Israel KorenSandip KunduAnnamalai, Arunachalam2024-04-262013-05-0920130910.7275/4122201https://hdl.handle.net/20.500.14394/44540Recent trends in technology scaling have shifted the processing paradigm to multicores. Depending on the characteristics of the cores, the multicores can be either symmetric or asymmetric. Prior research has shown that Asymmetric Multicore Processors (AMPs) outperform their symmetric (SMP) counterparts within a given resource and power budget. But, due to the heterogeneity in core-types and time-varying workload behavior, thread-to-core assignment is always a challenge in AMPs. As the computational requirements vary significantly across different applications and with time, there is a need to dynamically allocate appropriate computational resources on demand to suit the applications’ current needs, in order to maximize the performance and minimize the energy consumption. Performance/power of the applications could be further increased by dynamically adapting the voltage and frequency of the cores to better fit the changing characteristics of the workloads. Not only can a core be forced to a low power mode when its activity level is low, but the power saved by doing so could be opportunistically re-budgeted to the other cores to boost the overall system throughput. To this end, we propose a novel solution that seamlessly combines heterogeneity with a Dynamic Reconfiguration Framework (DRF). The proposed dynamic reconfiguration framework is equipped with Dynamic Resource Allocation (DRA) and Voltage/Frequency Adaptation (DVFA) capabilities to adapt the core resources and operating conditions at runtime to the changing demands of the applications. As a proof of concept, we illustrate our proposed approach using a dual-core AMP and demonstrate significant performance/power benefits over various baselines.Asymmetric Multicore Processors (AMP)Core MorphingThread schedulingPerformance/power predictionHardware performance counters (HPCs)Computer EngineeringElectrical and Computer EngineeringA Dynamic Reconfiguration Framework to Maximize Performance/Power in Asymmetric Multicore Processorsthesis