Jin, SKatsoulakis, MA2024-04-262024-04-261997https://hdl.handle.net/20.500.14394/34721<p>The published version is located at <a href="http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJ2-45S9316-H&_user=1516330&_coverDate=08%2F10%2F1997&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1672037558&_rerunOrigin=google&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=f703c6b1e657bbdd131d74746623dad4&searchtype=a">http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WJ2-45S9316-H&_user=1516330&_coverDate=08%2F10%2F1997&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_searchStrId=1672037558&_rerunOrigin=google&_acct=C000053443&_version=1&_urlVersion=0&_userid=1516330&md5=f703c6b1e657bbdd131d74746623dad4&searchtype=a</a></p>We introduce a relaxation model for front propagation problems. Our proposed relaxation approximation is a semilinear hyperbolic system without singularities. It yields a direction-depedent normal velocity at the leading term and captures, in the Chapmanā€“Enskog expansion, the higher order curvature dependent corrections, including possible anisotropies.Physical Sciences and MathematicsRelaxation approximations to front propagationarticle