Ash, AGunnells, PEMcConnell, M2024-04-262024-04-262002-01https://hdl.handle.net/20.500.14394/34651<p>This is the pre-published version harvested from ArXiv. The published version is located at <a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKD-45V80C6-S&_user=1516330&_coverDate=05%2F31%2F2002&_rdoc=9&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%236904%232002%23999059998%23316426%23FLP%23display%23Volume)&_cdi=6904&_sort=d&_docanchor=&_ct=9&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=c33ee9ea56a77398a1e39e45942c349a&searchtype=a">http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WKD-45V80C6-S&_user=1516330&_coverDate=05%2F31%2F2002&_rdoc=9&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%236904%232002%23999059998%23316426%23FLP%23display%23Volume)&_cdi=6904&_sort=d&_docanchor=&_ct=9&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=c33ee9ea56a77398a1e39e45942c349a&searchtype=a</a></p>Let N>1 be an integer, and let Γ=Γ0(N)SL4( ) be the subgroup of matrices with bottom row congruent to (0, 0, 0, *) modN. We compute H5(Γ; ) for a range of N and compute the action of some Hecke operators on many of these groups. We relate the classes we find to classes coming from the boundary of the Borel–Serre compactification, to Eisenstein series, and to classical holomorphic modular forms of weights 2 and 4.cohomology of arithmetic groupsHecke operatorsmodular symbolsPhysical Sciences and MathematicsCohomology of congruence subgroups of SL4(Z)article