Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Campus Access

Document Type


Degree Program

Mechanical Engineering

Degree Type

Master of Science in Mechanical Engineering (M.S.M.E.)

Year Degree Awarded


Month Degree Awarded



bend-twist coupling, aerodynamic load mitigation, structural mechanics, asymmetric bending, wind turbine blades


Asymmetric bending is explored as a means of inducing bend-twist coupling in an isotropic, fixed-wing airfoil. An analytical model describing the bend-twist coupling behavior of a constant-section airfoil undergoing steady wind loading is derived from Euler-Bernoulli beam theory, and evaluated over a range of structural and material stiffness. Finite element analysis is carried out in the ANSYS Parametric Design Language environment for an asymmetric, two-dimensional beam. Three-dimensional finite element analysis is carried out for two candidate blade models created in Pro/Engineer based on the NACA 64618 airfoil. Deformation results for the two- and three-dimensional finite element models are compared with analytical solutions. Results of this investigation highlight the dependency between the cross-sectional properties of a spar support and its tendency to exhibit twist-coupling under transverse loading.


First Advisor

Robert W Hyers

Second Advisor

Matthew A. Lackner