Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.
Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.
Theses that have an embargo placed on them will not be available to anyone until the embargo expires.
Access Type
Open Access
Degree Program
Electrical & Computer Engineering
Degree Type
Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)
Year Degree Awarded
2011
Month Degree Awarded
September
Keywords
RF CMOS, X-Band, Quadrature Conversion, Injection Locking, Quadrature Coupling, Inegrated Mixer
Abstract
This thesis describes the design and measurement of an X-band IQ up/down converter that has been fabricated on a 180nm RF CMOS process. This converter includes components for mixing, frequency doubling, quadrature generation, amplification, and limiting. The specific circuit topologies used include passive double-balanced mixers, RC polyphase filters, and injection locked LC oscillators.
The converter is part of a transceiver chain that will make up the dedicated circuitry for each active antenna element of a phased-array radar. An active antenna element combines a radiator with its own transceiver subsystem. A phased-array radar, NetRad, is under development at the University of Massachusetts Amherst and will require thousands of active antenna elements. This motivates the need for low-cost integrated solutions. A silicon-based RF CMOS process provides a low-cost candidate technology to fulfill this requirement.
First Advisor
Robert W. Jackson