Publication Date



Crop area mapping is important for tracking agricultural production and supporting food security. Spaceborne approaches using synthetic aperture radar (SAR) now allow for mapping crop area at moderate spatial and temporal resolutions. Multi-frequency SAR data is highly useful for crop monitoring because backscatter response from vegetation canopies is wavelength dependent. This study evaluates the utility of C-band Sentinel-1B (Sentinel-1) and L-band ALOS-2 (PALSAR) data, collected during the 2019 growing season, for generating accurate active crop extent (crop vs. non-crop) classifications over an agricultural region in western Canada. Evaluations were performed against the Agriculture and Agri-Food Canada satellite-based Annual Cropland Inventory (ACI), an open data product that maps land cover across the extent of Canada’s agricultural land. Classifications were performed using the temporal coefficient of variation (CV) approach, where an optimal crop/non-crop delineating CV threshold (CVthr) is selected according to Youden’s J-statistic. Results show that crop area mapping agreed better with the ACI when using Sentinel-1 data (83.5%) compared to PALSAR (73.2%). Analysis of performance by crop reveals that PALSAR’s poorer performance can be attributed to soybean, urban, grassland, and pasture ACI classes. This study also compared CV values to in situ wet biomass data for canola and soybeans, showing that crops with lower biomass (soybean) had correspondingly lower CV values

Journal or Book Title



Special Issue

Recent Advances in Synthetic Aperture Radar (SAR) Remote Sensing for Agricultural Applications





Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.