Publication Date


Journal or Book Title



The Ethiopian highlands suffer from severe land degradation, including erosion. In response, the Ethiopian government has implemented soil and water conservation practices (SWCPs). At the same time, due to its economic value, the acreage of eucalyptus has expanded, with croplands and pastures converted to eucalyptus plantations. The impact of these changes on soil loss has not been investigated experimentally. The objective of this study, therefore, is to examine the impacts of these changes on stream discharge and sediment load in a sub-humid watershed. The study covers a nine-year period that included installation of SWCPs, a three-fold increase from 1.5 ha in 2010 to 5 ha in 2018 in eucalyptus, and the upgrading of an unpaved to the paved road. Precipitation, runoff, and sediment concentration were monitored by installing weirs at the outlets of the main and four nested watersheds. A total of 867 storm events were collected in the nine years. Runoff and sediment concentration decreased by more than half in nine years. In the main watershed W5, we estimated that evapotranspiration by eucalyptus during the dry phase (November to May) increased approximately from 30 mm a−1 in 2010 to 100 mm a−1 in 2018. In watershed W3 it increased from 2 mm a−1 to 400 mm a−1, requiring more rainfall before saturation excess runoff began in the rain phase. The reduction in runoff led to a decreased sediment load from 70 Mg ha−1 a−1 in 2010 to 2.8 Mg ha−1 a−1 in 2018, though the reduction in discharge may have negative impacts on ecology and downstream water resources. SWCPs became sediment-filled and minimally effective by 2018. This indicates that these techniques are either inappropriate for this sub-humid watershed or require improved design and maintenance.




Special Issue

The Effect of Hydrology on Soil Erosion




UMass Amherst Open Access Policy

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.