Off-campus UMass Amherst users: To download campus access theses, please use the following link to log into our proxy server with your UMass Amherst user name and password.

Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Theses that have an embargo placed on them will not be available to anyone until the embargo expires.

Document Type

Open Access

Degree Program

Animal Science

Degree Type

Master of Science (M.S.)

Year Degree Awarded

2012

Month Degree Awarded

February

Keywords

Nur77, apoptosis, Bcl-2, IP3 receptor, negative selection, T cell

Abstract

Nur77 is a member of the orphan nuclear receptor family, where it is known to play an important role in apoptosis in both negative selection in T cells and in cancer cell lines. In the development of T cells, it is critical for the immune system to discriminate self from non-self by eliminating auto-reactive cells. It was originally thought that Nur77 initiated apoptosis by activating downstream gene targets. However, it is now clear that Nur77 has its own distinct role outside of the nucleus and the precise mechanisms by which Nur77 induces apoptosis in T cells still needs to be clarified. Calcium plays an important role as a second messenger in various cellular responses, one of which includes apoptosis. The IP3 receptor controls efflux of calcium from the ER and can be activated through TCR activation. This signal induces a rise in cytoplasmic calcium levels ultimately causing cell death through mechanisms that remain unclear. Here, we use a double positive DO11.10 T cell line with tetracycline responsive Nur77, to examine the effects of cytosolic Nur77. Through co-immunoprecipitation experiments we suggest, that the presence of Nur77 disrupts the IP3R/Bcl-2 interaction. In this study, we also investigated the effect of Nur77 on intracellular calcium levels. We show that Nur77 increases baseline calcium levels and causes emptying of ER calcium stores. We suggest a model where cytosolic Nur77 disrupts the IP3R/Bcl-2 interaction by binding Bcl-2 at the mitochondria or ER, causing calcium release through the IP3R and apoptosis of the cell.

First Advisor

Barbara A. Osborne

Share

COinS