction is di�erent than intent

recognition which focuses on recognizing an activity or phase of an activity that a

user is engaged in [8, 9].

Human motion is typically captured with camera-based systems or inertial mea-

surement units (IMU) and joint kinematics are computed using inverse kinematics

approaches for biomechanical research and gait studies [10, 11, 12]. Human intent

recognition and motion prediction primarily rely on using bioelectrical signals or me-

chanical signals [13]. Mechanical sensors mainly including position sensor, IMUs and
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force sensors have signi�cant delays in comparison [14]. In terms of bioelectrical sens-

ing, electromyography (EMG) is preferred over electroencephalogram (EEG) due to

better stability and better anti-interference performance[15, 16]. Surface electromyo-

graphy (sEMG) is the technique of acquisition of electrical impulses from the skeletal

muscles on the surface of the skin. The signals are a representation of the neuronal

pulse information relayed by the central nervous system from the brain that brings

about muscle contraction [16]. Additionally, while using EMG the action/motion

does not have to manifest; hence, these techniques are used to identify motion intent

for amputees [17].

One of the early pioneering works in robotics using EMG signals was carried out by

Fukuda and others where pattern recognition algorithms were used to interpret wrist

motion and teleoperate a robotic manipulator [18]. Prior works primarily focused

on discrete level predictions where EMG signals were used for gesture identi�cation

using classi�cation techniques [19, 20, 21]. An advantage of EMG signals is being able

to detect the intent of an individual without the action manifesting itself. Hence use

of EMG for control of prosthetic and orthotic devices is popular [22, 23, 17]. EMG

allows for the natural use of one's own muscles as an input signal to facilitate brain-

computer interactions (BCI) [24]. More recent works augmented EMG signals with

other sensing modalities for motion classi�cation[25, 26, 27, 28]. However, continuous

motion prediction using EMG is a more challenging problem. Hence, these studies are

relatively new and not as common as discrete prediction works [29, 30, 14]. Several

recent review studies have summarized popular EMG-based classi�cation works based

on deep-learning and machine-learning techniques [31, 32, 33]. Scheme et. al sum-

marize the state of the art pattern-recognition control schemes for EMG-based upper

limb prostheses control. Similarly, Fleming et. al present the challenges and prospects

of EMG interfaces for myoelectric lower-limb control devices [34]. Another review by

Halilaj et. al that focused on machine learning in human biomechanics highlights
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Figure 1.1: Generic human-robot teleoperation pipeline. Sources 1 and 6 could result
in delays due to hardware limitations. Sources 2 and 3 could result in communication
or transmission delays depending on the communication protocol used. Sources 3 and
4 could result in computational delays. Source 7 shows the visual feedback delays in
the pipeline if using a stereo camera and headset device to monitor the robot. The
computational delays at sources 3 and 4 can typically range from 20-50 ms. The
communication delays can range to upto 100 ms in Sources 2 and 5. The delays in
visual feedback in Source 7 using headsets and stereo cameras can be upto 150 ms as
identi�ed by works by Zhu et. al [1]. Sub-�gures adapted from other sources [2, 3]

.

that of the 129 reviewed studies from 1996 - 2017 only 11.6 % focused on regression

motion prediction while 88.4 % studies focused on classi�cation and clustering tasks

[35]. Also highlighted in the review by Bi et. al is the lack of a comprehensive review
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on continuous EMG-based motion prediction works [30]. As pointed out by Panagio-

tis and others, this is partly due to the complexity of the musculoskeletal system and,

because the relationship between EMG signals and motion is highly nonlinear [36]

[37]. However, for e�cient interactions with robotic devices, continuous and smooth

control is necessary [38]. The neural signals from the brain's sensory motor cortex are

employed to continuously control the limbic system by relaying the control informa-

tion through the central nervous system (CNS). Understanding this relationship can

also help researchers gain insights into the working of the central nervous system.

Several biomechanical studies establish that bioelectrical signals like EMG have

an inherent lead over motion onset. Mechanical sensors mainly including position sen-

sors, IMUs and force sensors have noticeable delays in comparison [14]. The observed

lead of EMG signals over motion is termed as electromechanical delay and varies be-

tween 10 to 200 ms [39, 15]. A study by Hof et. al mentions that the limited speed of

the activation and deactivation process results in a 50 to 200 ms delay of the muscle

force relative to the EMG [40]. A recent study by Kimpara et. al also highlights

the lead of EMG bursts over force onset [41]. This lead over motion onset and force

production make EMG a promising sensing modality for predicting motion. Studies

by Rakita et. al discuss the e�ects of latency on the control e�cacy during various

mimicry-control applications [42]. In another recent survey on tele-robotics, the im-

portance of low-latency control especially for surgical robots and relevant applications

is highlighted. The survey states that the time-delay issue in teleoperation is still an

unsolved problem [43]. The delays can stem from various sources: communication or

transmission, computational delays or due to hardware limitations. Figure 1.1 shows

a generic teleoperation pipeline with various sources of delays. As per knowledge,

leveraging the lead on bioelectrical signals for continuous future motion prediction

has remained largely unexplored in other studies.
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1.2 Objectives and Scope

The aim of this work is to continuously predict the motion of a human operator using

non-invasive bioelectrical EMG signals by leveraging the causal relationship between

muscle excitation signals and motion onset for robot teleoperation. The highlight of

this work is being able to leverage the electromechanical delay in bioelectrical signals

to reduce the control latency and facilitate reliable future motion predictions. Bio-

electrical signals like sEMG (surface electromyography) read the electrical activity in

muscles which is indicative of the neuronal impulses that the brain sends to selectively

activate (contract or expand) di�erent muscle groups to actuate the limbs around the

joints. Studies have shown that there exists a time-delay between the neural excitation

of the muscles and the actual motion onset also called the action potential build-up

time or electromechanical delay as mentioned before. Current approaches commonly

rely on using position trackers and markers that record human body motions to

teleoperate robots. Using bioelectrical signals for doing so could potentially lead to

reduced control times if one could decode the EMG to motion transformation by

leveraging the electromechanical delay. The hypothesis is that since EMG inherently

leads motion onset, using a skewed relationship map between EMG signals and joint

kinematics could lead to reliable future motion predictions.

The primary research question that this study explores is: How can the phase

lead on EMG signals be leveraged for reliable future motion predictions ? In this

work, we address this question for upper-limb joint kinematics prediction by studying

the correlation-causation relationship between EMG muscle excitation signals and

joint kinematics for establishing a reliable prediction horizon. Based on the obser-

vations from the correlation-causation study, we then use neural network approaches

by proposing a training methodology that leverages the forward predictive ability of

EMG signals over the established horizon for future kinematics prediction. The impli-

cations of the proposed training routine go a long way in terms of myo-electric device
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control and robot teleoperation. Directly leveraging the lead for future predictions

may help reduce the control latency in EMG-based robot teleoperation, prostheses

and exoskeleton control, and improve the overall performance and uency of human

robot interaction.

The �rst objective was to get acquainted with the various methods of mo-

tion prediction using EMG found in literature. The study investigated the di�erent

model-based and model-free techniques to characterize the transformation from EMG

to motion. The objective focused on identifying the use cases, advantages and limita-

tions of various approaches along with the knowledge-gaps and opportunities in the

literature for future research. The methods and the summary of the literature review

have been presented in Chapter 2.

The second objective of the study was to continuously decode the intent of the

human operator since excitation signals govern the cause of motion. To facilitate this,

the relationship between muscle excitations and joint mechanics (joint angles, forces

and torques) had to be modeled accurately. The independent or control variables in

this work were sEMG signals (milli-volts). The work involved exploring their inuence

on current and future-time joint kinematics; hence the dependent variables were joint

angles (degrees). The preliminary works explored upper-limb human body motion

prediction about the elbow (a single degree of freedom). Various neural network

approaches are discussed and a novel network training strategy is presented to leverage

the causal relationship between the variables. The methods have been documented

in Sections 3.4, 3.5 and the results of this study have been presented in Sections 4.1

and 4.2.1.

The third objective built on top of the second objective to improve the prediction

performance of the stated methods. To augment sEMG information, this work also

explored additional state information that includes past motion data in order to

reliably predict future motion. The inputs to the network were enriched with feature
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extracted EMG signals and past state information (past joint angle, velocity data)

for improved performance. A hybrid model that combines feature extracted EMG

inputs and state information including past joint position and velocity information is

discussed in subsequent chapters. The developed architectures have been detailed in

Section 3.6.1 and the results are summarized in Section 4.3.1.

The fourth objective involved preliminary analysis of the robustness perfor-

mance of the developed models. The development of a hybrid model for elbow

kinematics prediction to improve generalization results is presented based on neu-

romusculoskeletal modeling approach combined with deep learning neural network

methods. Two forms of robustness: intra-subject and inter-subject were explored.

Due to highly time-varying nature of EMG signals, good inter-subject robustness

performance is hard to guarantee. Hence, most studies rely on training the models

on each subject and during each testing session to account for the changing sig-

nal characteristics. Combining a biomechanical or neuromusculoskeletal model for

each subject that relies on subject speci�c biomechanical parameters combined with

data-driven learning could potentially help scale the predictions to account for the

idiosyncratic nature of the signals. The hybrid neuromusculoskeletal neural network

modeling approach is presented in Section 3.6.2 and the improved generalization re-

sults are documented in Sec 4.3.2.

The �fth objective was to extend the preliminary elbow prediction work to

multiple degrees of freedom to predict shoulder joint angles along with elbow degrees

of freedom. The shoulder joint was modeled as a 3 DOF joint. The shoulder work was

limited to model-free approaches only since model-based approaches entail building

good muscle models for each muscle which is challenging for a complex joint like

the shoulder. The multiple degrees of freedom prediction results are documented in

Section 4.2.2.

The �nal or sixth objective involved real-time prediction work for translating
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Figure 1.2: Figure shows the research questions posed in this work along with the
planned objectives

the predicted motion on to a robot. For doing so, the o�ine work was migrated online

to perform discrete time prediction on incoming input signals. The implementation

work involved setting up an EMG signal processing pipeline that normalizes, recti�es

and digitally �lters the signals in real-time. The processed EMG excitation signal

was used to predict real-time joint kinematics using the o�ine trained model. The

real-time implementation work was carried out in ROS (Robotics Operating System)

and involved simulations in RviZ (ROS visualization software). Also presented is a

forward kinematics model of the human arm to translate the predicted shoulder and

elbow kinematics to wrist joint center position to be used as a task space input for

teleoperation and relevant applications. The developed framework and the forward

kinematics model are presented in Section 3.8 and 3.7 respectively. The simulation

results and predicted wrist joint trajectories are illustrated in Sections 4.5 and 4.4

respectively.

Figure 1.2 shows the research questions posed in this work along with the planned

objectives stated above. The expected outcome of this work could lead to a better

human-robot interaction experience in the long-term. This would also reduce the

latency in robot teleoperation, prostheses and exoskeleton control and improve the

performance of assist-as-needed technologies.
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Chapter 2

Background

Motion prediction using EMG signals is driven primarily by two approaches: model-

based and model-less [30] as shown in the Figure 2.1. Model-based approaches involve

the use of muscle activity sensors (EMG) along with physics-based or biomechanical

models where the underlying system dynamics and state variables can be explicitly

represented and observed. The most popular model used in literature is a phenomeno-

logical model proposed by Hill [44]. The forward dynamics approach using Hill's

muscle model to predict muscle forces, joint moments and joint kinematics is dis-

cussed in further sections. More sophisticated biomechanical models employ a high

number of subject speci�c parameters which limits their application to real-time con-

trol. Certain calibration techniques involving optimization approaches were reviewed

which help with parameter identi�cation and are discussed in further sections. These

calibration routines help scale the model to di�erent individuals before test time by

solving for the parameters as variables for optimization. The model-free approaches

di�er in that they have an implicit representation of the dynamics and the state vari-

ables are hidden (a black-box representation). Several deep learning neural network

architectures are reviewed.
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Figure 2.1: Model-based and Model-free Motion Prediction Methods

2.1 Model-based Approaches

Most model-based studies use the Hill-based muscle model or a modi�ed Hill's model

for computing muscle forces and joint moments that transform muscle activation sig-

nals derived from EMG to muscle forces. Complex physiological models governing the

neuromusculoskeletal dynamics exist, where the underlying muscle dynamics are rep-

resented by multiple di�erential equations. [45, 46, 47, 48]. As pointed out by Lloyd

and others, Hill's muscle models are phenomenological in nature, i.e., the external be-

havior of the system is characterized rather than the underlying physiology. Hence,

these models are preferred in most studies especially when multiple muscle groups are

considered. The study by Buchananet al. provides a well-documented review of the

neuromusculoskeletal model-based joint kinetics approach. The approach is pretty

historical and forms the basis of majority of recent studies that rely on model-based

methods to decode motion from EMG. This approach is discussed in the next section
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along with it's simpli�cations for real-time use.

2.1.1 General Modeling Practices

Buchanan et al. de�ne neuromusculoskeletal models as a representation of move-

ments produced by the muscular and skeletal systems as controlled by the nervous

system [4]. Obtaining joint mechanics using the neuromusculoskeletal model (NMS)

and EMG data relies on the forward dynamics approach. As shown in Figure 2.2 for

calculating muscle forces, joint moments and kinematics from EMG data, this ap-

proach follows four sequential steps: muscle activation dynamics, muscle contraction

dynamics, musculoskeletal geometry analysis and equations of motion.

The transformation from raw EMG signals to muscle activations involves several

steps including recti�cation, �ltering to obtain the envelope, and addressing further

non-linearities to transform neural activation to muscle activation and is shown in

Figure 2.3. Muscle activation dynamics concern with the conversion of neural signals

or processed EMG signals termed as muscle excitation signals to muscle activations.

The term activation dynamics characterizes the time delay it takes to produce the

force. As pointed out in the works by Hof, in relating force to EMG, the force signal

also has a much lower frequency content than the recti�ed EMG which means the

Figure 2.2: Forward dynamics approach for predicting joint mechanics using neuro-
musculoskeletal modeling. `e' represents the excitation or processed EMG signal. `a'
denotes the muscle activation signal. `F' denotes the muscle-tendon force obtained
using a biomechanical muscle model. `M' denotes the joint moments obtained by mul-
tiplying the obtained force with the moment arm. Adapted from study by Buchanan
et. al[4]
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Figure 2.3: Summary of raw EMG signal to muscle activation signal transformation.
Adapted from works by Manal et. al [5]

muscle dynamics naturally �lter the activation signals from the central nervous system

[40]. Before the signal is transformed to force, the raw EMG signal is �ltered, recti�ed

and normalized. Since, EMG signal carries components of positive and negative

voltage, it has to be recti�ed and normalized in the range between 0 and 1 before

relating to force. DC o�sets and low frequency noise are �rst removed by high-

pass �ltering. The cuto� frequency of the �lter is in the range 5-30 Hz. Notch

�lters are also commonly used to get rid of power line noise [49]. Filtering can be

implemented using a digital �lter or an analog �lter. Most o�ine prediction studies

use a Butterworth �lter (4 th order) that has zero-phase delay properties. MATLAB's

`�lt�lt' functionality is one such �lter. However, it should be noted that zero phase-

delay �lters cannot be applied real-time. Any causal discrete time digital �lter will

induce a delay and phase distortion depending on the type and properties of the �lter.

High-pass �ltering is followed by recti�cation, where the absolute value of signal is

considered making the amplitude of the signal positive. Post recti�cation, the signal

is subjected to normalization. This is done by means of maximum voluntary isometric

contraction (MVIC) trials. By dividing the recti�ed signal with the peak/maximum

recti�ed EMG value obtained during MVIC, the signal is normalized as a percentage

of maximum activation obtained for that muscle. For studies concerning with multiple

muscle groups, it is suggested that the MVIC peak value should be obtained for each
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(a) Hill's Muscle Model

(b) Modi�ed Hill's Muscle Model

Figure 2.4: Di�erent formulations of the Hill's musculotendon model. The muscle is
typically modeled as a combination of parallel elastic component (PE) and contrac-
tile element (CE). The modi�ed or improved model considers another element for
modeling velocity-damping related muscle characteristics shown by the visco-elastic
component (VE). The tendon is shown by the series elastic component (SE).� rep-
resents the pennation angle.

muscle individually [50]. Other normalization techniques have been discussed by

researchers to reduce inter-subject variance [51, 52, 53, 54]. Low pass �ltering is then

carried out to �lter out high frequency components after normalization to obtain the

EMG envelope. For real-time motion prediction using EMG the �ltering, recti�cation

and normalization can be setup during the pre-processing stage.

Some studies deem the processed, recti�ed and normalized signal to be a repre-

sentation of neural activation. However, a more accurate transformation would be

42



to consider the activation dynamics; since the transformation from neural activation

to muscle activation signals is non-linear in nature and also depends on the muscle

under study. This characterization can be done in multiple ways. Zajac modeled the

activation dynamics using the following �rst order di�erential equation [36][4]:

du(t)
dt

+
�

1
Tact

:(� + (1 � � )e(t))
�

:u(t) =
1

Tact
:e(t) (2.1)

whereu(t) is the neural activation; e(t) is the EMG input signal; Tact is the activation

time or time-delay for muscle activation;� is a constant such that 0< � < 1; The

neural activation is then solved by numerical integration for the discrete excitation

e(t) signal.

Milner-Brown used a second order di�erential equation to characterize the acti-

vation dynamics [55]:

u(t) = M
de2(t)

dt2
+ B

de(t)
dt

+ Ke(t) (2.2)

where, M; B; K are constants of the second order system. The above equation can

be written in discrete form and can be solved using backward di�erences. Buchanan

et. al list the following advantages of this second order formulations [4]:

i) Ability to attain good time delay estimates between EMG and force onset

ii) Ability to characterize shorter EMG signal duration than the resulting force

In some cases,u(t) that represents neural activation has been considered equiva-

lent to muscle activation a(t). However, Heckathorne and Childress and others have

shown that even for isometric EMG, the relationship is non-linear [56] [57]. Studies

by T. Koo et al. mention that during isometric and anisotropic contractions this

relationship varies and is slightly non-linear with small gradient in the lower force

range[58]. Buchanan et. al added in another step to account for the non-linearities

to transform neural activationsu(t) to muscle activationsa(t) by using a logarithmic
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function for low values of neural activation [5]. For high values a linear function is

assumed. This is given by Equation 2.3:

a(t) =

8
><

>:

d:ln(cu(t) + 1); 0 � u(t) �� 0:3

mu(t) + b; � 0:3 � u(t) < 1
(2.3)

The coe�cients c, d, m, and b in the above equation can be reduced down to a

single parameter. This single parameter is used to characterize the curvature and is

related to the amount of non-linearity found in the EMG-to-activation. The value of

this parameter is in the range 0.0 to 0.12 approx. Another simpler formulation based

on studies by LLoyd, Buchanan and Manal used shaping functions. This formulation

is given in Equation 2.4 and is more widely accepted [59, 60, 5, 61]:

a(t) =
eAU (t) � 1

eA � 1
(2.4)

In the equation, `A' is the non-linear shape factor and varies between -3 and

0. Updated limits for the shape factor are between -5 and 0 in works by Sartori

et. al[62]. `A' needs to be determined during calibration or model tuning using

optimization techniques. Thelen documents yet another formulation where a non-

linear �rst-order di�erential equation is used for transforming muscle excitation to

muscle activation based on experimental studies and based on previous works by

J.M.Winters and others [63][64]. This is expressed in the following equation:

da
dt

=
u � a

� a(a; u)
(2.5)

where,u is a dimensionless quantity between 0 and 1. The normalized and recti�ed

excitation signal e(t) as mentioned in Equation 2.1 has been considered equivalent

to neural activation u(t) as per their works. � a(a; u) is the time constant and can be
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calculated by the following equation:

� a(a; u) =

8
><

>:

� act(0:5 + 1:5a); u > a

� dact

(0:5 + 1:5a)
; u � a

(2.6)

where, � act and � dact are activation and deactivation time constants and can be

assumed to be 10 to 15 ms, and 50 to 60 ms respectively [36] [63]. The di�erent

activation and deactivation dynamics are characterized by the rate of calcium ions

uptake [64].

The next step is to transform the obtained muscle activations to muscle forces.

This is done by using a muscle model (Hill's muscle model) and is termed as muscle

contraction dynamics. Figure 2.4a and Figure 2.4b show the Hill's muscle model

along with the modi�ed Hill's model respectively which also includes a viscoelastic

component. The Hill's model is actually a musculotendonal model which comprises

of the tendon unit and the muscle unit. Muscles have an active part which generates

force when activated, and a passive part that applies a resistive force when stretched

beyond a resting or slack length like an elastic band. The active part is represented

by the CE (contractile element) and the passive part is represented by the PE (par-

allel elastic component). The velocity damping is captured by the VE (visco-elastic)

element in the modi�ed models.

Muscles demonstrate interesting properties where the force produced also depends

on the history of muscle �ber lengths[65]. For instance when a muscle is stretched

then shortened to and held at a particular joint angle during an isometric contraction

test, it produces more force than the force produced by an isometric contraction test

at the same joint angle with the �ber length shortened before the test and vice versa.

If an individual were asked to perform an isometric contraction test with his/her arm

exed at 90 deg., the force produced would be more if the individual were to extend

his/her arm before the test as opposed to the arm being exed before the test. This
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phenomena is termed as force enhancement and depression [66]. These properties

have been accounted for in modi�ed versions of the Hill's models using visco-elestic

models and other exponential decay models [67] [68].

The total force produced by the muscle element is the summation of active and

passive element forces. The active force is a function of force-length and force-velocity

relationships. Human muscles reach their peak force values when the sarcomeres are

at a length of 2.8 � m [69] and this corresponds to the optimum �ber length. The

total muscle �ber force is given by Equation 2.7:

Fm = ( FCE + FP E )

= [ f L (l ):f V (v):a(t):F o
m + f P (l ):F o

m ]
(2.7)

where,Fm is the muscle �ber force,FCE is the active muscle force from CE andFP E is

passive muscle force from PE.f L (l ) and f V (v) are normalized active �ber force-length

and normalized force-velocity relationships of the contractile element respectively.

f P (l ) is the normalized force-length relationship of the parallel element and denotes

the passive �ber force-length relationship.a(t) is the muscle activation at time step

`t' from Equation 2.4. F o
m is the maximum isometric muscle force.f L ; f V ; f P are a

function of l and v which are normalized muscle �ber length and �ber velocity and

can be obtained using the following set of equations:

l =
lm
lo
m

; v =
vm

vo
m

(2.8)

where,lm and lo
m are the muscle �ber and optimum muscle �ber lengths respectively,

and vm and vo
m are the muscle contraction velocity and maximum muscle contraction

velocities respectively. For the modi�ed Hill's model, the muscle force is:

Fm = ( FCE + FP E + FV E )

= [ f L (l ):f V (v):a(t):F o
m + f P (l ):F o

m + dm :v(t):F o
m ]

(2.9)
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Figure 2.5: Force-length relationships for active and passive elements (adapted from
works by Delp et. al [6])

where, dm is the damping coe�cient of the muscles. Based on Hill's model for-

mulation if the tendon and muscle �bers are considered to be springs in series then

the force experienced by them is the same which is the net musculotendon force. The

muscle-tendon length is given by Equations 2.10 and 2.11 for the Hill's muscle model

and modi�ed Hill's model respectively:

lmt = lm :cos(� ) + l t (2.10)

lmt = lm :cos(� ) + l t1 + l t2 (2.11)

The force-length relationship can be best illustrated by Figure 2.5 using dimen-

sionless units. As can be seen from the �gure, muscles can be assumed to produce

zero force when stretched beyond 1.6 times their optimum length and shortened be-

low 0.4 times the optimum �ber length. The curve in the �gure can be represented

as a second-order polynomial [70] however; a more accurate relationship would be to

model it using a cubic spline interpolation as described by Gordon et al. [71]. In

the previously mentioned studies, Thelen assumed this curve to represent a Gaussian

curve [63]. The force-length and force-velocity equations in di�erent works have been
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well summarized in the study by Romero et al. [72]. These are given by the following

equations [63]:

f L (l ) = e� ( l � 1)2= (2.12)

where,  is the shape factor or half-width of the curve forf l = 1=e respectively.

Commonly used assumption for is 0.45. Silva et. al used the following formulation

for f V (v) [73]:

f V (v) =

8
>>>>>><

>>>>>>:

0; v < 1;

tan � 1(� 5:v)
tan � 1(5)

+ 1; � 1 � v � 0:2;

�
4:tan � 1(5)

+ 1; v > 0:2

(2.13)

The force-length relationship for the parallel element is given by [63]:

f P (l ) =
ekP E (l )="0

m � 1
ekP E � 1

(2.14)

where,kP E denotes the curve shape paprameter and"o
m denotes the maximum muscle

tension strain for the passive components. These relationships also can be represented

using polynomial curves with constant shape factors. Works by Schutte et al. regard-

ing the relationships are also popular in literature [74][75]. Other real-time control

studies made simpler approximations for these relationships. These have been listed

in subsequent sections. Once the above relationships are established, the �nal muscle-

tendon force is given by Equation 2.15

Fmt = Fm :cos� (2.15)

where� is the pennation angle and denotes the angle between the muscle �bers and

muscle tendon. Studies have assumed constant values for the pennation angle in the
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past, however, other researchers have pointed out that pennation angle also changes

as a function of joint angles, muscle groups and muscle activation levels [76]. This

can be characterized by the following equation [77][78]:

� (t) = sin � 1

�
lo
msin� o

lm (t)

�
(2.16)

where lm (t) is the muscle �ber length at time t and � o is the pennation angle at

optimum �ber length ( lo
m )

Once muscle-tendon forces are obtained one can then compute the joint torques

using the musculoskeletal geometry. Musculoskeletal models facilitate the estimation

of length and moment arm for the musculotendonous unit. It is important to note

that the musculoskeletal tendon lengths and moment arms change as a function of

joint angles and also that the models need to be scaled from person to person [4][79].

Fortunately, software tools like OpenSim, AnyBody and BIORBD provide extensive

functionality in this regard [80] [81] [82]. OpenSim is a musculoskeletal modeling soft-

ware widely used in the biomechanics community. Models can be scaled to di�erent

individuals using motion capture data and optimization techniques. The bending or

wrapping of muscle-tendon units is also taken into account and moment arms and

�ber lengths can be computed e�ectively [83][84]. An et.al describe a tendon dis-

placement method, where the moment arm has been expressed as a function of joint

angle (� ) and muscle-tendon length (lmt ) [85]. This is given by Equation 2.17:

r (� ) =
@lmt (� )

@�
(2.17)

The muscle-tendon lengthlmt can be calculated using Equation 2.10. Once the mo-

ment arm r is estimated and the muscle tendon forceFmt is calculated, the joint

49



torque contribution by each muscle can be estimated using the following relationship:

� = r:F mt (2.18)

where� is the joint moment contribution from each muscle.

The musculotendonal force has to be computed for all the muscle groups that

contribute to the joint motion to estimate joint torque. Torque contribution from the

extensor muscle groups needs to be subtracted from the exor muscles' joint torque

contribution to get the net joint torque. Any external torques (� ext ) due to load and

due to gravity also have to accounted for. Newton's equations of motion can then

be used for calculating the angular acceleration of the joint (•� ) once the net joint

moment is known using the following relationship:

� net = I: •� (2.19)

where I is the moment of inertia of the limb. The angular acceleration can be obtained

by:

•� =
� net

I
(2.20)

Equation 2.20 can be integrated to obtain angular velocities and joint angles.

This can be done in discrete time using forward Euler or other techniques as shown

in Equation 2.21

_� k+1 = _� k + •� k :� T

� k+1 = � k + _� k :� T
(2.21)

where � T is the sampling time
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2.1.2 Model Parameter Identi�cation and Tuning

As seen from equations 2.7 and 2.9, it should be apparent that the musculotendon

force Fmt depends on a lot of parameters. Equation 2.22 shows the muscle-tendon

force as a function of activations (a) and other muscle-tendon parameters.

Fmt = f (�; t ) = f (a; lmt ; l; v; r; F o
m ; lo

m ; ls
t ; � o) (2.22)

Along with the parameters, the shape factors for the force-length for active and passive

elements and force-velocity relationships also need to be optimized. Optimization also

includes the parameters of the activation dynamics process in Equations 2.3, 2.4 and

2.6. Lloyd et al. used 18 optimization parameters in their study [59]. Commonly

used optimization parameters are summarized in studies by T.Koo et al. and Miller

[58] [86].

Parameter estimation can be done as part of a calibration routine before the model

is actually used for any predictions. The optimization problem can be formulated

in many ways. For instance, the forward dynamics joint angle estimates and inverse

kinematics joint angle from experimental data can be used to formulate a cost function

as stated in Equation 2.23 and shown in Figure 2.6

min:
nX

i =1

[� meas
i � � pred

i ]2 (2.23)

The model parameters are the optimization variables. It is important to note that

the initial guesses for the optimization need to be close to the physiological values

of the parameters. More importantly, bounds should be imposed on parameters as

per the physiological limits to avoid infeasible parameter estimates. Equality and

inequality constraints can also be set up. Gradient based solvers can then be used

to solve the optimizations [87]. Global optimization techniques like genetic algorithm

(GA) and simulated annealing (SA) have also been used [88]. Optimization can
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Figure 2.6: Model parameter optimization

also be carried out with regards to a set cost function like minimizing muscle e�ort,

joint trajectory smoothing (minimizing joint jerks), etc by means of optimal control

strategies. Erdemir et. al list out some of these methods in their studies [89].

It is important to note that the more parameters a model has, the more compu-

tational overhead. Additionally, this can also lead to over�tting. Model predictions

in study by Zheng et al. matched the joint moments from inverse kinematics closely,

however, Buchanan et. al point out that the parameters were calibrated at every

time instant to minimize the error and such methods often lead to over�tting [90][4].

To avoid over�tting, it is often recommended to test the performance on novel data

by means of cross-validation. The data can be discretized into training, validation
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(a) Biceps long head �ber-length to elbow joint an-
gle relationship

(b) Biceps long head moment-arm to elbow joint
angle relationship

Figure 2.7: Figures show biceps long muscle �ber length, a), and moment arm length,
b), as a function of joint angle. The dotted lines show the polynomial approximations
for the relationships. The relationships were obtained from OpenSim for the upper
limb model by Saul et. al [7]

and testing datasets, where the model parameters are tuned based on minimizing the

error with the training set. The validation dataset can then be used as a metric of

measuring the performance and as a termination criteria as well. Once the perfor-

mance is satisfactory on validation datasets, one can test the model on testing data

sets for predictions. Inclusion of some regularization penalty function in the objective

or cost function might also help avoid over�tting.

OpenSim also has a lot of tools that can aid optimization. For instance, the

53



inverse kinematics tool can be used to compute the joint angles from marker MOCAP

data. The use of musculoskeletal modeling can come in handy here. OpenSim's

static optimization tool can also be used to optimize model parameters [91]. Another

software tool which is used for running predictive simulations on musculoskeletal

models for trajectory optimization problems called OpenSim MOCO can also be

leveraged. Dembia et al. point out that musculoskeletal simulation problems can

be posed as optimal control problems where system's parameters and time-varying

controls that minimize a cost are variables of interest subject to the dynamics of the

system (expressed as di�erential-algebraic equations) [92]. Works by Pizzolato et. al

have lead to the development of Calibrated EMG-Informed NMS Modelling Toolbox

(CEINMS) which can be used with OpenSim for predicting di�erent neural control

solutions for musculoskeletal models and further estimate joint kinetics [93]. CEINMS

is gaining popularity in recent model-based works [94]. Model simpli�cations and real-

time formulations in the reviewed studies have been presented in the next section.

2.1.3 Model Simpli�cations for Real-Time Use

One of the biggest caveats of the techniques listed above from a real-time use case

is that the muscle contraction dynamics rely on the availability of real-time muscle-

tendon lengths or derived muscle �ber lengths, muscle �ber velocities, and moment

arm information for each muscle contributing to the joint motion under study. For

real-world use cases, these variables cannot be accessed or inferred directly unless

one uses other sensing modalities like ultrasound imaging. While optimization tech-

niques can be used to obtain the muscle �ber-lengths and other parameters by using

constraints to minimize error between predicted and measured joint kinematics as

described in previous section, it's not reasonable to use the optimization process to

determine these parameters at each time step for online or real-time use. Hence,

common practice is to use look-up tables or pre-established relationships that express
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the above variables (muscle-�ber lengths, muscle �ber velocities and moment arms)

as a function of joint-angle. When doing so the assumption is that joint kinematic

information is available using an additional measurement system. Musculoskeletal

models developed using OpenSim can often be used in this regard to obtain the

muscle �ber lengths and moment arm information from joint angles. The Open-

Sim musculoskeletal modeling repository is quite comprehensive and contains many

sophisticated models. For example, the following relationships in Figure 2.7a and

Figure 2.7b were obtained for normalized muscle �ber lengths and muscle moment

arms for the biceps long head muscle using an upper-limb model developed by Saul

et. al [7]. The muscle-tendon lengths can also be simpli�ed by using a joint angle

polynomial equation [95][96]. Once the �ber lengths and velocities are obtained as

a function of joint kinematics, muscle tendon forces can be computed in real-time

using the stated equations. Hence, if muscle �ber lengths and moment arm informa-

tion cannot be directly obtained, then the EMG-driven modeling approach is limited

to estimating joint kinetics for real-time studies; and joint kinematics needs to be

obtained using a secondary position tracking system.

The transformation from EMG excitation signalse(k) to neural activation u(k)

at sample `k' for real-time works can be represented by Equation 2.24 [4][97]:

u(k) = �:e (k � d=Temg) � � 1:u(k � 1) � � 2:u(k � 2) (2.24)

� , � 1, � 2 are the coe�cients that govern the second order dynamics. The electrome-

chanical delayd has been optimized in some studies while most studies assume it to
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be between 40 - 80 ms. For a stable solution the following constraints are assumed:

� 1 =  1 +  2;

� 2 =  1: 2;

� � � 1 � � 2 = 1;

where; j 1j < 1; j 2j < 1

(2.25)

This equation is a discrete form of the previously stated Equation 2.2. 2.4 can be

used for the transformation from neural activation to muscle activation.

The active component force velocity relationship valuef V (V) in Equation 2.7 has

been assumed to be 1 in some studies [97]. The following equations for the force-

length relationship for the active and passive elements have been used in literature

for upper limb exion-extension motion:

f L (l ) =

8
><

>:

q0 + q1l + q2l2; 0:5 � l � 1:5

0; otherwise

f P (l ) = e(10l � 15)

f V (v) = 1

(2.26)

where, q0 = � 2:06, q1 = 6:16, q2 = � 3:13. This results in a Gaussian relationship

similar to the one presented by Thelen in Equation 2.12. Works by Pau et. al assumed

the following relationship for f V (v) [98]:

f V (v) =
0:1433

0:1074 +e� 1:409sinh (2:8v+1 :64)
(2.27)

Similar formulations were also used in several other neuromusculoskeletal mod-

eling studies [14][99][97]. Studies by Li et. al and Artemiadis et. al also assume
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the pennation angle to be negligible (� 0o). The pennation angles for the upper

limb muscles are relatively small (� 10o) and the inuence on the resultant force is

marginal. The above simpli�cations can be used with Equations 2.7 and 2.15 to ob-

tain muscle-tendon forceFmt . Muscle moment arms are established using the look-up

tables and joint torque can then be computed using Equation 2.18 by summing all

individual muscle torque contributions.

If joint kinematics are used to compute muscle-tendon force then it is not rea-

sonable to use the optimization routine described in Figure 2.6. Assuming that the

joint angles have been computed using an external position capture system through

inverse kinematics, one can follow an inverse dynamics approach to calculate joint

moments or torques from the IK computed joint angles [100]. Joint velocities and

accelerations can be obtained using discrete time �nite di�erences methods or similar

techniques for calculating time derivatives of joint angle positions. Once the angular

accelerations are known, Equation 2.19 can be used to determine the joint moment.

It is be important to note that this requires an estimate of the moment of inertia of

the segments which can be tricky to obtain. This makes the parameter estimates sen-

sitive to the moment of inertia as well as the motion artifacts during motion capture.

External loads and moments should also be considered during the inverse dynamics

formulation. Musculoskeletal modeling softwares like OpenSim should be used to

aid this process since the segment inertia for the scaled subject-speci�c model can

be inferred. Inertia for each segment is determined based on the segment geometry

and mass distribution of the scaled subject-speci�c model. OpenSim has an inverse

dynamics tool that computes joint moments using musculoskeletal geometry, joint

kinematics and external load information. The computed joint torque from inertia

and joint accelerations can then be used to optimize the NMS model-based torque

estimation. The optimization can be set up as a loss function minimization problem,

where the objective is to minimize the error between the forward dynamics joint mo-
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ment prediction and inverse dynamics joint moment calculation at every time step.

The objective function can be written as:

min:
nX

i =1

[� j
i � � m

i ]2 (2.28)

where,� m is the measured joint torque from inverse dynamics and� j is the forward

dynamics predicted joint moment. i represents the time step or sample.

Studies have also used dynamometers to calculate reference moments and electro-

goniometers for reference joint angles in the past due to motion artifacts in marker

based motion capture for parameter optimizations [59] [58]. In studies by Buongiorno

et al., an exo arm (L-Exos) was controlled using multiple NMS models for predicting

elbow and shoulder motion[101]. This study also shows an exoskeleton joint torque

control strategy with a PD controller. The results from di�erent studies that report

the performance metrics have been documented in the further sections.

2.2 Model-free Approaches

Model-free approaches for continuous motion prediction rely on deep learning models

like neural networks. The concept of using neural networks for predicting motion is

that one can train a neural network through supervised learning to model the re-

lationship between the independent (control) variables and the dependent variables.

The trained networks can then be used for making predictions based on the relation-

ship learnt during training. Several neural network architectures have been used with

EMG data to predict motion. Some of the popular architectures have been discussed

below with their merits and demerits based on implementations in reviewed studies.

Prior to training most studies also extract relevant features from EMG. The general

consensus is that neural networks perform well when trained with extracted feature

data as opposed to processed and recti�ed signals especially due to the nature of
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EMG data [49][102].

2.2.1 EMG Feature Extraction

The goal of feature extraction is to improve the signal quality by reducing the noise

and extracting valuable information for the model to train on. EMG features can

be broadly divided into time domain, frequency domain and time-frequency domain

features. Time domain features analyze how the signal changes with time while fre-

quency domain features analyze the frequency spectrum of the signal. Time domain

features are the easiest to obtain since they do not require any transformations. Such

features are popular for real-time studies. Time-domain features like MAV (Mean

absolute value) and RMS (Root mean square) features are popular along with zero-

crossing (ZC) and slope-sign change (SSC). Wilson amplitude (WAMP) has been

shown to work well for upper limb EMG for elbow motion [103]. These features are

easy to obtain using empirical formulae and do a good job with smoothing the signal

noise. Frequency domain features can be important since studies have shown they

might carry information about muscle fatigue and motor unit recruitment [104][24].

Studies show that fatigue can inuence predictions, hence it is also recommended

to use frequency domain features along with time-domain[38]. Commonly used fre-

quency features are median frequency (MDF), auto-regressive coe�cients (AR), mean

frequency (MNF). Time-frequency domain features like wavelet transform also have

been used however, they are computationally expensive and usually need some trans-

formation [105].

Studies have shown that a lot of features can be redundant and add no new in-

formation to the learning process while adding more computational overhead[106].

Redundant features can also be detrimental to a networks learning process. An ac-

cepted way to select features is a correlation analysis between feature extracted signals
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and features that are highly correlate with one another can be ignored. This is similar

to what dimensionality reduction techniques like PCA (principal component analysis)

or LDA (Linear Discriminant Analysis) perform. It should be noted while performing

feature extraction, the data has to be broken down into small chunks or windows.

The window size can be variable, however it is important to note that the signal

acquisition rate drops down by a factor of the window size. For instance, if EMG

sampling was done at 2000 Hz a feature extraction window size of 100 samples drops

the e�ective sampling rate to 20 Hz. Hence, large sampling window sizes may not

be ideal. If a secondary position tracking system is being used which is often the

case for training or creating labeled data, then the window size can be selected so

as to match the position tracking system's sampling frequency. However, one can

also use overlapping windows to keep the sampling rate high. But when doing so it

is imperative to implement an appropriately timed method [24]. Recent works have

used convolutional neural networks (CNN) to extract important features from EMG

signals rather than using prede�ned feature extraction techniques [107][108].

2.2.2 Neural Network Architectures

The neural network training architectures broadly fall under 2 categories: feedforward

and feedback. In feedforward networks, the ow of information through the internal

mechanisms of the network is in a single direction while feedback networks have

certain mechanisms that allow the ow of information to and fro, from di�erent layers.

Since, neural networks are trained using labeled data this type of learning is called

supervised learning. MATLAB o�ers the deep learning toolbox with an iota of neural

network architectures [109]. Other software libraries like TensorFlow and PyTorch

are also commonly used. In terms of the scalability, MATLAB also provides another

tool called ONNX (Open Neural Network Exchange), which complements the deep
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learning toolbox. This allows for cross-platform support. The developed networks

can be exported to TensorFlow, PyTorch, and other deep learning platforms.

2.2.2.1 Feedforward Networks

The most common architecture of neural networks is a feed-forward neural network.

The motion prediction with EMG is a regression problem where EMG inputs are

mapped to either joint kinematics data or joint kinetics to train. The inputs repre-

sent the EMG signals (muscle excitations) or extracted features from di�erent mus-

cles. When training the network with time-series data, each sample is treated as a

training example. Since the network learns from labels, so the training labels consist

of time-synchronized joint mechanics data. Hence, a joint position tracking system is

often employed for label generation process. Additionally, the systems need to be up-

sampled and downsampled to match the update rates using interpolation techniques.

Feed-forward neural networks learn the relationship between the variables using

the principle of back-propagation [110]. This involves solving an optimization problem

using a loss function where the goal is to reduce the error between the predicted

output and desired output (label). Back-propagation computes the gradient of the loss

function and optimizes the parameters (weights and biases) of the network to minimize

the loss. Figure 2.8 shows the back propagation neural network (BPNN) architecture.

`x' denotes the input EMG signals and i denotes the number of inputs. `y' denotes

the output joint mechanics and subscript j̀ ' denotes the number of outputs. àm;n '

(not shown in �gure) denotes the node output in the hidden layer and is a sum of

the product of weights and previous inputs along with a bias term0b0. `m' and `n'

represent the number of hidden neurons in each layer and the depth of the hidden

network respectively. The output zm;n involves passing the outputa through an

activation function to induce non-linearity. The �nal predicted output is re-scaled to

the expected output range. The output/prediction of BPNN is given by 2.29
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Figure 2.8: Architecture of a back propagation neural network (BPNN)

~� = Wout :
�

2
1 + e� 2(W in + bi n) � 1

�
+ bout (2.29)

where, ~� is the vector of predicted joint angles. Wout denotes the weight matrix

in the output layer and Win denotes the weight matrix in the input layer. bin and

bout are the bias matrices in the input and output layer. The exponential function

term is the non-linearity induced by the hyberbolic tangent (tanh/tansig) activation

function. The advantages of the BPNN are that it is a relatively simple architecture

to implement. Additionally, there is no temporal ow of information or recurrence

and each time sample input gets mapped to it's label independently. This allows

the network to be trained on large amounts of discontinuous data sets collected over

di�erent periods by concatenating the datasets.

The use of BPNN has been really popular in studies using neural networks for

motion prediction and can be inferred from 4.1. Aung et al. used the RMS feature

extracted signal from the EMG data to predict and simulate the shoulder angle on

a 3D avatar using BPNNs [111]. Chen et al. developed a deep belief network which

essentially is a dimensionality reduction technique like PCA. Principal components or
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important features were identi�ed and used as inputs to train the BPNN. Their studies

showed improved performances with average rmse (root mean squared error) less than

5 deg. They also compared the performance of the DBN (deep belief) technique with

PCA both trained using BPNNs, where the DBN signi�cantly outperformed PCA

[112].

The test-time prediction and real-time predictions involve a forward propagation

step using the trained or optimized network weights and biases. The forward prop-

agation step involves a matrix multiplication between the input signal or incoming

discrete signal samples and the weights matrix followed by a matrix addition of the

product with the bias matrix. Consider, we have the optimized network that was

trained o�ine, and Wopt represents the optimized weights matrix andBopt represents

the optimized bias matrix then the joint mechanicsY at the prediction time-step i

using input vector X = ( x0; x1; x2) is given by Equation 2.30

Yi = purelin [� (Wopt:X i + Bopt)] (2.30)

where, x0, x1, x2 are di�erent inputs (muscle groups or features). The trained

parameters (weights,biases) only change during training and the optimized weights

and biases are used for real-time predictions. This is quite similar to model-based

techniques where a calibrated model can be used for real-time works post optimiza-

tion.

The second architecture that is popular is called the time-delayed neural network

(TDNN). The time delayed neural network uses past or delayed inputs for the current

time step for making predictions. The illustration in Figure 2.9 should make this

apparent. The time-delay block represents the previous time-steps of the inputx1.

Adding input delays includes historical information in the learning process of the

network. If multiple muscle signals are included, each time-delay block represents a

series of past time-steps for each input signal corresponding to `i ' samples. Time Delay
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Figure 2.9: Architecture of a time-delay neural network.0t0 denotes the current time-
step

Neural Network (TDNN) use a feed-forward architecture like the BPNN. However, the

delayed inputs allow them to handle contextual information[113] like most feedback

networks. However, for the TDNN the ow of information is still in one direction.

Akhtar et al. used a TDANN (time-delayed adaptive neural network) to predict

elbow exion extension and wrist pronation supination angles[114]. However, along

with EMG signals the neural network was also given shoulder angles from motion

capture as inputs [114]. This was based partly on works done by Kaliki et al. that

suggested distal arm kinematics are strongly inuenced by shoulder angles and can

be estimated using shoulder orientations[115]. The study shows good accuracy while

tracking motions but the predictions are noisy. Kirsch et al. used a time-delayed

neural network for a neuroprosthesis control by recognizing intent[116]. Loconsole

et. al used a TDNN for predicting joint shoulder and elbow torques and for online

control of an exoskeleton [117].
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2.2.2.2 Feedback Networks

When dealing with time-series data, recurrent architectures or feedback neural nets

might be ideal since temporal relationships are also taken into account. RNNs (Re-

current neural network) di�er from TDNN in their architecture. Unlike feed-forward

networks the recurrent neural networks have a feedback. RNN and LSTM (Long

short-term memory) are mostly used for handling sequential data. Temporal dy-

namics is preserved in hidden layers by an implicit state representation. Vanilla

neural networks use di�erent set of weights and parameters for all hidden layers and

training takes place independently. In recurrent network, the output from the last

time-step hidden layer is used for making predictions so the network learns how the

previous output inuenced current output [118]. The output of the current hidden

state is based on past hidden state outputs. This is equivalent to building a knowl-

edge database based on temporal relationships. However, recurrent networks su�er

a problem of short term memory due the vanishing and exploding gradients. Neural

networks learn through back-propagation with the help of gradients of the cost/loss

function with respect to the parameters at each node. The smaller the gradient, the

lesser the node in the network contributes to learning. When recurrent loops are used

over and over, the gradient in the previous layers becomes smaller and smaller and

does not contribute to the `learning' process [119].

Hochreiter and Schmidhuber proposed LSTM networks that can handle and pre-

serve long-term temporal relationships [120]. They do so by means of a memory cell

state, which employs a few gates for forgetting and selecting long term dependencies.

Figure 2.10 shows the LSTM network architecture wheref t , i t , ot are the forget, in-

put and output gates. The internal state of the architecture can be described by the

following set of equations:

f t = � (Wf :[ht � 1; xt ] + bf ) (2.31)
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Figure 2.10: Long-short term memory (LSTM) network architecture

i t = � (Wi :[ht � 1; xt ] + bi ) (2.32)

~Ct = tanh(WC :[ht � 1; xt ] + bC ) (2.33)

Ct = f t :Ct � 1 + i t : ~Ct (2.34)

ot = � (Wo:[ht � 1; xt ] + bo) (2.35)

ht = ot :tanh(Ct ) (2.36)

where,Wf , Wi , WC , Wo are the forget, input, cell-state and output weights, and

bf , bi , bC , bo are the respective biases.� is the sigmoid activation function that maps

the output at each gate in the range 0 to 1.t is the time-step. Like RNN, where one

has hidden recurrent unitsht ; LSTMs use recurrent hidden units but also the cell
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state Ct that forms the knowledge database by selectively forgetting and retaining

past outputs from hidden layers and cell-states.

Several recent studies have used an LSTM network to estimate joint kinematics

[16]. Ma et al. also compared the performance of the LSTM network with the

general BPNN pointing out that LSTM performed slightly better in matching the

motion closely [16]. Studies have also used NARX (nonlinear autoregressive network

with exogenous inputs) which is a recurrent neural network (RNNs) [121] [29]. Song

et al. used RNNs for joint torque prediction [122]. Studies point out that LSTM need

much more time to train, compared with other feed-forward networks. Other studies

(non-motion prediction) for speech recognition, also mention mention a combination

of TDNN-LSTM as well as TDNN-RNN which can be leveraged for motion prediction.

A combination of TDNN with LSTM has shown reduced training times [123]. Grech

et al. compared the performance of BPNN (MLP - Multi layer Perceptron), RNN

and TDNN networks for estimation of upper arm kinematics. They point out that

the performance of all three networks was quite similar to one another making all

of them a good candidate for motion prediction [124]. Studies combining neural

networks and Kalman �lters for predicting motion also have been done in the past.

Due to di�culty of choosing a proper forgetting factor of Kalman �lter for predicting

time-variant torque with EMG, Li et. al suggest using recurrent networks for torque

prediction [14]. Recent works that use hybrid deep learning models with convolutional

neural networks (CNNs) along with RNNs and LSTMs to estimate joint kinematics

from EMG signals are growing in popularity [125, 108, 126, 127, 128].

When building a networks' network, a question often posed is why not use as many

layers and neurons as possible? The answer to the question is: often times it leads

to over�tting. This means that even if the network does a good function approxi-

mation on the training dataset it does not generalize well to novel data. Over�tting

can be avoided by using similar techniques mentioned before like regularization. The
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hyperparameters for the network can be optimized by means of cross-validation by

discretizing the data into training, validation and testing sets. Studies also mention

dropouts and masks as a work around for this issue [129].

2.2.3 Other Approaches

Han et al. used state-space models with Kalman �lters to express the dynamics and

correct estimates from the neurosmusculoskeletal model [97]. Their state-space model

is of the form:

xk+1 = f (xk ; ak) + wk

yk+1 = h(xk + 1) + vk+1

(2.37)

where, xk+1 = [ •� k ; _� k ; � k ]T is the state vector (estimation from neuromusculoskeletal

models), yk = [ y1
k ; y2

k ]T are the second order polynomial equations that relate joint

motion to EMG extracted features. The two values correspond to two EMG features

WL(waveform length) and ZC(zero crossing). These features form the basis of their

model where, the rationale was to estimate joint motion using these features to correct

the predictions from the neuromusculoskeletal model.wk and vk are process and

measurement noise respectively. They further used an Extended Kalman �lter to

linearize the state space model and correct measurements for closed loop feedback.

They also proposed a normalization technique for the features obtained from raw

data to make the system robust to external load. Ding et. al and other researchers

have used identical architectures for robot elbow control and continuous elbow angle

estimation with satisfactory results[99]. Artemiadis et al. have also used Gaussian

and probabilistic modeling techniques where a muscle model was used to control

elbow motion along with a position tracker for controlling shoulder motion on the

robot [38]. The elbow motion was calculated using sEMG electrodes on the biceps,
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while shoulder angle calculation was done by means of a position tracker.

An interesting study done by Artemiadis et al. used muscle synergies and dimen-

sionality reduction methods for continuous motion decoding [37]. They built on top

of other studies where both motion and muscle activations were transformed into a

lower dimensional manifold. Lim et al. showed that 3D motion data can be rep-

resented in a lower two-dimensional space by means of motion/movement primitives

[130]. Similarly, d'Avella et. al showed muscle activations can be represented in lower

dimensional space by means of what they called muscle synergies which preserve the

spatio-temporal relationships in the signals rather than independent muscle activa-

tion signals [131]. Using PCA, the joint angle data gets projected about a plane such

that similar features are clustered together and distinct features are spread out. The

principal components or important features can be identi�ed while other less impor-

tant features can be ignored. Dimensionality reduction methods have been commonly

used in the past for classi�cation techniques but are uncommon for continuous motion

prediction works.

2.3 Literature Review Discussion

In this section, limitations for EMG-based joint mechanics prediction along with

the opportunities for future research are identi�ed. Table 4.1 summarizes the key

EMG-based continuous motion prediction studies with outcomes. The works are

listed in chronological order to highlight the evolution of research. The estimated

mechanics and the approaches used have also been summarized in the table. In the

table, `FD' stands for model-based forward dynamics approach previously described in

Section II and `SSM' stands for state-space model. The commonly used performance

metrics for quantifying performance are RMSE (root mean squared error) and CCR

(cross-correlation coe�cient) compared to the baseline joint mechanics. Some studies
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Table 2.1: Summary of di�erent studies and their results listed in chronological order

Approach Study By Tracked Joint Mechanics RMSE/CCR Method Year

Model-free Au et al. [132] Shoulder, Elbow Angle 14-18,19 deg TDNN 2000
Model-based Koo et al. [58] Elbow Angle 20-35 deg NMS FD 2005
Model-free Kellis et al. [133] Knee Moment 1.6-2.2 Nm Poly Reg 2005
Model-free Song. et. al [122] Elbow Moment 0.35-0.73 Nm RNN 2005
Model-free Smith et al. [134] Shoulder, Elbow Angle 6-30,8-30 deg TDNN 2009
Model-free Pulliam et al. [135] Elbow, Wrist angle 12-17,22-26 deg TDNN 2011
Model-free Akhtar et al. [114] Elbow Angle, Wrist angle 3-9,4-10 deg TDNN 2012
Model-free Zhang et al. [49] Ankle, Knee, Hip Angle 3-12 deg BPNN 2012
Model-based Pau et al. [98] Elbow Angle 7-22 deg NMS FD 2012
Model-free Loconsole et al. [117] Shoulder, Elbow Moment 2.17,1.19 Nm TDNN 2014
Model-free Tang et al. [136] Elbow Angle 10-12 deg BPNN 2014
Model-based Pang et al. [137] Elbow Angle 5-10 deg NMS FD 2015
Model-based Buongiorno et al. [101] Shoulder, Elbow Moments 1.0,1.2 Nm NMS FD 2015
Model-based Han et. al. [97] Elbow Angle 6-7 deg SSM+Kalman 2015
Model-free Ding et al.[138] Shoulder, Elbow Angle 8-15,10-15 deg BPNN,NARX 2016
Model-free Dhindsa et al. [139] Knee Angle 10-15 deg BPNN 2016
Model-free Triwiyanto et al. [103] Elbow Angle 7-17 deg Kalman 2017
Model-free Grech et. al [124] Shoulder, Elbow Angle 10-20 deg BPNN,TDNN,RNN 2017
Model-free Chen et al. [112] Ankle, Knee, Hip Angle 3-8 deg BPNN 2018
Model-free Triwiyanto et al. [140] Elbow Angle 18-20 deg TDNN 2018
Model-free Zeng et al. [141] Knee Angle 3 deg BPNN,NARX 2019
Model-based Li et al. [14] Elbow Angle 7-14 deg NMS FD 2019
Model-free Chen et al. [142] Shoulder, Elbow Angle 6-8 deg LSTM,BPNN 2019
Model-free Huang et al. [143] Knee Angle 8-9 deg RNN 2019
Model-free Ma et al. [16] Knee Angle 4-11 deg LSTM,BPNN 2020
Model-free Xiong et al. [144] Hip, Knee, Ankle Moments 95% VAF BPNN 2020
Model-free Gautam et al. [108] Knee Angle 8-9 deg CNN-LSTM 2020
Model-free Coker et al. [145] Knee Angle 0.6-4.6 deg NARX 2021
Model-free Bao et al. [127] Wrist Joint Angles 0.8-0.9R2 CNN-LSTM 2021
Model-based Zhang et. al [94] Ankle Torque 0.12-0.20 Nm NMS FD 2021
Model-free Zhang et. al [94] Ankle Torque 0.08-0.18 Nm BPNN 2021
Model-free Hajian et. al [126] Elbow Angle, Velocity 0.75R2 CNN 2022
Hybrid Gurchiek et. al [146] Ankle Torque 0.87 Nm NMS FD + ML 2022
Model-based Shah et. al [147] Ankle Torque 0.09-0.18 Nm NMS FD 2022
Hybrid Zhang et. al [148] Ankle Torque 0.06-0.18 Nm NMS FD + NN 2022

have also used R2 (coe�cient of determination) and VAF (variance accounted for)

as metrics of the resulting regression models. Most recent contributions and studies

have focused on the model-free or model-less methods due to the recent trends in

deep learning and accelerated developments in neural network architectures.
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2.3.1 General Challenges

2.3.1.1 Noise and Sensing Limitations

Most studies currently rely on surface electromyography that is obtained from dry

and wearable electrodes to record EMG signals due to their ease and comfort, however

compared to wet and �ne-wire (intramuscular) electrodes they have lower signal to

noise ratio and are prone to motion artifacts due to on-board batteries. Additionally,

with EMG, it's often impossible to create similar testing conditions in the real-world

since a lot of factors: moisture, hair, temperature, motion artifacts and debris inu-

ence the quality of signal acquired. Also since sensor locations dictate the quality and

amplitude of signal, this entails that even with the same subject a trained or tuned

model's performance would vary due to inconsistencies in the signal from targeted

muscle-groups. This also makes inter-subject robustness or prediction generalization

extremely challenging with EMG.

2.3.1.2 EMG Processing Inconsistencies

T.Koo et al. point out that the transformation from muscle activation to muscle force

has not been fully understood yet [58]. While other studies mention that the trans-

formation from EMG to muscle activation signals cannot be accurately represented

[149]. Current sensing modalities or methods cannot measure muscle activations

directly [58]. For most isometric contraction motions, EMG-force relationship is as-

sumed to be linear. That is the case when normalized MVIC excitations are treated

as activations. However, other studies show that during isometric and anisotropic

contractions this relationship varies and can be non-linear in the lower force ranges.

Rather at motor unit level, previously mentioned studies show that muscle force is

associated with exponential rise in �ring rate. While using sEMG, Zajac points out

that a SISO model is used where force outputs from individual motor units are col-
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lectively represented as the net muscle force produced by that muscle [36]. Hence

the relationship between EMG and force changes based on the level of operation

as well. For EMG normalization, MVIC trials have been widely used. However,

sometimes dynamic trials lead to higher activations than isometric contraction tasks

and have been used for normalization [52]. Studies by Yang et. al have discussed

techniques to reduce subject to subject variability post EMG normalization [51]. To

summarize, the current methods and techniques that represent activation dynamics

are quite inconsistent and vary between experiments, muscle groups and also the type

of motions.

2.3.1.3 Non-linearities and External Dynamics E�ects

Another challenge with mapping EMG to joint kinematics is that there might not

be any change in the output for a corresponding change in the input for instance for

isometric contraction trials. Hence, for such cases correlating EMG to joint kinematics

can throw the learnt relationship o� from dynamic trials where a change in EMG

corresponds to a change in joint kinematics. To separate phasic and tonic motion

muscle activations, studies have also used muscle activation dissociation [150][151].

This can identify activations that are a cause of the actual movement rather than

those that contribute to posture/stability. Other studies show how co-contraction

can be accounted for [152]. Additionally, inter-segmental dynamics and movements

around multiple joints can lead to compensatory activations around di�erent muscle

groups to counteract external moments or inertia. All these factors add to the non-

linearities in the EMG to motion mapping.

2.3.2 Knowledge-gaps and Prospects for Future Research

The following future directions for EMG-based continuous prediction works can be

outlined based on literature review:
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2.3.2.1 Robustness Analysis and Generalization Evaluation Studies

Some model-free and most model-based studies summarized in Table 4.1 have re-

ported the training RMSE of the trained model, or optimized model in case of model-

based approaches as the performance metric. However, performance should be estab-

lished on novel/unforeseen data by discretizing the entire dataset into training and

testing subsets or training, validation and testing sets. In their review, Halilaj et.

al also point out the importance of validation datasets and suggest using them for

hyper-parameter optimization and feature selection [35]. One could obtain very good

performance on the training data by over�tting the model to the characteristics of the

training data, however how that generalizes to new data is questionable if performance

is solely established on training datasets. Other subject to subject calibration and

normalization procedures need to be explored to account for the inter-subject signal

variance. Additional signal acquisition methods and better ampli�cation techniques

are other key areas that need work in terms of EMG hardware. A test of the predictive

ability and robustness of the muscle-models of course with the added computational

overhead would be to test on higher degrees of freedom (multiple joints), multiple

muscles, high frequency, in and out of plane, variable speed and ranges of motions,

and over long trials to assure consistent prediction performance with time-varying

EMG signals. An acceptable model should have high intra-subject robustness which

entails generalization over di�erent types of motions as well as good inter-subject ro-

bustness which entails generalization between di�erent subjects. Making predictions

robust to changing nature of the EMG signal is a good prospect for future research.

2.3.2.2 Leveraging the Phase-lead over Motion Onset

Several studies have highlighted the lead of EMG over motion onset [14, 15, 39, 40, 41].

Provided that one can successfully leverage the phase-lead, this can open doors to
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a large number of potential low-latency and high-bandwidth applications including

control of exoskeletons, prostheses and robot teleoperation.

For the model-based approach, it might be promising to experiment with the

time-delay term as part of activation dynamics or by using the predicted joint ac-

celerations from joint moments to extrapolate position over small horizons. One can

also forecast using an auto-encoder model or using state and historical information.

For model-free approaches, di�erent algorithms and training routines can be explored

by studying the causal relationship between joint mechanics and EMG signals. In a

recent study, Camargo et. al checked the inuence of anticipation time on lower limb

joint moment predictions [153]. The phase lead has been used for intent recognition,

but EMG-based continuous motion prediction studies have been rarely explored that

leverage this lead and are a promising future direction.

2.3.2.3 Real-time Control and Sensor Fusion

Model Reference Adaptive Control (MRAC) and Model Predictive Control (MPC)

are powerful optimal control architectures which enable to adjust parameters online

that can potentially leverage these models. Approaches that enable online parameter

estimation or periodic re-calibrations need to be explored thoroughly. Additionally,

real-time control strategies involving closed-loop feedback can help compensate for

model simpli�cations and help generate a con�dence interval for the model estimates.

The motivation for this control comes partly from neuroscience studies by Avella

et al. [131]. In trying to explain the working of the CNS (central nervous system)

that brings about motion, they mention \knowledge of musculoskeletal dynamics is

necessary to implement a feed-forward controller that can launch the arm in the

appropriate direction before sensory information can drive error-correcting controls

through feedback loops"[131]. As to how the CNS solves for or represents the dy-
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namics is still a valid question. The importance of robust closed-loop control has

been pointed out by another study by N.Jiang et. al [154]. Kalman and Extended

Kalman �lter have been widely used in literature for closed loop control as a state

estimator corrector. The Kalman �lter can also be replaced with a closed-loop PD

controller. Works related to sEMG based PD control for real-time robot control have

been mentioned by Artemiadis et al. and others [38][101]. However, most studies limit

their work to o�ine predictions. For real-world applications, establishing good real-

time performance is really important. Good o�ine performance does not necessarily

translate to good real-time performance, since the �ltering approaches and discrete

time prediction techniques might di�er for real-time works thus adding more compu-

tational overhead. Hence, o�ine prediction works need to be extended to real-time

implementations to guarantee good online performance.

Shared control is an emerging �eld that allows better collaborations between hu-

mans, robots and myoelectric devices by using di�erent levels of autonomy [155].

Assistance as needed type of robust adaptive controllers and impedance controllers

using EMG need to be explored further for allowing natural and anthropomorphic

motions. Future studies to examine and estimate human joint and body impedances

from muscle contraction levels are also quite promising. Sensor fusion studies com-

bining gaze, EMG and multiple modalities for control are limited and a good future

direction for motion prediction research.

Using EMG signals one can represent and capture the internal dynamics and

muscle-driven joint mechanics. However, external dynamics like gravity and inertia

also play a major role in human biomechanics. These e�ects are not captured if purely

EMG is used to represent and capture motions. Hence, other sensing modalities that

capture state information and external dynamics should also be considered along with

EMG to improve prediction accuracy.

75



2.3.2.4 Non-traditional Approaches and Training Paradigms

A signi�cant area of contribution is also in terms of online parameter estimation. Most

muscle model-based studies treat the parameters as constants after initial calibrations.

This is one of the major contributors to poor estimates. A one time parameter

calibration might not be ideal especially due to the highly changing nature of EMG

signal since the �xed model parameters may not e�ectively represent the continuous

muscle movements. Online model calibrations or online NMS parameter estimation

hasn't been explored in literature as per knowledge. Similarly, most of the model-free

approaches use supervised learning where the network is trained by using labeled

data. Studies using unsupervised, semi-supervised learning in terms of continuous

EMG based motion prediction are limited. With unsupervised learning the network

would be able to identify and leverage dominant features from the data rather than

programming the network with prede�ned feature inputs. Xiong et. al discuss particle

swarm methods to improve feature selection [156]. This is essential, since the feature

importance may change with time. Having a dynamic feature-set might lead to a more

generalizable prediction especially with EMG. A good future direction is to explore a

robust feature-set that helps the predictions generalize across di�erent test subjects

and di�erent training sessions by reducing the inter and intra-subject variance.

Currently, model-free approaches are mostly trained on o�ine data. With inordi-

nate amounts of data, the models might learn to predict well if a recurrent architecture

is used, accounting for some time-varying nature of the EMG signal. Hence, active

learning and online learning are other key prospects to explore in terms of continuous

motion prediction with EMG [157]. Additionally, most studies train and test the

model's performance on di�erent types of motion for a subject; however this practice

does not lead to generalizable models. Halilaj et.al also suggest concatenating di�er-

ent trials for the same subject in a single data-set for generalizable machine learning

models [35]. Though this observation is true it should be noted that in case of larger
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concatenated datasets, the models that consider and preserve long-term temporal re-

lationships should be used otherwise vanilla feed-forward networks often weigh newer

information more leading to memory loss on information learnt from older data.

Another less explored mechanism in terms of continuous motion prediction using

EMG is transfer learning. A recent study by Zhang et. al leveraged transfer learning

for robustness analysis for improving generalization of their models [148]. Trans-

fer learning involves augmenting and tailoring pre-learnt relationships from previous

datasets for newer data [158]. This essentially augments the learning process from one

dataset rather than starting anew from a randomized guess of network parameters

on new data.

Studies similar to the works by Artemiadis that use muscle synergies are uncom-

mon [38]. The ability to transform to and from higher input-output space to lower

dimensional space has stronger implications than a NN. Though the exact interpreta-

tions of the lower dimensional embedding might be unclear, this work might de�nitely

have deeper biological implications for understanding how humans interact with the

environment with little knowledge about the underlying dynamics. Such works are a

promising future direction.

2.3.2.5 Improving Prediction Accuracy through Temporal Dynamics

For neural network approaches, fast training times were achieved with the BPNN

with acceptable performance. However, as pointed out before temporal information

can be critical especially due to the time-varying nature of EMG signals. Recurrent

architectures and LSTMs might be preferable since the temporal dynamics are pre-

served implicitly. It would be interesting to see for longer trials if the networks can

account for muscle fatigue through training. Most studies did not involve long tests

or training trials. However, works by Zhang et. al. using BPNN network surprisingly
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show satisfactory performance for long test sessions as well [49]. Networks considering

long-term temporal dynamics might be key for robust prediction since the premise

behind activation dynamics is that it takes a certain amount of time for the action

potential to build up. Other interesting behaviors showcased by the muscles are `force

enhancement' and `force depression'. As mentioned before, the muscle activations for

an isometric contraction trial are higher if an individual �rst fully extends their arm as

opposed to the isometric contraction trial after fully exing the arm. This observation

implies that the force produced not only depends on the current joint con�guration

but also on the history of positions (or joint angles) the limb has traversed [65][159].

These characteristics justify modeling temporal dynamics and support temporal his-

tory based architectures. Hence, RNNs and LSTMs should be preferred over vanilla

neural-networks or feed-forward neural networks. If feed-forward networks are used

to save training or computational times, architectures that consider temporal history

like TDNN should be preferred.

2.3.2.6 Exploring Hybrid Models and Architectures

Neural networks perform well with enough training on real-world data. Early works

by Rosen et. al also point this out in their their study while comparing Hill's muscle

models to neural networks for exoskeleton control [160]. The ability to relate and

quantify the learned parameters from a deep learning network with equivalent physics-

based parameters used in the model is perhaps the biggest missing piece. Embedding

laws of physics or �rst order principles in the learning process or in the latent space of

the model is another key area of focus. Physics informed neural networks are gaining

popularity for solving certain problems [161][162].

Model-based predictions can capture the underlying dynamics, making them use-

ful for accurately simulating new behaviors by being resistant to external distur-
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bances. In contrast, neural networks learn the statistical relationships between inputs

and outputs, and predicting new behaviors can present a challenge if the inputs are

not closely related to the data the network was trained on. Model-based approaches

are governed by the laws of physics, resulting in predictions that are constrained by

the physiology of the limbs. On the other hand, model-free approaches can work well

in real-world settings with su�cient training, and research should focus on improving

data curation to improve robustness and generalization. To leverage the strengths of

each paradigm, the best practice would be to combine model-based and model-free

architectures for accurate and robust predictions.

Sartori et. al discuss a hybrid model with NMS to overcome some of these compu-

tational challenges with model-based EMG prediction [163]. Hoang et. al report that

EMG-informed NMS models can account for co-contraction e�ects [164] which would

be hard to capture using neural networks if they are not explicitly trained. Pan et. al

also report improved performance using muscle models for wrist kinematics prediction

[165]. Studies that have augmented physics-based models and deep learning models

for EMG-based motion prediction are extremely rare in literature. Only recently have

researchers explored combining these paradigms for improved performance and gen-

eralization [148][166]. For EMG-based motion prediction studies, a hybrid predictive

control architecture that combines model-based approaches with data-driven learning

methods is a good future direction.

2.3.3 Use Cases and Broader Implications

The use cases for each approach are subject to the application or nature of the prob-

lem. Model-based approaches are the obvious choice for biomechanical studies or in

a clinical research setting and for designing prostheses, braces or myo-electric devices

where understanding the underlying physics is important. Model-free techniques pre-

vail where real-time performance and computation time are important and are ideal
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for robot teleoperation or for real-time control of prosthetic and myoelectric devices.

Model-free methods also are easily scalable for predicting motion across multiple de-

grees of freedom. Augmenting multiple muscle signals, one to many mappings between

inputs and outputs like MIMO (multiple input multiple output) models are fairly sim-

ple to achieve. With model-based approaches, this would entail developing a muscle

model for each muscle, calculating muscle forces and torques individually, and �nding

the wrapping characteristics of the muscles and moment arms for the musculoskeletal

system. Real-time multi-scale implementations using multiple models that compute

forward dynamics at each time-step adds more computational overhead.
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Chapter 3

Research Methodology

Motion prediction using EMG signals is driven primarily by two approaches: model-

based and model-less [30] as stated before in Chapter 2. To summarize, model-based

approaches use physics-based models to capture the dynamics while model-free ma-

chine learning and deep learning architectures employ training to learn the statistical

regularities in the data to implicitly capture the dynamics and generate predictions.

In the previous section and our prior works we have detailed the methodology behind

the two paradigms and compared the merits and weaknesses of each approach [167].

In terms of real-time performance and simplicity of use, model-free approaches

have several advantages. Though simpli�ed models could reduce computational

costs, the current model-based approach for EMG to motion decoding relies on many

subject-speci�c parameters, and tuning or calibrating these parameters requires op-

timization. The model calibration process is no di�erent than solving a curve-�tting

problem. The optimization process is quite analogous to the supervised learning and

back-propagation principle the neural networks employ to build an implicit relation-

ship map between inputs and labels during the training process. Due to computational

e�ciency and real-time performance, the model-free approach was employed in the

preliminary works.
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However, capturing the entirety of the variance of the signals using a purely black-

box representation might not be ideal, and physics-informed models might help nudge

the learning process from data in the right direction. From a philosophical perspec-

tive, one could also argue that science should improve our knowledge and under-

standing of the world. Even highly complex models can fail to capture the entirety

of the governing physics and dynamics behind a process. However, this in part is

also due to the noisy nature of the world in general. It can be established that it

is not important to have a perfect model but rather a parametric model that scales

or generalizes well to noisy real-world data. As seen in Section 2.1, researchers have

done a lot of work understanding and representing the dynamics governing the neu-

romusculoskeletal control processes. Hence, using simple NMS models and re�ning

them using learning-based and data-driven approaches might be a good approach.

Model-less techniques can then be used to complement the models for robust real-time

control. Hybrid models were investigated in further works for improved robustness

and generalization performance.

3.1 Overview of the Work

Based on the inferences, knowledge-gaps, and prospects identi�ed from the literature

review to realize the planned objectives, the proposed research methodology has been

detailed in this section. The summary of the involved work that took place as part

of the dissertation research in chronological order is as follows:

1. The causal relationship between the variables was studied through temporal

analysis. Since the basis of regression is causality, temporal analysis techniques

like sample cross-correlation were used for comparing discrete EMG and kine-

matics time-series signals. The inferences from the correlation study were used

for establishing optimal prediction horizons using EMG for future kinematics
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predictions. This di�erentiates this work from other neural network studies that

map current time EMG inputs to current-time kinematic label data.

2. A novel training approach has been presented for training the networks to lever-

age the horizon for improved performance and for reliable forward or future-

time predictions. The improvements of the proposed training strategy were

compared to the general training approach used in other neural networks and

EMG-based motion prediction works that does not leverage the forward predic-

tion horizon. Two neural network architectures were used to demonstrate the

training methodology. This work was carried out on seven participants on var-

ious elbow exion-extension movements to validate the e�cacy of the training

methodology.

3. To con�rm the scalability of the proposed approach for multiple degrees of

freedom prediction, the training strategy was applied to ten more subjects to

predict combined shoulder and elbow joint kinematics. Similar to the elbow

study, performance comparisons have been presented between the general and

the proposed training strategy.

4. To further improve the accuracy of predictions, a feature-extracted model and

a state input model were explored in subsequent works. A hybrid model was

developed that leverages the advantages of both independent models by train-

ing the networks on state and feature extracted EMG data simultaneously. The

model architectural design and the prediction accuracy improvements are fur-

ther discussed in this Section.

5. Preliminary robustness analysis was carried out using the above approaches

and architectures to test the generalization performance of the developed mod-

els. Model simpli�cations and data curation approaches have been presented

to improve the generalization performance of the models while still leverag-
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ing the prediction horizon. Another prospect that was explored was a hybrid

model-based and model-free architecture. A neuromusculoskeletal model was

developed for estimating elbow joint torque and musculoskeletal forces. The es-

timated torques and forces were used as additional state inputs in the previously

developed state-informed EMG based prediction model.

6. Also discussed are developments and preliminary works towards a real-time

framework in ROS (Robotics Operating System) that uses the trained o�ine

network parameters for predicting upper-limb motion in real-time. A real-time

processing node was developed to �lter, rectify and normalize the raw EMG

sensor data stream in real-time. The processed signals were used as inputs

with pre-trained neural networks to predict motion in real-time. A forward

kinematics model that translates the predicted real-time shoulder and joint

kinematics was also developed and implemented in ROS. These developments

towards the real-time pipeline have also been documented in this Section.

3.2 Data Collection

Data collection for this work was carried out at the Institute of Applied Life Sciences

motion capture lab at the University of Massachusetts Amherst under an approved

protocol by the Institutional Review Board (IRB) and informed consent from all

participants. We performed two sets of data collections across two studies targeting

single and multiple degrees of freedom.

3.2.1 Study I - Upper Limb Elbow Motion

The �rst study was conducted on 7 (5M, 2F) healthy participants with population

details (mean� SD) being ages: 28� 10 yrs, heights: 175� 10 cm, weights: 75� 25

kg) across 9 testing sessions, the �rst three being multiple sessions for subject 1 on
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Figure 3.1: Data collection setup for the subject using 3 EMG electrodes placed on the
upper-limb and 19 photo-reective markers. The �gure shows the static calibration
trial for the subject.

di�erent days.

3.2.1.1 Experimental Setup - Study I

Figure 3.1 shows the experimental setup for this study. We used eleven anatomical

markers for joint localization and three tracking clusters each with four reective

markers with a total of 23 markers. The tracking clusters were placed on the up-

per arm, forearm and back to track the humeral segment, forearm (ulna-radius) and

torso motion. Three EMG sensors were placed as per Surface Electromyography for

Non-invasive Assessment of Muscles (SENIAM) guidelines on the biceps long, triceps

lateral, and triceps long heads respectively for obtaining EMG signals [168]. Qualisys

Track Manager (QTM) software was used for recording both motion and EMG data

over a TCP/IP socket protocol with a trigger that allows time synchronization be-

tween the camera MOCAP system and the EMG system timestamps. EMG sampling

was carried out at 2000 Hz while MOCAP was done at 200 Hz.
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3.2.1.2 Experimental Protocol - Study I

The subjects were instructed to perform periodic and aperiodic motions about the

elbow. For the periodic trials, the subjects performed exion-extension motions at

3 prede�ned speeds: 60, 90 and 120 beats per minute (bpm) using a metronome

where each beat matched to a full exion or extension state. For the aperiodic trials,

the subjects performed variable frequency and full range of motion trials (VFFR) as

well as variable frequency and variable range of motion trials (VFVR) to add more

randomness to the motion. We recorded 2 sets of trials for each type of motion for

every subject which corresponded to 6 trials for periodic motions and 4 trials for

aperiodic motions for each subject resulting in 10 total dynamic trials. For aperiodic

VFFR trials, the subjects were instructed to perform a full range of motion exion and

extension cycle at fast and slow voluntarily changing speeds. For the VFVR trials, the

subjects were also instructed to voluntarily change the range or amplitude of motion

and add pauses whenever they deemed �t along with the changing speed. The trials

were performed about the sagittal plane for the elbow and the subjects were told to

minimize any exion-extension motion about the shoulder joint to e�ectively lock the

shoulder degrees of freedom. For the testing sessions, each trial lasted for 60s. We

also performed a 30s long static trial for each subject where the subjects were asked

to perform a `T' pose. Maximum volitional isometric contraction (MVIC) trials for all

muscles were recorded by carrying out two isometric contraction tasks corresponding

to the exor and extensor muscle groups for each subject. The 90 deg. exion MVIC

trial was used for normalizing biceps long EMG signal while the extension MVIC trial

was used for normalizing triceps lateral and long EMG signals. 2 additional testing

sessions on subject 1 were carried out over di�erent days to establish the repeatability

of the estimated prediction horizon which has been explained further in the Results

Section.
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Figure 3.2: Data collection setup for the subject using 10 EMG electrodes placed on
the upper-limb and 23 photo-reective markers.

3.2.2 Study II - Upper Limb Shoulder & Elbow Motion

The second study was conducted on 10 (6M, 4F) healthy participants (ages: 29� 9

yrs, heights: 172� 10 cm, weights: 77� 27 kg). Motion data was recorded using photo-

reective markers and Qualisys camera-based motion capture system, while the EMG

data was collected using Delsys Trigno EMG sensors for both studies. Prior to the

combined shoulder and elbow (4 DOF) study, we did a 3DOF pilot study for shoulder

degrees of freedom predictions with 1 subject for checking associated shoulder muscle

activity to �nalize the candidate muscles.

3.2.2.1 Experimental Setup - Study II

For the preliminary pilot study for shoulder motion prediction, we recorded EMG

signals from seven EMG sensors placed on the pectoralis major, anterior deltoids,

medial deltoids, posterior deltoids, upper trapezius, middle trapezius and serratus
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anterior muscles. For capturing the shoulder degrees of freedom, the major muscle

groups were identi�ed for the targeted degrees of freedom as shown in Table 3.1.

These muscle groups have also been targeted in recent EMG-based motion prediction

works for capturing shoulder motion [124, 142, 169]. Other muscles like the teres

major, teres minor, subscapularis and infraspinatus play an important role especially

for internal external rotations, however some of the back muscles being deep tissue

muscles, the activity is hard to record using sEMG electrodes. Some studies have used

upto 16 muscles to obtain good quality EMG signals for shoulder motion however,

with greater number of inputs, the greater the risk that a model over�ts. Hence, the

pilot study was important to check if the selected set of muscles were deterministic

enough with the proposed approach for shoulder motion prediction. Figure 3.2 shows

the experimental setup for the combined shoulder and elbow motion prediction study.

For the pilot study on shoulder motions, the setup was similar except for the 3 EMG

electrodes placed on the biceps and triceps long and lateral head muscles as shown in

the previous Figure. The anatomical markers for joint localization and the number

of tracking clusters was the same as the elbow motion study.

For the combined shoulder and elbow prediction study, we used ten EMG sensors

for recording combined muscle activity for shoulder and elbow motion. For record-

ing shoulder activity as done in the pilot study, seven EMG sensors were placed

on the pectoralis major, anterior deltoids, medial deltoids, posterior deltoids, up-

per trapezius, middle trapezius and serratus anterior muscles. For recording elbow

muscle excitations, three sensors were placed on the biceps long, triceps lateral, and

triceps long muscles as done in previous study. The anatomical markers and number

of tracking clusters was the same as the pilot study. As stated before, QTM software

was used for recording both motion and EMG data. EMG sampling was carried out

at 2000 Hz while MOCAP was done at 200 Hz.
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Table 3.1: Targeted shoulder degrees of freedom and the dominant muscle groups

Shoulder Motion Major Muscle Groups

Shoulder Abduction
Anterior Deltoid
Medial Deltoid

Posterior Deltoid

Shoulder Adduction
Pectoralis Major
Serratus Anterior

Shoulder Flexion
Pectoralis Major
Serratus Anterior

Shoulder Extension
Serratus Anterior
Posterior Deltoid

Shoulder Horizontal Abduction
Serratus Anterior
Posterior Deltoid

Shoulder Horizontal Adduction
Pectoralis Major
Anterior Deltoid
Middle Trapezius

Shoulder Internal Rotation
Pectoralis Major
Anterior Deltoid

Shoulder External Rotation
Posterior Deltoid
Middle Trapezius

3.2.2.2 Experimental Protocol - Study II

For the preliminary pilot study for shoulder motion prediction, we recorded 3 trials

each of shoulder abduction adduction, exion extension, horizontal abduction adduc-

tion and internal external rotation (with elbow exed at 90 deg.). These motion are

shown in Figures 3.3 a-d. The subject cycled through the movements through the full

range of motion for each degree of freedom. Along with the above periodic trials, we

also performed a combined motion trial where the subject performed all the above

motions along with circumduction movements in a single trial. The shoulder abduc-

tion adduction, exion extension, horizontal abduction adduction and the combined

motion trials lasted for 60s while the internal external rotation trial with the exed

elbow lasted for 30s since subject reported the onset of fatigue early for this type of

motion. 15s long MVIC trials were performed to normalize all the signals and a 30s
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(a) Shoulder exion extension (b) Shoulder abduction adduction

(c) Shoulder horizontal abduction adduction (d) Shoulder internal external rota-
tion

Figure 3.3: Shoulder motions carried out during the pilot study for shoulder (3 DOF)
motion prediction

long static trial was performed for subject-based musculoskeletal model scaling.

For the combined 4DOF study, the subjects were instructed to perform reaching

tasks or virtual pick and place tasks about the transverse and sagittal planes. The

selected reaching motion is agnostic to the type of task one performs and characterizes

a broad range of day to day activities that humans perform. Hence, predicting motion

for these movements could lead to generalization over a wide range of activities and

would apply to robot teleoperation as well.

As shown in Figure 3.4, for the reaching tasks about the transverse plane, the

subjects were instructed to visualize three virtual targets [1,2,3] in front of them with

the home position being the center of the chest [0]. For the reaching tasks about

the sagittal plane, the subjects were asked to reach out and touch targets 4,5 and

6. The subjects were asked to reach out and touch each target and then ex their
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Figure 3.4: Testing protocol for the combined shoulder and elbow motion study
(Study II). Virtual points on the grid 0,1,2,3 were used for the transverse plane
reaching tasks while points 0,4,5,6 were used for sagittal plane trials. For the combined
plane of motion reaching tasks all points on the virtual grid were used.

elbow to reach the home position after every extension. The subjects kept cycling

through the targets without a predetermined order. We recorded 3 sets of trials for

the transverse plane as well as the sagittal plane reaching tasks resulting in 6 trials

constrained to a selected plane of action. For the combined out of plane motion

trials, the subjects were instructed to reach out and touch all targets at fast and

slow voluntarily changing speeds without a predetermined order. The subjects were

also asked to pause voluntarily for a couple seconds during the trial. 2 trials were

performed for combined planes of action. This resulted in a total of 8 dynamic trials.

A 30s long static trial was also performed for each subject where the subjects were

asked to stand in a `T' pose. Each trial about the transverse and sagittal plane lasted

for 60s. For the combined plane of motion trials, the �rst trial lasted for 60s and the

second trial lasted for 120s. Maximum volitional isometric contraction (MVIC) trials

were recorded by carrying out six isometric contraction tasks (4 for shoulder and 2

for elbow) for each subject.
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3.3 Data Processing

All the computational work was carried out using an 18-core, 40 thread Intel i9-

7980 XE processor computer with 32 GB RAM and an Nvidia GTX 1050Ti graphics

card. OpenSim software was used to create a scaled musculoskeletal model of all

subjects [80]. We used the upper extremity MoBL-ARMS model for elbow motion

with shoulder degrees of freedom locked out [7]. For the pilot study on shoulder

motion prediction we used the same MOBL-ARMS but with the shoulder degrees

unlocked. The MOBL-ARMS model however does not use the traditional exion-

extension, abduction-adduction and internal-external rotation degrees of freedom for

the shoulder but rather combined degrees of freedom to factor in the scapular motion

and the complexities of the shoulder joint. The shoulder joint is still modeled as a

3 DOF joint in this model but the coupled degrees of freedom are: elevation angle,

shoulder elevation (thoracohumeral angle) and shoulder rotation. However, for the

combined shoulder and elbow motion study conducted on 10 subjects, we switched

to the Rajagopal full-body model [170]. This model uses the more commonly stud-

ied degrees of freedom for the shoulder: exion-extension, abduction-adduction and

internal-external rotation. The anatomical marker sets were used for model scaling

using static trials. The joint angle trajectories for all dynamic trials were calculated

using OpenSim's inverse kinematics tool based on the tracking cluster marker sets

[80]. For inverse kinematics computation, the tracking clusters were weighted more

than the anatomical markers during the optimization routine. The obtained joint

kinematics were �ltered using a 6 Hz low-pass �lter for smoother joint trajectories.

The obtained raw EMG signals were high-pass �ltered, recti�ed, and low-pass

�ltered using a Butterworth style �lter of order 1. Most studies use a 4th or higher

order �lter with a steeper roll-o�, however that also adds delays in processing. In

a study by Yael et. al it's pointed out that neurophysiological signal �ltering often

leads to temporal delays and phase distortions compared to the actual neural activity.
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An implication of this work is that that the lead on neural events as compared to

motion onset could potentially be larger if accounted for the �lter delays and phase

distortions [171]. Hence, to reduce processing delays we kept the �lter order low. We

also used a causal real-time �lter (`�lter' in MATLAB) as opposed to `�lt�lt' used

in other studies since `�lt�lt' cannot be used for real-time implementations. High-

pass �ltering was used to remove motion artifacts while low-pass �ltering was used

to obtain the �nal EMG envelope. The cuto� frequencies for the high and low-pass

�lters were 20 Hz and 6 Hz respectively. Similar �ltering approaches have been used

with the Delsys Trigno EMG system in other studies [14][49]. The EMG signals

were normalized using the MVIC trial data for each muscle group. The joint angle

signal was upsampled during post-processing to 2000 Hz using Fast-Fourier transform

interpolation in MATLAB to match the EMG sampling rate.

3.4 Causality and Prediction Horizon

Human limb motion is caused by neural input signals from the brain relayed through

the central nervous system to di�erent muscle groups leading to contraction. As

EMG reads the muscle excitation signals, the signals capture the causal information

that leads to motion about a joint. Qualitatively there is a well-established causal

relationship between EMG signals and joint mechanics. Time analysis techniques like

cross-correlation and dynamic time-warping were used to observe the trend between

the signals to investigate and gain insights about the temporal relationship between

the variables.

Sample cross-correlation was carried out in MATLAB using `xcorr' between the

EMG exor muscle signals and joint kinematics. `xcorr' takes 2 discrete time-series

datasets and checks the correlation coe�cient as a function of lag. The �rst time-

series signal is lagged by a variable number of samples ranging from -`l0 to `l0 where l̀0
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represents the length of the two time series datasets. One can then gain insights about

how the signals are correlated temporally and quantify the number of lag samples to

achieve maximum correlation between the two time series. We used this correlation

study to analyze and quantify the phase lead on EMG signals. The prediction horizon

results have been detailed out in Section 4.1. The study was extended to all subjects

and all types of periodic and aperiodic motion that were performed for the elbow

motion.

Since the motion was carried about the sagittal plane, the biceps exor muscles

are the dominant muscle groups for the conducted study I. The extension motion was

also inuenced and characterized by external dynamics like gravity, hence the extensor

signals were not used for cross-correlation. To optimally leverage the horizons, since

the exors and extensors are di�erent for characterizing elbow and shoulder motion,

one would have to establish a horizon for each degree of freedom. However, this

is not plausible from an application perspective. It also would not be ideal to use

di�erent horizons based on the joint motion under study. For the shoulder motion,

the prediction horizon was determined based on a pilot study on one subject and

the same horizon was extended to other subjects. These results have been discussed

in the Section 4.1. A combined prediction of `250 ms' worked well for the second

study for combined elbow and shoulder joint kinematics prediction. To leverage the

established prediction horizon, a novel training strategy was proposed for the neural

networks by creating a skewed temporal map between the variables. This approach

has been presented in the next Section.
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Table 3.2: Performance evaluation summary of di�erent training functions

Training function Performance

Levenberg Marquardt (LM) Poor (Over�ts)
Bayesian Regularization (BR) Fair (Over�ts slightly)
Quasi-Newton (BFG) Poor
Resilient Backpropagation (RP) Good (easily diverges)
Scaled Conjugate Gradient (SCG) Best (good convergence)
Conjugate Gradient Powell/Beale Restarts (CGB) Fair
Fletcher-Powell Conjugate Gradient (CGF) Good
Variable Learning Rate Backpropagation (GDX) Fair
One Step Secant (OSS) Poor

3.5 Leveraging the Prediction Horizon using Neu-

ral Networks

The proposed network training approach using EMG that uses future time-horizon

data during the training phase of the network is illustrated in Figure 3.5. The training

inputs (EMG signals) at time `t' were mapped to future joint angle labels at `t+h'

where `h' denotes the estimated horizon. This is equivalent to inducing a lag or

time-delay on the input signals for a better function map as seen from the correlation

study. The training labels were the joint angles obtained from the inverse kinematics

results from OpenSim. The processed input and label data was divided into training

and testing datasets with a split of 80% / 20%. 80% data was used for training and

20% for testing the prediction performance of the trained network.

The neural network architectures were implemented using the MATLAB Deep

Learning Toolbox. The hyperparameters for the network were determined based on

the validation results using the training loss function. We started o� with a relatively

shallow network and updated the network layers and number of neurons incremen-

tally to observe their inuence on learning. The hyperparameters were dictated by

the performance on random trials since compared to periodic trials, the random tri-
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Figure 3.5: Figure shows the system data ow pipeline for this study.�P represents the
marker position coordinates obtained from the motion capture system.�X represents
the raw EMG signals from three muscle groups obtained from the EMG system.
The two data streams were time-synchronized using data collection software and
the marker position data was further used to compute the elbow joint angle using
OpenSim. The EMG signals were processed and fed to the network for training.
Rather than using corresponding time-synced labels, a phase lead was applied on the
kinematic label data based on the estimated prediction horizon represented by `h'
while training the networks.
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als were challenging as the networks could not leverage the periodicity in the data,

thus requiring a higher order equation. Post hyperparameter optimization, we set

the network depth to 10 layers with 100 neurons in each layer for the �rst study. No

noticeable improvements were obtained beyond these parameters in predictive per-

formance for most cases. This network size worked well with good generalization of

training performance on test data. For the few trials that over or under�t, we further

tuned the parameters by increasing or decreasing the hidden layer depth by a couple

layers.

For the second study, a relatively shallow network was used since the input set was

much larger compared to the �rst study and did not warrant a deeper network. For

combined elbow and shoulder prediction, a network size of 5 layers with 50 neurons

was used with the BPNN model while with the TDNN model a network size of 3 layers

and 25 neurons worked well. Parallelization was also enabled to speed up training

times. Also evaluated were the di�erent training functions in MATLAB that control

the rate of convergence or learning rate, the termination criteria, and the loss function

to be minimized. The default Levenberg Marquardt (LM) algorithm works best for

curve �tting and function approximation applications; however in our case, it could

not handle larger networks relatively well and also lead to over�tting. We evaluated

other training functions and the best performance results and faster training times

were achieved using Scaled Conjugate Gradient (SCG) [172]. Hence, we used SCG

for training all the datasets.

In this study, two neural network architectures: BPNN (Back-Propagation Neural

Network) and TDNN (Time-delayed Neural Network) were employed to decode the

relationship between neural muscle excitation signals from EMG and joint kinematics.

We chose the BPNN architecture due to it's simplicity and ease of implementation.

The implemented BPNN architecture has been shown in Figure 3.6. For the �rst

study involving single DOF elbow joint kinematics prediction, the inputs for the net-
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work were EMG signals from the biceps long, triceps lateral and triceps long muscles

at time `t'. For the second study involving shoulder and elbow multi-DOF kinematics

prediction, the inputs for the network were EMG signals from the pectoralis, major,

anterior deltoids, medial deltoids, posterior deltoids, upper trapezius, middle trapez-

ius, serratus anterior muscles, biceps long, triceps lateral and triceps long muscles.

The labels were joint kinematics at time `t' (Model I) as well as time `t+h' (Model

II) to evaluate performance with and without the horizon respectively.

The second architecture: the time-delayed neural network (TDNN) considers a

history of input time-series data [113]. TDNNs augment temporal information to the

BPNNs by considering historical data and are e�ective since they capture short-term

temporal dynamics during the learning process. This �ts the underlying mechanics

of muscle activation and action potential build-up time, hence we chose TDNN as

another candidate architecture. The implemented TDNN architecture has been shown

in Figure 3.7. The inputs for the networks were muscle excitations from the designated

muscle groups for respective studies along with a time history of past EMG signal

data for all the selected muscles. For training the TDNN, similar to the BPNN, the

results were mapped to current-time (Model I) as well as future-time labels (Model

II). Hence EMG signals from time `t' to `(t-n)' were trained on motion data labels

at `(t+h)'. Here, `n' denotes a time-history of past data for the TDNN model and

`h' denotes the optimal prediction horizon for that subject. The implementations

have been discussed in detail in Section 4.2. For the �nal prediction, we also used

a moving average �lter to smooth out the noise in the predictions with a window

of 200 samples. RMSE (Root Mean Squared Error) and CCR (Cross-Correlation

Coe�cient) were used as the performance metrics to compare Model I and Model II

predictions to the measured/reference joint kinematics. For regression analysis, these

are the preferred metrics in literature and have been commonly used in other EMG

motion prediction works [167].
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Figure 3.6: Illustration of the implemented back-propagation neural network architec-
ture. The three inputs for the �rst study were the �ltered, recti�ed and normalized
EMG signals from di�erent muscle groups: biceps long (x0), triceps long (x1) and
triceps lateral (x2) heads. The synapses show the weights in the network, while each
node also includes a bias term. The output or predicted value is the elbow joint angle
over horizon of `h' samples.

Also evaluated were the di�erent training functions in MATLAB to compare per-

formance. The training function controls the rate of convergence for the training pa-

rameters along with the termination criteria, and they also specify the loss function

to be minimized. We found that the default Levenberg Marquardt (LM) algorithm

works best for curve �tting and function approximation applications; however, it can-

not handle new data and larger networks relatively well and tends to over�t based on

our observations. We evaluated other training functions to assess their performance

as shown in Table 3.2. The gradient-based functions were found to perform well for

predictions on the testing dataset. The best results and faster computation or train-

ing times were achieved with Scaled Conjugate Gradient (SCG) [172]. Hence, we used

SCG for training on all trials.
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Figure 3.7: Illustration of the time-delayed neural network architecture implemented
in this study. The three inputs for the �rst study were the �ltered, recti�ed and
normalized EMG signals from di�erent muscle groups: biceps long (x1), triceps long
(x2) and triceps lateral (x3) heads. `m' and `n' denote the number of layers and
number of neurons in each layer. `h' denotes the optimal prediction horizon and `d'
denotes the past time samples in the delay block. The output or predicted value is
the elbow joint angle in the future over horizon of `h' samples.

3.6 Prediction Accuracy and Generalization Im-

provements

This section presents the design and development of the hybrid architectures by com-

bining state information, feature extracted EMG inputs and combined model-based

and model-free architecture for improved prediction performance. The data curation

approach using the forward map is also discussed in this section to improve robustness

results.
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3.6.1 Hybrid State-Informed Feature Extracted Prediction

Model

Motion can be characterized by internal and external dynamics governed by muscle

forces and joint torques due to neural commands but also due to the inuence of

external forces like gravity, external loads and inertia. EMG muscle activation based

predictions can compute musculotendon forces and joint kinematics, however external

dynamics such as the inuence of gravity, external loads and inertial e�ects are not

fully accounted for in a purely EMG-based model. It was previously pointed out

that mechanisms like `force depression' and `force enhancement' also depend on joint

kinematics history. Hence, we decided to augment the EMG-based prediction models

with past joint angle, velocity and acceleration information to aid the learning process.

The TDNN model does consider a time-history of past inputs, hence short term state

information is augmented in the learning process but since the motion prediction

problem using EMG is a regression problem, a past history of inputs is included in

the TDNN rather than the output state history. The hypothesis was that explicitly

using the state information in the training process could potentially lead to less noisy

predictions by bounding the predictions closely to the targeted ranges of motion.

The preliminary motion prediction works with EMG also did not involve feature

extraction and consisted of using processed EMG signals or muscle excitations as

inputs since we wanted to preserve as much information in the raw signals as possible

to carry out forward predictions. It is known that feature extraction methods add

more computational overhead which could lead to a reduced horizon when predicting

real-time. However, features might help avoid the post prediction �ltering by leading

to less noisy predictions. Since, EMG signals carry a lot of noise, further works

involved exploring time-domain features that typically do not require transformation.

Independent state input based model and feature extracted model were developed

and a hybrid architecture combining state and feature extracted EMG is presented.
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3.6.1.1 State Inputs (SI)

The state-based model is based on the idea of leveraging statistical patterns in past

joint kinematics to predict future kinematics like an auto-regressive model. The devel-

oped state-based model uses past joint angle, velocity and acceleration information to

predict future time joint kinematics. The nature of the problem that the state-based

model solves is auto-encoding and auto-regressive in nature as opposed to the regres-

sion problem with the EMG-based model. Temporal dynamics based models like the

TDNN or LSTM have state information embedded implicitly in the learning process

of the model, however studies have shown that explicitly including state information

can improve predictions [114]. The rationale behind using an auto-regressive model

was to produce a bounded output that gradually changes in relation to the previous

time-step prediction as opposed to a regression problem which entails mapping two

di�erent non-linear signals to build a function map. It should be noted that similar to

the EMG based regression model, the SI model was used to predict `h' ms forward in

time at every time-step rather than forecasting an entire trajectory over the horizon.

Study I and Study II Si models have been shown in Figures 3.8 and 3.9 respectively.

Figure 3.8: Illustration of the neural network model using state information. The
network has 2 inputs along with the time-history of each input. The training label
was future joint angle in order to leverage the forward map. 'h' the forward prediction
horizon and `n' denotes the history
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Figure 3.9: Illustration of the neural network model using state information. The
network has 4 joint angle inputs along with the velocity and acceleration info. with
the time-history of each input. The training label was future joint angle in order
to leverage the forward map. `h' the forward prediction horizon and `n' denotes the
history

3.6.1.2 EMG Feature Extracted Model (FEM)

Figure 3.10: Illustration of the neural network model using EMG-based feature ex-
traction model with 4 time-domain features for elbow motion prediction. The network
has 15 inputs, including the 3 non-featured extracted EMG inputs from the biceps
(x0), triceps lateral (x1) and triceps long (x2) muscles and 4 corresponding time do-
main features for each muscle. A TDNN architecture was used for training, hence the
inputs also include past EMG history for predicting future joint angle. The training
label was future joint angle in order to leverage the forward map with `h' ms denoting
the optimal prediction horizon.

EMG feature extraction has been widely studied in literature [24, 49, 102]. With

feature extraction, the idea is to capture signal characteristics like: energy, power,
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Figure 3.11: Illustration of the neural network model using EMG-based feature extrac-
tion model with 4 time-domain features for combined shoulder and elbow prediction.
The network has 50 inputs, including the 10 non-featured extracted EMG inputs and
4 corresponding time domain features for each muscle. A TDNN architecture was
used for training, hence the inputs also include past EMG history for predicting fu-
ture joint angle. The training label was future joint angle in order to leverage the
forward map with `h' ms denoting the optimal prediction horizon.

spectral density, etc. Broadly, EMG features can be classi�ed into 3 groups: time-

domain features, frequency-domain features, and time-frequency domain features.

Frequency domain EMG features typically involve transformations thus adding more

computational overhead to the signal processing pipeline. Any transformations would

add delay to the real-time performance of the model and reduce the forward prediction

horizon, hence this work was only restricted to time-domain features. A study by Du

et. al also makes a strong case for temporal EMG features [173]. The following

time-domain features were considered for this work:

1. Mean Absolute Value

y(MAV ) =
1
n

nX

i =1

jx i j (3.1)
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2. Root Mean Squared Value

y(RMS ) =

vu
u
t 1

n

nX

i =1

jx i j
2 (3.2)

3. Waveform Length

y(W L ) =
n� 1X

i =1

jx(i +1) � x i j (3.3)

4. Simple Squared Integral

y(SSI ) =
nX

i =1

jx i j
2 (3.4)

Here, `x' represents the EMG signal data. To implement feature extraction a

sample size of 500 equivalent to 250 ms was used with a sliding window approach

similar to convolution. Other EMG based feature extraction studies have used similar

window sizes and features [142]. The window was dynamically updated till the sample

size of 500 is reached so as to not induce a delay during real-time work. If the

dynamic windowing approach is not used, the feature extraction does not begin until

the set sample size is reached. This induces a delay while extracting features online.

The dynamic windowing approach solves this issue. MAV and RMS are the most

commonly used features hence, they were considered for this work. Additionally,

other studies have shown WL to be a signi�cant EMG-based feature that can improve

prediction accuracy. SSI is another feature that captures signal peaks well and leads

to a clean output with less noise; hence, it was considered for this study.

The feature extraction TDNN models for elbow and combined shoulder and el-

bow prediction are shown in Figures 3.10 and 3.11 for elbow motion and combined

shoulder-elbow predictions respectively. Since, the extracted features only used time-

domain techniques the model could over�t to time-domain characteristics of the sig-
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Figure 3.12: Illustration of the combined state and feature extracted model for shoul-
der and elbow motion prediction. The right block shows the state-based inputs as
seen in 3.9 and the left block shows the feature-extracted input block from EMG
signals as shown in Figure 3.11

nal, hence the original non-feature extracted signals were also used as input so as to

preserve as much information in the signal. As opposed to purely feature-based model

we augmented the learning process by using features along with non-feature extracted

inputs. Depending on the windowing approach and feature extraction methods, the
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original signal can show phase distortion; hence having the non-feature extracted sig-

nals preserves the causal relationship initially established through cross-correlation.

3.6.1.3 Combined State-Informed Feature-Extracted Model

(SIFEM)

To leverage the merits of each independent model stated above, we combined the

state-based model and the feature-extracted model inputs in a single architecture

called the `SIFEM'. The SIFEM forms a multi-class input set and is similar to a

non-linear auto-regressive model with exogenous inputs. The auto-regressive part

being the joint angle history from the state input model and exogenous inputs being

the EMG signals. One could also argue that there's an auto-encoding component

as well as mentioned before based on past velocities and accelerations which carry

representative information of the joint kinematics. However, since we used a TDNN

architecture for training, the model also includes a short-term temporal history of

past exogenous EMG signals along with current-time exogenous inputs. The model

architecture diagram is shown in Figure 3.12. The input set for this model consisted

of 62 inputs along with a time-history of `n' samples from all inputs. The results of

this model along with the SI and FEM model are presented in Section 4.3.1.

3.6.2 Hybrid Model-based and Model-free Architecture

The rationale behind bringing in a model-based approach is to improve the generaliza-

tion and robustness performance of the predictions. The hypothesis is that since the

estimated muscle tendon forces and joint torques are a function of subject-speci�c

biomechanical parameters and time-varying neural activation signals, augmenting

them with the neural network would facilitate better scaling between di�erent sub-

jects and improved inter-subject robustness performance.

A simpli�ed neuromusculoskeletal model was developed using aforementioned sim-
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Figure 3.13: Hybrid SIFEM-NMS architecture to improve model generalization per-
formance

pli�cations in Section 2.1.3. For the �rst study, since EMG signals were collected from

3 muscle groups we used a lumped parameter model assumption to compute the forces

for other muscle groups. The elbow-exion extension motion is primarily governed

by the biceps brachii: long heads and short heads, brachialis, triceps long, triceps

medial and triceps lateral muscle groups. The EMG signal from the biceps long head

was used for computing the brachialis muscle force. Similarly, the triceps lateral head

EMG signal was used for the triceps medial force computation. Using the formulation

presented in Section 2.1.3, Equation 2.24, the neural activations (u) were computed

for all the muscle groups using a second order discrete-time recursive formulation.

The delay term `d' was assumed to be 80 ms. The values of 1 and  2 were assumed

to be 0.3 and 0.2 respectively which satisfy the constraints presented in equation 2.25.

Further, muscle activations `a' were also computed for all the three muscle groups us-

ing the formulation presented in works by LLoyd, Buchanan and Manal in Section

2.1.1 and equation 2.4. The shaping factor was assumed to be -1.5. A factor of 0
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Table 3.3: Muscle and Muscle Tendon Properties for the Model

Property
Muscle Group

Biceps
Long

Biceps
Short

Brachialis
Triceps
Lateral

Triceps
Long

Triceps
Medial

Optimal Muscle Fiber length (m) 0.1157 0.1321 0.0858 0.1138 0.134 0.1138
Tendon Slack length (m) 0.2723 0.1923 0.0535 0.098 0.143 0.0908
Maximum Isomteric Force (N) 525.1 316.8 1177.37 717.5 771.8 717.5
Maximum Fiber Contraction
Velocity (m/s)

1.157 1.321 0.858 1.138 1.34 1.138

Pennation Angle (deg) 0 0 0 9 12 9
Linear Damping factor 0.1 0.1 0.1 0.1 0.1 0.1
Activation Time Constant (s) 0.01 0.01 0.01 0.01 0.01 0.01
Deactivation Time Constant (s) 0.04 0.04 0.04 0.04 0.04 0.04

leads to a linear relationship between neural activation and muscle activation while

a factor of -3 leads to non-linear exponential relationship.

The characteristic curves shown in Figures A.8 a-f were used to determine the

normalized muscle �ber-lengths for each muscle. For each time-step, based on the

characteristic equations the �ber lengths are computed as a function of elbow joint-

angle. The force-length active (f l ) and passive (f p) relationship parameters were

computed using the formulations presented in Equation 2.26, while for the force-

velocity relationship parameter (f v) we used Equation 2.27. Once the muscle force

�ber-length velocity parameters and force-velocity parameters were calculated, the

Hill's muscle model was used to compute the forces from each muscle as a function of

muscle activation using Equation 2.7. The maximum isometric force values for each

muscle were obtained from OpenSim using the upper-limb dynamic arm model [170].

The model uses the properties stated in Table 3.3 for the upper arm muscle groups for

the elbow exion-extension motion. These properties and changes in musculotendonal

�ber lengths as a function of joint angles can be used to compute muscle �ber lengths

and normalized muscle �ber lengths and velocities with the equations presented in

Section 2.1.1. However, using OpenSim one can output the characteristic curves for

the normalized muscle �ber lengths as a function of joint angle, hence we used these
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curves instead as mentioned before. Since the moment arms for each muscle group

change as a function of joint angle, characteristic curves can be used similar to the

muscle �ber-length curves as a function of joint kinematics. Some studies have also

assumed these to be constant throughout, however a better model accounts for the

wrapping characteristics of the muscles and muscle tendons. Hence, we used the

curves and characteristic equations from Figure A.9 to obtain the moment arms for

each muscle. Using the computed forces and the variable moment arm information,

we computed the torque contribution from Equation 2.18. The net joint torque was

obtained by adding all the corresponding torque contributions from the exor and

extensor muscle-groups.

The typical modeling approach would then use an optimization routine to drive

the errors between the estimated torque and measured inverse dynamics torque to a

minimum by solving for the model parameters as mentioned in Section 2.1.1. However,

as mentioned before this is no di�erent than solving a curve-�tting problem hence, we

combine the estimates from the model-based approach with a state-informed deep-

learning neural network model to decode the mapping between the estimated forces

and future-joint kinematics. In the training process, similar to the model optimization

routine, the network parameters: weights and biases are optimized as opposed to

the NMS model parameters. The hybrid neuromusculoskeletal model architecture

is shown in Figure 3.13. The �gure shows the NMS model and the SIFEM models

combined in a single architecture. The force estimates of the muscles along with

the net joint torque will be used as inputs to the model along with the state and

feature extracted model inputs. The feature extracted signals ([f 1; f 2; :::f n ]) and state

information ([s1; s2; :::sn ]) are the inputs from the SIFEM model. The outputs from

each individual block serve as inputs to the TDNN neural network model. The TDNN

architecture was trained on future-time labels as discussed previously to leverage the

causal relationship between EMG and motion. Due to the challenges presented in
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Section 2.1, the musculoskeletal modeling approach was limited to a single degree of

freedom prediction. The results of the hybrid model as well as the simpli�ed NMS

model are documented in Section 4.3.2.

Figure 3.14: Data curation approach for concatenating di�erent datasets using the
forward time map for improved generalization. `x' and `y' represent the input signals
and the labels Superscripts `1' and `2' denote 2 di�erent datasets and the subscripts
`1...5' denote the sample number of the the time-series datasets.

3.6.3 Data Curation and Segmentation

Data curation for neural networks plays a vital role in the learning process of a

network. To avoid over�tting and improve generalization, curating datasets with

representative information subjects the network to the variance of the signals across

di�erent motion types potentially leading to improved robustness performance. For

networks trained with current-time labels, where the goal is to decode the relation-

ship between inputs and outputs through regression one can just concatenate di�erent

datasets together. However, since this work aims at leveraging the causal relationship

between the variables to predict forward in time over a short-horizon data concate-

nation does not work using a skewed temporal relationship map because if input and
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label datasets are concatenated together for training, inputs from one motion type

will get mapped to kinematic labels from a di�erent motion type leading to erratic

results since there is no correlation between inputs from one dataset and labels from

another dataset. Hence, truncating the datasets is important as shown in Figure 3.14

while using the skewed map. The �gure shows the data that needs to be truncated

in order to combine network input and network label datasets using the proposed

training strategy for future kinematics predictions. The data curation results are

documented in Section 4.3.3.

3.7 Wrist Joint Center Prediction

In case the robot to be teleoperated is anthropomorphically similar to the human, one

can use the predicted shoulder and elbow joint kinematics as a joint level control input

to the robot. For exo-skeleton control and similar applications, the exoskeleton would

also be constrained to the human limbs and can be controlled through an angular

position input for the joints of interest for assistance. However, for teleoperation for

most robots, task space input is popular where the robot receives a pose (position and

orientation) goal and based on an internal IK-solver computes the joint kinematics

and moves the joints since the human and robot con�guration spaces are di�erent.

Hence, in order to realize a task space input we decided to convert the predicted joint

kinematics to a wrist joint center position using a forward kinematics model. The

forward kinematics model for the human upper-limb is shown in Figure 3.15. The

shoulder is modeled as a 3 DOF joint while the elbow is modeled as a 1 DOF joint.

We did not consider the wrist joint degrees of freedom in the model since that would

require computing wrist joint kinematics which was not done in this study. The

forward kinematics Denavit Hartenberg (DH) table was created for the developed

upper-limb kinematics model of the arm using the popular DH convention [174]. The
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Table 3.4: Denavit Hartenberg Table for the Kinematic Model of the Human Arm

Link(i) � � a d

1 � 1+ � /2 � /2 0 0
2 � 2+ � /2 � /2 0 0
3 � 3+ � � /2 l1 0
4 � 4 0 l2 0

DH table is shown in Table 3.4. The model assumes the global frame as the shoulder

joint center. The transformation from the shoulder joint to wrist joint center [Twri
sho ]

can be computed from a series of homogeneous transformations presented in the

following set of equations:

Twri
sho = Telb

sho:Twri
elb (3.5)

Twri
sho = T1

0 :T2
1 :T3

2 :T4
3 (3.6)

Twri
sho =

2

6
4

[Rwri
sho](3x3) [Pwri

sho ](3x1)

0 1

3

7
5 (3.7)

In Equation 3.7, R and P denote the rotation matrix and the position vector

respectively. The prediction/estimated wrist joint center position [Px ; Py; Pz] can be

used as a task space pose input for teleoperating a robot. One would still have to

account for the o�sets between the robot's global frame and the presented kinematic

model's global frame similar to the robot-hand eye problem [175]. The static trans-

formation from the robot's world frame to the shoulder frame can be calculated and

the rotation o�sets between the assigned global frame and the robot's shoulder frame

can be accounted for. Once the rotational and translational o�sets are solved for

using corresponding transformations, the wrist goal position can be used as a target

command using the robot's IK solver.
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Figure 3.15: Kinematic model for the human upper-limb consisting of shoulder and
elbow degrees of freedom in home con�guration

3.8 Online Framework for Real-time Work

The real-time prediction framework involved two pipelines: motion prediction and

kinematics estimation. The di�erence between the two pipelines is the sensing modal-

ity. The online motion prediction pipeline involves translating the o�ine prediction

work using the trained neural networks to predict motion in real-time using EMG

signals. The kinematics estimation pipeline uses motion capture trackers or markers

to estimate joint kinematics.

3.8.1 Motion Prediction Pipeline

The real-time motion prediction pipeline was developed in ROS (Robotic Operating

System). ROS follows a publisher-subscriber architecture where di�erent nodes com-

municate and share data or messages with each other at desired frequencies. The
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Figure 3.16: Real-time motion prediction pipeline setup using ROS

ROS architecture implemented for the real-time predictions using EMG is shown in

Figure 3.16

Node 1 is a publisher node that streams raw EMG sensor data. A TCP/IP

(Transmission Control Internet Protocol) socket node was created in python that

reads sensor data from the Delsys Trigno EMG sensors. The Trigno EMG system runs

a server application called `Trigno Control Utility' that receives data from the sensors

through the data box. The python node is a client node that queries appropriate

sensor data from the command port through the server and accepts the queried data

on the data port at 2000 Hz. The reason why a network protocol had to be setup is

because the server application runs on a Windows machine while the real-time pipeline

was implemented in ROS on a Linux computer. Hence, the data had to be transmitted

over the network from the Windows computer to the Linux machine. Along with EMG
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Figure 3.17: Updated real-time motion prediction pipeline setup in ROS for shoulder
and elbow kinematics and wrist joint center position prediction for elbow joint center
prediction

data, the IMU (inertial measurement unit) data can also be streamed since the Trigno

sensors come with an onboard IMU.

An alternative to Node 1 was created in order to emulate real-time data stream

from pre-recorded EMG data. The goal with the emulator node was to simulate a

raw stream without the sensors. This was done so as to match the real-time �lter

parameters to be as close to the o�ine prediction input data to tune the prediction

model and to compare o�ine and online predictions on the same dataset. The em-

ulator node streams discrete EMG data from the prerecorded dataset for the online

work.

Node 2 is the real-time EMG processing node that subscribes to the raw EMG

stream. The processing node performs the following tasks:

1. Filtering: high pass with cuto� at 20 Hz
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2. Full-wave recti�cation: absolute value of the signal with only positive amplitude

3. Filtering: low pass with cuto� at 6 Hz

4. MVC Normalization: signal normalization based on maximum volitional iso-

metric contraction data

Node 3 is the �nal prediction node that performs the forward propagation step

using the optimized weights and biases from the o�ine trained neural network. The

trained network parameters were exported from MATLAB to python since the ROS

implementation was carried out in Python 3.7 or `rospy' on a Linux computer. The

prediction node reads the saved network weights and biases and creates it's own

model architecture with similar hyperparameters (number of hidden neurons, layer

depth) that the trained model used. The real-time inputs then propagate throughout

the network layers producing outputs that are passed through activation functions.

Each output further feeds to the next layer. The �nal layer leads to the joint angle

prediction at that time-step. The prediction node also implements normalization on

the inputs in the range -1 to 1, hence re-normalization was implemented accordingly

on the output to scale the predictions in the desired joint angle amplitude or range

of motion. A dynamic bu�er was implemented for storing incoming inputs for the

current time-step which clears after the prediction is complete for that time-step.

This speeds up computational times and does not bog down memory as opposed to

storing all data from previous time-steps.

For the BPNN model, each time-step consisted of three inputs from the three

muscles: biceps long, triceps lateral, triceps long for elbow kinematics prediction.

The TDNN however, needed a larger bu�er of `n' samples as seen in the TDNN

architectural diagram Figure 3.7 which stores the time-history or past samples for

predicting current time-step. A start-up delay was also setup for the TDNN model

so that the time-history builds up for the model to predict the current time-step.
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Hence, BPNN is more e�cient for real-time works due to no startup delay and less

computational overhead than TDNN. Since, both models leveraged the forward map

as seen in o�ine works, the current time-step prediction consisted of predicting future

motion over a short horizon.

Node 4 is the simulation node where the predicted joint kinematics are relayed

to actuate simulated robots about their joints. The robot URDF (Uni�ed Robot

Description File) models in ROS describe the forward kinematics or geometrical re-

lationships between di�erent joints and links along with any physical properties like

mass, inertia, etc. A joint state publisher node was used to create a joint map for the

robot kinematic chains and the predicted motion was published to the desired robot

joint during simulations. The predicted kinematics were

The wrist joint center position was calculated using the approach discussed in the

previous section. A ROS node was developed to subscribe to the predicted shoulder

and elbow kinematics and perform forward kinematics in real-time. The updated real-

time architectural diagram with shoulder and elbow kinematics prediction along with

the wrist joint-center position estimation is shown in Figure 3.17. Node 5 subscribes

to the predicted shoulder and elbow joint kinematics to perform forward kinematics at

each time-step to compute the wrist-joint center position. The prediction/estimated

wrist joint center position [x; y; z] can be used as a task space pose input for tele-

operating a robot. In case the robot is anthropomorphically similar to the human,

one can use the predicted kinematics as a joint level control input. This avoids the

inverse kinematics computation on the robot's end if the wrist joint center is used

as a pose goal input. The real-time results from the di�erent nodes are presented in

Section 4.5.
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3.8.2 Kinematics Pipeline

Previous works also included performance evaluations of a position tracking system

called the lighthouse technology or SteamVR tracking [176]. Further works followed

tracker simulations and design optimization to improve tracking performance for hu-

man motions by minimizing skin/tissue artifacts. An inverse kinematics pipeline

was developed in ROS using four trackers to calculate the joint angle, followed by

a two tracker approach with static calibrations. Figure 3.18 shows the setup used

for teleoperating a robotic arm in ROS using VIVE trackers. The commercial VIVE

trackers can also be potentially replaced with custom-developed trackers using hard-

ware development kits. The estimated joint angle can be useful for both model-less

and model-based approaches. For model-based approaches, it would facilitate model

parameter estimation and for model-less approaches it would facilitate training as

well state estimation for real-time prediction validation. This would also aid in the

development of closed loop control architectures as discussed in subsequent sections.

Figure 3.18: Robot teleoperation using HTC VIVE trackers

The joint angle estimation using the simpli�ed inverse kinematics approach was
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Figure 3.19: Kinematics pipeline using simpli�ed ik solver for elbow joint

performed using four trackers initially. This was later updated with a two-tracker

approach that used a series of static calibrations. For the four-tracker approach, two

trackers were mounted on the upper arm, one on the biceps and the other on the

shoulder, and other two trackers were mounted on the wrist and the forearm. For

calculating the elbow joint angle, two spatial vectors were created from real-time

tracker position data data, and the angle between the vectors was calculated using

vector dot product between the vectors at 120 Hz. The angle was published in the

form of a joint state message. The joint state publisher node was used to subscribe to

this joint state message, which in turn published the data to the robot's elbow joint.

The implemented ROS architecture is shown in Figure 3.19

The four-tracker approach was replaced with a two-tracker approach in further

works. One issue with the four-tracker approach was that the accuracy of tracking

the angle was quite sensitive to how the trackers were mounted or strapped on to

the subject. Provided that the forearm and biceps tracker were perfectly collinear

with the shoulder and wrist trackers when the arm was fully extended, the accuracy

was good; however, the calculated angle was o� if the trackers were not mounted

properly. A workaround this issue was to rather rely more on the shoulder and wrist
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Figure 3.20: Kinematics pipeline using simpli�ed ik solver for elbow joint

trackers, which were treated as joints. Using some information about the link lengths

and initial static calibrations, it was possible to estimate the position of the elbow

joint center. The virtual elbow joint center was then used to calculate the elbow

angle using a similar projected vector approach as done previously. The approach

has been illustrated in Figure 3.20. Assuming the link lengthl1 is known, which is

the distance of the shoulder-mounted tracker from the elbow joint on the person, the

approach relies on a set of static trials with the arm extended out to estimate the

position of the elbow joint. The static trials involved fully extending the arm and

then using the position information from shoulder trackers (P0) and wrist trackers

(P2) to create the total arm vectorP0P2. The virtual elbow joint center was obtained

by projecting the known link length (l1) on the vector P0P2. Once the virtual joint

position was obtained from the static trial data, a coordinate frame was assigned the

elbow joint center parallel to the upper arm tracker since any out of plane elbow

rotation would be caused by shoulder rotation. Two spatial vectorsP1P0 = ua and
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Figure 3.21: Transformations for accounting shoulder motion

P1P2 = va corresponding to upper and lower arm vectors respectively were created

and updated using real-time tracker positions with the origin being the virtual elbow

joint center. The angle between the vectors was calculated using vector dot product.

A limitation of this approach was that it assumed that the shoulder joint remained

locked throughout the motion and the exion-extension motion was purely about

the sagittal plane. To handle out of plane motions, the approach was updated by

introducing some transformation matrices. As shown in Figure 3.21; consider the

master base station of the VIVE tracker system represented by coordinate B. Let

the shoulder tracker be T and the virtual elbow joint center coordinate be E from

the previous static trials. Subscripts 0 and 1 represent two di�erent timestamps. As

seen, now the shoulder is free to move in space, and the goal here was to map the

virtual elbow joint center to the moving shoulder joint represented by the transform

TE1
B . The key here was to use a relative transformTE1

T1
, which maps the virtual elbow

joint center to the shoulder coordinate frame at timestamp 1. However, it should

be obvious that this transform would always be constant regardless of the nature of

trials (static or dynamic) since any out of plane motion in the elbow joint would come
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from the shoulder. Hence,TE1
T1

= TE0
T0

and we getTE0
T0

from the static trials as stated

previously. The �nal transform was obtained from the equation:

TE1
B = TT1

B .TE1
T1

123



Chapter 4

Results and Discussion

The results section is divided in to several subsections to address the multiple ob-

jectives planned to evaluate the e�cacy of the work. Prediction comparisons are

presented in

4.1 Prediction horizon estimation results

The temporal analysis results for a periodic trial for Subject 1 are illustrated in

Figures 4.1a and 4.1b. As observed in Figure 4.1 for the cross-correlation results,

maximum correlation corresponds to a lag of 506 samples (around 250 ms) for the 90

bpm trial for subject 1. This observation shows that the acquired processed EMG or

muscle excitation signal leads elbow exion. It implies that the relationship between

EMG and joint kinematics data is skewed temporally. It can be hypothesized that

the magnitude of this lead is a function of electromechanical delay as well as best

curve �tting practices. Since the cross-correlation function is trying to minimize

the area under the curve, the lead of 250 ms is not a true representation of the

electromechanical delay, but it indicates that a better relationship mapping exists

between lagged EMG and kinematics data while training using statistical machine

learning models. For model training purposes, this is equivalent to using future
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kinematics (joint angle) labels for training the network with current time EMG inputs,

and the calculated lag as the prediction horizon. We con�rm this observation over all

periodic and aperiodic trials for all 7 subjects. The summary of prediction horizons

for the participants has been shown in Figure 4.2

(a) Original and shifted signals

(b) Correlation coe�cient as a function of lag

Figure 4.1: Figures show the cross-correlation results for subject 1 periodic exion
extension trial. Fig a shows the lagged biceps EMG signal to maximize correlation
coe�cient. Fig a shows the elbow joint angle in blue for the periodic exion extension
trial along with original biceps EMG signal in red and lagged EMG signal in yellow.
Maximum correlation was obtained by lagging the EMG signal with respect to elbow
joint kinematics by 506 samples or about 250 ms. The maximum peak in Fig b
corresponds to 506 samples.
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Figure 4.2: Figure shows the summary of prediction horizons for all subjects for
di�erent types of motions. Since 2 trials were performed for each type of motion, the
plot shows the average horizon across the two trials for that motion type for each
subject

Table 4.1: Average prediction horizon for di�erent subjects

Subject

Avg.
Prediction
Horizon

(ms)

Min.
Prediction
Horizon

(ms)

1 220 190
2 360 345
3 405 380
4 390 330
5 250 210
6 290 260
7 410 370

To con�rm the repeatability of the established lead for a subject, multiple test-

ing sessions were performed on subject 1 on di�erent days. The average standard

deviation between these testing sessions was less than 20 ms, implying good repro-

ducibility of the horizon. The relative variance for the estimated horizon amongst

di�erent types of motion for a given subject was low as compared to the inter-subject
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variance for the horizon. This observation can be inferred from Figure 4.2. For most

cases, the horizon estimation for aperiodic motion trials and high frequency periodic

trials was comparatively lower than the slower periodic trials for all subjects. The

minimum and average cross-correlation estimations for di�erent subjects have been

summarized in Table 4.1 averaged over all motion trials for each subject.

It may not be e�cient to estimate a horizon for every type of motion for each

subject for real-world applications. So during the network training process, we kept

the prediction window constant for a given subject while training the neural network

over the periodic and aperiodic motions. Setting the optimal prediction horizon closer

to the minimum estimated window for a subject guaranteed good performance across

all trials for the subject. However, that meant not being able to use potentially larger

horizons on some other trials. Hence, the prediction window was set between the

average and the minimum prediction horizon obtained for a subject. For subjects 1,

5 and 6, prediction horizons of 200, 250 and 250 ms were used respectively. For other

subjects, a horizon of 350 ms was used for the elbow study.

For the shoulder and elbow combined motion prediction study, we estimated

the horizons based on the pilot shoulder study. Similar to the elbow study, cross-

correlation study was carried out on the shoulder as shown in Figures 4.3 a and b.

For the periodic trials an average horizon of� 300 ms was observed while for the

random shoulder motions, average horizon of 290 ms was observed. Based on these

observations we decided to use a horizon of 250 ms for combined shoulder and el-

bow prediction study on all 10 subjects. As seen, previously for the elbow prediction

horizon there could be a lot of variance between the subjects however, based on the

pilot study the horizon still falls within the previously established range of 250-350

ms which we assume would be true for other subjects. We used 250 ms which is on

the lower side since larger than optimal horizon windows resulted in rapid drop in

prediction accuracy for elbow predictions hence, the lower bound was a safer choice
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(a) Original and shifted signals

(b) Correlation coe�cient as a function of lag

Figure 4.3: Figures show the cross-correlation results for the pilot study involving
shoulder motion. Fig a shows the lagged medial deltoids EMG signal to maximize
correlation coe�cient. Fig a shows the elevation angle in blue for the random trial
along with original deltoids EMG signal in red and lagged EMG signal in yellow.
Maximum correlation was obtained by lagging the EMG signal with respect to elbow
joint kinematics by 580 samples or about 290 ms.
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as we planned on assuming a �xed horizon for the second study.

4.2 Performance Evaluation of the Proposed Strat-

egy

The performance of the proposed training strategy was evaluated against the general

training routine that does not leverage the causal relationship between EMG and

joint kinematics using two performance metrics and two neural network architectures

as mentioned before.

4.2.1 Study I - Future Elbow Kinematics Prediction

4.2.1.1 Prediction comparisons using BPNN

Prediction performance was compared between the current time trained BPNN archi-

tecture (Model I) with the BPNN trained using the future label data (Model II).To

avoid any evaluation bias, the hyperparameters (network length and depth) along

with the training functions were kept identical for both the approaches. Figures 4.4a

and 4.4b show the training results for the VFVR trial 1 for subject 1. Using identical

inputs but di�erent training labels resulted in better function approximation perfor-

mance with Model II. This can be observed from Figure 4.4. We use the RMSE and

CCR coe�cient as performance metrics which are the preferred metrics for regres-

sion analysis and commonly used in other EMG motion prediction works [167]. The

training RMSE and CCR results for the BPNN are presented in Tables 4.2 and 4.3

Prediction performance was compared between the current-time trained BPNN

architecture (Model I) with the BPNN trained using the future label data (Model II).

To avoid any evaluation bias, the hyperparameters (network length and depth) along

with the training functions were kept identical for both the approaches. Figures
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4.4a and 4.4b show the training results for the VFVR trial 1 for subject 1 using

Models I and II respectively. Using identical inputs but di�erent training labels

resulted in better function approximation performance with Model II. The predictive

performance on the testing dataset also was signi�cantly better with Model II as

compared to Model I and can be inferred from Figures 4.5 a,b,c and d for the two

VFVR trials for Subject 1. The training and testing RMSE and CCR results have

been summarized in Tables 4.2 and 4.3 respectively. Figures 4.7 a and b show that

the networks trained using future motion signals have the ability to predict forward in

time as opposed to time synced inputs and label-based model. This can be observed

from the consistent lead on the Model II prediction with reference to the Model

I prediction as well as the measured joint kinematics. As stated before, Model I

represents the model trained without the prediction horizon using time-synchronized

labels and inputs. Model II represents the model trained using the proposed approach

that leverages the time horizon by training current time EMG inputs on future motion

labels. The metrics in Tables 4.2 and 4.3 have been averaged over all seven subjects

for each type of motion. It should be noted that the performance metrics for Model

II were calculated by accounting for the lead by lagging the predicted results.

Table 4.2: Training result summary of the performance metrics using the BPNN.
Model I was trained with current-time labels and Model II was trained on future-
time labels using the same inputs

Trial
Avg. Training RMSE (deg.) Avg. Training CCR Coef.

Model I Model II Model I Model II

60 bpm 15.25 9.66 0.889 0.949
90 bpm 16.16 11.41 0.852 0.922
120 bpm 16.51 10.80 0.886 0.948
VFFR 15.99 11.92 0.858 0.903
VFVR 17.91 12.31 0.755 0.872

We also report the subject to subject spread averaged over di�erent motion types

for each subject for comparing Model I and Model II. The spread, mean and other
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(a) Model I training results on VFVR trial 1

(b) Model II training results on VFVR trial 1

Figure 4.4: Function approximation results using the BPNN. The dotted grey curve
shows the experimental or measured elbow joint angle and the red curve shows the
function approximation result using Model I for the random VFVR trial 1 for subject
1, while the blue curve shows the �t using Model II (proposed training strategy)

metrics of the prediction RMSEs have been shown in Figure 4.7 a and Figure 4.7 b

using the two approaches. Figure 4.7 a shows the results of the current-time label data

trained BPNN model (Model I) and Fig 4.7 b shows the results using our proposed

approach (Model II). Model II shows consistent improvement on testing RMSE results
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(a) Model I testing results on VFVR trial 1 (b) Model I testing results on VFVR trial 2

(c) Model II testing results on VFVR trial 1 (d) Model II testing results on VFVR trial 2

Figure 4.5: Prediction results using the BPNN on the test dataset. The dotted grey
curve shows the experimental or measured elbow joint angle and the red curve shows
the prediction result using Model I for the random VFVR trial 1 for subject 1, while
the blue curve shows the prediction using Model II (proposed training strategy).
Figures a and c show the prediction results on the testing dataset while Figures b
and d show the prediction results using both models on VFVR trial 2.

across all subjects and for all motion trials with an average RMSE drop of about 7

deg with the exception of the last subject. For subject 7, the RMSE means are similar

between both models. However, the spread is larger for the model trained on future

time labels, since for a couple periodic trials slightly better performance was obtained

using the current time model. We believe this discrepancy for the subject was due
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(a) Temporal comparison results on the 90 bpm trial 1
using both models

(b) Temporal comparison results on the VFVR trial 1
using both models

Figure 4.6: BPNN temporal prediction comparisons for VFVR trial 1 between Model I
and Model II. The blue curve prediction (Model II) consistently leads the experimental
data (dotted grey curve) implying that the model predicts future motion over the
established horizon. The prediction using this training approach also follows the
trend more closely as opposed to the red curve (Model I)

to a considerable oscillation observed in the biceps EMG signal especially around the

fully exed state which should correspond to a deactivation state for the biceps exor

muscle. These motion artifacts or accidental shifting of the biceps electrode due to
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(a) BPNN performance comparisons (Motion Type)

(b) BPNN performance comparisons (Subject-Subject)

Figure 4.7: Subject to subject prediction RMSE comparison between Model I and
Model II BPNN models. Model II trained with future-time kinematics label data
consistently shows better prediction results across all subjects

the forearm during the end of range of motion seems to have exacerbated the forward

map for certain periodic trials.

Studying the causal relationship through time series cross-correlation methods
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Table 4.3: Testing result summary of the performance metrics using the BPNN. Model
I was trained with current-time labels and Model II was trained on future-time labels
using the same inputs

Trial
Testing RMSE (deg.) Testing CCR Coef.

Model I Model II Model I Model II

60 bpm 17.83 11.25 0.857 0.929
90 bpm 18.79 12.75 0.8 0.897
120 bpm 16.89 12.03 0.904 0.938
VFFR 16.46 13.04 0.829 0.880
VFVR 19.69 14.44 0.733 0.847

enabled us to determine optimal prediction horizon for predicting future elbow joint

kinematics. Incorporating the prediction horizon into the training process, lead to

improved accuracy by leveraging the phase lead on muscle activation signals as the

prediction horizon. The implemented training approach also facilitates forward pre-

diction over a short horizon. For all periodic and aperiodic trials including the variable

frequency and variable amplitude trial we found that the model trained on future la-

bels still shows forward predictive power over the horizon with improved training and

testing accuracy.

4.2.1.2 Prediction comparisons using TDNN

Consistent with observations from the BPNN, the TDNN model trained on future

labels (Model II) leveraging the prediction horizon outperformed the model (Model

I) that was trained without the horizon. The TDNN model in general outperformed

the BPNN model using both training strategies resulting in smoother prediction. The

prediction comparison of the TDNN model and BPNN model for the VFFR trial 1 on

subject 1 is shown in Figure 4.8. The time history from the TDNN leads to a better

bounded and smoother prediction compared to the BPNN as seen from the �gure.

The results of the TDNN models for all subjects have been summarized in Tables 4.4

and 4.5. For the tabulated results, a maximum past history of 300 samples equivalent
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to 150 ms was considered. The training RMSE and testing RMSE for the TDNN

models are also similar implying good generalization on novel or testing data. The

subject to subject spread averaged over all types of motion trials for each subject

has been shown in Figure 4.9. Figure 4.9a shows the results of the current time

label data trained TDNN model (Model I) and Figure 4.9b shows the results using

the proposed approach (Model II). For the last subject, the discrepancy observed

in the BPNN model did not inuence the TDNN model results since the historical

information seems to have �ltered through the motion artifacts. Hence, Model II

shows consistent improvement on testing RMSE results across all subjects and for

all motion trials with an average RMSE drop of about 5 deg. using the future time

training approach.

Table 4.4: Result summary of the performance metrics using the TDNN. Model I was
trained with current-time labels and Model II was trained on future-time labels using
the same inputs

Trial
Avg. Training RMSE (deg.) Avg. Training CCR Coef.

Model I Model II Model I Model II

60 bpm 7.65 4.83 0.962 0.984
90 bpm 8.50 5.48 0.943 0.972
120 bpm 7.86 5.93 0.960 0.980
VFFR 8.70 6.88 0.948 0.965
VFVR 13.29 8.38 0.845 0.941

The time-history aspect for time-delayed neural networks was also studied. Com-

pared to an initial history of 50 ms, a 150 ms history improved predictions by about

2-3 degrees. However, more past data beyond 150 ms did not improve the results

noticeably. This can be possibly explained due to vanishing gradients where more re-

cent data dominates the learning process for feed forward networks; however it could

also be attributed to the short-term dynamics behind the action potential build-up

mechanism [119].

We also evaluated larger future time horizons before prediction performance started
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(a) Prediction results using BPNN on VFFR trial 1

(b) Prediction results using TDNN on VFFR trial 1

Figure 4.8: BPNN and TDNN prediction comparisons for VFFR trial 1 for subject
1. Compared to Model I, Model II resulted in better predictions and training �t
for both network architectures. The plots show the Model II prediction comparison
results using future-time label data between the BPNN and TDNN architectures.
The changing frequency for motion is not too apparent in the above prediction or
testing dataset, however the VFFR training data involved full range of motion and
variable speed movements.

deteriorating. For Subject 1, with an optimal prediction horizon of about 200 ms us-

ing a look ahead window of 350 ms, the average testing accuracy dropped by about
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(a) TDNN performance comparisons (Motion Type)

(b) TDNN performance comparisons (Subject-Subject)

Figure 4.9: Subject to subject prediction RMSE comparison between Model I and
Model II TDNNs. Model II trained with future-time kinematics label data consis-
tently shows better prediction results across all subjects

3 deg for periodic trials and 4 deg for aperiodic trials in comparison to the optimal

prediction horizon.

Our focus with this study was not to compare di�erent neural architectures but
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Table 4.5: Result summary of the performance metrics using the TDNN. Model I was
trained with current-time labels and Model II was trained on future-time labels using
the same inputs

Trial
Avg. Testing RMSE (deg.) Avg. Testing CCR Coef.

Model I Model II Model I Model II

60 bpm 10.13 6.61 0.943 0.973
90 bpm 11.26 7.06 0.910 0.966
120 bpm 9.31 7.27 0.951 0.973
VFFR 11.86 9.09 0.898 0.937
VFVR 16.39 11.14 0.820 0.898

instead illustrate the bene�ts of mapping current-time EMG inputs to future-time

labels while training the networks regardless of the type of architecture used. Grech

et al. compared di�erent neural network architectures in their study where they re-

port good performance with feed-forward models like BPNN as compared to TDNN

and LSTM [124]. In our study, the TDNN architecture outperformed the BPNN,

however the proposed training strategy performed consistently better for either archi-

tecture than the commonly used training approach that correlates current-time EMG

to time-synced joint kinematics. The comparison between the future-time trained

BPNN model and the future-time trained TDNN model has been shown in Figure

4.10. Along with consistently low RMSEs, the spread of the predictions for di�erent

motion types is also smaller for the TDNN as compared to the BPNN which implies

better robustness performance. Improvements of the TDNN model over BPNN can

be explained by the underlying physiology of muscles and the activation dynamics [4].

Studies also report hysteresis e�ects from muscles as a function of joint kinematics

termed as `force enhancement' and `force depression' where the force produced not

only depends on the current arm position but also on the history of positions (joint

angles) the arm has traversed [65, 159]. These characteristics make a strong case

for modeling temporal dynamics with EMG. However, recurrent architectures that

consider long-term history like LSTM (Long-short term memory) were not explored
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Figure 4.10: Performance comparison between BPNN and TDNN architectures
trained with future-time labels averaged across all subjects for di�erent motion types.
Compared to Model II BPNN, the TDNN architecture consistently performed better
for elbow kinematics prediction.

for this work since post neural input, the action potential build-up mechanism re-

lies on short-term history and we believe the dynamics can be su�ciently captured

or represented by the TDNN architecture[120]. In comparing TDNN and LSTM, a

study by Day et. al established that the architectures show similar performance for

motion prediction using EMG, with LSTMs only performing marginally better [177].

Grech et. al also report no signi�cant performance improvements using a recurrent

architecture over feed-forward networks [124].

4.2.1.3 Prediction Repeatability Test with Ensemble Learning

To test the variance between the trained architectures, ensemble learning was used

with �ve networks trained on each type of motion for each subject. The concept of

ensemble learning was used to determine if the networks learned di�erent relation-

ships or converged to similar solutions. Since all the networks start with a randomized

140



Figure 4.11: Ensemble learning results using 5 TDNNs trained using randomized
initial guesses

Table 4.6: Ensemble learning results for subject 1

Trial
Training Data Testing Data

� avg � min � max � avg � min � max

60 bpm 1.19 0.04 8.68 1.16 0.11 3.67
90 bpm 1.09 0.11 15.88 2.01 0.09 27.78
120 bpm 1.67 0.06 7.70 1.82 0.05 10.36
VFFR 1.35 0.08 6.69 1.55 0.22 14.83
VFVR 1.04 0.09 8.36 1.27 0.15 4.59

guess, low variance in the prediction results ensures good reliability and reproducibil-

ity of predictions. If the variance between the predictions from the ensemble is high,

then averaging the prediction from all networks is a good way to improve the con-

�dence interval. Standard deviation (SD) was used as a metric for quantifying the

spread between the predictions. The standard deviation results for the ensemble have

been presented in Section 4.2.1.3. Ensemble learning was extended only to the �rst
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Table 4.7: Ensemble learning spread for all subjects (S1-S7)

Trial
� avg (Prediction RMSE)

S1 S2 S3 S4 S5 S6 S7

60 bpm 1.16 2.06 2.68 2.80 2.43 1.55 2.14
90 bpm 2.01 1.23 1.54 3.54 3.06 1.38 2.69
120 bpm 1.82 2.68 4.60 3.67 4.32 3.05 2.32
VFFR 1.55 3.49 2.79 3.08 2.69 2.03 4.70
VFVR 1.27 2.16 3.38 3.09 4.17 5.19 3.71

study involving elbow kinematics prediction to evaluate the network training strategy

and the con�dence in trained networks.

For ensemble learning 5 TDNNs were trained on all motion types for all subjects.

BPNN was not considered for ensemble learning since TDNN consistently improved

the prediction performance over all trials. Hence, it did not make sense to use a

relatively mediocre or sub-optimal architecture for ensemble learning. We also used

future time labels for all 5 TDNNs since as seen from the comparison study, we report

consistent improvements using the future-time labels over current-time labels. The

standard deviation results for subject 1 for each type of motion averaged over the 2

trials have been documented in Table 4.6. The metrics have been averaged over all

�ve network outputs for each type of motion. Since the testing average spread was

between 1 and 2 degrees across, this implies all the networks converged to similar

solutions, which is indicative of good prediction reproducibility. This also implies

that in the solution space, the networks were converging in the locality of a global

optimum inspite of the randomized initial parameters. Similar results were obtained

for all other subjects with a low average standard deviation/spread between prediction

RMSEs ranging from 1 to 5 deg. for di�erent types of motions. The average standard

deviations amongst the prediction RMSEs for the ensemble TDNN models for all

subjects have been summarized in Table 4.7.
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4.2.2 Study II - Combined Future Shoulder and Elbow Fu-

ture Joint Kinematics Prediction

(a) Shoulder predictions using current-time labels

(b) Shoulder predictions using future-time labels

Figure 4.12: Prediction comparisons between Model I and Model II for shoulder
kinematics prediction for the abduction-adduction pilot study trial. The red curve in
sub-�gure `a' shows the Model I prediction and the blue curve in `b' shows the Model
II prediction. The dotted grey curves in both �gures show the reference shoulder
angles.
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Figure 4.13: Temporal comparison between Model I and Model II predictions using
BPNN. Consistent with the previous study, Model II prediction (blue curve) leads
the Model I (red curve) and baseline predictions for all shoulder degrees of freedom.

(a) Shoulder predictions using BPNN (b) Shoulder predictions using TDNN

Figure 4.14: Shoulder kinematics prediction comparison between the BPNN and
TDNN architectures trained using future-time labels. TDNN leads to slight improve-
ments with smoother predictions compared to BPNN.
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As mentioned in Section 3.2, we performed a pilot study initially to determine

the e�ectiveness of the selected muscle signals for shoulder motion prediction. For

the combined shoulder and elbow prediction work, we evaluated two di�erent ap-

proaches. The �rst approach uses two independent models for predicting elbow and

shoulder kinematics respectively. This approach used 3 inputs and 1 output for el-

bow similar to study I and 7 inputs and 3 outputs for shoulder kinematics prediction.

Since the exor and extensor muscle groups are fundamentally di�erent for elbow and

shoulder motions, the models were trained independently. The second approach that

was evaluated was a combined model with 10 inputs and 4 outputs where the shoul-

der and elbow EMG signals were combined in a single input set and the 4 outputs

comprised of the joint kinematics to be predicted or the labels while training. This

allows interaction or interplay between various inputs. As done previously the labels

were current-time (Model I) and future-time joint kinematics (Model II). Though we

previously established through the prior study on the elbow that training with future-

time labels consistently performs better than the model trained using current-time

labels, we decided to extend the comparison study for combined shoulder and elbow

prediction as well to test the e�cacy and scalability of the proposed training strategy.

Table 4.8: Shoulder kinematics prediction results using BPNN trained with current-
time labels

BPNN Model I

Motion
RMSE test (deg.) CCR test
� 1 � 2 � 3 � 1 � 2 � 3

AbdAdd 6.37 7.21 7.52 0.922 0.935 0.946
FlexExt 13.76 5.8 11.21 0.835 0.487 0.876

HorAbdAdd 11.8 14.35 3.51 0.861 0.863 0.794
IntExtRotn 3.03 8.37 3.46 0.796 0.932 0.526
CombMotn 16.62 18.63 11.7 0.671 0.703 0.867
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Table 4.9: Shoulder kinematics prediction results using BPNN trained with future-
time labels

BPNN Model II

Motion
RMSE test (deg.) CCR test
� 1 � 2 � 3 � 1 � 2 � 3

AbdAdd 5.45 5.79 6.29 0.941 0.96 0.958
FlexExt 5.96 4.46 7.85 0.972 0.765 0.936

HorAbdAdd 8.41 10.81 2.98 0.905 0.895 0.889
IntExtRotn 2.44 5.85 2.89 0.788 0.965 0.61
CombMotn 10.15 11.15 8.81 0.879 0.907 0.936

Table 4.10: Shoulder kinematics prediction results using TDNN trained with current-
time labels

TDNN Model I

Motion
RMSE test (deg.) CCR test
� 1 � 2 � 3 � 1 � 2 � 3

AbdAdd 5.66 6.58 6.64 0.923 0.937 0.947
FlexExt 7.1 5.36 6.38 0.953 0.504 0.958

HorAbdAdd 10.67 13.03 3.65 0.874 0.87 0.822
IntExtRotn 2.52 6.97 3.15 0.64 0.958 0.51
CombMotn 11.19 12.34 8.52 0.855 0.876 0.915

Table 4.11: Shoulder kinematics prediction results using TDNN trained with future-
time labels

TDNN Model II

Motion
RMSE test (deg.) CCR test
� 1 � 2 � 3 � 1 � 2 � 3

AbdAdd 4.68 5.13 4.85 0.947 0.966 0.972
FlexExt 5.47 4.5 5.71 0.969 0.683 0.967

HorAbdAdd 7.82 9.95 2.79 0.936 0.927 0.888
IntExtRotn 2.6 6.2 2.9 0.806 0.96 0.61
CombMotn 9.4 9.65 8.9 0.852 0.912 0.945

4.2.2.1 Shoulder kinematics prediction results for the pilot study

The prediction results for the pilot study conducted on the shoulder are shown in

Figures 4.12 a and b for the abduction-adduction periodic motion trial. As seen
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previously with elbow prediction, the training and prediction results are better with

the training strategy that uses the forward map represented by Model II predictions

as opposed to Model I that uses time-synced EMG inputs and labels. The lead

with this training strategy on all joint kinematics can be seen in Figure 4.13. The

performance results for the pilot study for shoulder motion prediction are summarized

in Tables 4.8, 4.9, 4.10 and 4.11. The prediction results have been averaged over the

3 trials for each motion type viz. abduction-adduction, exion-extension, horizontal

abduction-adduction and shoulder internal-external rotation. As can be seen from

the tables, consistent with Study I on the elbow, the shoulder kinematics prediction

performance using the proposed training strategy is better than the model trained

using current-time labels or without the horizon. In comparing the BPNN and TDNN

architectures, as opposed to the TDNN elbow prediction model, a TDNN training

architecture for shoulder kinematics prediction did not lead to substantial RMSE

improvements over the BPNN, however the TDNN Model II does lead to smoother

predictions as compared to the BPNN Model II as shown in Figures 4.14 a and b.

Table 4.12: Prediction performance of BPNN using 2 independent models for shoulder
and elbow prediction trained on current-time labels

Independent Models - Current-time labels

Motion
RMSE test (deg.) CCR test

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse 1 4.22 6.63 4.21 16.45 0.932 0.858 0.89 0.802
Transverse 2 6.14 12.84 4.14 26.6 0.936 0.933 0.904 0.61
Transverse 3 5.78 9.51 3.48 21.41 0.873 0.841 0.781 0.761

Sagittal 1 4.11 8.35 8.1 25.78 0.637 0.571 0.958 0.746
Sagittal 2 3.65 5.94 6.16 23.15 0.757 0.696 0.964 0.768
Sagittal 3 4.31 10.18 9.98 25.45 0.288 0.574 0.978 0.69

CombMotn 8.8 14.74 11.01 26.43 0.671 0.764 0.871 0.558
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Table 4.13: Prediction performance of BPNN using 2 independent models for shoulder
and elbow prediction trained on future-time labels

Independent Models - Future-time labels

Motion
RMSE test (deg.) CCR test

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse 1 2.81 5.32 3.29 13.2 0.975 0.901 0.94 0.902
Transverse 2 4.88 10.14 2.78 18.4 0.963 0.963 0.952 0.821
Transverse 3 3.68 8.31 2.31 14.23 0.956 0.867 0.918 0.898

Sagittal 1 3.36 6.74 6.02 17.17 0.781 0.76 0.978 0.875
Sagittal 2 3.11 5.47 4.31 15.95 0.796 0.769 0.982 0.89
Sagittal 3 4.01 8.07 9.71 17.42 0.527 0.71 0.978 0.83

CombMotn 6.6 12.61 6.85 23.44 0.818 0.844 0.924 0.683

Table 4.14: Prediction performance of BPNN using a single model for combined
shoulder and elbow prediction trained on current-time labels

Combined Model - Current-time labels

Motion
RMSE test (deg.) CCR test

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse 1 4.12 5.3 3.84 9.44 0.927 0.875 0.921 0.9
Transverse 2 5.18 11.23 3.52 10.03 0.955 0.952 0.925 0.93
Transverse 3 5.65 8.078 2.5 10.02 0.856 0.878 0.844 0.923

Sagittal 1 3.9 7.07 6.61 17.86 0.725 0.744 0.971 0.803
Sagittal 2 2.93 5.3 4.79 13.25 0.864 0.777 0.978 0.915
Sagittal 3 4.18 7.71 8.86 23.36 0.433 0.717 0.906 0.7

CombMotn 9.25 13.55 10.06 26.44 0.629 0.751 0.834 0.572

4.2.2.2 Performance comparisons for multiple degrees of freedom predic-

tion

Before extending the work to multiple subjects as mentioned before we evaluated the

performance of independent models and a combined model for simultaneous elbow and

shoulder kinematics prediction. The performance of the independent BPNN models

trained using current and future-time kinematics is shown in Tables 4.12 and 4.13 re-

spectively. The performance of the combined BPNN models trained using current and

future-time kinematics is shown in Tables 4.14 and 4.15 respectively. The su�x 1, 2

and 3 denotes the repeated trials for the transverse and sagittal plane reaching tasks.
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Table 4.15: Prediction performance of BPNN using a single model for combined
shoulder and elbow prediction trained on future-time labels

Combined Model - Future-time labels

Motion
RMSE test (deg.) CCR test

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse 1 3.08 5.83 3.62 7.97 0.962 0.865 0.932 0.953
Transverse 2 3.43 8.52 2.88 9.18 0.98 0.97 0.953 0.943
Transverse 3 3.08 8.24 1.73 6.27 0.97 0.908 0.956 0.97

Sagittal 1 3.24 7.43 6.17 10.09 0.81 0.751 0.978 0.947
Sagittal 2 2.69 3.34 3.84 8.92 0.84 0.907 0.987 0.954
Sagittal 3 3.86 7.96 6.61 14.78 0.771 0.716 0.936 0.877

CombMotn 8.09 15.08 7.7 16.91 0.786 0.811 0.906 0.817

The performance of the combined model and the independent models trained with

future-time kinematics labels was comparatively better than the corresponding mod-

els trained using current-time labels consistent with previous observations. However,

compared to the independent models, the combined models using either current-time

or future-time labels improved the elbow kinematics prediction substantially. As for

the shoulder, the independent models lead to marginal improvements over the com-

bined model. Using a combined model improved elbow prediction accuracy by 5-9

degrees, while for the shoulder kinematics the performance dropped by 1-2 degrees

in some cases. However, the substantial improvements in elbow kinematics predic-

tion using the combined model outweighs the marginal performance drop in shoulder

kinematics prediction, hence for further evaluation works we relied on a single model

for combined shoulder and elbow kinematics predictions.

For the combined shoulder and elbow kinematics prediction work, the second ap-

proach using a single (combined) model is partly supported by works that suggest

distal arm kinematics are strongly inuenced by proximal arm kinematics [115]. Sev-

eral other studies have also pointed out that motion around distal limbs can lead to

activations around other muscle groups due to inter-segmental dynamics [178, 179].

Hence compensatory forces and torques are generated by proximal muscle groups for

149



Table 4.16: BPNN Prediction RMSE comparison for di�erent motion types averaged
over all subjects

Motion Type
Model I Avg. RMSE Model II Avg. RMSE
� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse
reaching 8.59 5.35 8.76 16.02 6.65 3.85 7.26 9.94
Sagittal
reaching 7.67 3.91 5.62 17.71 5.81 3.16 5.34 12.34

Combined
reaching 11.57 6.84 11.1 20.12 9.16 5.3 9.41 14.49

Table 4.17: BPNN Prediction RMSE comparison for all subjects averaged over dif-
ferent motion types

Subjects
Model I Avg. RMSE Model II Avg. RMSE
� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 9.78 5.22 10 17.24 7.25 3.76 8.71 12.64
S2 11.98 5.74 11.85 24.49 8.48 4.45 9.2 16.32
S3 11.09 6.38 8.25 21.89 8.41 5.3 6.34 14.11
S4 8.23 3.87 7.07 12.28 5.71 2.78 5.66 8.68
S5 8.33 4.81 6.71 14.26 6.9 3.99 5.96 11.78
S6 7.12 5.39 4.45 19.43 5.05 3.7 4.14 10.38
S7 10.01 5.6 9.95 15.16 8.27 4.2 9.36 11.82
S8 10.45 6.7 9.83 19.53 8.47 5.09 8.9 12.65
S9 8.71 5.07 8.14 17.66 7.27 4.12 7.57 12.08
S10 7.85 5.3 7.71 19.89 6.01 3.6 6.51 11.96

stability and compensation for external dynamics for controlling motion about distal

limbs. We believe this explains the improvements of this combined model over the

�rst approach which uses two independent models for predicting shoulder and elbow

kinematics. It should also be important to note that some of these adaptations may

come later in time and if they can be captured su�ciently based on a pre-established

causal map is an interesting question that warrants a deeper study of the under-

workings of the sensory motor cortex and preconditioning of neural input based on

visual and tactile cues and associated adaptations in muscle activations. However, as

far as the targeted application goes, for robot teleoperation external contact would be
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decoupled from the human and any external dynamics e�ects due to mass or inertia

of the limbs would be minimal due to controlled motions and actions.

Figure 4.15: Prediction performance comparison between BPNN models trained using
current-time (Model I) and future-time labels (Model II). The un�lled plots show the
prediction performance of Model I BPNN and the �lled box plots show the prediction
performance of the Model II BPNN. The red, blue, yellow and green colors denote the
shoulder exion-extension (� 1), shoulder abduction-adduction (� 2), shoulder internal-
external rotation (� 3) and elbow exion-extension angles (� 4) respectively.

The improvements of the proposed training strategy on shoulder and elbow motion

prediction have been shown in Figures A.1 and A.2 for the random motion (combined

motion) trial on Subject 6 using the BPNN architecture. The performance metrics

have been summarized in Table 4.16 averaged over all the subjects for the transverse,

sagittal and combined reaching trials. The RMSE spread, means, inter-quartile range

(IQR) over all subjects for di�erent motion types has been shown in Figure 4.15. It

should be clear from the box plots that Model II consistently performed better for

every degree of freedom prediction across all motion types. This validates the obser-

151



Table 4.18: BPNN and TDNN RMSE comparisons for di�erent motion types averaged
over all subjects. Both network architectures were trained with future-time labels

Motion Type
BPNN - RMSE TDNN - RMSE

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse
reaching 6.65 3.85 7.26 9.94 6.79 4.01 7.37 9.34
Sagittal
reaching 5.81 3.16 5.34 12.34 5.46 2.98 4.79 9.9

Combined
reaching 9.16 5.3 9.41 14.49 9.61 5.29 9.29 13.84

vations from the previous study consisting of a single degree of freedom prediction

where training using the skewed temporal relationship between EMG signals and

joint kinematics lead to a better prediction. The improvements for the elbow exion-

extension motion (� 4) prediction are more prominent since the elbow range of motion

was more than the shoulder degrees of freedom for the performed motion. However,

it wouldn't be appropriate to compare the performance between di�erent degrees of

freedom unless the metrics were normalized for each degree/joint. The RMSE plots

with the spread and means over di�erent motion type for each subject have been

shown in A.5 and A.6. The summary of performance metrics for each subject over

di�erent motion types is shown in Tables B.1,B.2 and B.3. Subject 3 showed sub-

stantial data loss on the combined motion trials hence the results are not included

for this trial for the subject. The performance across all subjects averaged over the 3

motion types has been shown in Table 4.17.

As opposed to the BPNN architecture where we compared Model I and Model II

training approaches, we did not extend the TDNN study to comparing the training

strategies for combined shoulder and elbow motion predictions for all subjects. For the

TDNN, the models were only trained using future-time labels or Model II training

approach. We believe the previous study, along with the pilot study on shoulder

motion prediction and the results presented in Tables 4.8 - 4.11 along with the BPNN
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Figure 4.16: Prediction comparisons between BPNN and TDNN architectures trained
using future-time labels. The un�lled plots show the prediction performance of Model
II BPNN and the �lled box plots show the prediction performance of the Model II
TDNN. The red, blue, yellow and green colors denote the shoulder exion-extension
(� 1), shoulder abduction-adduction (� 2), shoulder internal-external rotation (� 3) and
elbow exion-extension angles (� 4) respectively.

model results in Tables 4.16 and 4.17 gives enough evidence to the fact that training

using a forward map leads to a better prediction. Comparing the TDNN model

trained with future-time labels to the BPNN trained with future-time labels we did

not observe substantial improvements by including the time-history using the TDNN

model. The performance comparison between the BPNN and TDNN architectures

for the second study has been shown in Table 4.19, while the performance across

all motion types averaged over all subjects has been shown in Table 4.18. For most

cases, for shoulder motion prediction, the TDNN and BPNN performances are in par

with each other. However, as observed in Study I, we note that the TDNN model

consistently leads to better prediction for elbow joint kinematics predictions. The lack
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Table 4.19: Subject to subject RMSE comparison between BPNN and TDNN trained
with future-time labels

Subject ID
BPNN Avg. RMSE TDNN Avg. RMSE
� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 7.25 3.76 8.71 12.64 6.18 3.66 7.45 8.19
S2 8.48 4.45 9.2 16.32 9 4.52 9.08 14.8
S3 8.41 5.3 6.34 14.11 8.77 5.62 6.4 13.06
S4 5.71 2.78 5.66 8.68 5.91 3.03 5.6 8.34
S5 6.9 3.99 5.96 11.78 6.93 3.99 6.15 10.79
S6 5.05 3.7 4.14 10.38 5.3 3.71 4.22 9.59
S7 8.27 4.2 9.36 11.82 8.25 3.99 8.56 11.46
S8 8.47 5.09 8.9 12.65 8.45 5.01 9.09 12.39
S9 7.27 4.12 7.57 12.08 7.6 3.97 7.47 10.82
S10 6.01 3.6 6.51 11.96 6.22 3.53 6.52 10.55

of improvements of the TDNN model for shoulder predictions over the BPNN can be

explained by the use of a combined model that allows interactions between elbow and

shoulder muscle EMG signals. Since the combined TDNN model entails using elbow

exor and extensor EMG signals along with a time-history of past EMG excitations

for shoulder predictions, this tends to have a marginally detrimental e�ect on shoulder

kinematics predictions as elbow distal joint activations do not inuence proximal joint

motion, however the proximal joint activations can play a major role as stated before

on stabilizing and controlling distal joint motions. This can be con�rmed from the

pilot study results where the lack of elbow EMG signals lead to better predictions

with the TDNN model as compared to the BPNN model for most cases as presented

in Tables 4.9 and 4.11.

4.3 Prediction Accuracy and Generalization Im-

provements

State inputs (past joint angle positions, velocities and accelerations) can carry a

lot of information about the hysteresis e�ects associated with motion especially if
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the motion is periodic or rhythmic. For random motion, though state or past his-

tory may not carry much information about the current or a future state it would

certainly bound the predictions at the future-time steps to a delta of the previous

time-steps leading to a more bounded and realistic continuous prediction as seen in

auto-regressive and forecasting models. As with the feature extracted model, a less

noisier output is expected. This is expected since the features represent some spatio-

temporal characteristic of the signal which gets separated or �ltered from the signal

noise in the extraction process and feature extraction often leads to a downsampled

result depending on the window size.

4.3.1 Hybrid Model (SI-FEM) Prediction Results

The initial logic was to use the SI and FEM models separately and then average

out the predictions since the nature of the problem that the feature extracted model

and the state input model solve are di�erent. The FEM solves regression and the

state-based model solves auto-encoding and auto-regression. Figure 4.17 shows the

prediction on the random trial using the FEM model on elbow motion data collected

during Study I. The FEM model does reasonably well estimating joint kinematics on

the random trial though it leads to over�tting which should be clear from the �gure as

the predictions stray more than the baseline or reference as compared to the trained

model. Figure 4.18 shows the prediction on the random trial using the SI model. The

SI model signi�cantly under�ts the training data, but shows acceptable performance

on testing data. The SI model is more conservative as compared to the FEM and

produces a more bounded output due to the auto-encoding nature of the problem it

solves for, while the FEM overshoots quite a bit since the regression problem entails

mapping two di�erent signals together. The state based model was found to perform

well for short-term forward predictions. However, for predictions over 200 ms the

model under�ts the data. The under�tting is especially worse for faster motions. For
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the random trials, the under�tting exists as well but it is not as prevalent as the

high frequency motions, however the accuracy is much worse as compared to lower

frequency periodic motions. State estimation for periodic trials is easier, since the

models can generalize to the frequency component of the signal. In terms of random

trials however, the frequency component does not give away too much information

about future predictions hence, purely state driven models for random predictions

often do not work well especially with a BPNN architecture with a SISO (single

input single output map). Hence, we used the TDNN architecture for implementing

this model. With the TDNN's multiple input and single output map (MISO), the

state-based model for random trials performed relatively well due to the time-history

but under�tting can be observed in both training as well as testing results as seen in

Figure 4.18. The state-based model architecture is shown in Figure 3.8.

After averaging the state-based prediction and the feature-extracted model pre-

dictions, it was found that the state input model's under�tting signi�cantly inuences

the �nal prediction thus throwing o� the net prediction especially for high frequency

periodic trials. Averaging out the predictions from both models weighs the two predic-

tions equally. Hence, the model design was changed to feature extracted EMG inputs

and state information inputs stacked together in a single homogeneous architecture

so the weights are optimized for individual inputs depending on the correlation with

respect to the output.

Table 4.20: Result summary of the performance metrics using the SIFEM (State
Input Feature Extracted Model)

Trial
Avg. RMSE (deg) Avg. CCR Coef.

Training Data Testing Data Training Data Testing Data

60 bpm 2.74 2.91 0.996 0.995
90 bpm 1.744 1.935 0.998 0.997
120 bpm 1.517 1.888 0.997 0.996
VFFR 8.04 8.76 0.919 0.891
VFVR 4.10 4.71 0.95 0.917
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Figure 4.17: Prediction results using the FEM on the random trial for subject 1.
The red curve represents the true value while the blue and green curve represent the
training and testing results respectively.

Figure 4.19 shows the prediction on the random trial using the SIFEM model.

The SIFEM model performs the best by combining advantages of both the feature

extracted model and state input model. The hyperparameters for all the models

were the same to compare performances. In the presented curves, the plateau at

around 85000 samples in FEM shows signi�cant noise as compared to the SI model.

The SIFEM for the same interval shows a relatively less noisy and a more accurate

estimation overall.

The training and testing performance of the SIFEM model averaged over two test-

ing sessions for Subject 1 is shown in Table 4.20. As can be seen from the result table,

the state input feature extracted model (SIFEM) leads to a substantial performance

improvement as compared to the initial results presented in the previous section.

The SIFEM prediction was not extended for other subjects for Study I, but we used

this result as a pilot study in order to test the e�ectiveness of the state-informed
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Figure 4.18: Prediction results using the SI model on the random trial for subject 1

Figure 4.19: Prediction results using the SIFEM on the random trial for subject 1.
The red curve represents the true value while the blue and green curve represent the
training and testing results respectively.
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Table 4.21: Intra-subject Robustness Testing for Subject 1

Trial
Testing RMSE for di�erent motions (deg)

60T2 90T1 90T2 120T1 120T2 VFFRT1 VFFRT2 VFVRT1 VFVRT2

60T2 5.55 12.68 14.10 16.31 19.04 14.53 12.74 11.71 15.73
90T1 8.38 5.05 8.16 9.74 10.10 8.04 9.52 8.09 14.71
90T2 7.23 8.12 4.99 14.04 14.28 10.02 8.377 9.19 9.42
120T1 12.65 8.88 12.46 6.76 6.71 8.96 12.33 9.59 17.22
120T2 15.74 10.19 14.45 5.88 6.98 8.75 12.14 10.94 21.37
VFFRT1 8.18 7.70 8.71 8.86 9.22 6.49 7.99 8.13 12.88
VFFRT2 10.52 10.44 8.65 11.68 14.91 9.51 7.24 10.05 7.57
VFVRT1 7.01 7.03 8.41 9.46 12.03 8.48 8.68 6.6 10.6
VFVRT2 8.37 10.98 9.02 15.29 17.73 11.90 9.11 9.37 8.36

extracted model to gain insights about the accuracy and generalization performance

of this model. Based on these results, it was clear that the SIFEM was a better

choice in terms of accuracy. The average testing RMSE for the performed periodic

and aperiodic motions were 2 and 6 deg respectively.

Most studies in the literature do not establish the robustness performance of their

models leading to questions about the generalization of the implemented approaches.

Robustness analysis is also insightful since it can help identify good datasets to train

on that carry representative information, since with data-driven approaches like neu-

ral networks a large part of the problem boils down to how well the training data was

curated. We performed a pilot robustness analysis in order to explore the generaliza-

tion performance of the predictions. Relevant to the study, two forms of robustness

analyses were explored: intra-subject robustness and inter-subject robustness. In the

previous works, the dataset for each motion trial and for each subject was discretized

into training and testing datasets. The o�ine prediction work involved training the

neural network on each type of motion as well as on each subject for establishing the

performance metrics. The intra-subject robustness analysis pertains to establishing

the performance of the model when trained on one type of motion and tested on a

di�erent type of motion for the same subject. The inter-subject robustness perfor-

mance involves training the models on one subject and testing on another subject for
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(a) Prediction results using the TDNN model on 60 bpm trial 2

(b) Prediction results using the TDNN model on Random (VFVR)
trial 1

Figure 4.20: Intra-subject robustness analysis results using the TDNN model on
periodic and random trials. The model was trained on Subject 2 VFVR trial 2 and
tested on the 60 bpm trial 2 and VFVR trial 1 respectively in �gures a and b. Red
curve shows the measured signal and green curves show the predicted signal. The
curves show the prediction on the magni�ed� 20 % interval
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same as well as di�erent motion types.

The intra-subject robustness analysis was performed on Subject 1 where the

trained TDNN models on one motion type were subject to testing on di�erent mo-

tion types. The performance Table 4.21 shows the RMSE results when the model was

trained on one type of motion for Subject 1 and tested on other types of motions.

The �rst column in the table represents the data (motion trial type) the model was

trained on, while the columns 2-9 represent the respective motions the trained model

was tested on. The alpha numeric headings signify the periodic trial bpm (beats per

minute) and T1 and T2 denote trials 1 and 2 respectively. As stated in the previous

sections, VFFR (variable frequency, �xed range of motion) and VFVR (variable fre-

quency, variable range of motion) are the random aperiodic trials. Ideally, the best

performance should be obtained along the diagonal of the presented matrix since

training and testing about the diagonal involve the same motion type which were

discretized into 80 % and 20 % training and testing splits.

As seen from the Table 4.21, it can be established that periodic motions are not

ideal for training since the models could largely generalize to the frequency component

of the data leading to poor performances on variable frequency and range of motion

randomized trials. However, models trained on randomized motions with variable

frequency and amplitude components show good generalization on not only periodic

motions but also on other randomized motions. Hence, for the 60s long training

datasets the models resulted in a more generalizable relationship map when trained

on random motion trials. This observation is quite insightful since it could help

curate better training datasets with relatively small training data. The intra-subject

robustness of the TDNN model is decent enough and even with a 60s long training

dataset when trained on random motions, the testing RMSE average is below 10 deg.

The intra-subject performance of the TDNN model when trained on random motion

trial and tested on periodic as well as other random motions is shown in Figures 4.20
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(a) Prediction results using the TDNN model on 60 bpm trial 2

(b) Prediction results using the TDNN model on Random (VFVR)
trial 1

Figure 4.21: Inter-subject robustness analysis prediction results using TDNN model
on periodic and random trial. The model was trained on Subject 2 and tested on
Subject 1 for the 60 bpm trial 2 and random motion (VFVR) trial 1 in �gures a
and b respectively. Red curve shows the measured signal and green curves show the
predicted signal. The curves show the prediction on the magni�ed 20 % interval
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(a) Prediction results using the SIFEM-TDNN model on 90 bpm trial

(b) Prediction results using the SIFEM-TDNN model on the random
(VFVR) trial

Figure 4.22: Inter-subject robustness analysis results using the TDNN SIFEM model
on periodic and random trial. For Figure a, the model was trained on Subject 2 90
bpm trial 2 and tested on Subject 1 90 bpm trial 2. In Figure b, the model was
trained on Subject 2 VFVR trial 1 and tested on Subject 1 VFVR trial 1. Red curve
shows the measured signal and green curves show the predicted signal. The curves
show the prediction on the magni�ed 20 % interval
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and A.7

The inter-subject robustness is pretty hard to guarantee due to subject speci�c

and time-varying nature of the EMG signals. Inter-subject robustness analysis was

performed to test subject to subject generalization using pilot studies on Subject 1

and 2. The TDNN model prediction results when trained on subject 3 and tested

on subject 2 are shown in Figures 4.21 a and b on periodic and aperiodic motions.

The prediction RMSEs for the presented results in the curves are� 20 deg and� 30

deg respectively. It can be observed in the �gures that there seems to be more

of a constant o�set error between the predicted signals and the measured signals.

This issue can be partly solved through better input signal or output prediction

normalization techniques between the subjects. We plan to explore similar approaches

in the futureworks.

The SIFEM guarantees continuous and accurate forward predictions over a short

horizon as seen in the previous works in Table 4.20. Intra-subject robustness analysis

showed acceptable performance of the SIFEM model, however for the inter-subject

robustness results, the SIFEM performs poorly implying the model highly over�ts to

subject-speci�c signal characteristics due to the feature extraction. The inter-subject

robustness analysis predictions for the SIFEM have been shown in Figures 4.22 a and

b for the models trained on periodic and random motions respectively. The inter-

subject prediction RMSE is over 35 deg. It is known based on the law of parsimony

that simplest models generalize the best. Adding more features and state inputs

leads to a much larger input set of 17 for just the elbow motion prediction using

3 muscle signals. With the shoulder and elbow combined TDNN prediction model,

this translates to 62 inputs along with the time-history of `n' samples for each input

which leads to a substantially large input set for predicting 4 degrees of freedom.

The more the number of inputs, the more likely that the trained model over�ts the

characteristics of the training data. The SIFEM model can be further optimized in
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Table 4.22: BPNN, TDNN and SIEMG-TDNN RMSE comparisons for di�erent mo-
tion types averaged over all subjects

Motion Type
RMSE - BPNN RMSE - TDNN RMSE - SIEMG

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

Transverse
reaching 6.65 3.85 7.26 9.94 6.79 4.01 7.37 9.34 3.88 2.39 4.38 4.45
Sagittal
reaching 5.81 3.16 5.34 12.34 5.46 2.98 4.79 9.9 3.07 2.04 3.38 4.6

Combined
reaching 9.16 5.3 9.41 14.49 9.61 5.29 9.29 13.84 6.32 3.54 6.66 7.96

order to improve the robustness or generalization performance using dimensionality

reduction methods. Dimensionality reduction techniques reduce the feature set by

getting rid of redundant information in the inputs and retaining most signi�cant in-

formation. Redundant feature information often is detrimental to the learning process

of a network. Dimensionality reduction based studies using PCA have shown good

prediction results in EMG-based classi�cation studies as well as in some continuous

robot control studies [180][181]. However, that adds additional computations in the

pipeline a�ecting real-time performance. This would not be ideal in our case since

the premise of this work is reducing the control latency for teleoperation. Based on

our observations for shoulder and elbow kinematics prediction, the added bene�ts in

the performance from the feature-set does not outweigh or justify the computational

overhead, substantially longer training times and real-time challenges leading to di-

minishing returns. Hence, we decided to revert back to a more simpler model that

does not employ feature extraction. The model presented in Figure 3.12 was further

simpli�ed into the model shown in Figure 4.23 without the feature extraction block

for evaluating performance for the second study.

The results for the SIEMG-TDNN model for the combined shoulder and elbow

prediction study have been summarized in Tables 4.22 and 4.23 respectively. The

prediction results on the random trial for Subject 6 have been shown in Figures

A.3 a and b for shoulder and elbow kinematics predictions respectively. For the
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Figure 4.23: Illustration of the combined state and EMG-based model for shoulder
and elbow motion prediction. The right-side block shows the state-based inputs as
seen in 3.9 and the left input block shows EMG signals from 10 di�erent muscles

transverse pick and place trial using the TDNN model, the joint kinematics prediction

results are shown in Figure A.13. The improvements of the TDNN-SIEMG model

for the same trial are shown in Figure A.14. The RMSE spread across di�erent
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Figure 4.24: Prediction comparisons between the BPNN, TDNN and state-informed
TDNN (SIEMG-TDNN) models trained using future-time joint kinematics labels for
shoulder and elbow kinematics prediction. The un�lled plots show the prediction
performance of Model II BPNN, the partially �lled box plots show the prediction
performance of the Model II TDNN and the fully �lled box plots show the predic-
tion performance of the Model II TDNN-SIEMG. The red, blue, yellow and green
colors denote the shoulder exion-extension (� 1), shoulder abduction-adduction (� 2),
shoulder internal-external rotation (� 3) and elbow exion-extension angles (� 4) re-
spectively.

models for various motion types has been shown in the box-plots in Figure 4.24.

It can be inferred from the prediction results that the state-informed TDNN model

(SIEMG-TDNN) substantially improves the prediction performance across all degrees

of freedom. The average RMSE between di�erent motion types for shoulder degrees

of freedom prediction is about 4 degrees and for elbow kinematics prediction is about

6 degrees using this model.
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Table 4.23: BPNN, TDNN and SIEMG-TDNN RMSE comparisons for all subjects
averaged over di�erent motion types

Subject
BPNN RMSE TDNN RMSE SIEMG RMSE

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 7.25 3.76 8.71 12.64 6.18 3.66 7.45 8.19 4.36 2.41 4.79 4.61
S2 8.48 4.45 9.2 16.32 9 4.52 9.08 14.8 5.29 2.97 5.98 6.2
S3 8.41 5.3 6.34 14.11 8.77 5.62 6.4 13.06 5.19 3.71 4.89 8.24
S4 5.71 2.78 5.66 8.68 5.91 3.03 5.6 8.34 4.27 2.41 3.89 4.79
S5 6.9 3.99 5.96 11.78 6.93 3.99 6.15 10.79 4.04 2.52 4.11 5.08
S6 5.05 3.7 4.14 10.38 5.31 3.71 4.22 9.59 2.8 1.87 2.83 4.69
S7 8.27 4.2 9.36 11.82 8.25 3.99 8.56 11.46 5.59 3.21 6.53 7.51
S8 8.47 5.09 8.9 12.65 8.45 5.01 9.09 12.39 4.28 2.6 5.59 5.36
S9 7.27 4.12 7.57 12.08 7.6 3.97 7.47 10.82 5.01 2.89 5.24 6.28
S10 6.01 3.6 6.51 11.96 6.22 3.53 6.52 10.55 3.04 2.03 3.65 4.03

Figure 4.25: Muscle excitation, neural activations and muscle activations from the
raw EMG signals collected for the 90 bpm trial on Subject 1 (Study I)

4.3.2 Hybrid Model-based and Model-free Approach

As mentioned in Section 3.6.2, we explored a hybrid model-based and model-free ar-

chitecture for improving the generalization performance of the predictions and also
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to constrain the predictions to realistic physiological estimates based on the neuro-

musculoskeletal modeling approach. Currently, with the SIFEM, the network can

generate accurate forward predictions than the non-SIFEM TDNN model, however

the predictions do no generalize well to other subjects as compared to the simpler

TDNN models. Augmenting the SIFEM model with the NMS model estimates could

help solve this issue.

Figure 4.26: EMG-based simpli�ed NMS model torque estimation compared to the
inverse dynamics torque for the 90 bpm motion trial obtained using OpenSim

The calculated muscle excitation, neural activation and muscle activations for the

90 bpm exion-extension trial on Subject 1 are shown in Figure 4.25. Once the muscle

force �ber-length velocity parameters and force-velocity parameters were calculated,

the Hill's muscle model was used to compute the forces from each muscle as a function

of muscle activations as described in Section 3.6.2. The forces for each muscle for the

90 bpm trial are shown in Figure A.10. Using the moment arm information the torque

contributions for each muscle were determined as shown in Figure A.11. The net joint
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(a) Model was trained on subject 2 VFVR trial 1 and tested on subject 1
VFVR 1.

(b) Model was trained on subject 2 VFVR trial 1 and tested on subject 1
VFVR 2.

Figure 4.27: Inter-subject robustness analysis prediction results using TDNN SIEMG-
NMS hybrid model. Red curve shows the measured signal and green curves show the
predicted signal. The curves show the prediction on the magni�ed� 20 % interval

torque from the simpli�ed NMS model was obtained by adding all the corresponding

torque contributions from the exor and extensor muscle-groups.
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Table 4.24: Result summary of the performance metrics using the Hybrid SINMS-
TDNN (State Informed Neuromusculoskeletal Model)

Trial
Avg. RMSE (deg) Avg. CCR Coef.

Training Data Testing Data Training Data Testing Data

60 bpm 1.21 2.37 0.999 0.997
90 bpm 1.48 2.54 0.999 0.997
120 bpm 1.58 3.09 0.999 0.995
VFFR 2.19 5.27 0.999 0.986
VFVR 3.03 6.65 0.998 0.977

Using the inverse dynamics tool, we also computed the elbow joint torque using

OpenSim. Since the model uses scaled limb lengths and inertial properties, joint

torque can be estimated based on the inertia and angular accelerations from the

kinematics data using Equation 2.19. This served as a rudimentary baseline to com-

pare the estimated net joint torque using the simpli�ed neuromusculoskeletal model.

The comparison between the EMG-based NMS model torque estimation and the in-

verse dynamics torque estimation is shown in Figure 4.26. As seen in the �gure, the

estimated torque and inverse dynamics torque agree fairly well with each other. Dis-

crepancies and sources of error are expected in both the computations due to inertial

approximates and simpli�cations in the model.

The estimated forces and the torque along with the state information was used

for training the TDNN model as described in Section 3.6.2. Since we learnt from

the previous observations that the feature extracted model has a high likelihood of

over�tting to the characteristics in the training data, the previously proposed hybrid

model-based and deep-learning hybrid model shown in Figure 3.13 was also simpli�ed

to not use a feature-extracted block.

The prediction results of the hybrid model are shown in Figure A.12 a and b for

the periodic trial and random trials respectively. The training RMSE of the model

was 1.5 deg. and the testing RMSE was 2.56 deg for the periodic trial. For the

aperiodic random motion trial the training RMSE was 1.6 deg and the testing RMSE
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was 5.25 deg. for elbow joint kinmatics prediction. Since the forces carry lower

bandwidth than the excitation signals due to the underlying muscle dynamics as well

as activation dynamics, as hypothesized this leads to a much smoother prediction as

opposed to using muscle excitation signals as the input to the deep learning models.

The prediction results for the TDNN SIEMG-NMS model for Subject 1 averaged over

the multiple trials for each motion type are shown in Table 4.24.

The real test of this model is in terms of cross-subject generalization, hence we

also explored inter-subject robustness performance of this model. The inter-subject

robustness results are shown in Figures 4.27 a and b. The average testing RMSE for

the predictions in the plots was 18 deg. The model shows substantial improvements

with respect to the SIFEM-TDNN and the TDNN models. The hybrid model has the

prediction performance accuracy of the SIFEM-TDNN model without sacri�cing the

robustness and generalization performance. We plan to do more extensive robustness

evaluation of this model along with extending the approach to predicting shoulder

kinematics in the future.

4.3.3 Data Curation and Segmentation

Figures 4.28 a and b show the training result using the TDNN-SIEMG architecture

for the model trained using the curated dataset on Subject 1 (Study II). The dataset

comprised of multiple transverse plane reaching trials along with 2 sagittal plane

trials. The model was tested on the third sagittal plane reaching trial to determine

the intra-subject robustness performance. As can be seen from the �gure, the model

trained well over the concatenated datasets using the approach presented in Section

3.6.3. The training RMSEs for the shoulder exion extension, abduction adduction,

internal external rotation and elbow joint angle were [1.83, 1.29, 2.25, 2.16] deg.

respectively. The sporadic jumps in the training curves represent the discontinuities

between datasets due to di�erent start and end of range of motion kinematic values.

172



(a) Shoulder kinematics training results for the curated transverse and
sagittal reaching motion dataset

(b) Elbow kinematics training results for the curated transverse and sagit-
tal reaching motion dataset

Figure 4.28: Training results using TDNN SIEMG model on curated dataset compris-
ing of transverse and sagittal reaching trials. Red curve shows the measured signal
and green curves show the function approximation result.
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(a) Shoulder kinematics prediction results for the curated transverse and
sagittal reaching motion dataset

(b) Elbow kinematics prediction results for the curated transverse and
sagittal reaching motion dataset

Figure 4.29: Intra-subject robustness analysis results using TDNN SIEMG model on
the curated dataset for the transverse and sagittal plane reaching trials for Subject 1
(Study II). Red curve shows the measured signal and green curves show the predicted
signal.
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(a) Shoulder kinematics prediction results for the curated combined reach-
ing motion dataset

(b) Elbow kinematics prediction results for the curated transverse and
sagittal reaching motion dataset

Figure 4.30: Intra-subject robustness analysis results using TDNN SIEMG model on
curated dataset for the combined motion trials for Subject 1 (Study II). Red curve
shows the measured signal and green curves show the predicted signal.
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The training CCRs for the four joint angles were [0.994, 0.993, 0.972, 0.997]. The

testing RMSEs and the testing CCRs were [3.25, 1.94, 3.22, 3.72] and [0.988, 0.825,

0.906, 0.994] respectively. The predictions on testing dataset are shown in Figures

4.29 a and b for shoulder and elbow kinematics prediction. The prediction results for

the TDNN-SIEMG model trained on two transverse plane trials and tested on the

third transverse plane trial are shown in Figures A.15 a and b. The testing RMSEs

for the 3 shoulder degrees of freedom and a single elbow degree of freedom were [2.18,

1.41, 3.26, 3.1]. The testing CCRs for the model were [0.95, 0.993, 0.94, 0.996].

The prediction results of the SIEMG-TDNN model trained using curated datasets

on combined shoulder and elbow random trial are shown in Figure 4.30. The model

was trained using the �rst combined planes of motion reaching trial along with sagittal

and transverse plane trials. The trained model was tested on the second combined

motion trial. The testing RMSEs and CCRs were [7.79, 2.71, 6.48, 4.82] and [0.963,

0.982, 0.928, 0.969] respectively for the combined motion reaching trial 2 for Subject

1 (Study II).

It can be inferred from these results that curating datasets by combining mul-

tiple motion types substantially improves prediction accuracy and the intra-subject

robustness performance of the models.

4.4 Wrist Joint Center Prediction Results

Using the forward kinematics model discussed in Section 3.7, the wrist joint center was

computed based on the predicted joint kinematics. For calculating the performance

metric, we used the spatial error between the predicted and measured joint center

position. The spatial error is de�ned by the Euclidean distance or magnitude of the

vector spanning from the predicted wrist joint center to the measured wrist joint

center position as shown in Figure 4.31. The measured wrist joint center position
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Figure 4.31: The spatial error shown in yellow was used to quantify the wrist joint
center prediction accuracy

used as the baseline for the prediction was computed using the measured reference

joint kinematics for shoulder and elbow by using the same forward kinematics model

presented in Table 3.4.

For the transverse pick and place trial using the TDNN model, the obtained

wrist joint center position is shown in Figures 4.32 a and b. The joint kinematics

prediction results for the same trial are shown in Figure A.13. For the predicted joint

kinematics, the RMSEs for shoulder exion-extension, abduction-adduction, internal

external rotation were around 3-4 deg. and for elbow exion-extension trial the RMSE

was around 7 deg. Though the performance of the TDNN model was satisfactory,

when computing the wrist joint center the errors can stack up and magnify, since

we project outwards to compute wrist pose from shoulder and wrist kinematics. The

average errors about x, y and z using the TDNN model were 22.56 mm, 26.46 mm and
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(a) Wrist joint center prediction results for the transverse plane reaching trial

(b) 3D wrist joint trajectories for the transverse plane reaching trial

Figure 4.32: Comparison between the predicted and measured wrist pose trajectory
using the TDNN model for the transverse plane reaching trial for Subject 1 (Study II).
Orange curve shows the predicted wrist position and blue curve shows the measured
wrist joint center position.
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(a) Wrist joint center prediction results for the transverse plane reaching trial

(b) 3D wrist joint trajectories for the transverse plane reaching trial

Figure 4.33: Comparison between the predicted and measured wrist pose trajectory
using the TDNN SIEMG model for the transverse plane reaching trial for Subject 1
(Study II). Orange curve shows the predicted wrist position and blue curve shows the
measured wrist joint center position.
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(a) Wrist joint center prediction results for the curated transverse plane
dataset

(b) 3D wrist joint trajectories for the curated transverse plane dataset

Figure 4.34: Comparison between the predicted and measured wrist pose trajectory
using the TDNN SIEMG model trained on the curated transverse plane dataset for
Subject 1 (Study II). Orange curve shows the predicted wrist position and blue curve
shows the measured wrist joint center position.
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22 mm. The average spatial error between measured and predicted joint center was

about � 50 mm. Hence, the accuracy improvements from the TDNN-SIEMG become

important for improving the wrist position prediction accuracy. For the same trial,

the wrist pose results using the TDNN-SIEMG model are shown in Figure 4.34. The

average errors about x, y and z using the TDNN-SIEMG model were 15.1 mm, 13.19

mm and 14.47 mm. The average spatial error between measured and predicted joint

center was 27.8 mm. It should be clear based on the comparison between Figures

4.32 and 4.34 that the state informed TDNN model improves the prediction accuracy

for the wrist joint center.

We further tested the prediction results on the curated dataset involving the trans-

verse plane pick and place trials. The joint kinematics prediction results for this trial

are summarized in Figure A.15 in Section 4.3.3. The 2D and 3D wrist joint center

prediction results are shown in Figures 4.34 a and b. Even when testing and predict-

ing on the larger dataset using the curated trials for training, the resulting average

errors about x, y and z were 15.4 mm, 13.5 mm and 11.5 mm respectively. The av-

erage spatial error throughout the trajectory was 26 mm or 2.6 cm. The wrist joint

prediction results on the sagittal plane curated dataset are shown in Figures A.16

a and b. For the sagittal plane reaching tasks curated dataset, the avg x, y, z and

spatial error were 16.38, 12.3, 12.96 and 27.1 mm respectively. It should be noted

that the �gures referenced above have the phase lead on the prediction removed to

compare to the baseline wrist trajectory. Comparing the measured and predicted

wrist trajectory by including the phase lead in the predictions leads to a consistent

prediction 250 ms forward in time for the wrist joint center as shown in Figure A.17.
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Figure 4.35: Real-time joint kinematics prediction using ROS and RQT plot function-
ality for shoulder and elbow joint kinematics prediction. The blue curves show the
�ltered predicted joint kinematics while the red curve shows the measured/reference
joint kinematics.
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Figure 4.36: Real-time wrist joint center prediction using ROS and RQT plot func-
tionality. Plot shows output from Node 5 from the real-time pipeline diagram. Red,
green and blue colored curves represent the wrist joint positions x,y and z respectively
in mm.

4.5 Real-time Prediction Results and Simulations

The real-time prediction results of the model are shown in Figures A.18, A.19, 4.35

and 4.36. Figure A.18 shows the real-time stream from EMG signals and output of

Node 1 from Figure 3.16. The second node subscribes to the raw EMG stream and

processes the raw signal to convert to excitation signal by high-pass �ltering, recti-

�cation, low-pass �ltering and normalization. The output of this node is shown in

Figure A.19. The processed signals from multiple muscle groups are published and
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subscribed to by Node 4 which uses this output as the input to the trained neural

network models from Node 3 to generate predictions in real-time. Figure 4.35 shows

the output from Node 4 in the ROS architectural diagram. The �gure shows the

predicted joint kinematics in real-time using the rqt plot functionality in ROS. As

expected, we observe a constant lead on the predicted joint kinematics due to the pro-

posed network training strategy. We also converted the wrist joint center estimation

into a ROS node as mentioned in the previous sections. This node subscribes to the

predicted shoulder and elbow joint kinematics to perform forward kinematics at each

time-step to compute the wrist-joint center position. This prediction/estimated wrist

joint center position [x; y; z] can be used as a task space pose input for teleoperating

a robot. The output from Node 5 in the ROS real-time architecture from Figure 3.17

is shown in Figure 4.36. One would still have to scale between the predicted human

con�guration space and robot con�guration space based on the global frames for each

model as discussed in Section 3.7.

We were able to con�rm that the o�ine prediction performance translates well

for real-world discrete-time predictions. As opposed to other o�ine works that use

acausal �lters, we used causal real-time �lters for our o�ine evaluation works to

ease the transition for real-time implementations. The implementation does not ac-

count for the computational time/overhead for the signal processing and the forward

propagation steps. We did however experience some computational challenges in our

implementations for the real-time work. The major issue being that since we were

streaming the recorded data at 2000 Hz, it is challenging for the hardware to main-

tain the prediction frequency especially since all the ROS nodes are serialized and

sequentially depend on each other. There are a number of possible workarounds to

ease the computational burden and improve real-time performance and e�ciency.

We have discussed some of these approaches in Section 5. We plan to quantify the

computational overhead and speed up computational times in the future.
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4.6 Inferences and Summary of Findings

The summary of the work and the key �ndings are listed below:

1. The causal relationship between muscle excitation signals (processed EMG) and

joint kinematics was analyzed using time analysis techniques to estimate the

optimal prediction horizon for upper-limb kinematics prediction. Though the

prediction horizon varied from subject to subject and motion type, an optimal

horizon of 250 ms worked well for all subjects for predicting shoulder and elbow

kinematics.

2. A novel neural network training approach was developed to leverage the correlation-

causation relationship between EMG and motion resulting in better training

and testing performance as compared to the general training approach em-

ployed in other neural network studies. Performance comparisons between the

training approaches resulted in improvements of 5-10 degrees using the BPNN

and TDNN models for elbow kinematics predictions for Study I. For Study II,

the BPNN model trained with the proposed training approach also consistently

outperformed the model trained without the horizon for all subjects and over

all motion types which con�rms the scalability and the e�cacy of the proposed

training strategy.

3. The bene�t of correlating current time EMG inputs to future motion labels leads

to reliable joint kinematics prediction forward in time over the established hori-

zon. Ideally one would expect a drop in performance, however due to the causal

relationship between the variables a skewed map results in better predictions.

4. Given the variance of the signals, ensemble learning con�rmed that the networks

converged in the locality of a global optimum with low relative variance between

predictions and served as a good approach for establishing a con�dence interval
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and repeatability check for the trained networks.

5. The TDNN (time-delayed neural network) augments temporal history in the

learning process resulting in smoother shoulder and elbow kinematics predic-

tions. The improvements of the TDNN model are more prominent around the

distal joint kinematics than the proximal joint kinematics. Temporal dynamics

plays a major role in the EMG to motion decoding and models that capture

short-term temporal information should be preferred.

6. Feature extraction was carried out which lead to reduced noise in the predic-

tions while the state information model helped bound the predictions closely

to the range of motion. The combined state and feature extracted TDNN

model (SIFEM) substantially improved prediction accuracy however during

inter-subject robustness analysis the model did not perform as well as the sim-

pler TDNN model. Due to a large number of feature inputs, the SIFEM strongly

over�ts to the characteristics of the input signals leading to poor generalization.

This resulted in the development of a state-informed EMG based TDNN model

(SIEMG) without the feature extraction block to avoid over�tting. The SIEMG

model was tested for shoulder and elbow kinematics prediction on the Study II

dataset for all subjects and motion types. Compared to the BPNN and TDNN

models, the SIEMG-TDNN substantially improves prediction performance. Av-

erage joint kinematics prediction accuracy of this model was around� 5 deg.

for shoulder and elbow kinematics.

7. It was also learnt based on the observations that proximal joint activations

strongly inuence distal joint motions. This could be a result of co-contractions

and compensatory activations about the proximal joint to counteract exter-

nal dynamics e�ects like gravity and inertia for stability and controlled distal

joint motion. By allowing the interplay between di�erent signals, and by using
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shoulder EMG excitations for elbow kinematics prediction, the elbow kinematics

prediction accuracy improved substantially over all motion types.

8. Robustness analysis results indicate that it is imperative to include datasets

that involve a higher density of information to improve generalization. This was

showcased by the improved intra-subject robustness results when the model was

trained on random and aperiodic motion trials as opposed to periodic motion

trials. Data curation and concatenation approaches were also explored to train

the networks on longer datasets which improved prediction generalization. It is

imperative to train the networks on multiple datasets and subject them to the

variance in signals for di�erent motion types and di�erent types of contractions:

isometric, eccentric, and concentric to improve the learnt relationship. The

curated TDNN-SIEMG model led to the best results in terms of accuracy and

intra-subject generalization performance.

9. A neuromusculoskeletal model was developed using physical and biomechanical

modeling approaches to capture muscle activation and contraction dynamics to

transform raw EMG signals to musculotendon forces and joint torques. The

hybrid neuromusculoskeletal (SIEMG-NMS) TDNN model was tested on Study

I dataset for subject 1. Not only did the model lead to highly accurate predic-

tions but it even lead to satisfactory inter-subject robustness performance which

is hard to guarantee given the variance of the signals from subject to subject.

Hence, combining model-based approaches with data-driven learning is a good

way to improve generalization performance. It might not be necessary to have

a perfect model but rather a parametric model that captures the underlying

dynamics su�ciently.

10. A forward kinematics model was developed to translate the predicted shoulder

and elbow kinematics to wrist joint center predictions and wrist joint center
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trajectories were obtained. Using the curated datasets and the TDNN-SIEMG

architecture, the model trained with the proposed training strategy could pre-

dict wrist joint position with an accuracy of � 2-3 cm upto 250 ms forward in

time at every time-step.

11. The real-time framework results in ROS con�rmed that the o�ine performance

can be translated to online predictions for shoulder and elbow kinematics. Var-

ious control applications can be realized based on the predicted kinematics

through joint-level control. For task-space control, the wrist joint center can

be used as a pose input to the robots using the presented forward kinematics

modeling approach.

Compared to a similar study done by Triwiyanto et al. [140], the TDNN employed

in this study led to better prediction results on a single degree of freedom. We report

improvements of over 8 deg. for random motion prediction about the elbow. A longer

time-history was used in this study and the prediction horizon was leveraged for im-

proved performance. The triceps extensors carry substantial information and were

included in the elbow prediction model as well. In another study, conducted by Grech

et al. comparing di�erent neural network architectures for combined shoulder and el-

bow predictions, the BPNN yielded the best results [124]. However, in this study

the TDNN architecture was a better model than BPNN for most cases leading to

smoother predictions and higher cross-correlations consistently for predicting elbow

kinematics. We also report much higher cross-correlation results using the proposed

training strategy. For shoulder predictions, though the TDNN and BPNN models

performed on par with each other, including the time-history is more relevant to the

problem and is explained by the underlying activation dynamics as the action poten-

tials sum up and integrate over time leading to force production. Muscles also show

interesting behaviors like `force enhancement' and `force depression' [65] [159]. These

characteristics make a strong case for modeling temporal dynamics. This was best
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illustrated in the study by using the TDNN. This work supports the use of networks

that can learn temporal dependencies for EMG-based prediction works. Architectures

like LSTM models consider long-term history and might be a promising candidate.

However, the bene�ts might not be clear if trained on smaller datasets. Day and

others have compared TDNN and LSTM models for EMG prediction works where

the LSTM only marginally performed better than the TDNN and the improvements

may not justify the added compute and longer training times [177]. Compared to

similar prediction works using LSTM models, the presented TDNN SIEMG model in

this work results in an average improvement of 4 cm about XY, YZ and ZX planes

for wrist-joint trajectory prediction accuracy for reaching tasks about the sagittal

and transverse planes [182]. These improvements similar to the �rst study, can be

explained by the proposed training strategy as well as the use of state information.

With the TDNN SIEMG model trained on the curated datasets, we report joint

kinematics prediction accuracy close to� 5 deg. averaged across di�erent motion

types. When trained on the curated dataset, this also leads to better intra-subject

robustness performance and better generalization guaranteeing high accuracy and ro-

bustness. The reason why high prediction accuracy is important can be explained

by the motivation behind using the predicted motion as a control signal for a robot.

In task space, if the joint kinematics data is converted to a forward kinematics pose

goal, the errors can add up leading to� 10 cm accuracy for wrist joint prediction

even with fair kinematics estimates of� 10 deg. The use of TDNN SIEMG model,

led to an accuracy of� 3cm for wrist joint trajectory prediction about the transverse

and sagittal planes.
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Chapter 5

Futureworks

5.1 Robustness and Generalization Improvements

As part of the previous phases, simulated real-time elbow and shoulder predictions

were performed using the BPNN and TDNN models, where recorded raw EMG data

was streamed in real-time. Based on the observations, it can be established that good

inter-subject robustness performance is challenging to achieve due to the variance

of the EMG signals. Due to the varying nature of the signals for di�erent testing

sessions (di�erent days) for the same operator, one would have to retrain the model

for each test session to guarantee good performance. However, we believe that this

issue can be avoided by �xing the sensor locations since as compared to other factors,

sensor locations are the most inuential factor for consistent signal quality. We plan

on performing extensive robustness analysis between di�erent training sessions on

di�erent days by �xing the sensor locations, to verify this hypothesis. Mechanisms

like transfer learning have proved valuable in improving robustness performance on

lower limb joint mechanics prediction using EMG [148]. We plan on exploring such

strategies in the future for augmenting the learning process from past networks while

training on newer datasets. For inter-subject generalization improvements, it might
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be necessary to explore better normalization strategies to reduce inter-subject signal

variance. The developed hybrid SIEMG-NMS model lead to promising inter-subject

robustness results. We plan on doing extensive robustness analysis using this model

in the future.

Currently, the input EMG signals are normalized based on MVIC (Maximum Voli-

tional Isometric Contraction) tasks for each muscle group. Though MVIC is a largely

popular method for normalization, the output produced does not necessary scale well

from person to person. Ideally, since the muscle �ber lengths are held constant the

muscle force produced should correspond to maximum force output; however repeated

MVIC motions show variance in the peak activation levels. Hence, for this study in

the preliminary works multiple isometric contraction tasks were performed for the

same muscle group and the peak activation was calculated by taking the mean of

100 maximum activation values. Yet while performing the exion extension tasks at

times the maximum activations would surpass the obtained MVIC values. This calls

for more consistent normalization techniques for EMG signal normalization. Addi-

tionally, studies have shown that while performing the isometric contraction task, the

obtained activations were consistently higher when the subject fully extended their

arm before performing the trial. When the subject exed their arm and performed

the same exact isometric contraction tasks the activations were relatively lower [65].

This is a very important observation since it implies that the force produced by the

muscles is not a function of the current state but also depends on the history of states

the arm or limb has traversed. Hence, MVIC trials alone may not be ideal to capture

this behavior.

Due to the stated issues, the predictions do not scale well between subjects and

there seems to be a constant o�set error as stated before when testing on di�erent

subjects. Normalization or scaling approaches can be explored, where calibration

routines are performed based on identical motion types between di�erent subjects.
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Scaling factors can be calculated to renormalize the predictions in the appropriate

ranges of motion for each subject. Ranges of MVIC trials can also be compared to

facilitate input EMG signal scaling between di�erent subjects.

5.2 Prediction Smoothness Improvements

The development of the SI-EMG TDNN model lead to smoother predictions, improved

accuracy, and improved robustness than previous models. To achieve good inter-

subject performance, physics-based or biomechanical models were also explored to

assist the network learning process. Laws of physics constrain the biomechanical

models; hence the output is bounded and reproducible because these methods are

characterized by �rst-order principles as opposed to statistical regularities in data.

The neuromusculoskeletal model entails using joint torque and muscle forces to enrich

the learning process of the network. Though the SIFEM model generated accurate

predictions the noise/jitter persisted around the periods of sudden accelerations and

decelerations. A noisy prediction might not be an appropriate control input for a

robot, hence there is a need to smoothen out the predictions.

1. The current feature-set used time-domain features and worked well in terms

of accuracy, but based on preliminary inter-subject robustness it has a high

likelihood of over�tting. Other features that reduce jitter along with frequency

domain feature sets can be explored for improved robustness and smoothness.

2. Another promising architecture that can be explored is CNN (convolutional

neural network). Though popular for image recognition, these layers can help

extract useful information from the signal. Rather than having a pre-de�ned

feature-set, a dynamic feature-set could work well due to the signal variance so

having di�erent �lter coe�cients and convolution operators might be something

worth looking for �ltering out the prediction noise.
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3. The current implementation of the feature extraction block used sliding window

approach to preserve the signal frequency. Studies also mention using non-

overlapping windows to �lter out noise which can be explored.

4. Down-sampling EMG is an easier way to reduce noise in signal, however that

could a�ect forward prediction accuracy so the balance between accuracy and

smoothness needs to be established.

5. Thresholding and rate-limiting are other avenues that can be explored to reduce

the jitter around periods of sudden acceleration/deceleration.

6. Ensemble learning approach was explored for TDNN models during the �rst

study. Having 5 neural networks converge to similar solutions increases the

con�dence interval in the predictions, but this technique can also potentially

smooth-out the prediction noise. The predictions can be averaged out from the

ensemble and from a real-time perspective, this process can be parallelized as

well.

7. Hurst exponent or DFA (detrended uctuation analysis) are some metrics that

measure signal complexity and self-a�nity which can be potentially used as a

performance metric for quantifying smoothness.

5.3 Real-time Performance Improvements

5.3.1 Computational E�ciency

The current real-time implementation was carried out in ROS. Since most of the pre-

diction process is sequential or serialized, the forward propagation process along with

the real-time signal processing adds more computational costs resulting in reduced

prediction update rates. Further plotting and forward simulations also adds more
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computational overhead. The following proposed solutions could reduce computa-

tional costs and improve prediction speeds for real-time work:

1. Most data ow is serialized and needs to be sequential for time-series data, but

parallelization can be explored for certain aspects of the work

2. The current python implementations of the ROS nodes rely heavily on certain

libraries NumPy, SciPy, etc. The e�ciency of these functions can be improved

for computational speeds

3. The EMG data stream can be downsampled to reduce computational costs. In

the current implementations, the raw EMG gets published at 2000 Hz, hence

the computational pipeline has to perform a lot of operations under 0.05 ms in

each node to predict each time-step. Unless the previous time-step computation

is complete the processing and prediction on the next set of samples does not

begin hence, reducing the e�ective number of samples or processing time�t

between each time-step is a good way to reduce computational cost.

4. ROS 1 was used for implementing the current real-time frame-work, however

ROS 2's DDS (Data Distribution Service) functionality and RTPS (real-time

publish-subscribe) can improve real-time performance since it is catered towards

industrial applications. Migrating the current ROS 1 implementation to ROS 2

in the future might lead to better real-time performance. As stated previously,

the current ROS nodes were written in Python. Migrating the ROS nodes to

ROS C++ (roscpp) nodes could also result in better processing speeds.

The SIEMG model and the hybrid NMS-model both rely on state estimates. To

deploy these models in real-time, it is important to have a system that can track

joint kinematics well. The EMG motion prediction pipeline can be used to predict

future-time joint kinematics but the improvements of the state-informed EMG driven
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TDNN model are substantial so we plan to migrate this model for real-time implemen-

tations in the future. Hence, a state estimator needs to be setup. We explored VIVE

tracker based kinematics pipeline for elbow motion prediction. We can extend the

work for shoulder kinematics prediction however the accuracy of the joint kinemat-

ics from marker-based MOCAP systems is superior. OpenCap is another promising

system that can be used for real-time state estimation [183]. The following strategy

is proposed for real-time state estimation using MOCAP markers:

5.3.2 Kinematics Pipeline Updates

Figure 5.1: Proposed real-time kinematics pipeline using motion capture markers.
uA and lA represent the upper arm and lower arm vectors respectively. PuA and
P lA represent the projected vectors about the origin

Since, the training label was generated using marker-based motion capture system,

the proposed work involves extending the tracker-based work to the the marker based
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system. The marker-based approach is a much accurate method to estimate elbow

kinematics hence it was used to train the models The other issue is that the trackers

take up a lot of real estate and weigh signi�cantly more than the motion capture

markers, hence they could lead to unwanted motion artifacts using the EMG sensors

if they are mounted close to the sensors. Hence, sticking to the marker based system

might be a good way to validate the real-time predictions rather than bringing in

another tracking system. Additionally the camera-based system samples at 200 Hz

as opposed to 120 Hz with the tracker based system. The proposed setup using

marker-based motion capture system is shown in Figure 5.1 along with the vector

math for calculating elbow joint kinematics

In order to access the real-time marker co-ordinate data, a real-time TCP/IP

socket needs to be setup similar to the one that was developed for the Delsys Trigno

system. Similar to the Delsys EMG node. The marker position data can be subscribed

to using ROS and used for estimating elbow joint angle similar to the VIVE tracker

approach presented in Figure 3.19. The upper arm and lower arm vectors uA and

l A can be projected about the common origin and the angle� elb can be calculated

about the plane joining the two vectors using vector dot product. An alternative to

the proposed approach is creating and importing an AIM (Automatic Identi�cation

of Markers) model in the Qualisys camera MOCAP software and using the labeled

marker data to create a kinematic model in Visual 3D. Joint kinematics could be

exported from Visual 3D, however the real-time performance needs to be tested.

5.3.3 Closed-loop Control Architecture

Achieving good prediction and generalization performance comes with added model

complexities. A complex model would add on additional computational cost leading

to reduced prediction frequencies or additional computational delays for online or

real-time prediction. A closed-loop control architecture can leverage a simple pre-
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diction model to predict motion forward in time and a secondary tracking system to

calculate errors for the predicted motion. This would re�ne the prediction from the

EMG-based motion prediction pipeline and guarantee a smoother prediction since the

predictions based on purely EMG signals carry several noisy artifacts and could lead

to corresponding irregularities in the robot's motion. Hence, a closed-loop controller

could account for these issues using a secondary tracking system.

Figure 5.2: Proposed closed loop control architecture

The importance of robust closed-loop control has been pointed out by another

study by N.Jiang et al. titled `Is accurate mapping of EMG signals on kinematics

needed for precise online myoelectric control'. They found that the o�ine performance

measure has little value with respect to the online performance. They quote, \We
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believe that with the necessary feedback, the user can adapt to the 'imperfection' of

the mapping provided by the algorithms, and achieve good online control over multiple

DoFs. This �nding is important for future development of SPC (simultaneous and

proportional control) myoelectric algorithms, because it highlights the importance of

online testing of the algorithms. Moreover, our results show that, for naive subjects, a

`rough' control signal provided by a simple algorithm may be as good as an `accurate'

one provided by a more complex one, as long as it is consistent and can be used by

the user with a continuous visual feedback"[154].

Figure 5.2 shows the proposed closed-loop architecture. If a state estimator is

setup for real-time work, it would be ideal to setup a closed loop control architecture

to improve prediction generalization than relying on or adding more computational

elements to the prediction node. The proposed architecture has two independent

pipelines: motion prediction and kinematics estimation pipeline. These independent

architectures have been discussed in previous sections. The closed loop architecture

entails using the state based estimations for improving the predictions from the neural

network model through the use of a PID or PD controller. The error (err = j� pred �

� ref j) would be used to correct the predictions at every time-step through closed loop

feedback.

For the current time-step prediction using a prediction horizon of `h' ms the cor-

responding reference from the kinematics estimation will be generated 'h' ms after

the actual prediction. Hence, a time-delay has to be added to account for the forward

prediction approach depending on the prediction horizon used in the motion predic-

tion pipeline since the forward prediction approach entails predicting future motion.

The time-delay block allows for synchronization between the predicted and reference

(measured) motion.
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Chapter 6

Conclusion

The improved performance using the skewed temporal map between EMG and joint

kinematics was systematically tested and con�rmed for all subjects over multiple mo-

tion types and multiple degrees of freedom. Ideally, one would expect a compromise

or drop in prediction accuracy while predicting forward in time however, given the

nature of the causal relationship between EMG and motion, the forward map be-

tween the variables presented in this work resulted in better training and testing

performance as compared to the general training approach employed in other neural

network studies con�rming our hypothesis.

The use of architectures that consider temporal dynamics also led to improved

prediction performance. Augmenting state information along with EMG signals and

curating datasets over multiple motion types improved prediction accuracy and gen-

eralization performance substantially. Guaranteeing good inter-subject robustness

with EMG signals is challenging, however hybrid approaches combining model-based

techniques and data-driven methods led to promising inter-subject robustness per-

formance even with limited training data. Hence, data driven techniques should

augment physics-based models that capture the underlying dynamics for improved

generalization and robustness performance.
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One could argue that forward predictions for periodic motions can be accomplished

fairly easily using deep learning models since the networks can exploit the periodicity

or harmonics in the signals. However, using the training strategy proposed in this

work that leverages the causal relationship between the EMG and motion, we report

consistent performance improvements across all aperiodic and out-of-plane motion

trials as well. This is an important observation that has been rarely explored in

other EMG-based continuous motion prediction works. Based on these observations

from our studies, we conclude that EMG signals can facilitate reliable continuous

future kinematics predictions upto 250 ms forward in time. Thus the presented work

could facilitate low-latency robotic teleoperation and a better human-robot interac-

tion experience with broader implications for EMG-based prosthesis and exoskeleton

control. Approaches resulting in reliable future motion predictions can improve the

overall uency of human-robot interactions.
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Appendix A

Supporting Figures & Plots

(a) BPNN Model I shoulder predictions (b) BPNN Model II shoulder predictions

Figure A.1: Shoulder kinematics prediction comparison between the BPNN trained
using current-time (Model I) and future-time labels (Model II). Consistent with the
elbow study, for combined shoulder and elbow kinematics prediction, Model II train-
ing strategy outperforms Model I training strategy
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(a) BPNN Model I elbow predictions (b) BPNN Model II elbow predictions

Figure A.2: Elbow kinematics prediction comparison between the BPNN trained
using current-time (Model I) and future-time labels (Model II). Model I BPNN pre-
diction results are shown by the red curve and Model II BPNN prediction results are
shown by the blue curve. Consistent with the elbow study, for combined shoulder and
elbow kinematics prediction, Model II training strategy outperforms Model I training
strategy

(a) TDNN shoulder predictions (b) TDNN elbow predictions

Figure A.3: Prediction results using the TDNN architecture for the combined random
motion trial on subject 6. TDNN model performs at par with the BPNN for shoulder
kinematics prediction but leads to marginally better predictions for elbow kinematics
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(a) TDNN-SIEMG shoulder predictions (b) TDNN-SIEMG elbow predictions

Figure A.4: Prediction results using the state-informed TDNN (SIEMG-TDNN) ar-
chitecture for the combined random motion trial on subject 6. TDNN-SIEMG model
leads to consistent improvements for predicting all degrees of freedom
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Figure A.5: Prediction comparisons between BPNN Model I and Model II for shoulder
and elbow prediction for subjects 1-3, 6-8. The un�lled plots show the prediction per-
formance of Model I BPNN and the �lled box plots show the prediction performance
of the Model II BPNN. The red, blue, yellow and green colors denote the shoulder
exion-extension (� 1), shoulder abduction-adduction (� 2), shoulder internal-external
rotation ( � 3) and elbow exion-extension angles (� 4) respectively.
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Figure A.6: Prediction comparisons between BPNN Model I and Model II for shoul-
der and elbow prediction for subjects 4,6,9,10. The un�lled plots show the prediction
performance of Model I BPNN and the �lled box plots show the prediction perfor-
mance of the Model II BPNN. The red, blue, yellow and green colors denote the
shoulder exion-extension (� 1), shoulder abduction-adduction (� 2), shoulder internal-
external rotation (� 3) and elbow exion-extension angles (� 4) respectively.
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(a) TDNN model trained on VFVR trial 2 and tested on VFFR 2 trial

(b) TDNN model trained on VFVR trial 1 and tested on VFVR 2 trial

Figure A.7: Intra-subject robustness analysis prediction results using TDNN model
on Subject 1 (Study I). Red curve shows the measured signal and green curves show
the predicted signal. The curves show the prediction on the magni�ed� 20 % interval
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(a) Biceps long head �ber-length VS elbow angle(b) Biceps short head �ber-length VS elbow an-
gle

(c) Brachialis �ber-length VS elbow angle (d) Triceps long �ber-length VS elbow angle

(e) Triceps lateral �ber-length VS elbow angle (f) Triceps medial �ber-length VS elbow angle

Figure A.8: Figure shows the changes in �ber-length w.r.t elbow joint angle for dif-
ferent muscle groups responsible for the elbow exion-extension motion. The polyno-
mial equations represented by the relationship curves were used for calculating muscle
�ber-lengths and �ber-velocities at each time step.
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(a) Biceps short, long head moment arms VS el-
bow angle

(b) Brachialis moment arm VS elbow angle

(c) Triceps lateral, long and medial heads mo-
ment arm VS elbow angle

Figure A.9: Figure shows the changes in muscle-moment arm w.r.t elbow joint angle
for di�erent muscle groups responsible for the elbow exion-extension motion. The
polynomial equations represented by the relationship curves were used for calculating
moment arms at every time-step.
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Figure A.10: Muscle force estimation using EMG activations and Hill's muscle model
for the elbow exion extension trial
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Figure A.11: Torque contributions from each muscle group for elbow exion-extension
motion using forces and moment arm information for the muscles
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(a) Hybrid TDNN SIEMG-NMS model prediction results on 60 bpm
trial 2

(b) Hybrid TDNN SIEMG-NMS model prediction results on VFVR
trial 2

Figure A.12: Prediction performance of the hybrid SIEMG-NMS TDNN model on
periodic trial and aperiodic motion trials for Subject 1 (Study I)
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(a) Shoulder kinematics prediction results for the transverse reaching trial

(b) Elbow kinematics prediction results for the transverse reaching trial

Figure A.13: Joint kinematics prediction results for Subject 1 (Study II) transverse
trial 1 using the TDNN model
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(a) Shoulder kinematics prediction results for the transverse reaching trial

(b) Elbow kinematics prediction results for the transverse reaching trial

Figure A.14: Joint kinematics prediction results for Subject 1 (Study II) transverse
trial 1 using the TDNN-SIEMG model
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(a) Shoulder kinematics prediction results for the curated transverse reaching
dataset

(b) Elbow kinematics prediction results for curated transverse reaching
dataset

Figure A.15: Intra-subject robustness analysis results using TDNN SIEMG model on
the curated dataset for the transverse plane reaching trials for Subject 1 (Study II).
Red curve shows the measured signal and green curves show the predicted signal.
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(a) Wrist joint center prediction results for the sagittal plane curated dataset

(b) 3D wrist joint trajectory prediction for the sagittal plane curated dataset

Figure A.16: Comparison between the predicted and measured wrist pose trajectory
using the TDNN SIEMG model trained on the curated sagittal plane dataset for
Subject 1 (Study II). Orange curve shows the predicted wrist position and blue curve
shows the measured wrist joint center position.
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Figure A.17: Temporal comparison between the predicted and measured wrist joint
center for the curated transverse plane dataset for Subject 1 (Study II)

Figure A.18: Real-time EMG stream in ROS. The three colors represent the di�erent
muscle groups used for elbow kinematics prediction in Study I
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Figure A.19: Real-time EMG processing node output in ROS. The �nal envelope
of EMG shown in cyan in the third subplot was obtained after high-pass �ltering,
recti�cation, low-pass �ltering and normalization. The three subplots represent the
di�erent muscle groups used for elbow kinematics prediction in Study I
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Appendix B

Supporting Tables
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Table B.1: BPNN shoulder and elbow motion prediction performance comparison
between Model I and Model II for transverse plane reaching trials

Subjects
Model I RMSE Model II RMSE

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 4.8 3.99 5.05 10.9 3.69 2.54 5.05 7.75
S2 12.08 5.62 12.56 19.63 8.65 4.54 9.55 12.06
S3 12.4 7.71 11.35 22.62 8.71 6.19 8.41 13.45
S4 7.07 3.21 6.89 8.16 6.26 2.69 6 5.24
S5 9.86 4.8 8.75 11.6 7.78 3.51 7.44 9.04
S6 7.53 7.7 4.63 23.2 3.51 3.88 3.35 9.37
S7 6.77 3.57 8.93 10.43 5.69 3.01 7.49 9.30
S8 8.61 6.71 9.51 21.83 7.21 4.54 8.04 11.14
S9 8.41 4.64 9.28 13.98 8.15 3.97 8.385 11.37
S10 8.44 5.57 10.69 17.85 6.89 3.62 8.92 10.66

Table B.2: BPNN shoulder and elbow motion prediction performance comparison
between Model I and Model II for sagittal plane reaching trials

Subjects
Model I RMSE Model II RMSE

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 7.41 2.76 5.21 18.36 5.72 2.26 4.79 12.83
S2 9.45 4.81 10.24 29.81 7.06 3.61 9.44 21.55
S3 9.78 5.06 5.15 21.15 8.11 4.41 4.26 14.77
S4 7.03 2.44 3.85 9.94 4.08 1.85 3.19 6.47
S5 6.21 3.58 3.99 14.5 4.72 2.91 3.97 12.57
S6 7.23 3.68 3.57 19.21 5.95 2.79 3.65 11.19
S7 8.81 4.54 7.99 12.76 7.18 3.69 7.58 11.05
S8 8.28 4.69 7.05 14.47 7.04 4.03 7.12 11.06
S9 6.42 4.19 5.4 16.34 4.11 3.42 5.21 10.92
S10 6.08 3.31 3.81 20.58 4.11 2.62 4.19 10.97
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Table B.3: BPNN shoulder and elbow motion prediction performance comparison
between Model I and Model II for combined motion reaching trials

Subjects
Model I RMSE Model II RMSE

� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4

S1 17.13 8.91 19.73 22.47 12.33 6.5 16.30 17.35
S2 14.42 6.8 12.77 24.04 9.73 5.21 8.62 15.36
S3 - - - - - - - -
S4 10.61 5.97 10.49 18.75 6.79 3.82 7.79 14.35
S5 8.93 6.04 7.385 16.69 8.19 5.55 6.47 13.74
S6 6.6 4.8 5.17 15.88 5.7 4.435 5.43 10.57
S7 11.63 6.945 13.06 17.04 11.95 5.9 13.02 15.1
S8 14.46 8.69 12.95 22.29 11.15 6.7 11.54 15.76
S9 11.31 6.39 9.745 22.65 9.55 4.99 9.14 13.95
S10 9.03 7.02 8.64 21.26 7.02 4.58 6.42 14.26
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