Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Access Type

Open Access

Document Type


Degree Program

Molecular & Cellular Biology

Degree Type

Master of Science (M.S.)

Year Degree Awarded


Month Degree Awarded



hepatic steatosis, insulin resistance, srebp1, lipid uptake


TGFβ ligands, activin and myostatin have been shown to stimulate insulin production and secretion. Antagonists, Follistatin (FST) and Follistatin like 3 (FSTL3) were partially and fully ablated, respectively, creating hyperinsulinemic mice with fatty liver. Much research has surfaced on the connection between hepatic steatosis and hepatic insulin resistance. We present two different models, each with a different mechanism behind the development of fatty liver. FST288-only mice have increased synthesis of mRNA and proteins responsible for hepatic triglyceride (TG) uptake, while our double mutants have increased synthesis of mRNA and proteins responsible for TG synthesis. This alteration was likely independent of hepatic insulin resistance as livers from both mouse lines were insulin sensitive. Experiments conducted in this study to realize the causal factor of hepatic steatosis can be performed on adipose and muscle tissues in the future to better characterize the phenotype.


First Advisor

Alan L Schneyer